八年级数学上册《整式》计算题练习100道(无答案)-新人教版

合集下载

八年级数学上册《整式》计算题练习100道(无答案)-新人教版

八年级数学上册《整式》计算题练习100道(无答案)-新人教版

八年级数学上册《整式》计算题练习100道(无答案)-新人教版《整式》计算题练习100道2、332()()a a a3、2323()()a a a4、 223()x5、3231()4x y z11、263373()()(2)x x x12、433111()()()a a a13、232(2)(2)n14、33612(0.25)0.1252(2)15、3312()()n x y xy16、5524226()()()()()x x x x x x17、232323(3)()x y x y18、32322()()(3)a b a b19、32008200910010010.25(4)8()220、122()()m m m a a a21、3233633(4)(3)2(2)x x x x x22、234342343()()()x y x y x y23、4354832263()2()5()x y xy x y x y x y24、已知 27927813n n n ,求n 的值25、已知23,24n m,求2312m n值26、已知36,92m n,求2413m n值27、(3x+10)(x+2)28、(4y-1)(y-5)29、(2x-521)()y x y25230、()()()x y z y z x z x y21、232(4)122()b a ab a a b b4332、若m为正整数,且x2m=3,求:(3x3m)2-13(x2)2m的值33、532a a a()()34、21n m m51252535、2(x-8)(x-5)-(2x-1)(x+2)36、232m m m m m m2(43)3(46)37、04331113()()()33338、若3918()n m x y y x y ,求: 值222223(2)mn m m n mn39、2()x y40、(35)(106)x y y x41、20092008(2)(2)42、3373(2)(2)x y x y43、22232x x x x x(3)42(32)44、化简求值:其中1x y4,22 2x y x y x y x y x y(2)()(2)2(3)()45、2(1)x y46、(32)(23)x y y x47、2211(3)(3)22x y x y48、30131241()()()()335249、23021771()()(1.92)()(3)99350、化简求值:其中214x y 32431(1)2()22(1)2xy x x y x y x y x51、22222()()()a b a b a b52、22()()4a b a b ab53、222()()()a b a b a b54、2222x y x y x y y x()()()()55、22a b a b a b a b(23)(23)(23)(23)56、化简求值:其中1x x x x x(21)(1)2(3)(4)57、(32)(32)m n m n58、(3)(3)a b b a59、4422()()()x y x y x y60、33()()a b a b a b61、1212()()m n m n a b a b62、化简求值:其中1,1x y3 222()()3()()4x x y y x x y y x y63、(26)(3)y y64、(0.5)(0.5)xy xy65、3(2)(1)2(5)(3)x x x x66、22222x y x y x y(3)(3)(9)67、2222111()()(2)222y x y x x y68、42(1)(1)(1)(1)x x x x69、已知211x x ,求x 的值。

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试题(含答案解析)(5)

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试题(含答案解析)(5)

一、选择题1.计算下列各式,结果为5x 的是( )A .()32xB .102x x ÷C .23x x ⋅D .6x x - 2.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( )A .41a +B .43a +C .63a +D .2+1a 3.已知: 13m m +=, 则: 331m m +的值为( ) A .15B .18C .21D .9 4.计算()201920180.52-⨯的值( ) A .2B .2-C .12D .12- 5.化简()2003200455-+所得的值为( ) A .5- B .0 C .20025 D .200345⨯6.在下列的计算中正确的是( ) A .23a ab a b ⋅=;B .()()2224a a a +-=+;C .235x y xy +=;D .()22369x x x -=++ 7.如图,从边长为21a +的正方形纸片中剪去一个边长为2a +的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .233a -B .233a +C .221a a -+D .2189a a ++ 8.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++ B .222x xy y -+- C .221449x xy y -++D .22193x x -+ 9.下列运算正确的是( )A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-110.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .c a b >>D .a c b >>11.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y =D .623x x x ÷=12.下列各式运算正确的是( )A .235a a a +=B .1025a a a ÷=C .()32626b b =D .2421a a a -⋅= 二、填空题13.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.14.分解因式:32m n m -=________.15.若2|1|0++-=a b ,则2020()a b +=_________.16.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.17.若2a 与()23b +互为相反数,则2-=b a ______.18.已知2m n +=,2mn =-,则(1)(1)m n --=________.19.下列说法:①用两个钉子就可以把木条固定在墙上依据的是“两点之间,线段最短”;②若2210m m +-=,则2425m m ++的值为7;③若a b >,则a 的倒数小于b 的倒数;④在直线上取A 、B 、C 三点,若5cm AB =,2cm BC =,则7cm AC =.其中正确的说法有________(填号即可).20.如图:一块直径为+a b 的圆形钢板,从中挖去直径分别为a 与b 的两个半圆,则剩下的钢板面积为______.三、解答题21.(1)因式分解:()222224x y x y +-(2)计算:()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦22.(1)23235ab a b ab (2)23233x xx x 23.计算:(1)()222--(2)()()2215105x y xy xy -÷-(3)()()()2321x x x -+--24.因式分解:(1)2ax 2-4axy +2ay 2(2)x 2-2x -825.把下列多项式因式分解(要写出必要的过程):(1)﹣x 2y +6xy ﹣9y ;(2)9(x +2y )2﹣4(x ﹣y )2;(3)1﹣x 2﹣y 2+2xy .26.已知x 、y 为有理数,现规定一种新运算,满足1x y xy *=+.(1)求24*的值;(2)求(14)(2)*-的值;(3)探索()a b c *+与a b a c *+*的关系,并用等式把它们表达出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别计算每个选项然后进行判断即可.【详解】A 、()326x x =,选项错误; B 、1028x x x =÷,选项错误;C 、235x x x ,选项正确; D 、6x x -不能得到5x ,选项错误.故选:C【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键. 2.C解析:C【分析】根据题意列出关系式,化简即可得到结果;【详解】根据题意可得:()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C .【点睛】 本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.3.B解析:B【分析】 把13m m +=两边平方得出221m m +的值,再把331m m+变形代入即可得出答案 【详解】 解:∵13m m+=, ∴219⎛⎫+= ⎪⎝⎭m m , ∴221=7+m m ∴()3232111=m+m 1+=371=18m m ⎛⎫⎛⎫+-⨯- ⎪⎪⎝⎭⎝⎭m m 故选:B【点睛】本题考查了完全平方公式的应用,熟练掌握公式是解题的关键4.D解析:D【分析】 将原式变形为201920181-22⎛⎫⨯ ⎪⎝⎭,再利用同底数幂的乘法逆运算变为2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭,然后运用乘法交换律及积的乘方的逆运算计算即可. 【详解】 解:原式=201920181-22⎛⎫⨯ ⎪⎝⎭=2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =2018201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =()20181-1-2⎛⎫⨯ ⎪⎝⎭=1×1-2⎛⎫ ⎪⎝⎭=12- 故选:D .【点睛】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法、积的乘方的逆运算是解题的关键.5.D解析:D【分析】首先把52004化为(-5)2004,然后再提公因式(-5)2003,继而可得答案.【详解】解:()2003200455-+=(-5)2003+(-5)2004=(-5)2003(1-5)=4×52003,故选:D .【点睛】此题主要考查了提公因式分解因式,关键是正确确定公因式.6.A解析:A【分析】根据单项式的乘法,平方差公式,完全平方公式,对各选项计算后利用排除法求解.【详解】A 、a 2•ab =a 3b ,正确;B 、应为(a +2)(a−2)=a 2−4,故本选项错误;C 、2x 与3y 不是同类项不能合并;D 、应为(x−3)2=x 2−6x +9,故本选项错误.故选:A .【点睛】本题主要考查平方差公式,单项式的乘法法则,完全平方公式,熟练掌握运算法则和公式是解题的关键,合并同类项时,不是同类项的不能合并.7.A解析:A【分析】矩形的面积就是边长是21a +的正方形与边长是2a +的正方形的面积的差,列代数式进行化简即可.【详解】解:由题意可知,矩形的面积就是边长是21a +的正方形与边长是2a +的正方形的面积的差,∴S 矩形=()()22212a a +-+=2244144a a a a ++---=233a -.故选:A .【点睛】本题考查了整式的运算,根据题意列出代数式,同时正确使用完全平方公式是解决本题的关键. 8.C解析:C【分析】直接利用完全平方公式分解因式得出答案.【详解】A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意; B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 9.D解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.10.B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> , ∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.11.C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.12.D解析:D【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解.【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误;B 、1028a a a ÷=,故本选项错误;C 、()32628b b =,故本选项错误; D 、24221a a a a --⋅==,正确. 故选:D .【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.二、填空题13.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.14.【分析】原式提取公因式再利用平方差公式分解即可【详解】解:原式==故答案为:【点睛】此题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键解析:(1)(1)m mn mn -+【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=3222(1)m n m m m n -=-,=(1)(1)m mn mn -+故答案为:(1)(1)m mn mn -+.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 15.1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2b=1代入计算即可【详解】∵且∴a+2=0b-1=0∴a=-2b=1∴故答案为:1【点睛】此题考查代数式的求值正确掌握算术平方根的非负性及解析:1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2,b=1,代入计算即可.【详解】∵|1|0-=b 0,|1|0b -≥,∴a+2=0,b-1=0,∴a=-2,b=1,∴202020201()(21)a b +-+==,故答案为:1.【点睛】此题考查代数式的求值,正确掌握算术平方根的非负性及绝对值的非负性求出a=-2,b=1是解题的关键.16.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故解析:﹣25【分析】将3x +3y ﹣4xy 变形为3(x +y )﹣4xy ,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25,故答案为:﹣25.【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键. 17.-8【分析】根据题意得到+=0根据绝对值的非负性及偶次方的非负性求出a=2b=-3代入2b-a 计算即可【详解】由题意得:+=0∵00∴a-2=0b+3=0∴a=2b=-3∴2b-a=-6-2=8故答解析:-8【分析】 根据题意得到2a +2(3)b +=0,根据绝对值的非负性及偶次方的非负性求出a=2,b=-3,代入2b-a 计算即可.【详解】 由题意得:2a +2(3)b +=0 ∵2a ≥0,2(3)b +≥0,∴a-2=0,b+3=0,∴a=2,b=-3,∴2b-a=-6-2=8,故答案为:-8.【点睛】此题考查相反数的定义,绝对值的非负性及偶次方的非负性,求代数式的值,根据绝对值的非负性及偶次方的非负性求出a 和b 的值是解题的关键.18.-3【分析】原式利用多项式乘以多项式法则计算变形后将m+n 与mn 的值代入计算即可求出值【详解】解:∵m+n=2mn=-2∴(1-m )(1-n )=1-(m+n )+mn=1-2-2=-3故答案为:-3【解析:-3【分析】原式利用多项式乘以多项式法则计算,变形后,将m+n 与mn 的值代入计算即可求出值.【详解】解:∵m+n=2,mn=-2,∴(1-m )(1-n )=1-(m+n )+mn=1-2-2=-3.故答案为:-3.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.19.②【分析】①用两个钉子可以把木条固定的依据是两点确定一条直线;②利用整体代换的思想可以求出代数式的值;③根据倒数的定义举出反例即可;④直线上ABC 三点的位置关系要画图分情况讨论【详解】①用两个钉子可解析:②【分析】①用两个钉子可以把木条固定的依据是“两点确定一条直线”;②利用“整体代换”的思想,可以求出代数式的值;③根据倒数的定义,举出反例即可;④直线上A 、B 、C 三点的位置关系,要画图,分情况讨论.【详解】①用两个钉子可以把木条固定的依据是“两点确定一条直线”,故①错误;②∵2210m m +-=,∴()2242522172077m m m m ++=+-+=⨯+=,故②正确;③∵a >b ,取a=1,b=-1,∴11a =,11b=-,11a b >,故③错误; ④当点C 位于线段AB 上时,AC=AB -BC=5-2=3cm ;当点C 位于线段AB 的延长线上时,AC=AB+BC=5+2=7cm ,则AC 的长为3cm 或7cm ,故④错误;综上可知,答案为:②.【点睛】本题考查了两点确定一条直线、整体代换思想、求代数式的值、倒数的有关计算及数形结合法求线段的长度,综合性较强,需要学生熟练掌握相关的知识点.20.【分析】先求出圆形钢板的面积再减去两个小半圆的面积即可【详解】解:圆形钢板的面积为:直径为a 的半圆面积为:直径为b 的半圆面积为:剩下钢板的面积为:=故答案为:【点睛】本题考查了圆的面积利用面积的差求解析:()2248a b ab π++【分析】 先求出圆形钢板的面积,再减去两个小半圆的面积即可.【详解】 解:圆形钢板的面积为:2()2a b π+, 直径为a 的半圆面积为:21()22a π⨯, 直径为b 的半圆面积为:21()22b π⨯, 剩下钢板的面积为:22211()()()22222a b a b πππ+-⨯-⨯, =()2248a b ab π++, 故答案为:()2248a b ab π++.【点睛】 本题考查了圆的面积,利用面积的差求出剩余钢板的面积,注意:圆的面积等于半径的平方乘以π.三、解答题21.(1)()()22x y x y -+;(2)9a【分析】(1)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解;(2)整式的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的.【详解】解:(1)()222224x y x y +- =()()222222x y xyx y xy +-++ =()()22x y x y -+(2)()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦=()222296923a ab b b a a b ⎡⎤++--÷-⎣⎦=2222(96+9)23a ab b b a a b ++-÷-=2(186)23a ab a b +÷-=933a b b +-=9a【点睛】本题考查因式分解和整式的混合运算,掌握运算法则正确计算是解题关键.22.(1)10615a b ;(2)23221x x -- 【分析】(1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =; (2)23233x xx x 23233x xx x 2222369x x x x2222129x x x 23221x x .【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.23.(13;(2)32x y -+;(3)7x -【分析】(1)同时计算乘方、绝对值、算术平方根及开立方,再计算加减法;(2)用多项式除以单项式法则计算;(3)先根据多项式乘以多项式及完全平方公式计算,再合并同类项即可.【详解】(1)解:原式4232=--3=;(2)解:原式32x y =-+(3)解:原式2223621x x x x x =+---+-7x =-.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数的乘方、绝对值、算术平方根及开立方、加减法运算,整式的多项式乘以多项式及完全平方公式、多项式除以单项式法则是解题的关键.24.(1)22()a x y -;(2)(2)(4)x x +-.【分析】(1)先提取公因式,再用完全平方公式因式分解;(2)先给原式变形用完全平方公式给前三项因式分解后,再利用平方差公式因式分解.【详解】解:(1)原式=22)2(2a x xy y -+=22()a x y -;(2)原式=2219x x -+-=22(1)3x --=(13)(13)x x -+--=(2)(4)x x +-.【点睛】本题考查综合运用提公因式法和公式法因式分解.一般因式分解时,有公因式先提取公因式,再看能否运用公式因式分解,有时还需变形后,分组因式分解.25.(1)﹣y (x ﹣3)2;(2)(5x +4y )(x +8y );(3)(1+x ﹣y )(1﹣x +y )【分析】(1)先提取公因式,再按照完全平方公式分解;(2)分别把前后两项看成某项的平方并根据平方差分解因式,然后对每个因式去括号及合并同类项进行化简;(3)首先把后面三项看成一组并化成完全平方式,然后与第一项组合并利用平方差公式分解后对每个因式去括号化简即可.【详解】解:(1)﹣x 2y +6xy ﹣9y=﹣y (x 2﹣6x +9)=﹣y (x ﹣3)2;(2)9(x +2y )2﹣4(x ﹣y )2;=[3(x +2y )+2(x ﹣y )][3(x +2y )﹣2(x ﹣y )]=(5x +4y )(x +8y );(3)1﹣x 2﹣y 2+2xy=1﹣(x 2+y 2﹣2xy )=1﹣(x ﹣y )2=[1+(x ﹣y )][1﹣(x ﹣y )]=(1+x ﹣y )(1﹣x +y ).【点睛】本题考查了因式分解,熟练掌握因式分解的各种方法并灵活运用是解题关键. 26.(1)9;(2)-27;(3)a b a c *+*=()a b c *++1.【分析】(1)根据1x y xy *=+,可以求得所求式子的值;(2)根据1x y xy *=+,可以求得所求式子的值;(3)根据1x y xy *=+,可以得到()a b c *+与a b a c *+*的关系,并用等式把它表达出来.【详解】解:(1)∵1x y xy *=+,∴24=24+1=8+1=9*⨯;(2)1x y xy *=+,∴(14)(2)=14(2)128127*-⨯-+=-+=-;(3))∵1x y xy *=+,∴()()11a b c a b c ab ac *+=++=++1111a b a c ab ac ab ac *+*=+++=+++∴a b a c *+*=()a b c *++1.【点睛】本题考查有理数的混合运算,解答本题的关键理解新定义,代入数据,注意由式子转化为具体数据的时候符号及运算顺序的变化,求出相应式子的值.。

人教版八年级数学上册《整式的乘法》拓展练习

人教版八年级数学上册《整式的乘法》拓展练习

《整式的乘法》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)如果“□×2ab=2a2b”,那么“□”内应填的代数式是()A.ab B.2ab C.a D.2a2.(5分)已知ab2=﹣1,则﹣ab(a2b5﹣ab3﹣b)的值等于()A.﹣1B.0C.1D.无法确定3.(5分)下列运算正确的是()A.6a﹣5a=1B.(a2)3=a5C.3a2+2a3=5a5D.a6•a2=a84.(5分)下列运算正确的是()A.3a+2b=5ab B.a3•a2=a6C.a3÷a3=1D.(3a)2=3a2 5.(5分)已知:2m+3n=5,则4m•8n=()A.16B.25C.32D.64二、填空题(本大题共5小题,共25.0分)6.(5分)如果(2x+m)(x﹣5)展开后的结果中不含x的一次项,那么m=.7.(5分)已知2x=3,2y=5,则22x﹣y﹣1的值是.8.(5分)计算:(x﹣1)(x+3)=.9.(5分)计算:(x+1)(x+2)=.10.(5分)计算(﹣3x3)2=.三、解答题(本大题共5小题,共50.0分)11.(10分)甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为6x2+11x﹣10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2﹣9x+10.(1)求正确的a、b的值.(2)计算这道乘法题的正确结果.12.(10分)如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.13.(10分)已知(a m)n=a6,(a m)2÷a n=a3(1)求mn和2m﹣n的值;(2)求4m2+n2的值.14.(10分)小明与小乐两人共同计算(2x+a)(3x+b),小明抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;小乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a,b的值各是多少?(2)请计算出原题的答案.15.(10分)若(x2+nx+3)(x2﹣3x+m)的乘积中不含x2项和x3项,求m,n的值.《整式的乘法》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如果“□×2ab=2a2b”,那么“□”内应填的代数式是()A.ab B.2ab C.a D.2a【分析】直接利用单项式除以单项式运算法则计算得出答案.【解答】解:∵□×2ab=2a2b,∴2a2b÷2ab=a,故“□”内应填的代数式是a.故选:C.【点评】此题主要考查了单项式乘以单项式,正确把握运算法则是解题关键.2.(5分)已知ab2=﹣1,则﹣ab(a2b5﹣ab3﹣b)的值等于()A.﹣1B.0C.1D.无法确定【分析】原式利用单项式乘以多项式法则计算,变形后将已知等式代入计算即可求出值.【解答】解:∵ab2=﹣1,∴原式=﹣(ab2)3+(ab2)2+ab2=1+1﹣1=1,故选:C.【点评】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.3.(5分)下列运算正确的是()A.6a﹣5a=1B.(a2)3=a5C.3a2+2a3=5a5D.a6•a2=a8【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可.【解答】解:A、6a﹣5a=a≠1,本选项错误;B、(a2)3=a6≠a5,本选项错误;C、3a2+2a3≠5a5,本选项错误;D、a6•a2=a8,本选项正确.故选:D.【点评】本题考查了幂的乘方与积的乘方,解答本题的关键在于熟练掌握该知识点的概念和运算法则.4.(5分)下列运算正确的是()A.3a+2b=5ab B.a3•a2=a6C.a3÷a3=1D.(3a)2=3a2【分析】根据同底数幂的除法、同底数幂的乘法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,逐项判断即可.【解答】解:∵3a+2b≠5ab,∴选项A不符合题意;∵a3•a2=a5,∴选项B不符合题意;∵a3÷a3=1,∴选项C符合题意;∵(3a)2=9a2,∴选项D不符合题意.故选:C.【点评】此题主要考查了同底数幂的除法、同底数幂的乘法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,要熟练掌握.5.(5分)已知:2m+3n=5,则4m•8n=()A.16B.25C.32D.64【分析】根据同底数幂的乘法、幂的乘方,即可解答.【解答】解:4m•8n=22m•23n=22m+3n=25=32,故选:C.【点评】本题考查了同底数幂的乘法、幂的乘方,解决本题的关键是熟记同底数幂的乘法、幂的乘方.二、填空题(本大题共5小题,共25.0分)6.(5分)如果(2x+m)(x﹣5)展开后的结果中不含x的一次项,那么m=10.【分析】原式利用多项式乘以多项式法则计算,合并后根据结果不含x的一次项,即可确定出m的值.【解答】解:(2x+m)(x﹣5)=2x2﹣10x+mx﹣5m=2x2+(m﹣10)x﹣5m,∵结果中不含有x的一次项,∴m﹣10=0,解得m=10.故答案为:10.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.7.(5分)已知2x=3,2y=5,则22x﹣y﹣1的值是.【分析】根据同底数幂的除法底数不变指数相减,幂的乘方,可得答案.【解答】解:22x﹣y﹣1=22x÷2y÷2=(2x)2÷2y÷2=9÷5÷2=,故答案为:.【点评】本题考察了同底数幂的除法、幂的乘方,熟记法则并根据法则计算是解题关键.8.(5分)计算:(x﹣1)(x+3)=x2+2x﹣3.【分析】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.依此计算即可求解.【解答】解:(x﹣1)(x+3)=x2+3x﹣x﹣3=x2+2x﹣3.故答案为:x2+2x﹣3.【点评】此题考查了多项式乘多项式,运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.9.(5分)计算:(x+1)(x+2)=x2+3x+2.【分析】原式利用多项式乘多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故答案为:x2+3x+2【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.10.(5分)计算(﹣3x3)2=9x6.【分析】利用积的乘方,以及幂的乘法法则即可求解.【解答】解:原式=9x6.故答案是:9x6.【点评】本题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为6x2+11x﹣10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2﹣9x+10.(1)求正确的a、b的值.(2)计算这道乘法题的正确结果.【分析】(1)按乙错误的说法得出的系数的数值求出a,b的值;(2)把a,b的值代入原式求出整式乘法的正确结果.【解答】解:(1)(2x﹣a)(3x+b)=6x2+2bx﹣3ax﹣ab=6x2+(2b﹣3a)x﹣ab=6x2+11x﹣10.(2x+a)(x+b)=2x2+2bx+ax+ab=2x2+(2b+a)x+ab=2x2﹣9x+10.∴,∴;(2)(2x﹣5)(3x﹣2)=6x2﹣4x﹣15x+10=6x2﹣19x+10.【点评】此题考查了多项式乘多项式;解题的关键是根据多项式乘多项式的运算法则分别进行计算,是常考题型,解题时要细心.12.(10分)如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.【分析】(1)利用矩形的面积公式计算即可;(2)求出正方形的面积即可解决问题;(3)构建不等式即可解决问题;【解答】解:(1)∵S1=(m+13)(m+3)=m2+16m+39,S2=(m+7)(m+5)=m2+12m+35,∴S1﹣S2=4m+4>0,∴S1>S2.(2)∵一个正方形的周长与图1中的长方形的周长相等,∴正方形的边长为m+8,∴正方形的面积=m2+16m+64,∴m2+16m+64﹣(m2+16m+39)=25,∴该正方形的面积与长方形的面积的差是一个常数;(3)由(1)得,S1﹣S2=4m+4,∴当19<4m+4≤20时,∴<m≤4,∵m为正整数,m=4.【点评】本题考查多项式乘多项式、矩形的性质、正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(10分)已知(a m)n=a6,(a m)2÷a n=a3(1)求mn和2m﹣n的值;(2)求4m2+n2的值.【分析】(1)由已知等式利用幂的运算法则得出a mn=a6、a2m﹣n=a3,据此可得答案;(2)将mn、2m﹣n的值代入4m2+n2=(2m﹣n)2+4mn计算可得.【解答】解:(1)∵(a m)n=a6,(a m)2÷a n=a3,∴a mn=a6、a2m﹣n=a3,则mn=6、2m﹣n=3;(2)当mn=6、2m﹣n=3时,4m2+n2=(2m﹣n)2+4mn=32+4×6=9+24=33.【点评】本题主要考查幂的运算,解题的关键是掌握幂的乘方与同底数幂的除法的运算法则.14.(10分)小明与小乐两人共同计算(2x+a)(3x+b),小明抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;小乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a,b的值各是多少?(2)请计算出原题的答案.【分析】(1)根据两人出错的结果列出关于a与b的方程组,求出方程组的解即可得到a 与b的值;(2)将a与b的值代入计算即可求出正确的结果.【解答】解:(1)∵(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,∴2b﹣3a=﹣13①,∵(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2﹣x﹣6,∴2b+a=﹣1②,联立方程①②,可得,解得:;(2)(2x+a)(3x+b)=(2x+3)(3x﹣2)=6x2+5x﹣6.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.15.(10分)若(x2+nx+3)(x2﹣3x+m)的乘积中不含x2项和x3项,求m,n的值.【分析】将已知的式子利用多项式乘以多项式的法则变形,合并后根据乘积中不含x2和x3项,得到这两项系数为0,列出关于m与n的方程,求出方程的解即可得到m与n的值.【解答】解:(x2+nx+3)(x2﹣3x+m)=x4+nx3+3x2﹣3x3﹣3nx2﹣9x+mx2+mnx+3m=x4+(n﹣3)x3+(3﹣3n+m)x2+(mn﹣9)x+3m,∵乘积中不含x2和x3项,∴n﹣3=0,3﹣3n+m=0,解得:m=6,n=3.【点评】本题主要考查多项式的乘法,运用不含某一项就是该项的系数等于0是解本题的关键,熟练掌握运算法则也很重要.。

人教版 八年级数学上册 第14章 :幂运算与整式乘除练习题(含答案)

人教版 八年级数学上册 第14章 :幂运算与整式乘除练习题(含答案)

(2)
8
(3) 0.4
(4) 6
例题 7.
(1)若 3x 4 , 9y 7 ,则 3x2y 的值为( )
4
7
A. 7
B. 4
(2)已知: 22x 22x1 192 ,则 x 的值是
C. 3 .
2
D. 7
(3)已知10m 2 ,10n 3 ,求103m2n 的值.
(4)若 n 是正整数,且 x2n 5 ,则 2x3n 2 4x2n
例题 5. 计算:
(1) am1 an2 a
(2) a5 a3
; a b3 b a4 a b5

; 10a6 5a3

(3) a4 3
; xm2 2

(4) ab6
; 3a2b3 4
8x 84 y

23 x
23 4 y
2x 3 a3
22 6 y
b6 .
例题 9.
(1)已知 a 322 ,b,,414 c 910 d 810 ,则 a,b,c,d 的大小关系为

(2)已知 a 255 , b 344 , c 533 , d 622 ,比较 a 、b、、c d 的大小关系.
人教版 八年级数学上册 第 14 章 幂运算与整式乘除练习题
(含答案)
例题1. 将 4 m nn mm nn mn m写成幂的形式为:

5
【答案】 4 n m5 .
5 例题 2. 计算:① 34
4



3 4
4
34
③ 4

人教版八年级数学上册 第十四章《整式乘法与因式分解》单元测试卷(含解析)

人教版八年级数学上册 第十四章《整式乘法与因式分解》单元测试卷(含解析)

第十四章《整式乘法与因式分解》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)二、填空题(本大题共8小题,每小题4分,共32分)三、解答题(本大题共6小题,共58分)19.(8分)计算:20.(8分)分解因式:21.(10分)(1)若,求的值;(2)已知,求的值.22.(10分)观察下列等式:…(1)根据以上等式写出______;(2)直接写出的结果(n 为正整数)______;2225,()9m n m n -=+=m n -()()2121y y y m +-+=224424y my m y m -+-+()()2111x x x -÷-=+()()32111xx x x -÷-=++()()432111xx x x x -÷-=+++()()511x x -÷-=()()11nx x -÷-(3)计算:.23.(10分)材料:把多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:.(1)分解因式:(2)若a ,都是正整数且满足,求的值;(3)若a ,b为实数且满足 , ,求S 的最小值.24.(12分)我们学习了完全平方公式,把它适当变形,可解决很多数学问题.2342023122222+++++⋅⋅⋅+()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++1ab a b +++()b a b >40ab a b ---=a b +50ab a b ---=22235S a ab b a b =+++-()()22222222a b a ab b a b a ab b +=++-=-+,例如:若,求的值.解∶又根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)①若,则___________;②若,则________________;(3)如图点C 是线段上的一点,以为边向线段的两侧作正方形,已知,两正方形的面积和20,求图中阴影部分的面积.42a b ab +==,²²a b +4a b += 2()16a b ∴+=22216a ab b ∴++=2ab = 2216216412a b ab ∴+=-=-=22626x y x y +=+=,xy 231m n mn +==,2m n -=()()456m m --=()()2245m m -+-=AB AC BC 、AB 5AB =12S S +=答案解析:一、单选题1.B【分析】先利用多项式与多项式乘法法则,展开后合并同类项,再令含x 、y 的一次项的系数均为零,列方程组求解即可得到答案.【详解】解:==展开后多项式不含x 、y 的一次项,,,,故选B .2.A【分析】本题考查了整式的运算问题,分别利用同底数幂的乘法法则、幂的乘方、积的乘方法则、多项式的除法、乘法法则计算各式进行判断即可.【详解】(1)若,,则; 小明计算正确;(2);小明计算正确;(3);小明计算错误;(4);小明计算错误;(5).小明计算错误;故正确的有2个故答案为:A .3.D【分析】利用面积公式以及面积的和差将阴影面积表示出来即可.【详解】解:∵由图知阴影部分边长分别为(x -1),(x -2),()()2342x y x ay b +-++22422633844x axy bx xy ay by x ay b +++++---224(26)(28)(34)34x a xy b x b a y ay b+++-+-+- 280340b b a -=⎧∴⎨-=⎩34a b =⎧∴⎨=⎩1a b ∴-=-3m a =7n a =3721m n m n a a a +==⨯= ()()2020202020210.12580.125888-⨯=-⨯⨯=()222221a b ab ab a b ab ab ab a -÷=÷-÷=-()3328a a -=-()()22321263253x x x x x x x -+=+--=--连接,则阴影部分的面积,BD ()()1122a a b b a b =+++()212a b =+10=(2)由题意得,故答案为:;(3)由题意得,23.(1);(2)由得,,,,,,,,,解得,,;(3)由得,,,()121(1)1,n n n x x x x x ---÷-=++++ 121n n x x x --++++ ()2342023202412222221++++++=-÷ 2024(21)2 1.-=-1ab a b +++1()()ab a b =+++(1)(1)a b b =+++11()()a b =++40ab a b ---=15ab a b --+=115()()a b b ---=(1)(1)5a b --=a b > 11a b ∴->-551=⨯ 15a ∴-=11b -=6a =2b =8a b ∴+=50ab a b ---=5ab a b =++22235S a ab b a b∴=+++-()222355a a b b a b=+++++-22233155a a b b a b=+++++-2228215a b a b =++++22288216a ab b =++++++()()222216a b =++++,,,当,时,,∴S 的最小值为6.24.(1)解:;(2)①,,,,;②(3)设,则,所以,()2220a +≥ ()210b +≥6S ∴≥2a =-1b =-6S =6x y += 222()236x y x y xy ∴+=++=2226x y += 210xy ∴=5xy ∴=231m n mn +== ,()2222449m n m mn n ∴+=++=2245m n ∴+=()2222441m n m n mn -=+-= 21m n ∴-=±4,5,m a m b -=-= 4(5)45a b m m m ∴-=---=--1m +=-(4)(5)6,m m --= 6,ab ∴=2222(4)(5)m m a b ∴-+-=+2()2a b ab=-+2(1)26=-+⨯112=+13,=,AC m BC n ==2212,S m S n ==221220S S m n +=+=。

2022学年人教版八年级数学上册第十四章《整式的乘法与因式分解》检测卷附答案解析

2022学年人教版八年级数学上册第十四章《整式的乘法与因式分解》检测卷附答案解析

2022学年秋学期八年级数学上册第十四章《整式的乘法与因式分解》检测卷一、单选题1.计算(-2a 2b )3的结果是( ) A .-6a 6b 3B .-8a 6b 3C .8a 6b 3D .-8a 5b 32.若x n =3,x m =6,则x m +n =( ) A .9B .18C .3D .63.如果 2(4)(5)x x x px q +-=++ ,那么p ,q 的值为( ) A .p=1,q=20B .p=-1,q=20C .p=-1,q=-20D .p=1,q=-204.下列从左到右的变形,属于因式分解的是( ) A .()()2111x x x +-=-B .24(3)(2)2m m m m +-=+-+C .()222x x x x +=+D .224(4)(4)x y x y x y -=+-5.长方形面积是3a 2-3ab+6a ,一边长为3a ,则它周长( ) A .2a -b+2B .8a -2bC .8a -2b+4D .4a -b+26.下面是一位同学做的四道题:①2a+3b=5ab ;②(3a 3)2=6a 6;③a 6÷a 2=a 3;④a 2•a 3=a 5,其中做对的一道题的序号是( ) A .①B .②C .③D .④7.如果 2283x y x y +=+=, ,则 xy = ( ) A .1B .12C .2D .12-8.设 125257()()m n m x y x y x y -+= ,则 1()2nm - 的值为( ) A .18-B .12-C .1D .129.从边长为a 的正方形中剪掉一个边长为b 的正方形 ( 如图1所示 ) ,然后将剩余部分拼成一个长方形 ( 如图2所示 ). 根据图形的变化过程,写出的一个正确的等式是( )A .()2222a b a ab b -=-+ B .()2a ab a ab -=-C .()2b a b ab b -=-D .()()22a b a b a b -=+-10.如图,边长为a 的正方形中剪去一个边长为b 的小正方形,剩下部分正好拼成一个等腰梯形,利用这两幅图形面积,能验证怎样的数学公式?( )A .22()()a b a b a b -=+-B .22()-()=4a b a b ab +-C .222(+)+2a b a ab b =+D .222(-)-2a b a ab b =+二、填空题11.若 3210x y y y y y ⋅⋅⋅= ,则 x = . 12.若x 、y 互为相反数,则 (5x )2·(52)y = . 13.若a 3•a m ÷a 2=a 9,则m=14.一批志愿者组成了一个“爱心团队”,专门到全国各地巡回演出,以募集爱心基金.第一个月他们就募集到资金1万元.随着影响的扩大,第n (n≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次完成突破10万元时,相应的n 的值为 .(参考数据:1.25≈2.5,1.26≈3.0,1.27≈3.6)15.已知: 4m x = , 2n x = ,求 34m n x - 的值为 . 16.若 ()331x x -+= ,则 x = 。

初二数学整式的除法练习题

初二数学整式的除法练习题

初二数学整式的除法练习题1. 计算下列整式的除法:(1) $(2x^3 - 3x^2 + 5x - 4) \div (x-2)$(2) $(3x^4 - 4x^3 + 6x^2 + 8x + 12) \div (2x+3)$(3) $(4x^5 + 2x^4 - 5x^3 + 3x^2 + 8) \div (x^2-1)$2. 解答下列问题:(1) 如果 $2x+1$ 是整式 $P(x)$ 的因式,那么 $P(-\frac{1}{2})$ 的值是多少?(2) 如果 $3x-2$ 是整式 $Q(x)$ 的因式,且 $Q(x)$ 的一个根是$x=2$,那么 $Q(4)$ 的值是多少?3. 用辗转相除法判断下列多项式是否有相同的根:(1) $x^3 + 3x^2 - 4x + 2$ 和 $x^2 + 4x + 2$(2) $x^4 + 3x^3 - x^2 - 7x + 6$ 和 $x^3 + 4x^2 + 2x - 3$4. 解答以下问题:(1) 如果整式 $P(x)$ 能被 $(x-a)(x-b)$ 整除,那么能否得出结论$P(x)$ 能被 $(x-a)^2(x-b)$ 整除?请解释你的答案。

(2) 如果整式 $Q(x)$ 能被 $(x-a)^3(x-b)$ 整除,那么能否得出结论$Q(x)$ 能被 $(x-a)(x-b)$ 整除?请解释你的答案。

5. 证明以下结论:(1) 如果整式 $P(x)$ 能被 $(x-a)(x-b)$ 整除,且 $a \neq b$,那么$a$ 和 $b$ 分别是 $P(x)$ 的根。

(2) 如果整式 $Q(x)$ 能被 $(x-a)^3(x-b)$ 整除,且 $a \neq b$,那么 $a$ 和 $b$ 分别是 $Q(x)$ 的根。

6. 计算下列整式相除的商式和余式:(1) $(3x^3 + 5x^2 - 2x + 1) \div (x-1)$(2) $(2x^4 - 4x^3 + 5x^2 + 3) \div (x^2+2)$7. 解答以下问题:(1) 如果 $x=2$ 是整式 $P(x)$ 的一个根,那么 $P(x)$ 可以被 $(x-2)$ 整除吗?(2) 如果 $x=a$ 是整式 $Q(x)$ 的一个根,那么 $Q(x)$ 可以被 $(x-a)^2$ 整除吗?8. 用合适的方法计算下列表达式:(1) $(x^2 - 4xy + 4y^2) \div (x-2y)$(2) $(3x^3 + 7x^2 - 8x + 4y^3) \div (x+2y)$以上就是初二数学整式的除法练习题。

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试卷(含答案解析)(5)

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试卷(含答案解析)(5)

一、选择题1.下列计算正确的是( ) A .248a a a •= B .352()a a =C .236()ab ab =D .624a a a ÷=2.下列因式分解正确的是( )A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)2 3.如果249x mx -+是一个完全平方式,则m 的值是( )A .12±B .9C .9±D .12 4.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( )A .18B .12C .9D .75.()()()2483212121+++···()32211++的个位数是( ) A .4 B .5C .6D .86.形如ab cd的式子叫做二阶行列式,它的算法是:ab ad bc cd=-,则221a a a a -++的运算结果是( ) A .4aB .4a -C .4D .4-7.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个B .2个C .3个D .4个8.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( )A .43B .43-C .0.75D .-0.759.下列各多项式中,能用平方差公式分解因式的是( ) A .21x -+B .21x +C .21x --D .221x x -+10.若()()()248(21)2121211A =+++++,则A 的末位数字是( ) A .4B .2C .5D .611.a ,b ,c 在数轴上的位置如下图所示,则下列代数式中值为正的是( )A .()()1a c b --B .()11c a b c ⎛⎫--⎪⎝⎭C .()1a a c b ⎛⎫+- ⎪⎝⎭D .()1ac bc -12.下列运算正确的是( ) A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9二、填空题13.已知25m =,2245m n +=,则2n =_______. 14.我们知道,同底数幂的乘法法则为m nm n a a a +⋅=(其中0a ≠,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:()()()h m n h m h n +=⋅;比如(2)3h =,则(4)(22)339h h =+=⨯=,若(2)(0)h k k =≠,那么(8)h =_______,(2)(2020)h n h ⋅=_______.15.若()230x -=,则x y -=______.16.若2249x mxy y -+是一个完全平方式,则m =______17.若ABC 的三边长是a 、b 、c ,且222a b c ab bc ac +=+++,则这个三角形形状是_________角形.18.计算:32(2)a b -=________. 19.已知4222112x x +-⋅=,则x =________ 20.因式分解:33327xy x y -=______.三、解答题21.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在m n +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值. 根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >); (2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.22.若x 满足()()944x x --=,求()()2249x x -+-的值.解:设9,4x a x b -=-=,则()()944x x ab --==,()()945a b x x +=-+-=,222222(9)(4)()252417x x a b a b ab ∴-+-=+=+-=-⨯=请仿照上面的方法求解下面问题:(1)若x 满足()()522x x --=,求()()2252x x -+-的值;(2)若x 满足()()632x x --=,求()()2263x x -+-的值;(3)已知正方形ABCD 的边长为x ,E ,F 分别是AD DC 、上的点,且1AE =,3CF =,长方形EMFD 的面积是48,分别以MF DF 、为边作正方形,求阴影部分的面积.23.利用乘法公式计算: (1)198×202 (2)(2y +1)(﹣2y -1)24.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a b 、的代数式分别表示1S 、2S ; (2)若10,23a b ab +==,求12S S +的值;(3)当1229S S +=时,求出图3中阴影部分的面积3S .25.计算:(1)2(1)(1)(2)x x x +--+ (2)(34)(34)x y x y -++- 26.把下列多项式因式分解(要写出必要的过程): (1)﹣x 2y +6xy ﹣9y ; (2)9(x +2y )2﹣4(x ﹣y )2; (3)1﹣x 2﹣y 2+2xy .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可. 【详解】解:A 、a 2∙a 4=a 6,故选项A 不合题意; B 、(a 2)3=a 6,故选项不B 符合题意; C 、(ab 2)3=a 3b 6,故选项C 不符合题意; D 、a 6÷a 2=a 4,故选项D 符合题意. 故选:D . 【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.2.B解析:B 【分析】根据因式分解的定义判断即可. 【详解】解:A 、等号左右两边不相等,故错误; B 、a 3-a=a(a+1)(a-1),故正确; C 、右边不是整式的积,故错误; D 、等号左右两边不相等,故错误. 故选:B . 【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.3.A解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ , 解得m=±12. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4.D解析:D将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果. 【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3, ∴x 2﹣2x =1, ∴x 2﹣2x +6=1+6=7. 故选:D . 【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.5.C解析:C 【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果. 【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264, ∵21=2,22=4,23=8,24=16,25=32,…, ∴个位上数字以2,4,8,6为循环节循环, ∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6. 故选:C . 【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.A解析:A 【分析】根据定义把二阶行列式表示成整式,然后再化简计算即可. 【详解】 解:由题意可得:()()()212221a a a a a a a a -=+--+++=()224a a a +-- =224a a a +-+ =a+4, 故答案为A . 【点睛】本题考查整式乘法的混合运算,通过观察题目给出的运算法则,把所求解的算式根据运算法则展开是解题关键.7.A解析:A 【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算. 【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的; ∵()326x x =,∴②是正确的;∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的; 综上所述,只有一个正确, 故选:A. 【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.8.D解析:D 【分析】 先将20200.75化为20193434⨯,再用幂的乘方的逆运算计算,再计算乘法即可得到答案. 【详解】2019202040.753⎛⎫⨯- ⎪⎝⎭=20192019343434⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=201934()3434⎡⎤⨯⎢⎥⎣⎦⨯- =(31)4-⨯ =34-, 故选:D . 【点睛】此题考查有理数数的乘法运算,掌握幂的乘方的逆运算是解题的关键.9.A解析:A 【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答. 【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式; 故选:A . 【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.10.D解析:D 【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案. 【详解】()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++ =()()()2248(21)2121211-++++ =()()448(21)21211-+++ =()88(21)211-++=162,∵2的末位数字是2,22的末位数字是4, 32的末位数字是8, 42的末位数字是6, 52的末位数字是2,,∴每4次为一个循环, ∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6, 故选:D . 【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.11.C解析:C 【分析】现根据各数在数轴上的位置确定其取值范围,然后可确定答案. 【详解】解:由图知:0<a <1,b >1,c <0, ∴()100a a c b ⎛⎫+>-> ⎪⎝⎭,, ()1a a c b ⎛⎫+- ⎪⎝⎭值为正,C 正确; 而()110c a b c ⎛⎫--<⎪⎝⎭,()()10a c b --<,()10ac bc -<;A 、B 、D 错误. 故选:C. 【点睛】此题主要考查由取值范围确定代数式正负问题,解题的关键是根据点在数轴上的位置判断其正负.12.B解析:B 【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可. 【详解】∵x 2•x 3=x 5,∴选项A 不符合题意; ∵(x 3)2=x 6,∴选项B 符合题意; ∵(−3x )3=−27x 3,∴选项C 不符合题意; ∵x 4+x 5≠x 9,∴选项D 不符合题意. 故选:B . 【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.二、填空题13.【分析】将变形整体代入即可求解【详解】解:∵=∴故答案为:【点睛】本题主要考察了同底数幂的乘法幂的乘方解题的关键是熟练掌握同底数幂的乘法幂的乘方的逆运算解析:95. 【分析】将2245m n +=变形()222=22222m n n n m m +⋅=⋅,整体代入即可求解.【详解】 解:∵()222=22222mnnn m m +⋅=⋅=25245n ⋅=∴9245255n=÷= . 故答案为:95. 【点睛】本题主要考察了同底数幂的乘法、幂的乘方,解题的关键是熟练掌握同底数幂的乘法、幂的乘方的逆运算.14.kn+1010【分析】根据h (m+n )=h (m )•h (n )通过对所求式子变形然后根据同底数幂的乘法计算即可解答本题【详解】解:∵∴===∵===k n•k1010=kn+1010故答案为:kn+101解析:4k k n+1010 【分析】根据h (m+n )=h (m )•h (n ),通过对所求式子变形,然后根据同底数幂的乘法计算即可解答本题. 【详解】解:∵()()()h m n h m h n +=⋅,(2)(0)h k k =≠, ∴(8)h =(2222)h +++=(2)(2)(2)(2)h h h h ⋅⋅⋅=4k , ∵(2)(0)h k k =≠,(2)(2020)h n h ⋅=(22...2)(22...2)h h +++⋅+++ =(2)(2)...(2)(2)(2)...(2)h h h h h h ⋅⋅⨯⋅⋅ =k n •k 1010 =k n+1010,故答案为:4k ,k n+1010. 【点睛】本题考查同底数幂的乘法、新定义,解答本题的关键是明确题意,利用新运算求出所求式子的值.15.7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3y=-4代入x-y 中计算即可【详解】∵且∴x-3=0y+4=0∴x=3y=-4∴x-y=3-(-4)=7故答案为:7【点睛】此题考查已知字母解析:7 【分析】根据偶次方的非负性及算术平方根的非负性求出x=3,y=-4,代入x-y 中计算即可.【详解】∵()230x-=,且()230x-≥≥,∴x-3=0,y+4=0,∴x=3,y=-4,∴x-y=3-(-4)=7,故答案为:7.【点睛】此题考查已知字母的值求代数式的值,掌握偶次方的非负性及算术平方根的非负性求出x=3,y=-4是解题的关键.16.【分析】利用完全平方公式的结构特征判断即可确定出m的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m的值.【详解】∵22-+是一个完全平方式,x mxy y49m=±⨯⨯=±.∴22312±.故答案为:12【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键.17.等边【分析】先等式两边同乘以2再移项利用完全平方公式即可得到答案【详解】∵∴∴∴∵∴∴a=b=c∴这个三角形是等边三角形故答案是:等边【点睛】本题主要考查完全平方公式偶数次幂的非负性以及等边三角形的解析:等边【分析】先等式两边同乘以2,再移项,利用完全平方公式,即可得到答案.【详解】∵222++=++,a b c ab bc ac∴222++=++,a b c ab bc ac222222∴222++---=,a b c ab bc ac2222220∴222-+-+-=,a b a c b c()()()0∵222-≥-≥-≥,a b a c b c()0,()0,()0∴222-=-=-=,a b a c b c()0,()0,()0∴a=b=c,∴这个三角形是等边三角形,故答案是:等边【点睛】本题主要考查完全平方公式,偶数次幂的非负性以及等边三角形的定义,熟练掌握完全平方公式,是解题的关键.18.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.19.3【分析】利用同底数幂乘法的逆运算求解即可【详解】∵∴即:∴∴故答案为:3【点睛】本题主要考查同底数幂乘法的逆运算灵活运用同底数幂乘法法则是解题关键解析:3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点睛】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键. 20.【分析】根据因式分解的提公因式法找出公因式为然后再根据平方差公式求解即可;【详解】原式=故答案为:【点睛】本题考查了因式分解的提公因式法平方差公式找出公因式是是解题的关键解析:()()333xy y x y x +-【分析】根据因式分解的提公因式法,找出公因式为3xy ,然后再根据平方差公式求解即可;【详解】原式=()()()2239333xy y x xy y x y x -=+-,故答案为:()()333xy y x y x +-.【点睛】本题考查了因式分解的提公因式法、平方差公式,找出公因式是3xy 是解题的关键.三、解答题21.(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值,∴当83x =时,代数式43201036x x ++-的最小值是2020. 【点睛】 此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.22.(1)5;(2)13;(3)28【分析】(1)设(5-x )=a ,(x-2)=b ,根据已知等式确定出所求即可;(2)设(6-x )=a ,(x-3)=b ,根据已知等式确定出所求即可;(3)设正方形ABCD 边长为x ,进而表示出MF 与DF ,求出阴影部分面积即可.【详解】解:(1)设(5-x )=a ,(x-2)=b ,则(5-x )(x-2)=ab=2,a+b=(5-x )+(x-2)=3,∴(5-x )2+(x-2)2=(a+b )2-2ab=32-2×2=5;(2)设(6-x )=a ,(x-3)=b ,则(6-x )(x-3)=ab=-(6−x)(3−x)=-2,a+b=(6-x )+(x-3)=3,∴(6-x )2+(3-x )2=(a+b )2-2ab=32+2×2=13;(3)∵正方形ABCD 的边长为x ,AE=1,CF=3,∴MF=DE=x-1,DF=x-3,∴(x-1)•(x-3)=48,∴(x-1)-(x-3)=2,∴阴影部分的面积=FM 2-DF 2=(x-1)2-(x-3)2.设(x-1)=a ,(x-3)=b ,则(x-1)(x-3)=ab=48,a-b=(x-1)-(x-3)=2,∴a=8,b=6,a+b=14,∴(x-1)2-(x-3)2=a 2-b 2=(a+b )(a-b )=14×2=28.即阴影部分的面积是28.【点睛】本题考查了完全平方公式的几何背景.应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.23.(1)39996;(2)2441y y ---.【分析】(1)将两个数化为200与2的和与差,用平方差公式计算即可;(2)第二个括号内提取一个负号可与第一个括号合成两数和的平方,利用完全平方公式展开即可.【详解】解:(1)原式=(2002)(2002)-+=222002-=400004-=39996;(2)原式=(21)(21)y y -++=2(21)y -+=2441y y ---.【点睛】本题考查利用完全平方公式和平方差公式计算.熟记公式是解题关键.24.(1)S 1=a 2-b 2,S 2=2b 2-ab ;(2)31;(3)292 【分析】(1)根据正方形的面积之间的关系,即可用含a 、b 的代数式分别表示S 1、S 2; (2)根据S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,将a +b =10,ab =23代入进行计算即可; (3)根据S 3=12(a 2+b 2﹣ab ),S 1+S 2=a 2+b 2-ab =29,即可得到阴影部分的面积S 3. 【详解】解:(1)由图可得,S 1=a 2-b 2,S 2=2b 2-ab ;(2)S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,∵a +b =10,ab =23,∴S 1+S 2=a 2+b 2-ab =(a +b )2-3ab =100-3×23=31;(3)由图可得,S 3=a 2+b 2-12b (a +b )-12a 2=12(a 2+b 2-ab ), ∵S 1+S 2=a 2+b 2-ab =29,∴S 3=12×29=292. 【点睛】本题主要考查了完全平方公式的几何背景的应用,解决问题的关键是根据图形之间的面积关系进行推导计算.25.(1)3x +;(2)229816-+-x y y .【分析】(1)先分别利用完全平方公式和多项式乘多项式运算法则计算,再去括号、合并同类项即可得到结果;(2)原式变形后,运用平方差公式和完全平方公式计算即可求出结果.【详解】计算:⑴ 原式2221(2)x x x x =++-+-22212x x x x =++--+3x =+,(2)原式[3(4)][3(4)]x y x y =--+-229(4)x y =--229816=-+-x y y .【点睛】本题主要考查了整式的混合运算,掌握运算法则及灵活运用乘法公式是解题的关键. 26.(1)﹣y (x ﹣3)2;(2)(5x +4y )(x +8y );(3)(1+x ﹣y )(1﹣x +y )【分析】(1)先提取公因式,再按照完全平方公式分解;(2)分别把前后两项看成某项的平方并根据平方差分解因式,然后对每个因式去括号及合并同类项进行化简;(3)首先把后面三项看成一组并化成完全平方式,然后与第一项组合并利用平方差公式分解后对每个因式去括号化简即可.【详解】解:(1)﹣x 2y +6xy ﹣9y=﹣y (x 2﹣6x +9)=﹣y (x ﹣3)2;(2)9(x +2y )2﹣4(x ﹣y )2;=[3(x +2y )+2(x ﹣y )][3(x +2y )﹣2(x ﹣y )]=(5x +4y )(x +8y );(3)1﹣x 2﹣y 2+2xy=1﹣(x 2+y 2﹣2xy )=1﹣(x ﹣y )2=[1+(x ﹣y )][1﹣(x ﹣y )]=(1+x ﹣y )(1﹣x +y ).【点睛】本题考查了因式分解,熟练掌握因式分解的各种方法并灵活运用是解题关键.。

2019-2020学年八年级数学上册《整式》计算题练习100道 新人教版

2019-2020学年八年级数学上册《整式》计算题练习100道 新人教版

2019-2020学年八年级数学上册《整式》计算题练习100道 新人教版2、332()()a a a --??3、2323()()a a a -?4、 223()x 轾--犏臌5、3231()4x y z -6、32()()()x y x y y x ---7、53143()()n n a aa a --?-?8、2333211()()23xy x y -+10、(-0.25)11×22211、263373()()(2)x x x -12、433111()()()a a a ?-13、232(2)(2)n ?-14、33612(0.25)0.1252(2)-创?15、3312()()n x y xy+--16、5524226()()()()()x x x x x x -----17、232323(3)()x y x y ---18、32322()()(3)a b a b 轾---犏臌19、32008200910010010.25(4)8()2轾犏?--犏臌20、122()()m m m a aa +--21、3233633(4)(3)2(2)x x x x x -+---22、234342343()()()x y x y x y 轾---犏臌23、4354832263()2()5()x y xy x y x y x y -+24、已知 27927813n n n 鬃=,求n 的值25、已知23,24n m ==,求2312m n ++值26、已知36,92m n ==,求2413m n -+值27、(3x+10)(x+2)28、(4y -1)(y -5)29、(2x -521)()252y x y +30、()()()x y z y z x z x y ---+-21、232(4)122()43b a ab a a b b 轾犏----+犏臌32、若m 为正整数,且x 2m =3,求:(3x 3m )2-13(x 2)2m 的值33、532()()a a a -??34、21512525n m m -赘35、2(x -8)(x -5)-(2x -1)(x+2)36、2322(43)3(46)m m m m m m +--+-37、()04331113()()()333----+-?-38、若3918()n m x y y x y =,求: 值222223(2)mn m m n mn 轾---犏臌40、(35)(106)x y y x --41、20092008(2)(2)-+-42、3373(2)(2)x y x y 轾-?-犏臌43、22232(3)42(32)x x x x x 轾---犏臌44、化简求值:其中14,22x y =-= 2(2)()(2)2(3)()x y x y x y x y x y -+-----45、2(1)x y --46、(32)(23)x y y x --48、30131241()()()()3352----?+-?49、23021771()()(1.92)()(3)993----?---?50、化简求值:其中214x y =- 32431(1)2()22(1)2xy x x y x y x y x 轾犏---??犏臌51、22222()()()a b a b a b -++52、22()()4a b a b ab 轾+--?犏臌53、222()()()a b a b ab -+?54、2222()()()()x y x y x y y x +-----+-55、22(23)(23)(23)(23)a b a b a b a b --+-++56、化简求值:其中1x =-(21)(1)2(3)(4)x x x x +----57、(32)(32)m n m n -+58、(3)(3)a b b a -++59、4422()()()x y xy x y -??60、33()()a b a b a b 轾+--?犏臌61、1212()()m n m n ab a b -+-++-62、化简求值:其中1,13x y == 222()()3()()4x x y y x x y y x y 轾轾-+----+犏犏臌臌63、(26)(3)y y +-64、(0.5)(0.5)xy xy -+--65、3(2)(1)2(5)(3)x x x x -+---66、22222(3)(3)(9)x y x y x y +-+67、2222111()()(2)222y x y x x y 轾犏-++?犏臌68、42(1)(1)(1)(1)x x x x +--++69、已知()211x x +-=,求x 的值。

人教版八年级上册数学第14章《整式的乘法与因式分解》单元测试卷(含答案解析)

人教版八年级上册数学第14章《整式的乘法与因式分解》单元测试卷(含答案解析)

人教版八年级上册数学第14章《整式的乘法与因式分解》单元测试卷题号一二三四总分得分一、选择题(本大题共10小题,共30分。

在每小题列出的选项中,选出符合题目的一项)1.下列各式由左到右的变形中,属于分解因式的是( )A. a(m+n)=am+anB. a2−b2−c2=(a−b)(a+b)−c2C. 10x2−5x=5x(2x−1)D. x2−16+6x=(x+4)(x−4)+6x2.下列各式计算结果为a5的是( )A. a3+a2B. a3×a2C. (a2)3D. a10÷a23.下列等式中,从左到右的变形是因式分解的是( )A. x(x−2)=x2−2xB. (x+1)2=x2+2x+1) D. x2−4=(x+2)(x−2)C. x+2=x(1+2x4.下列等式中,从左到右的变形属于因式分解的是( )A. a(a+2)=a2+2aB. a2−b2=(a+b)(a−b)C. m2+m+3=m(m+1)+3D. a2+6a+3=(a+3)2−65.一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,例如27=62−32,63=82−12,故27,63都是“创新数”,下列各数中,不是“创新数”的是( )A. 31B. 41C. 16D. 546.代数式yz(xz+2)−2y(3xz2+z+x)+5xyz2的值( )A. 只与x、y有关B. 只与y、z有关C. 与x、y、z都无关D. 与x、y、z都有关7.如图,将一张边长为x的正方形纸板按图中虚线裁剪成三块长方形,观察图形表示阴影部分的面积,则表示错误的是( )A. (x−1)(x−2)B. x2−3x+2C. x2−(x−2)−2xD. x2−38.下列运算正确的是( )A. a⋅a2=a3B. a6÷a2=a3C. 2a2−a2=2D. (3a2)2=6a49.若4x2−(k+1)x+9能用完全平方公式因式分解,则k的值为( )A. ±6B. ±12C. −13或11D. 13或−1110.若x,y,z满足(x−z)2−4(x−y)(y−z)=0,则下列式子一定成立的是 ( )A. x+y+z=0B. x+y−2z=0C. y+z−2x=0D. z+x−2y=0二、填空题(本大题共8小题,共24分)11.分解因式:x2y−4y=.12.计算:(a−b)3⋅(b−a)⋅(a−b)5=.13.若x2+kx+25=(x±5)2,则k=.14.已知(ka m−n b m+n)2=4a4b8,则k+m+n=.15.若x m=3,x n=2,则x2m+3n=______⋅16.已知a2+b2=13,(a−b)2=1,则(a+b)2=.17.如图1,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释一个等式是.18.在计算(x+y)(x−3y)−my(nx−y)(m、n均为常数)的值,在把x、y的值代入计算时,粗心的小明把y的值看错了,其结果等于9,细心的小红把正确的x、y的值代入计算,结果恰好也是9,为了探个究竟,小红又把y的值随机地换成了2018,结果竟然还是9,根据以上情况,探究其中的奥妙,计算mn=______.三、计算题(本大题共2小题,共12分)19.计算:(1)(x−1)(x2+x+1);(2)(3a−2)(a−1)−(a+1)(a+2);(3)(x−2)(x2+2x)+(x+2)(x2−2x).20.把下列各式分解因式:(1)8a 3b 2−12ab 3c +6a 3b 2c; (2)5x(x −y)2+10(y −x)3;(3)(a +b)2−9(a −b)2; (4)−4ax 2+8axy −4ay 2; (5)(x 2+2)2−22(x 2+2)+121.四、解答题(本大题共7小题,共54分。

最新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试(答案解析)

最新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试(答案解析)

一、选择题1.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18B .12C .9D .7 2.已知: 13m m +=, 则: 331m m +的值为( ) A .15 B .18C .21D .9 3.已知25y x -=,那么()2236x y x y --+的值为( )A .10B .40C .80D .2104.把多项式32484x x x -+分解因式,结果正确的是( )A .()()413x x x +-B .()2421x x x -+C .()2484x x x +-D .()241x x - 5.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=- 6.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6- B .0C .12D .18 7.下列各式计算正确的是( )A .224a a a +=B .236a a a ⋅=C .()22439a a -=D .22(1)1a a +=+ 8.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43-C .0.75D .-0.75 9.下列运算中错误的是( ). A .-(-3a n b)4=-81a 4n b 4B .(a n+1+b n )4 = a 4n+4b 4nC .(-2a n )2.(3a 2)3 = -54a 2n+6D .(3x n+1-2x n )5x=15x n+2-10x n+1 10.若|a |=13,b|=7,且a +b>0,则a -b 的值是( ). A .6或20 B .20 或-20 C .6或-6 D .-6或20 11.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:通、爱、我、昭、丽、美、现将()()222222x y a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美丽B .美丽昭通C .我爱昭通D .昭通美丽 12.下列运算中,正确的是( )A .()23294x yx y = B .3362x x x += C .34x x x ⋅= D .22(3)(3)3x y x y x y +-=-二、填空题13.2007200820092()(1.5)(1)3⨯÷-=_____.14.因式分解269x y xy y -+-=______.15.若()()21x a x -+的积中不含x 的一次项,则a 的值为______.16.计算:248(21)(21)(21)(21)1+++++=___________.17.若2a x =,3b x =,则32a b x -=___________.18.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对(23,2)+放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)19.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.20.在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a +b )0=1(a +b )1=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a +b )5=__________,并说出第7排的第三个数是___.三、解答题21.因式分解(1)m 3﹣36m(2)(m 2+n 2)2-4m 2n 222.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.23.先化简,再求值:()()()2222x y x y x y --+-其中1x =-,2y =24.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).25.a b c 是ABC 的三边,且有2241029a b a b +=+-(1)求a 、b 的值(2)若c 为整数,求c 的值(3)若ABC 是等腰三角形,求这个三角形的周长26.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-; 请根据这一规律计算:(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3,∴x 2﹣2x =1,∴x 2﹣2x +6=1+6=7.故选:D .【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.2.B解析:B【分析】 把13m m +=两边平方得出221m m +的值,再把331m m+变形代入即可得出答案 【详解】 解:∵13m m+=, ∴219⎛⎫+= ⎪⎝⎭m m , ∴221=7+m m ∴()3232111=m+m 1+=371=18m m ⎛⎫⎛⎫+-⨯- ⎪⎪⎝⎭⎝⎭m m 故选:B【点睛】本题考查了完全平方公式的应用,熟练掌握公式是解题的关键3.B解析:B【分析】所求式子变形后,将已知等式变形代入计算即可求出值.【详解】25y x -=∴ 25x y -=-()2236x y x y --+()()2=322x y x y ---=()()2535--⨯-=25+15=40故选:B【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题. 4.D解析:D【分析】先提出公因式4x ,再利用完全平方公式因式分解即可解答.【详解】解:32484x x x -+=2421)x x x -+(=()241x x -,故选:D .【点睛】本题考查因式分解、完全平方公式,熟练掌握提公因式法和公式法分解因式的方法步骤是解答的关键. 5.A解析:A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A .【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键. 6.A解析:A【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可.解:把3x =-代入原方程得650a b -++=,即56a b +=,则()62106256126a b a b --=-+=-=-.故选:A .【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.7.C解析:C【分析】根据合并同类项、完全平方公式、幂的乘方与积的乘方进行计算.【详解】解:A. 2222a a a +=,故选项A 计算错误;B. 235a a a ⋅=,故选项B 计算错误;C. ()22439a a -=,故选项C 计算正确;D. 22(11)2a a a +=++,故选项D 计算错误;故选:C【点睛】本题考查了合并同类项、完全平方公式、幂的乘方与积的乘方,熟记计算法则即可解题. 8.D解析:D【分析】先将20200.75化为20193434⨯,再用幂的乘方的逆运算计算,再计算乘法即可得到答案. 【详解】 2019202040.753⎛⎫⨯- ⎪⎝⎭ =20192019343434⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=201934()3434⎡⎤⨯⎢⎥⎣⎦⨯- =(31)4-⨯=34-, 故选:D .此题考查有理数数的乘法运算,掌握幂的乘方的逆运算是解题的关键.9.C解析:C【分析】根据幂的乘方法则、积的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则计算即可.【详解】解:A:()()4444443381n n n a ba b a b --=--=- ,故答案正确; B:()41444n nn n a b a b +++=+ ,故答案正确; C:()()232262623427108n n n a a a a a +-⋅=⋅= ,故答案错误;D:()113253525n n n n x x x x x x x ++-=⋅-⋅ =211510n n x x ++- ,故答案正确. 故选:C .【点睛】此题考查了积的乘方法则、幂的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则,熟练掌握运算法则是解题的关键.10.A解析:A【分析】先求出a b ,的值,根据条件+a b >0,确定=13a ,b=7±,分类代入-a b 求值即可.【详解】|a |=13,=13a ±,|b|=7,b=7±,∵+a b >0,∴=13a ,b=7±,当=13a ,b=7时,=1376a b --=,当=13a ,7b =-时,=13+720a b -=,则6a b -=或20.故选择:A .【点睛】本题考查条件限定求值问题,会根据限定条件求出字母的值,掌握分类思想求代数式的值是解题关键.11.C解析:C【分析】将式子先提取公因式再用平方差公式因式分解可得:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),再结合已知即可求解.解:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),由已知可得:我爱昭通,故选:C .【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求解是解题的关键. 12.C解析:C【分析】根据积的乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式分别计算各项,然后再进行判断即可.【详解】解:A. ()23264x y x y =,所以原选项计算错误,故不符合题意;B.3332x x x +=,所以原选项计算错误,故不符合题意;C.34x x x ⋅=,计算正确,符合题意;D.22(3)(3)9x y x y x y +-=-,所以原选项计算错误,故不符合题意.故选:C .【点睛】此题主要考查了乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式,要熟练掌握.二、填空题13.-15【分析】首先把分解成再根据积的乘方的性质的逆用解答即可【详解】解:原式===﹣15故答案为-15【点睛】本题考查有理数的乘方运算逆用积的乘方法则是解题关键解析:-1.5【分析】首先把20081.5分解成20071.5 1.5⨯,再根据积的乘方的性质的逆用解答即可.【详解】 解:原式=()200720072 1.5 1.513⎛⎫⨯⨯÷- ⎪⎝⎭=()20072 1.5 1.513⎛⎫⨯⨯⨯- ⎪⎝⎭=﹣1.5, 故答案为-1.5 .本题考查有理数的乘方运算,逆用积的乘方法则是解题关键.14.-y(x-3)2【分析】提公因式-y再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y(x2-6x+9)=-y(x-3)2故答案为:-y(x-3)2;【点睛】本题考查了因式解析:-y(x-3)2【分析】提公因式-y,再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y(x2-6x+9)=-y(x-3)2,故答案为:-y(x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.15.2【分析】先运用多项式的乘法法则计算再合并同类项因积中不含x的一次项所以让一次项的系数等于0得a的等式再求解【详解】解:(2x-a)(x+1)=2x2+(2-a)x-a∵积中不含x的一次项∴2-a=解析:2【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(2x-a)(x+1)=2x2+(2-a)x-a,∵积中不含x的一次项,∴2-a=0,∴a=2,故答案为:2.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.16.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.17.【分析】根据同底数幂除法逆运算及积的乘方逆运算解答【详解】∵∴故答案为:【点睛】此题考查整式的运算公式:积的乘方计算及同底数幂除法计算正确掌握计算公式并熟练应用是解题的关键 解析:89【分析】根据同底数幂除法逆运算及积的乘方逆运算解答.【详解】∵2a x =,3b x =,∴32a b x -=3232328()()239a b a b xx x x ÷=÷=÷=, 故答案为:89. 【点睛】此题考查整式的运算公式:积的乘方计算及同底数幂除法计算,正确掌握计算公式并熟练应用是解题的关键. 18.-1-2-2m2+5m-2【分析】根据题目中的新定义运算规则可分别计算出数对和放入其中后最后得到的数再由数对放入其中得到数计算出m 与n 的关系再计算数对即可得到结果【详解】解:由题意得:数对放入其中时解析:-1 -2 -2m 2+5m-2【分析】根据题目中的新定义运算规则,可分别计算出数对(2,1)和放入其中后,最后得到的数,再由数对(,0)m 放入其中,得到数n ,计算出m 与n 的关系,再计算数对(,)n m ,即可得到结果.【详解】解:由题意得:数对(2,1)放入其中时,最后得到的数是:(2-1)×(1-2)=-1; 故答案为:-1;(1)将数对3-1-2)=-2; 故答案为:-2;(2)根据数对(,0)m 放入其中得到数n ,可得:(m−1)×(0−2)=n , 则-2m+2=n , ∴将数对(n ,m )放入其中后,最后得到的数是:(n−1)(m−2)=(-2m+2−1)(m−2)=(-2m+1)(m−2)=-2m 2+5m-2.故答案为:-2m 2+5m-2.【点睛】此题主要考查了新定义下的实数运算,弄清题中的新定义运算规则、实数及多项式乘多项式的运算法则是解本题的关键.19.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键. 20.a5+5a4b+10a3b2+10a2b3+5ab4+b515【分析】多项式乘方运算安全平方公式安全立方公式发现规律数字规律归纳即可【详解】解:(a+b )5=a5+5a4b+10a3b2+10a2b解析:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 15【分析】多项式乘方运算,安全平方公式,安全立方公式,发现规律,数字规律归纳即可,【详解】解:(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;第7排的第三个数是15,故答案为:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;15,【点睛】本题考查完全平方公式、完全立方公式,规律型:数字的变化类,掌握多项式乘法法则,和完全平方公式,观察式子的特征是解题关键,三、解答题21.(1)m (m +6)(m -6);(2)(m +n )2(m -n )2【分析】(1)首先提取公因式法进行因式分解,再利用平方差公式因式分解即可;(2)首先利用平方差公式分解因式,再利用完全平方公式进行因式分解即可.【详解】解:(1)m 3﹣36m= m (m 2﹣36)=m(m+6)(m-6)(2)(m 2+n 2)2-4m 2n 2=(m 2+n 2)2-(2mn )2=(m 2+n 2+2mn )(m 2+n 2-2mn )=(m+n )2(m-n )2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 22.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.23.248xy y -+,40【分析】先提公因式(2)x y -,然后计算括号内的运算,得到最简整式,然后把1x =-,2y =代入计算,即可得到答案.【详解】解:原式()()()222x y x y x y =---+⎡⎤⎣⎦()[]222x y x y x y =----()42y x y =--248xy y =-+.当1x =-,2y =时,原式()4212240=-⨯⨯--⨯=.【点睛】本题考查了整式的混合运算,整式的化简求值,解题的关键是掌握运算法则进行化简.24.()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.25.(1)2a =,5b =;(2)4c =或5c =或6c =;(3)12【分析】(1)由a 2+b 2=4a+10b−29,可得:(a−2)2+(b−5)2=0,利用非负数的性质求解a ,b ; (2)再利用三角形三边的关系得到c 的取值范围;(3)分两种情况讨论,当a=2为腰时,当b=5为腰时,再结合三角形的三边的关系,确定三角形的三边,从而可得答案.【详解】解:(1)2241029a b a b +=+- ()()224410250a a b b -++-+=()()22250a b -+-=2a =,5b =(2)a 、b 、c 是ABC 的三边37c ∴<<又c 为整数4c ∴=,5c =,6c =(3)ABC 是等腰三角形,2a =,5b =根据三边关系可知,只有当c=5时三角形才为等腰三角形,5c ∴=25512ABC C ∴=++=△故周长为:12【点睛】本题考查的是完全平方式的变形,非负数的性质,因式分解,三角形三边之间的关系,等腰三角形的定义,掌握以上知识是解题的关键.26.(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.。

2022-2023学年人教版八年级数学上册《第14章整式乘法与因式分解》单元综合练习题(附答案)

2022-2023学年人教版八年级数学上册《第14章整式乘法与因式分解》单元综合练习题(附答案)

2022-2023学年人教版八年级数学上册《第14章整式乘法与因式分解》单元综合练习题(附答案)一.选择题1.已知,a=344,b=433,c=522,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a2.若A=x2+2x﹣6y,B=﹣y2+4x﹣11,则A、B的大小关系为()A.A>B B.A<B C.A≥B D.A=B3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)4.若2m=4n+1,27n=3m+1,则m﹣n的值为()A.1B.﹣1C.5D.﹣55.42021×(﹣0.25)2022的值为()A.0.25B.﹣0.25C.4D.﹣46.已知a、b、c是三角形的三条边,那么代数式(a﹣b)2﹣c2的值()A.大于0B.等于0C.小于0D.无法确定7.已知x2+x=1,那么x3+2x2+2021的值为()A.2020B.2021C.2022D.20238.下列各式中,从左到右的变形是因式分解的是()A.x2﹣x+1=x(x﹣1)+1B.x(y+x)=xy+x2C.(x+y)(x﹣y)=x2﹣y2D.x2﹣2xy+y2=(x﹣y)29.设a=x﹣2020,b=x﹣2022,c=x﹣2021,若a2+b2=56,则c2=()A.27B.24C.22D.2010.已知10x=2,10y=3,则102x+3y等于()A.36B.72C.108D.2411.计算:(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)的结果是()A.B.C.D.二.填空题12.因式分解:x4﹣16=.13.分解因式:x2y﹣9y=.14.若a2﹣b2=4,则(a﹣b)2(a+b)2=.15.已知a+b=1,ab=,则a3b﹣2a2b2+ab3=.16.若(x﹣1)(x2+nx+2)的展开式中不含x2项,则n的值是.17.如图1,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释一个等式是.18.分解因式:ax2﹣6ax+9a=.19.我国古代数学曾有许多重要的成就,其中“杨辉三角”(如图)就是一例.这个三角形给出了(a+b)n(n=1,2,3,4,5,6)的展开式(按a的次数由大到小顺序排列)的系数规律.例如,第三行的三个数1,2,1,恰好对应)(a+b)2=a2+2ab+b2展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着)(a+b)4=a4+4a3b+6a2b2+4ab3+b4展开式中各项的系数.(1)(a+b)5展开式中a4b的系数为;(2)(a+b)7展开式中各项系数的和为.20.已知:52n=a,9n=b,则154n=.21.若(x2+y2﹣1)2=25,则x2+y2=.三.解答题22.已知a+b=﹣4,ab=3.求:(1)a2+b2;(2)a﹣b的值.23.教材中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果关于某一字母的二次多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3.原式=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如:求代数式x2+4x+6的最小值.原式=x2+4x+4+2=(x+2)2+2.∵(x+2)2≥0,∴当x=﹣2时,x2+4x+6有最小值是2.根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5;(2)求代数式x2﹣6x+12的最小值;(3)若y=﹣x2+2x﹣3,当x=时,y有最值(填“大”或“小”),这个值是;(4)当a,b,c分别为△ABC的三边时,且满足a2+b2+c2﹣6a﹣10b﹣6c+43=0时,判断△ABC的形状并说明理由.24.阅读材料:利用公式法,可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解例如x2+4x﹣5=x2+4x+()2﹣()2﹣5=(x+2)2﹣9=(x+2+3)(x+2﹣3)=(x+3)(x﹣1).根据以上材料,解答下列问题.(1)分解因式(利用公式法):x2+2x﹣8;(2)求多项式x2+4x﹣3的最小值;(3)已知a,b,c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.25.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=16,ab=40,求S1+S2的值;(3)当S1+S2=76时,求出图3中阴影部分的面积S3.26.已知a、b、c是△ABC的三边长,且a2+2b2+c2﹣2b(a+c)=0,试判断△ABC的形状,并证明你的结论.27.若x=2m+2,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=3,求此时y的值.28.阅读理解应用:要想比较a和b的大小关系,可以进行作差法,结果如下:a﹣b≥0,则a≥b;若a﹣b≤0,则a≤b;若a﹣b=0,则a=b.(1)填空,在实数范围内比较大小:2a2a2﹣1(填“>”“<”或“=”);(2)①试比较a2+b2与2ab的大小,并说明理由;②直接利用①的结论解决:求的最小值.(3)已知,如图,直线a⊥直线b,垂足为O.点B和点D在直线a上,点A和点C在直线b上,AO=4,BO=9,CO=x2,DO=y2,且xy=3,求四边形ABCD面积的最小值,并直接写出此时y的值.29.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)28是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)根据上面的提示,判断2020是否为“神秘数”?如果是,请写出两个连续偶数平方差的形式;如果不是,说明理由.(4)两个连续奇数的平方差(取正数)是“神秘数”吗?为什么?30.数学的趣味无处不在,在学习数学的过程中,小明发现了有规律的等式:(x2﹣1)÷(x﹣1)=x+1;(x3﹣1)÷(x﹣1)=x2+x+1;(x4﹣1)÷(x﹣1)=x3+x2+x+1;(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1;……(1)从计算过程中找出规律,可知:①(x8﹣1)÷(x﹣1)=;②=x n﹣1+x n﹣2+…+x3+x2+x+1.(2)计算:x n+x n﹣1+…+x3+x2+x+1(结果用含n的式子表示)(3)对于算式:2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)(364+1)+1①计算出算式的值(结果用乘方表示);②直接写出结果的个位数字是几?31.阅读下列材料:若a3=2,b5=3,则a,b的大小关系是a b(填“<”或“>”).解:因为a15=(a3)5=25=32,b15=(b5)3=33=27,32>27,所以a15>b15,所以a>b.解答下列问题:(1)上述求解过程中,逆用了哪一条幂的运算性质A.同底数幂的乘法B.同底数幂的除法C.幂的乘方D.积的乘方(2)已知x7=2,y9=3,试比较x与y的大小.32.给出如下定义:我们把有序实数对(a,b,c)叫做关于x的二次多项式ax2+bx+c的特征系数对,把关于x的二次多项式ax2+bx+c叫做有序实数对(a,b,c)的特征多项式.(1)关于x的二次多项式3x2+2x﹣1的特征系数对为;(2)求有序实数对(1,4,4)的特征多项式与有序实数对(1,﹣4,4)的特征多项式的乘积;(3)若有序实数对(p,q,﹣1)的特征多项式与有序实数对(m,n,﹣2)的特征多项式的乘积的结果为2x4+x3﹣10x2﹣x+2,直接写出(4p﹣2q﹣1)(2m﹣n﹣1)的值.参考答案一.选择题1.解:a=344=(34)11=8111;b=433=(43)11=6411;c=522=(52)11=2511;∵81>64>25,∴8111>6411>2511,∴a>b>c.故选:A.2.解:A﹣B=x2+2x﹣6y﹣(﹣y2+4x﹣11)=x2+2x﹣6y+y2﹣4x+11=x2﹣2x+y2﹣6y+11=x2﹣2x+1+y2﹣6y+9+1=(x﹣1)²+(y﹣3)²+1,∵(x﹣1)²≥0,(y﹣3)²≥0,∴(x﹣1)²+(y﹣3)²+1≥1,即A﹣B≥1,∴A>B.故选:A.3.解:由图1将小正方形一边向两方延长,得到两个梯形的高,两条高的和为a﹣b,即平行四边形的高为a﹣b,∵两个图中的阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.4.解:∵2m=4n+1,27n=3m+1,∴2m=22n+2,33n=3m+1,∴m=2n+2,3n=m+1,解得:n=3,m=8,∴m﹣n=8﹣3=5.故选:C.5.解:原式=42021×0.252022=(4×0.25)2021×0.25=0.25,故选:A.6.解:∵a、b、c是三角形的三条边,∴a+c>b,b+c>a,∴a﹣b+c>0,a﹣b﹣c<0,∴(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c)<0.故选:C.7.解:∵x2+x=1,∴x2=﹣x+1,∴x3=x(﹣x+1)=﹣x2+x,∴x3+2x2+2021=﹣x2+x+2x2+2021=x2+x+2021=1+2021=2022,故选:C.8.解:A.等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;D.从左到右的变形属于因式分解,故本选项符合题意;故选:D.9.解:∵a=x﹣2020,b=x﹣2022,c=x﹣2021,∴a=c+1,b=c﹣1,∵a2+b2=56,∴(c+1)2+(c﹣1)2=56,∴c2=27.故选:A.10.解:当10x=2,10y=3时,102x+3y=102x×103y=(10x)2×(10y)3=22×33=4×27=108.故选:C.11.解:原式=(1﹣)×(1+)×(1﹣)×(1+)×(1﹣)×(1+)×…×(1﹣)×(1+)×(1﹣)×(1+)=××××××…××××=×=.故选:B.二.填空题12.解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).13.解:原式=y(x2﹣9)=y(x+3)(x﹣3).故答案为:y(x+3)(x﹣3).14.解:∵a2﹣b2=4,∴(a+b)(a﹣b)=4,则原式=[(a+b)(a﹣b)]2=16,故答案为:16.15.解:a3b﹣2a2b2+ab3=ab(a2﹣2ab﹣b2)=ab(a﹣b)2;∵a+b=1;∴(a+b)2=1;(a﹣b)2=(a+b)2﹣4ab=1﹣4×=;∴ab(a﹣b)2=×=;故答案为:.16.解:(x﹣1)(x2+nx+2)=x3+nx2+2x﹣x2﹣nx﹣2=x3+(n﹣1)x2+(2﹣n)x﹣2,∵展开式中不含x2项,∴n﹣1=0,∴n=1,故答案为:1.17.解:图1的面积为:x2﹣1,拼成的图2的面积为:(x+1)(x﹣1),所以x2﹣1=(x+1)(x﹣1),故答案为:x2﹣1=(x+1)(x﹣1).18.解:ax2﹣6ax+9a=a(x2﹣6x+9)﹣﹣(提取公因式)=a(x﹣3)2.﹣﹣(完全平方公式)故答案为:a(x﹣3)2.19.解:(1)由图可得:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;a4b的系数为5,故答案为:5;(2)∵(a+b)1的展开式的各项系数之和1+1=2=21,(a+b)2的展开式的各项系数之和1+2+1=4=22,(a+b)3的展开式的各项系数之和1+3+3+1=8=23,(a+b)4的展开式的各项系数之和1+4+6+4+1=16=24,…,∴(a+b)n(n取正整数)的展开式的各项系数之和是2n,∴(a+b)7展开式中各项系数的和为27=128.故答案为:128.20.解:∵9n=b,∴(32)n=b,∴32n=b,∴154n=(3×5)4n=34n×54n=(32n)2×(52n)2=b2a2=a2b2.故答案为:a2b2.21.解:∵(x2+y2﹣1)2=25,∴x2+y2﹣1=±5,∴x2+y2=6或﹣4,又∵x2+y2≥0,所以x2+y2=6,故答案为:6.三.解答题22.解:(1)∵a+b=﹣4,ab=3,∴a2+b2=(a+b)2﹣2ab=16﹣2×3=10.(2)∵a2+b2=10,ab=3,∴(a﹣b)2=a2+b2﹣2ab=10﹣2×3=4,∴a﹣b=±2.23.解:(1)m2﹣4m﹣5=m2﹣4m+4﹣4﹣5=(m﹣2)2﹣9=(m﹣2+3)(m﹣2﹣3)=(m+1)(m﹣5).故答案为:(m+1)(m﹣5).(2)x2﹣6x+12=x2﹣6x+9+3=(x﹣3)2+3;∴x2﹣6x+12的最小值是3.(3)y=﹣x2+2x﹣3,y=﹣x2+2x﹣1﹣2,y=﹣(x﹣1)2﹣2,∴当x=1的时,y有最大值﹣2.故答案为:1,大,﹣2.(4 )a2+b2+c2﹣6a﹣10b﹣6c+43=0,a2﹣6a+9+b2﹣10b+25+c2﹣6c+9=0,(a﹣3)2+(b﹣5)2+(c﹣3)2=0,三个完全平方式子的和为0,所以三个完全平方式子分别等于0.a﹣3=0,b﹣5=0,c﹣3=0,得,a=3,b=5,c=3.∴△ABC是等腰三角形.24.解:(1)x2+2x﹣8=x2+2x+1﹣1﹣8=(x+1)2﹣9=(x+1﹣3)(x+1+3)=(x﹣2)(x+4);(2)设y=x2+4x﹣3,y=x2+4x+4﹣4﹣3,y=(x+2)2﹣7,∴多项式x2+4x﹣3的最小值是﹣7.(3)a2+b2+c2+50=6a+8b+10c,即a2+b2+c2+50﹣6a﹣8b﹣10c=0,(a﹣3)2+(b﹣4)2+(c﹣5)2﹣9﹣16﹣25+50=0,(a﹣3)2+(b﹣4)2+(c﹣5)2=0,∴a=3,b=4,c=5,∴△ABC的周长为3+4+5=12.25.解:(1)由图可得,,;(2)∵,,∴,∵a+b=16,ab=40,∴;(3)由图可得,,∵,∴.26.解:△ABC是等边三角形,理由:∵a2+2b2+c2﹣2b(a+c)=0∴a2+b2+c2﹣2ba﹣2bc+b2=0,∴(a﹣b)2+(b﹣c)2=0,则a=b,b=c,故a=b=c,则△ABC是等边三角形.27.解:(1)∵4m=22m=(2m)2,x=2m+2,∴2m=x﹣2,∵y=4m+3,∴y=(x﹣2)2+3,即y=x2﹣4x+7;(2)把x=3代入y=x2﹣4x+7=4.28.解:(1)∵2a2﹣(a2﹣1)=2a2﹣a2+1=a2+1>0,∴2a2>a2﹣1,故答案为:>;(2)①a2+b2≥2ab,理由如下:a2+b2﹣2ab=(a﹣b)2≥0,∴a2+b2≥2ab;②≥2a•+2019=2+2019=2021,∴的最小值为2021.(3)∵AO=4,BO=9,CO=x2,DO=y2,且xy=3,∴S四边形ABCD=×(9+y2)×4+x2(9+y2)=x2+2y2+x2y2+18=x2+2y2+22.5=(9x2+4y2)+22.5≥×2×3x×2y+22.5∵×2×3x×2y+22.5=6xy+22.5=18+22.5=40.5.∴当3x=2y时,四边形ABCD面积的最小值为40.5,∵3x=2y,∴x=y,∴xy=y×y=y2=3,∴y2=,∴y=±.∴四边形ABCD面积的最小值为40.5,此时y的值为±.29.解:(1)∵28=82﹣62,∴28是“神秘数”;(2)两个连续偶数构成的“神秘数”是4的倍数.理由如下:(2k+2)2﹣(2k)2=(2k+2+2k)(2k+2﹣2k)=2(4k+2)=4(2k+1),∴两个连续偶数构成的“神秘数”是4的倍数,∵2k+1是奇数,∴它是4的倍数,不是8的倍数;(3)∵2020=505×4,∴2020是“神秘数”,2020=5062﹣5042,(4)设两个连续的奇数为:2k+1,2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k,此数不是4的奇数倍,所以两个连续的奇数的平方差不是神秘数.30.解:(1)①(x8﹣1)÷(x﹣1)=x7+x6+x5+x4+x3+x2+x+1;②(x n﹣1)÷(x﹣1)=x n﹣1+x n﹣2+…+x3+x2+x+1.故答案为:x7+x6+x5+x4+x3+x2+x+1;(x n﹣1)÷(x﹣1);(2)由(1)知(x n﹣1)÷(x﹣1)=x n﹣1+x n﹣2+…+x3+x2+x+1,所以x n+x n﹣1+x n﹣2+…+x3+x2+x+1=(x n+1﹣1)÷(x﹣1);(3)①2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)(364+1)+1=(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)(364+1)+1=3128﹣1+1=3128;②∵31=3,32=9,33=27,34=81,35=243,36=729个位数字是按3,9、7、1循环的;∴128÷4=32,即3128的个位数字是第32组末位数,为1.31.解:∵a15=(a3)5=25=32,b15=(b5)3=33=27,32>27,所以a15>b15,所以a>b,故答案为:>;(1)上述求解过程中,逆用了幂的乘方,故选C;(2)∵x63=(x7)9=29=512,y63=(y9)7=37=2187,2187>512,∴x63<y63,∴x<y.32.解:(1)关于x的二次多项式3x2+2x﹣1的特征系数对为(3,2,﹣1),故答案为:(3,2,﹣1);(2)∵有序实数对(1,4,4)的特征多项式为:x2+4x+4,有序实数对(1,﹣4,4)的特征多项式为:x2﹣4x+4,∴(x2+4x+4)(x2﹣4x+4)=x4﹣4x3+4x2+4x3﹣16x2+16x+4x2﹣16x+16=x4﹣8x2+16;(3)根据题意得(px2+qx﹣1)(mx2+nx﹣2)=2x4+x3﹣10x2﹣x+2,令x=﹣2,则(4p﹣2q﹣1)(4m﹣2n﹣2)=2×16﹣8﹣10×4+2+2,∴(4p﹣2q﹣1)(4m﹣2n﹣2)=32﹣8﹣40+2+2,∴(4p﹣2q﹣1)(4m﹣2n﹣2)=﹣12,∴(4p﹣2q﹣1)(2m﹣n﹣1)=﹣6,故答案为:﹣6.。

第十四章整式的乘除 中档题专题提优2024-2025学年人教版八年级数学上册(无答案)

第十四章整式的乘除 中档题专题提优2024-2025学年人教版八年级数学上册(无答案)

第十四章整式的乘除专题一幂的运算核心考点一同底数幂的乘法(m,n都是正整数) ,即:同底数幂相乘,底数不变,指数相加.03. 若则n= .核心考点二幂的乘方(m,n都是正整数),即:幂的乘方,底数不变,指数相乘.06. 已知可变形为则a, b,c的大小关系是 .核心考点三积的乘方(其中a为正整数),即:积的乘方,每一个因数分别乘方.08. 已知则核心考点四逆用幂的运算法则09.已知: 则值为 ( )A. 17B. 36C. 48D. 7210. 已知: 则:11. 已知: 则12. 已知: 则m= , n= .13.已知:2"=a, 3"=b, n是正整数,则用含有a,b的式子表示( 的值为.14. 若则A. 2B. 3C. 6D. 1215.已知: 3"=a, 81"=b, m, n为正整数, 则3³ᵐ⁺¹²ⁿ的值为 ( )A. a³b³B. 27abC. 3a+12b16按一定规律排列的一列数: 2¹, 2², 2³, 2⁵,2⁸, 2¹³, …, 若x, y, z表示这列数中的连续三个数,猜想x,y,z满足的关系式是 .核心考点五幂的运算法则综合运用17. 已知求的值. 18. 已知求的值.19. 是否存在整数a, b, c满足若存在,求出a,b,c的值;若不存在,说明理由.专题二整式的乘除核心考点一单项式与单项式的乘法单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.01. 计算:1202. 计算:核心考点二单项式与多项式的乘法单项式与多项式相乘,就是根据分配律用单项式去乘以多项式的每一项,再把所得的积相加.核心考点三多项式与多项式的乘法多项式与多项式相乘,先用一个多项式的每一项去乘以另一个多项式的每一项,再把所得的积相加,即|①|②| ①②③④(a+b)(m+n)= am+ an+ bm+ bn|③↑④↑04. (1) (x+2)(x-4)= ,核心考点四整式的除法08. [(2x-y)(2x+y)+y(y-6x)]÷2x.核心考点五降次代换09. 若则10. 已知则代数式的值是 ( )A. 31B. -31C. 41D. -4111. 已知. 求(x-1)(x-3)(x-5)(x-7)的值.核心考点六多项式相乘展开后与待定参数12. 若的积中不含x的二次项,则常数m的值为 ( )A. 0 B13. 若的展开式中不含x³项和x²项,则m"的值= .14. 已知a, b, x, y满足a+b=x+y=3, ax+ by=7, 求的值.15. 已知将x=0代入这个等式中可以求出a₀=1.用这种方法可以求得的值为( )A. -16B. 16C. -1D. 116. 若则:(1) a+b+c+d+e+f= ; (2) f= .17已知, 若多项式. 被x+3整除,说明时,多项式的值为0,即当x=-3时,多项式为0,我们可以把x=-3代入多项式,值为0,可得方程,求出k的值为若多项式.去除以x+3时,余数为6,说明. 时,多项式的值为6,即当. 时,多项式为6,我们可以把x=-3代入多项式,值为6,可得方程,求出k的值为- 结合上述知识,解决下列问题:(1) 若能被x-2整除,则a的值为;(2) 若除以x+2时, 余数为4, 则a的值为 ;(3) 若能被x-2与x+3整除, 则a-b的值为 ;(4) 若去除以x-2时,余数为1去除以x+3时,余数为- 求a, b的值.核心考点一整式的运算与求值01 计算:02先化简, 再求值: 其中x=0.5, y=-1.核心考点二待定参数03.已知( 其中p,q为正整数,则04. 如果二次三项式中有一个因式是3a-2,那么k的值为 .05以下关于x的各个多项式中, a, b, c, m, n均为常数.(1) 根据计算结果填写下表:二次项系数一次项系数常数项(2x+1)(x+2)22(2x+1)(3x-2)6-2( ax+b)( mx+n) am bn(2) 已知既不含二次项,也不含一次项,求的值;(3)多项式M与多项式的乘积为则2a+b+c的值为.核心考点一整式的运算与图形01.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆.若a+b=4,求剩下的钢板的面积.02.如图将一个边长为a的小正方形与四个边长均为b的大正方形拼接在一起(其中a<b) , 则四边形ABCD的面积为 ( )03.在长方形ABCD内, 将两张边长分别为a和b(a>b) 的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S₁,图2 中阴影部分的面积为S₂.当AD-AB=2时, 的值为 ( )A. 2aB. 2bC. 2a-2bD. -2b核心考点二图形的拼接与整式的乘法04有足够多的如图所示的正方形和长方形的卡片.(1)选取1号,2号,3号卡片若干张,拼成一个正方形(不重叠无缝隙),并能运用拼图前后面积之间的关系说明公式( 成立,请画出这个正方形;(2) 小明想用类似(1) 的方法解释多项式乘法( 那么用2号卡片张,3号卡片张;(3)如果选取1号,2号,3号卡片分别为1张,2张,3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图.专题五平方差公式的应用及构造平方差公式: (核心考点一平方差公式的基本应用01. 计算: (2) (b+2a)(2a-b);(3) (-x+2y)(-x-2y);核心考点二平方差公式在多项式计算中的应用02. (1) (y+2)(y-2)-(y-1)(y+5);核心考点三平方差公式的构造03. 计算:04. 计算下列各式,完成所提出的问题:…计算:① ;05.若则(06. 已知实数a, b, x, y满足求的值.07. 设a, b, c, d都是自然数, 且求d-b的值.专题六 完全平方公式完全平方公式:核心考点一 完全平方公式的基本应用01. 计算:核心考点二 含参数的完全平方式02. 若是关于x ,y 的完全平方式,则03. 若 是一个完全平方式,则m 的值为 .核心考点三 完全平方公式的拓展应用04. 计算:(5) 求证: 1999×2000×2001×2002+1是一个整数的平方, 并求出这个整数.核心考点四完全平方公式补充公式的应用05. 已知且a=1, 试求( 的值.06. 设求的值.07. 已知求的最小值.专题七完全平方公式的变形与应用核心考点一利用完全平方公式求a+b, a-b, ab, a²-b²的值01.已知求 xy和x-y的值;02. 已知求和x+y的值;03.若(2026-a)(2025-a)=2024, 则(核心考点二利用完全平方公式求的值04.例: 已知求的值.解:因为所以则所以观察以上解答,解答以下问题:已知(1) 求下列各式的值:(2) 直接写出的值 .05. 已知:x²-3x+1=0, 则的值为 .06. 已知则的值为 ( )A. 136B. 169C. 194D. 19607. 若则专题八配方法与完全平方式的构造核心考点一配方构造完全平方式01. 将二次三项式进行配方,正确的结果是 ( )B. (x-2)²-1 D. (x-2)²+302.关于x的二次三项式有最小值-10, 则常数a= .03.a, b为实数, 整式的最小值是 ( )A. -13B. -4C. -9D. -504.已知, 则x+y+z= .05.已知a, b, c满足则a-b+c的值为 ( )A. -1B. 5C. 6D. -7核心考点二配方构造完全平方式求最值、比较大小06.简读以下材料井解决问题:①若a-b≥0,则a≥b;若a-b≤0,则a≤b;有最小值1;有最小值-9.(1)求的最小值;(2) 已知比较P与Q的大小.核心考点三配方法求最值应用题07.我们已学习了完全平方公式:观察下列式子:x并回答下列问题.则(2) 解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为60米的木栅栏围成一块长方形花圃,为了设计一个面积尽可能大的花圃,按图设长方形一边长度为x米,回答下列问题:①列式:用含x的式子表示花圃的面积:;②请说明当x取何值时,花圃的最大面积是多少平方米?专题九 乘法公式的几何背景核心考点一 乘法公式与图形结合01如图1,在长为2b ,宽为b 的长方形中去掉两个边长为a 的小正方形. 然后将图2中的阴影部分剪下,并将剪下的阴影部分从中间剪开,得到两个形状,大小完全相同的小长方形. 将这两个小长方形与剩下的图形拼成如图3 中的长方形,上述操作能够验证的等式是( )02.四张长为a, 宽为b(a>b) 的长方形纸片, 按如图的方式拼成一个边长为 (a+b) 的正方形,图中空白部分的面积为阴影部分的面积为S₂, 若则a:b= .03. 探究:如图1,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿线剪开,如图所示,拼成图2的长方形.(1) 请你分别表示出这两个图形中阴影部分的面积 ; ;(2)比较两图的阴影部分面积,可以得到乘法公式: (用字母表示);应用:请应用这个公式完成计算:04.(1) 用边长分别为a ,b 的两个正方形和长宽分别为a ,b 的两个长方形按如图摆放可拼成一个大正方形,用两种不同的方法可以表示图中阴影部分的面积和. 请你用一个等式表示( a²+b², ab 之间的数量关系 ;(2) 根据(1) 中的数量关系,解决如下问题:①已知 求m-n 的值;②已知(求的值.05. 我们知道,在学习了课本阅读材料:《综合与实践一面积与代数恒等式》后,利用图形的面积能解释得出代数恒等式,请你解答下列问题:(1)如图,根据3个正方形和6个长方形的面积之和等于大正方形ABCD 的面积. 可以得到代数恒等式:(2) 已知求 ab+ ac+ bc的值;(3) 若n, t满足如下条件:,求t的值.核心考点二杨辉三角与整式乘法06.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如下图所示) 就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)"(n为正整数) 的展开式(按a的次数由大到小的顺序排列) 的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着展开式中各项的系数等等.(1) 根据上面的规律,展开式的各项系数中最大的数为;(2) 直接写出式于的值为;(3)若求的值.专题十因式分解核心考点一因式分解的定义01. 下列各式从左到右的变形,是因式分解的是 ( )核心考点二提公因式法02. 把下列各式分解因式:(4) 2a(b+c)-3(b+c); (5)6(x-2)+x(2-x);核心考点三运用公因式法03. 把下列各式分解因式:(1) 1-25b²;(6) x⁴-y⁴;核心考点四分组分解法04. 分解因式:(2) 2ax-10ay+5by- bx;核心考点五 十字相乘法05. 把下列各式分解因式:核心考点六 配方法06. 分解因式:核心考点七 换元法07. 把下列各式分解因式:专题十一因式分解的应用核心考点一对因式分解结果的判断01.下列因式分解结果正确的是 ( )02.下列因式分解结果正确的是 ( )核心考点二多步骤因式分解03.因式分解:(2) (p-3)(p-1)+1.04. 因式分解:05.将下列多项式因式分解:06.因式分解:核心考点三利用因式分解求值07. 若则a-b= .08.若则a+b-c的值是 ( )A. 2B. 5C. 20D. 5009. 已知a, b满足则x, y的大小关系是 ( )A. x≤yB. x≥yC. x>yD. x<y10.已知( 则((x-2027)²的值是 .11. 已知a=2019x+2016, b=2019x+2017, c=2019x+2018, 求多项式( 的值.核心考点四利用图形理解因式分解12.如图,将下列四个图形拼成一个大长方形,再据此写出一个多项式的因式分解:核心考点五试根法因式分解13. 对于多项式我们把. 代入此多项式,发现. 能使多项式的值为0,由此可以断定多项式. 中有因式( (注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式( 于是我们可以把多项式写成:分别求出m,n后再代入就可以把多项式. 因式分解.(1) 求式子中m, n的值;(2) 以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式.。

人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》测试题(含答案)一、单选题1.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .a 2﹣b 2=(a +b )(a ﹣b )B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a 2+ab =a (a +b )2.在下列运算中,正确的是()A .236x x x ⋅=B .23x x x +=C .326()x x =D .933x x x ÷= 3.下列等式中,从左到右的变形是因式分解的是( )A .229(3)x x -=-B .22(1)21x x x +=++C .24(2)(2)x x x -=+-D .221x x x ⎛⎫+=+ ⎪⎝⎭4.已知23m m -的值为5,那么代数式2203026m m -+的值是( )A .2030B .2020C .2010D .20005.下列计算正确的是( )A .224a a a +=B .3252⋅=a a aC .235(2)312⋅=a a aD .21333⎛⎫+= ⎪⎝⎭a a a 6.如果25m m +=,那么代数式()()222m m m -++的值为( )A .-6B .-1C .9D .147.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( )A .0B .5C .5-D .5或5-8.若关于x 的多项式(x 2+2x +4)(x +k )展开后不含有一次项,则实数k 的值为( ) A .﹣1 B .2 C .3 D .﹣29.下列各式中,运算正确的是( )A .325a a a +=B .()()235a a a -⋅-= C .()325a a = D .325a a a ⋅= 10.下列算式中不能利用平方差公式计算的是( )A .()()x y x y +-B .()()x y x y ---C .()()x y x y --+D .()()x y y x +-二、填空题 11.若表示一种新的运算,其运算法则为2a bc d =+-,则的结果为________.12.如果二次三项式x 2+3x +a 是一个完全平方式,那么常数a 的值是 ___.13.已知a 是方程x 2-5x +1=0的一个根,则a 4+a -4的个位数字为_____.14.若多项式2(1)16x m x --+能用完全平方公式进行因式分解,则m =________.15.若2224(3)ax x b mx ++=-,则=a ________.16.因式分解:(1)22x y -+=___________;(2)222x xy y -+=___________;(3)24a a -=___________;(4)265m m -+=___________.17.若2x +3y ﹣2=0,则4x •8y =___.18.在实数范围内分解因式221x x +-=___.三、解答题19.先化简,再求值:x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3),其中x 满足2x 2+3=4x .20.((教材呈现)下图是华师版八年级上册数学教材第49页B 组的第12题和第13题.(例题讲解)老师讲解了第12题的两种方法:(方法运用)请你任选第12题的解法之一,解答教材第49页B 组的第13题.(拓展)如图,在ABC 中,90ACB ∠=︒,分别以AC 、BC 为边向其外部作正方形ACDE 和正方形BCFG .若6AC BC +=,正方形ACDE 和正方形BCFG 的面积和为18,求ABC 的面积.21.计算:(59x 3y )•(﹣3xy 2)3•(12x )2.22.33x y x y .23.先化简,再求值:()2232()()a b ab b b a b b a --÷++-,其中12021a =-,2021b =.24.某校“数学社团”活动中,小亮对多项式进行因式分解,m 2-mn +2m -2n =(m 2-mn )+(2m -2n )=m (m -n )+2(m -n ) =(m -n )(m +2).以上分解因式的方法叫做“分组分解法”,请你在小亮解法的启发下,解决下面问题:(1)因式分解a 3-3a 2-9a +27;(2)因式分解x 2+4y 2-4xy -16;(3)已知a ,b ,c 是ABC 的三边,且满足222a ab c ac bc -+=-,判断ABC 的形状并说明理由.参考答案1.A【详解】解:大正方形的面积﹣小正方形的面积=a 2﹣b 2,矩形的面积=(a +b )(a ﹣b ),故a 2﹣b 2=(a +b )(a ﹣b ),故选:A .2.C【详解】解:A 、235x x x ,故错误,不符合题意;B . 2x x +不是同类项,不能合并,故错误,不符合题意;C . 326()x x =,故正确,符合题意;D . 936x x x ÷=,故错误,不符合题意;3.C【详解】解:A 、29(3)(3)x x x -=+-,则原等式不成立,此项不符题意;B 、22(1)21x x x +=++等式的右边不是乘积的形式,则此项不符题意;C 、24(2)(2)x x x -=+-是因式分解,此项符合题意;D 、221x x x ⎛⎫+=+ ⎪⎝⎭等式右边中的2x 不是整式,则此项不符题意; 4.B【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,故选B .5.C【详解】A. ∵2a 和2a 是同类项,∵22242a a a a +=≠,故选项A 错误;B. 532522a a a a ⋅≠=,故选项B 错误;C. 52323(32)3412a a a a a ⋅==,故选项C 正确;D. 2213333a a a a a ⎛⎫+=+⎭≠ ⎪⎝,故选项D 错误. 6.D【详解】解:()()222m m m -++, 22244m m m m =-+++,2224m m =++,由25m m +=得:22210m m +=,则原式10414=+=,故选:D .7.C【详解】解:∵多项式2(5)2x a x ++-中不含x 的一次项,∵5+a =0,解得a =-5,故选:C .8.D【详解】解:(x 2+2x +4)(x +k )=x 3+kx 2+2x 2+2kx +4x +4k=x 3+(k +2)x 2+(2k +4)x +4k ,∵关于x 的多项式乘多项式(x 2+2x +4)(x +k )的结果中不含有x 的一次项, ∵2k +4=0,解得,k =−2,9.D【详解】A .3a 和2a 不是同类项,不能合并,此选项错误;B .2355()()()a a a a -⋅-=-=-,此选项错误;C . ()326a a =,此选项错误; D .235a a a ⋅=,此选项正确,故选:D .10.C【详解】解:A 、()()22x y x y x y +-=-,故A 不符合题意;B 、()()22()x y x y y x ---=--,故B 不符合题意;C 、()()x y x y --+不能利用平方差公式计算,故C 符合题意;D 、()()22x y y x y x +-=-,故D 不符合题意;11.223m m n +【详解】解:由题意得,=2222(2)3m m n n m -+-,=223243m m n m +-=223m m n +,故答案为:223m m n +.12.94【详解】解:∵二次三项式x 2+3x +a 是一个完全平方式,∵x 2+3x +a =x 2+2•x •32+(32)2, ∵a =94, 故答案为:94. 13.7【详解】解:由题意可得:2510a a ,0a ≠, ∵15a a +=, ∵22211223a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵24242112527a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵个位数字是7;故答案是7.14.9或-7或9【详解】解:∵多项式x 2-(m -1)x +16能用完全平方公式进行因式分解, ∵m -1=±8,解得:m =9或m =-7,故答案为:9或-715.16【详解】解:∵222(3)9=6mx x x m m --+,2224(3)ax x b mx ++=- ∵m 2=a ;-6m =24∵m =-4,a =16故答案为:1616.()()y x y x +- 2()x y - (4)a a - (1)(5)m m -- 【详解】解:(1)2222()()y x x y x x y y -++=--=(2)2222()x xy y x y -+=-(3)24(4)a a a a -=-(4)265(1)(5)m m m m -+=--故答案为()()y x y x +-,2()x y -,(4)a a -,(1)(5)m m -- 17.4【详解】解:48x y ⋅=()()2323232=2222x x x yy x +⋅=⋅, ∵x +3y -2=0,∵x +3y =2,∵原式=22=4,故答案为:4.18.(11x x ++【详解】解:原式=2212x x ++-2(1)2x =+-(11x x =+++,故答案为(11x x +++.19.2x 2-4x +3;原式=0.【详解】x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3)=﹣x 3+2x 2﹣(﹣x 3-x 2+3x + x 2+x ﹣3)=﹣x 3+2x 2+x 3+x 2-3x - x 2-x +3=2x 2-4x +3∵2x 2+3=4x∵2x 2-4x +3=0∵原式=0.20.【方法运用】见解析;【拓展】92【详解】【方法运用】∵(a -b )2= a 2+b 2-2ab∵2ab = a 2+b 2-(a -b )2.∵a -b =1,a 2+b 2=25,∵2ab = 25-1=24.∵ab =12.【拓展】由题意,得AC 2+BC 2=18.∵(AC +BC )2=62,AC 2+2AC •BC +BC 2=36. ∵2AC •BC =36﹣(AC 2+BC 2)=36﹣18=18. ∵AC •BC =9.∵S ∵ABC =12AC •BC =92. 21.87154x y - 【详解】 (59x 3y )•(﹣3xy 2)3•(12x )2 ()233332251392x x x y y ⎛⎫=-⨯⨯⋅⋅⋅⋅⋅ ⎪⎝⎭ 87154x y =- 22.2269x y y -+-【详解】解:33x y x y33x y x y 223x y2269x y y =-+-23.2ab -,2【详解】解:原式=223222÷-÷-÷+-a b b ab b b b b a=22222--+-a ab b b a=2ab -, 当12021a =-,2021b =时,原式=1220212021⎛⎫-⨯-⨯ ⎪⎝⎭=2. 24.(1)(a +3)(a -3)2;(2)(x -2y -4)(x -2y +4) ;(3)等腰三角形,见解析 【详解】解:(1)a 3-3a 2-9a +27=a 2(a -3)-9(a -3)=(a 2-9)(a -3) =(a -3)(a +3)(a -3) =(a +3)(a -3)2;(2)x 2+4y 2-4xy -16=(x 2-4xy +4y 2)-16=(x -2y )2-42=(x -2y -4)(x -2y +4);(3)∵ABC 是等腰三角形,理由如下:∵222a ab c ac bc -+=-,∵2220a ac c ab bc -+-+=,∵()()20a c b a c ---=,∵()()0a c a c b ---=,∵a ,b ,c 是∵ABC 的三边,∵a -c -b <0.∵a -c =0,∵a =c ,∵∵ABC 是等腰三角形.。

人教版八年级上册数学《整式乘法和因式分解》计算题专项练习(含答案)

人教版八年级上册数学《整式乘法和因式分解》计算题专项练习(含答案)

人教版八年级数学《整式乘法和因式分解》计算题专项练习学校:班级:姓名:得分:1.计算:(x+7)(x﹣6)﹣(x﹣2)(x+1)2.计算:(﹣2x2)3+(﹣3x3)2+(x2)2•x23.计算:(﹣ax4y3)÷(﹣ax2y2)﹣x2y4.化简:(﹣x)2•(6x2)﹣2x•(﹣3x)35.计算:2x(3﹣2x)﹣(2x+3)(3x﹣4).6.计算:(2x3y)3•(﹣3xy2)÷6xy7.化简:(y+2)(y﹣2)﹣(y﹣1)(y+5).8.计算:(x﹣2)2﹣(x+3)(x﹣3)9.计算:(x﹣3)2﹣(x﹣2)(x+2)10.计算(x+2)•(x﹣2)•(x2+4)11.计算:9(a﹣1)2﹣(3a+2)(3a﹣2).12.(2a+3b)(2a﹣3b)﹣(a﹣3b)2.13.计算:(2x﹣1)(2x+1)﹣(3﹣2x)2.14.计算:(2y﹣x)(2y+x)﹣2(y﹣x)2.15.计算:(3x+4y)2﹣(4y﹣3x)(3x+4y)16.化简:(m﹣n)(m+n)﹣(m+n)2﹣mn 17.化简:4x•x﹣(2x﹣y)(y+2x)18.计算:(2x﹣3y)2﹣(y+3x)(3x﹣y)19.因式分解:m3n﹣4m2n+4mn 20.分解因式:2x2﹣8.21.因式分解:ab2﹣2ab+a.22.分解因式:x4﹣8x2y2+16y4.23.因式分解:x4﹣81x2y2.24.因式分解:x2y﹣2xy2+y3.25.分解因式:(Ⅰ)3mx﹣6my;(Ⅱ)y3+6y2+9y.26.分解因式(1)2x2﹣8(2)3x2y﹣6xy2+3y327.因式分解:(1)a3﹣16a;(2)﹣x2+x﹣人教版八年级数学《整式乘法和因式分解》计算题专项练习参考答案与试题解析1.(x+7)(x﹣6)﹣(x﹣2)(x+1)【解答】解:(x+7)(x﹣6)﹣(x﹣2)(x+1)=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.2.计算:(﹣2x2)3+(﹣3x3)2+(x2)2•x2【解答】解:原式=﹣8x6+9x6+x6=2x6.3.计算:(﹣ax4y3)÷(﹣ax2y2)﹣x2y【解答】解:原式=x2y﹣x2y=x2y4.化简:(﹣x)2•(6x2)﹣2x•(﹣3x)3【解答】解:原式=x2•6x2﹣2x•(﹣27x3)=6x4+54x4=60x4.5.计算:2x(3﹣2x)﹣(2x+3)(3x﹣4).【解答】解:原式=6x﹣4x2﹣(6x2﹣8x+9x﹣12)=6x﹣4x2﹣6x2+8x﹣9x+12=﹣10x2+5x+12.6.计算:(2x3y)3•(﹣3xy2)÷6xy【解答】解:原式=8x9y3•(﹣3xy2)÷6xy=﹣24x10y5÷6xy=﹣4x9y4.7.化简:(y+2)(y﹣2)﹣(y﹣1)(y+5).【解答】解:原式=y2﹣4﹣y2﹣5y+y+5=﹣4y+1,8.计算:(x﹣2)2﹣(x+3)(x﹣3)【解答】解:(x﹣2)2﹣(x+3)(x﹣3)=x2﹣4x+4﹣(x2﹣9)=x2﹣4x+4﹣x2+9=﹣4x+13.9.计算:(x﹣3)2﹣(x﹣2)(x+2)【解答】解:原式=x2﹣6x+9﹣x2+4=﹣6x+13.10.计算(x+2)•(x﹣2)•(x2+4)【解答】解:原式=(x2﹣4)(x2+4)=x4﹣16.11.计算:9(a﹣1)2﹣(3a+2)(3a﹣2).【解答】解:9(a﹣1)2﹣(3a+2)(3a﹣2).=9a2﹣18a+9﹣9a2+4=﹣18a+13.12.(2a+3b)(2a﹣3b)﹣(a﹣3b)2.【解答】解:原式=4a2﹣9b2﹣a2+6ab﹣9b2=3a2+6ab﹣18b2.13.计算:(2x﹣1)(2x+1)﹣(3﹣2x)2.【解答】解:原式=4x2﹣1﹣(9﹣12x+4x2)=4x2﹣1﹣9+12x﹣4x2=12x﹣10.14.计算:(2y﹣x)(2y+x)﹣2(y﹣x)2.【解答】解:原式=4y2﹣x2﹣2(y2﹣2xy+x2)=4y2﹣x2﹣2y2+4xy﹣2x2=2y2+4xy﹣3x2.15.计算:(3x+4y)2﹣(4y﹣3x)(3x+4y)【解答】解:原式=9x2+24xy+16y2﹣(16y2﹣9x2)=18x2+24xy.16.化简:(m﹣n)(m+n)﹣(m+n)2﹣mn【解答】解:原式=m2﹣n2﹣(m2+2mn+n2)﹣mn=m2﹣n2﹣m2﹣2mn﹣n2﹣mn=﹣2n2﹣3mn17.化简:4x•x﹣(2x﹣y)(y+2x)【解答】解:4x•x﹣(2x﹣y)(y+2x)=4x2﹣(4x2﹣y2)=y2.18.计算:(2x﹣3y)2﹣(y+3x)(3x﹣y)【解答】解:原式=(4x2﹣12xy+9y2)﹣(9x2﹣y2)=﹣5x2﹣12xy+10y219.因式分解:m3n﹣4m2n+4mn【解答】解:原式=mn(m2﹣4m+4)=mn(m﹣2)2.20.分解因式:2x2﹣8.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).21.因式分解:ab2﹣2ab+a.【解答】解:ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2.22.分解因式:x4﹣8x2y2+16y4.【解答】解:原式=(x2﹣4y2)=(x+2y)(x﹣2y)(x2+2y2).23.因式分解:x4﹣81x2y2.【解答】解:原式=x2(x2﹣81y2)=x2(x+9y)(x﹣9y)24.因式分解:x2y﹣2xy2+y3.【解答】解:x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2.25.分解因式:(Ⅰ)3mx﹣6my;(Ⅱ)y3+6y2+9y.【解答】解:(Ⅰ)原式=3m(x﹣2y);(Ⅱ)原式=y(y2+6y+9)=y(y+3)2.26.分解因式(1)2x2﹣8(2)3x2y﹣6xy2+3y3【解答】解:(1)2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2);(2)3x2y﹣6xy2+3y3=3y(x2﹣2xy+y2)=3y(x﹣y)2.27.因式分解:(1)a3﹣16a;(2)﹣x2+x﹣【解答】解:(1)a3﹣16a=a(a2﹣16)=a(a+4)(a﹣4);(2)﹣x2+x﹣=﹣(x2﹣x+)=﹣(x﹣)2.。

人教版八年级上册 第14章《整式乘除与因式分解》同步练习及答案(14.1-14.2)

人教版八年级上册 第14章《整式乘除与因式分解》同步练习及答案(14.1-14.2)

(第10题)第14章《整式乘除与因式分解》同步练习(§14.1~14.2)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.若a b c x x x x g g g =2014x ,则c b a ++=______________.2.(2)(2)a b ab --g =__________,2332()()a a --g =__________.3.如果2423)(a a a x =⋅,则______=x .4.计算:(12)(21)a a ---= .5.有一个长9104⨯mm ,宽3105.2⨯mm ,高3610⨯mm 的长方体水箱,这个水箱的容积是______________2mm .6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据右图写出一个代数恒等式是:________________.7.若3230123(2)x a a x a x a x -=+++,则220213()()a a a a +-+的值为 .8.已知:A =-2ab ,B =3ab (a +2b ),C =2a 2b -2ab 2 ,3AB -AC 21=__________. 9.用图所示的正方形和长方形卡片若干张,拼成一个长为2a b +,宽为a b +的矩形,需要A 类卡片_______张,B 类卡片_______张,C 类卡片_______张.10.我国北宋时期数学家贾宪在他的著作《开方作法本源》中的“开方作法本源图”如下图所示,通过观察你认为图中a =__________.二、选择题(每题3分,共24分)11.下列运算正确的是 ( )(第6题) (第9题) a a b b b A 类 B 类 C 类A .236x x x =gB .2242x x x += C .22(2)4x x -=- D .358(3)(5)15a a a --=g12.如果一个单项式与3ab -的积为234a bc -,则这个单项式为( ) A .14ac B .214a c C .294a c D .94ac 13.计算233[()]()a b a b ++g的正确结果是( ) A .8()a b + B .9()a b + C .10()a b + D .11()a b +14.若x 2-y 2=20,且x +y =-5,则x -y 的值是( )A .5B .4C .-4D .以上都不对15.若25x 2+30xy +k 是一个完全平方式,则k 是( )A .36y 2B .9y 2C .6y 2D .y 216.已知2a b +=,则224a b b -+的值是( )A.2 B.3 C.4 D.6 17.计算)12)(25(-+a a 等于( )A .2102-aB .25102--a aC .24102-+a aD .2102--a a18.下列计算正确的是( )A .56)8)(7(2-+=-+x x x xB .4)2(22+=+x xC .2256)8)(27(x x x -=+-D .22169)43)(43(y x y x y x -=-+三、解答题(共46分)19.(8分)利用乘法公式公式计算(1)(3a +b )(3a -b ); (2)10012.20.(6分)计算(52x +1)2-(52x -1)2.21.(7分)化简求值:()()()()22232232323a b a b a b a b --+-++.其中:31,2=-=b a .22.(7分)解方程 2(x -2)+x 2=(x +1)(x -1)+x .23.(9分)如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形,根据图中标注的数据,计算图中空白部分的面积.24.(9分)学习了整数幂的运算后,小明给小华出了这样一道题:试比较3555,4444,5333的大小?小华怎么也做不出来.聪明的读者你能帮小华解答吗?参考答案一、填空题1.2013 2.2242a b ab -+、12a - 3.18 4.214a - 5.16610⨯ 6.()ab a b a a 2222+=+ 7.1 8.32231638a b a b -- 9.2、3、1 10.6二、选择题11.D 12.A 13.B 14.C 15.B 16.C 17.D 18.D三、解答题19.(1)9a 2—b 2;(2)1002001 20.10x 21.22427a b +,19 22.x =3 23.2ab ac bc c --+ 24.能,35551113243=;4441114256=;3331115125=.因为256243125>>,所以111111111256243125>>.所以444555333435>>.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《整式》计算题练习100道 资料由小程序:家教资料库 整理
2、332()()a a a --??
3、2323()()a a a -?
4、 2
23()x 轾--犏臌
5、3231()4x y z -
6、32()()()x y x y y x ---
7、53143()()n n a a a a --?-?
8、233321
1
()()23xy x y -+
10、(-0.25)11×222
11、263373()()(2)x x x -
12、43311
1
()()()a a a ?-
13、232(2)(2)n ?-
14、33612(0.25)0.1252(2)-创?
15、3312()()n x y xy +--
16、5524226()()()()()x x x x x x -----
18、32322()()(3)a b a b 轾---犏臌
19、3
20082009100100
10.25(4)8()2轾犏?--犏臌
20、122()()m m m a a a +--
21、3233633(4)(3)2(2)x x x x x -+---
22、234342343()()()x y x y x y 轾---犏臌
23、4354832263()2()5()x y xy x y x y x y -+
24、已知 27927813n n n 鬃=,求n 的值
25、已知23,24n m ==,求2312m n ++值
26、已知36,92m n ==,求2413m n -+值
27、(3x+10)(x+2)
28、(4y -1)(y -5)
29、(2x -521
)()252y x y +
30、()()()x y z y z x z x y ---+-
21、23
2
(4)122()43b a ab a a b b 轾犏----+犏臌
32、若m 为正整数,且x 2m =3,求:
33、532()()a a a -??
34、21512525n m m -赘
35、2(x -8)(x -5)-(2x -1)(x+2)
36、2322(43)3(46)m m m m m m +--+-
37、()0433
11
1
3()()()333----+-?-
38、若3918()n m x y y x y =,求: 值
222223(2)mn m m n mn 轾---犏臌
40、(35)(106)x y y x --
41、20092008(2)(2)-+-
42、3373(2)(2)x y x y 轾-?-犏臌
43、22232(3)42(32)x x x x x 轾---犏臌
44、化简求值:其中1
4,22x y =-=
2(2)()(2)2(3)()x y x y x y x y x y -+-----
45、2(1)x y --
46、(32)(23)x y y x --
47、22
11(3)(3)22x y x y -+
48、3013
124
1
()()()()3352----?+-?
49、230217
7
1
()()(1.92)()(3)993----?---?
50、化简求值:其中21
4x y =-
32431(1)2()22(1)2xy x x y x y x y x 轾犏---??犏臌
51、22222()()()a b a b a b -++
52、22()()4a b a b ab 轾+--?犏臌
53、222()()()a b a b a b -+?
54、2222()()()()x y x y x y y x +-----+-
55、22(23)(23)(23)(23)a b a b a b a b --+-++
56、化简求值:其中1x =-
(21)(1)2(3)(4)x x x x +----
57、(32)(32)m n m n -+
58、(3)(3)a b b a -++
59、4422()()()x y x y x y -??
60、33()()a b a b a b 轾+--?犏臌
61、1212()()m n m n a b a b -+-++-
62、化简求值:其中1,13x y ==
222()()3()()4x x y y x x y y x y 轾轾-+----+犏犏臌臌g
63、(26)(3)y y +-
64、(0.5)(0.5)xy xy -+--
65、3(2)(1)2(5)(3)x x x x -+---
66、22222(3)(3)(9)x y x y x y +-+
67、222
2111
()()(2)222y x y x x y 轾犏-++?犏臌
68、42(1)(1)(1)(1)x x x x +--++
69、已知()211x x +-=,求x 的值。

70、若()3915n m a bab a b =,则mn 的值
71、若2218, 1.54x y x y +=-=,则4
()xy
72、若2,3a b ab +=-=,则2222a b +
73、化简求值:其中1
2x =-
22(3)(3)2(1)(2)(3)x x x x x x ------+--
74、2()()()()a a b a b b ab a a a b +-+---
76、化简求值:其中12x =-
2(4)(31)3(23)(5)x x x x ----+-
77、若215x x ++=,则(7)(8)x x -+的值
78、已知222450a b a b ++-+=,求:2243a b +-的值。

79、化简求值:其中1x =-
26(32)(23)(23)x x x x x x -+-+-
80、若3,744b
b a a +=-=,则22
116b a -
的值。

82、若222246140x y z x y z ++-+-+=,
求 :x y z ++的值
83、若22(8)(3)x ax x x b ++-+不含x 2和x 3项,那么a,b 的值
84、2232(5)(24)5(241)4x x x x x x x x ---+---+
85、若20x y -=,求222()()2()(4)x y x y y x y y 轾+--+-?犏臌的值
86、化简求值:
()(2)(2)(3)2(3)(4)x y x y y x x y x y x y --------,其中4, 1.5x y ==
87、若3,1x y x z -=-=,则22(2)()x y z z x --+-的值
88、若20x y -=,求222()()2()(4)x y x y y x y y 轾+--+-?犏臌的值
89、化简求值:2
22222()()()()()224n n n m n m n m m m -+++-+,其中5
,27m n ==-
90、如果单项式339n x y -与42
19b b x y +-的和仍是单项式,那么这两个单项式的积是多少?
91、已知单项式119m n x y ++-与21212m n x y ---的积和365x y 是同类项,求mn 的值。

92、已知ax(5x-3x 2y +by)=10x 2-6x 3y +2xy,求a,b 的值。

93、 已知计算221(3)(58)2ax bx x x +--+的结果不含x 3和x 项,求a , b 的值。

94、
如果2222(21)(21),(1)(1),0M x x x x N x x x x x =++-+=++-+?,那么M 、N 的大小
95、若两个连续正整数的平方差为33,求这两个数?
96、一个正方形的一边增加3,相邻的一边减少3,得到的长方形的面积与这个正方形每一边都减少1所得到的正方形的面积相等,求出这个长方形的面积。

97、已知2A x =,B 是一多项式,在计算B+A 时,某同学把B+A 看成了B A ¸,结果得212
x x +,求B+A 的值
98、 若多项式-2222(2mx -x +3x+1)(5x -5y +3x )的值与x 无关,求: 3323(45)9m m m m 轾-+-+-犏臌的值。

99、x:y:z=1:2:3,且xy+yz+xz=66,求2x 2+12y 2-9z 2的值。

100、请说明对任意自然数n,式子(6)(4)(2)n n n n +--+的值必定能被8整除。

相关文档
最新文档