新北师大版八年级数学下册月考卷

合集下载

专题01 因式分解 易错题之选择题(30题)-2020-2021学年八年级数学下册(北师大版)解析版

专题01 因式分解 易错题之选择题(30题)-2020-2021学年八年级数学下册(北师大版)解析版

专题01 因式分解 易错题之选择题(30题)Part1 与 因式分解 有关的易错题1.(2020·雅安市八年级月考)下列各式变形中,是因式分解的是( )A .12a 2b = 3a ⋅ 4abB .2x 2+2x =2x 2(1+1x )C .(x+2)(x ﹣2)=x 2﹣4D .4x 2 + 4x +1 =(2x +1)2【答案】D【提示】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A 、是一个单项式转化为乘积的形式,不是因式分解,故A 不符合;B 、没把一个多项式转化成几个整式乘积的形式,故B 不符合;C 、是整式的乘法,故C 不符合;D 、把一个多项式转化成几个整式乘积的形式,故D 符合;故选:D .【名师点拨】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式.2.(2020·四川省自贡市八年级月考)下列四个等式从左到右的变形是因式分解的是( )A .()am bm c m a b c ++=++B .()211(1)x x x -=+-C .221(1)x x x x +=+ D .()2221441x x x +=++【答案】B【提示】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【详解】解:A 、()am bm c m a b c ++=++,没把一个多项式化为几个整式的积的形式,故此选项不符合题意;B 、()211(1)x x x -=+-,把一个多项式化为几个整式的积的形式,故此选项符合题意;C 、()21x x x x +=+,故错误,此选项不符合题意;D 、()2221441x x x +=++,没把一个多项式化为几个整式的积的形式,故此选项不符合题意;故选:B .【名师点拨】本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别.3.(2020·河南周口市·八年级期末)把多项式2x ax b ++分解因式,得(1)(3)x x +-,则+a b 的值是( ) A .1B .-1C .5D .-5【答案】D【提示】利用多项式乘以多项式法则计算,再利用多项式相等的条件求出a 与b 的值,即可求出a +b 的值.【详解】根据题意得:x 2+ax+b=(x+1)(x−3)=x 2−2x−3,可得a=−2,b=−3,则a+b=−5,故选D.【名师点拨】本题考查因式分解,解决本题的关键是要理解两个多项式相等的条件,两个多项式分别经过合并同类项后,如果他们的对应项系数都相等,那么称这两个多项式相等.4.(2020·安徽淮南市·八年级期末)若2(32)()2x x p mx nx ++=+-,则下列结论正确的是( ) A .6m =B .1n =C .2p =-D .3mnp =【答案】B【提示】 直接利用多项式乘法运算法则得出p 的值,进而得出n 的值.【详解】解:∵2(32)()2x x p mx nx ++=+-,∵(3x+2)(x+p )=3x 2+(3p+2)x+2p=mx 2-nx -2,∵m=3,p=-1,3p+2=-n ,∵n=1,故选B.【名师点拨】此题考查了因式分解的意义;关键是根据因式分解的意义求出p 的值,是一道基础题.5.(2020·湖北黄石市·八年级期末)下列各多项式从左到右变形是因式分解,并分解正确的是( )A .(a ﹣b )3﹣b (b ﹣a )2=(b ﹣a )2(a ﹣2b )B .(x+2)(x+3)=x 2+5x+6C .4a 2﹣9b 2=(4a ﹣9b )(4a+9b )D .m 2﹣n 2+2=(m+n )(m ﹣n )+2【答案】A【提示】 直接利用因式分解的定义进而提示得出答案.【详解】A 、(a ﹣b )3﹣b (b ﹣a )2=﹣(b ﹣a )3﹣b (b ﹣a )2=(b ﹣a )2(a ﹣2b ),是因式分解,故此选项正确;B 、(x+2)(x+3)=x 2+5x+6,是整式的乘法运算,故此选项错误;C 、4a 2﹣9b 2=(2a ﹣3b )(2a+3b ),故此选项错误;D 、m 2﹣n 2+2=(m+n )(m ﹣n )+2,不符合因式分解的定义,故此选项错误.故选A .【名师点拨】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.6.(2020·四川省射洪县八年级月考)下列因式分解中,正确的个数为( )①x 3+2xy+x=x (x 2+2y );②x 2+4x+4=(x+2)2;③﹣x 2+y 2=(x+y )(x ﹣y )A .3个B .2个C .1个D .0个 【答案】C【详解】试题提示:接根据提取公因式法以及公式法分别分解因式作出判断:∵x 3+2xy+x=x (x 2+2y+1),故原题错误;②x 2+4x+4=(x+2)2,故原题正确;③﹣x 2+y 2=(x+y )(y ﹣x ),故原题错误.故正确的有1个.故选C .7.(2020·河北唐山市·八年级期末)下列因式分解中:①()3222x xy x x x y ++=+;②22()()x y x y x y -+=+-;③2244(2)x x x ++=+;④221(1)x x x ++=+;正确的个数为( )A .3个B .2个C .1个D .0个【答案】C【提示】根据因式分解的方法逐个判断即可.【详解】解:①()32221x xy x x x y ++=++,故①错误;②22()()x y x y x y -+=-+-,故②错误;③2244(2)x x x ++=+,正确,④221(1)x x x ++≠+,故④错误,所以正确的只有③,故答案为:C .【名师点拨】本题考查了判断因式分解是否正确,掌握因式分解的方法是解题的关键.8.(2020·河北唐山市·八年级月考)一次课堂练习,一位同学做了4道因式分解题,你认为这位同学做得不够完整的题是( )A .2222()x xy y x y -+=-B .22()x y xy xy x y -=-C .22()()x y x y x y -=+-D .32(1)x x x x -=- 【答案】D【提示】利用完全平方公式和平方差公式可对A 、C 两项进行判断;利用提公因式法可对B 进行判断,利用提公因式法和平方差公式可对D 项进行判断.【详解】因为x 2-2xy+y 2=(x -y)2,所以选项A 分解正确;因为x 2y -xy 2=xy(x -y),所以选项B 分解正确;因为x 2-y 2=(x -y)(x+y),所以选项C 分解正确;因为x 3-x=x(x 2-1)=x(x+1)(x -1),所以选项D 分解不彻底.故选:D.【名师点拨】本题是一道关于因式分解的题目,关键是掌握因式分解的常用方法;9.(2020·山东泰安市·东平县八年级月考)如果多项式x 2﹣mx +6分解因式的结果是(x ﹣3)(x +n ),那么m ,n 的值分别是( )A .m =﹣2,n =5B .m =2,n =5C .m =5,n =﹣2D .m =﹣5,n =2【答案】C【提示】因式分解的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m 与n 的值即可.【详解】x 2-mx +6=(x -3)(x +n )=x 2+(n -3)x -3n ,可得-m =n -3,-3n =6,解得:m =5,n =-2.故选:C .【名师点拨】此题考查了因式分解与多项式乘法的关系,熟练掌握多项式乘多项式的法则是解本题的关键.10.(2020·重庆市八年级月考)已知25x x m -+有一个因式为2x -,则另一个因式为( )A .3x +B . 6 x ﹣C . 3 x ﹣D .6x +【答案】C【提示】所求的式子25x x m -+的二次项系数是1,因式(x−2)的一次项系数是1,则另一个因式的一次项系数一定是1,然后根据25x x m -+中一次项系数为-5,列方程求出另一个因式.【详解】解:设另一个因式为(x +a ),则x 2−5x +m =(x−2)(x +a ),即x 2−5x +m =x 2+(a−2)x−2a ,∵a−2=−5,解得:a =−3,∵另一个因式为(x−3).故选:C .【名师点拨】本题主要考查因式分解的实际运用,根据二次项系数假设出另一个因式是解本题的关键. Part2 与 提公因式法 有关的易错题11.(2020·四川泸州市·八年级月考)多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 【答案】A【详解】试题提示:把多项式分别进行因式分解,多项式2mx m -=m (x+1)(x -1),多项式221x x -+=()21x -,因此可以求得它们的公因式为(x -1).故选A考点:因式分解12.(2020·山东临沂市·八年级期末)将3-a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【提示】多项式3-a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】 ()()()32111a b ab ab a ab a a -=-=+-,故选C .【名师点拨】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;13.(2020·广西防城港市·八年级月考)下列分解因式正确的是( )A .-ma -m=-m(a -1)B .a 2-1=(a -1)2C .a 2-6a+9=(a -3)2D .a 2+3a+9=(a+3)2【答案】C【提示】利用提取公因式或者公式法即可求出答案.【详解】A.原式=−m (a +1),故A 错误;B.原式=(a +1)(a −1),故B 错误;C.原式=(a −3)2,故C 正确;D.该多项式不能因式分解,故D 错误,故选:C【名师点拨】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.14.(2020·毕节市八年级月考)多项式8x m y n -1-12x 3m y n 的公因式是( )A .x m y nB .x m y n -1C .4x m y nD .4x m y n -1【答案】D【详解】由题意可得,这个多项式的公因式为4x m y n -1,注意数字的最大公约数也是公因式,容易出错,故选D15.(2020·辽宁大连市·八年级期末)如图,边长为a ,b 的矩形的周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .16C .30D .11【答案】C【提示】 先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【详解】∵矩形的周长为10,∵a+b=5,∵矩形的面积为6,∵ab=6,∵a 2b+ab 2=ab (a+b )=30.故选:C .【名师点拨】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.16.(2020·渝中区八年级期末)若mn 2=-,3m n +=,则代数式22m n mn +的值是( ).A .-6B .-5C .1D .6【答案】A【提示】由提公因式进行化简,然后把mn 2=-,3m n +=代入计算,即可得到答案.解:∵mn 2=-,3m n +=,∵22()236m n mn mn m n +=+=-⨯=-;故选:A .【名师点拨】本题考查了提公因式法,以及求代数式的值,解题的关键是正确的把代数式进行化简.17.(2020·河北邢台市·八年级期末)将多项式222a a --因式分解提取公因式后,另一个因式是( ) A .a B .1a + C .1a - D .1a -+【答案】B【提示】直径提取公因式即可.【详解】()22221a a a a --=-+故选:B【名师点拨】此题主要考查了提公因式法分解因式,关键是正确找出公因式.18.(2020·河南南阳市期末)如果多项式221155abc ab a bc -+-的一个因式是15ab -,那么另一个因式是() A .5c b ac -+ B .5c b ab +- C .15c b ab -+ D .15c b ab +-【答案】A【提示】 多项式先提取公因式15ab -,提取公因式后剩下的因式即为所求.【详解】 解:22111(5)555abc ab a bc ab c b ac -+-=--+,故另一个因式为(5)c b ac -+,故选:A .【名师点拨】此题考查了因式分解-提取因式法,找出多项式的公因式是解本题的关键.也是解本题的难点,要注意符号.19.(2020·大冶市八年级月考)(﹣2)2019+(﹣2)2020等于( )A .﹣22019B .﹣22020C .22019D .﹣2【提示】直接提取公因式(−2)2019,进而计算得出答案.【详解】(−2)2019+(−2)2020=(−2)2019×(1−2)=22019.故选:C .【名师点拨】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.20.(2020·平山县八年级期末)若2220x y -=,且5x y +=-,则x y -的值是 ( )A .﹣4B .4C .5D .以上都不对【答案】A【提示】 对原式进行因式分解,代入值即可.【详解】x 2-y 2=(x+y )(x -y )=-5(x -y )=20,解得,x -y=-4.故选A .【名师点拨】考查了应用平方差公式因式分解,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.Part3 与 公式法 有关的易错题21.(2020·德州市八年级月考)已知a ,b ,c 是三角形的三边,那么代数式a 2-2ab +b 2-c 2的值( ) A .大于零B .等于零C .小于零D .不能确定【答案】C【详解】a 2-2ab+b 2-c 2=(a -b )2-c 2=(a+c -b )[a -(b+c )].∵a ,b ,c 是三角形的三边.∵a+c -b >0,a -(b+c )<0.∵a 2-2ab+b 2-c 2<0.故选C .22.(2020·北京海淀区八年级月考)若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .12【答案】C【详解】∵a+b=3, ∵a 2-b 2+6b=(a+b)(a -b)+6b=3(a -b)+6b=3a -3b+6b=3a+3b=3(a+b)=9,故选C.23.(2020·陕西西安市八年级月考)多项式x 2﹣4xy ﹣2y +x +4y 2分解因式后有一个因式是x ﹣2y ,另一个因式是( ) A .x +2y +1B .x +2y ﹣1C .x ﹣2y +1D .x ﹣2y ﹣1 【答案】C【提示】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x 2﹣4xy ﹣2y +x +4y 2=(x 2﹣4xy +4y 2)+(x ﹣2y )=(x ﹣2y )2+(x ﹣2y )=(x ﹣2y )(x ﹣2y +1).故选:C .【名师点拨】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x -2y ),将其当成整体提出,进而得到答案.24.(2020·山东济宁市·八年级期末)下列各式中,计算结果是2718x x +-的是( )A .(1)(18)x x -+B .(2)(9)x x ++C .(3)(6)x x -+D .(2)(9)x x -+ 【答案】D【解析】试题提示:利用十字相乘法进行计算即可.原式=(x -2)(x +9)故选D.考点:十字相乘法因式分解.25.(2020·辽宁沈阳市·八年级期末)下列各选项中因式分解正确的是( )A .()2211x x -=-B .()32222a a a a a -+=-C .()22422y y y y -+=-+D .()2221m n mn n n m -+=-【答案】D【提示】直接利用公式法以及提取公因式法分解因式进而判断即可.【详解】解:A.()()2111x x x -=+-,故此选项错误;B.()23221a a a a a -+=-,故此选项错误;C.()22422y y y y -+=--,故此选项错误;D.()2221m n mn n n m -+=-,正确.故选D .【名师点拨】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.26.(2020·枣庄市八年级月考)把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】试题提示:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.27.(2020·广东揭阳市·八年级期末)若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .50【答案】A【解析】试题提示:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.28.(2020·张掖市八年级月考)下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x ﹣1C .x 2﹣1D .x 2﹣6x+9【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A 、x 2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B 、x 2+2x ﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C 、x 2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D 、x 2﹣6x+9=(x ﹣3)2,故选项正确.故选D .29.(2020·雅安市八年级月考)若k 为任意整数,且993﹣99能被k 整除,则k 不可能是( )A .50B .100C .98D .97【答案】D【提示】对题目中的式子分解因式即可解答本题.【详解】∵993-99=99×(992-1)=99×(99+1)×(99-1)=99×100×98,∵k 可能是99、100、98或50,故选D .【名师点拨】本题考查因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答.30.(2020·南通市八年级月考)如图,大正方形的边长为m ,小正方形的边长为n ,x ,y 表示四个相同长方形的两边长(x y >).则①x y n -=;②224m n xy -=;③22x y mn -=;④22222m n x y -+=,中正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】A【提示】 根据长方形的长和宽,结合图形进行判断,即可得出选项.①x−y 等于小正方形的边长,即x−y=n ,正确;②∵xy 为小长方形的面积, ∵224m n xy -=, 故本项正确;③()()22x y x y x y mn -=+-=,故本项正确;④()222222222242m n m nx y x y xy m -++=+-=-⨯=故本项错误.则正确的有3个①②③.故选A.【名师点拨】此题考查因式分解的应用,整式的混合运算,解题关键在于掌握运算法则.。

北师大版八年级数学下册第一次月考试卷(含答案)

北师大版八年级数学下册第一次月考试卷(含答案)

八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AB=AC,D是BC的中点,下列结论中不正确的是()A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD2.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A. ∠A=40°,∠B=50°B. ∠A=40°,∠B=60°C. ∠A=40°,∠B=80°D. ∠A=20°,∠B=80°3.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. a−c>b−cB. a+c<b+cC. ac>bcD. ab <cb4.若a>b,则()A. a−1≥bB. b+1≥aC. a+1>b−1D. a−1>b+15.不等式组{x−1<−3,2x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−36.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折B. 7折C. 8折D. 9折7.如图,在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A. 5B. 6C. 7D. 88.如图,AB⊥AC于点A,BD⊥CD于点D.若AC=DB,则下列结论中不正确的是()A. ∠A=∠DB. ∠ABC=∠DCBC. OB=ODD. OA=OD9.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为()A. 45°B. 60°C. 75°D. 90°10.若3a−22和2a−3是实数m的平方根,且t=√m,则不等式2x−t3−3x−t2≥512的解集为()A. x≥910B. x≤910或x≤6.5C. x≥811D. x≤811二、填空题(本大题共5小题,共20.0分)11.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,BD平分∠ABC,DE⊥BC于点E,AB=7,DE=4,则△ABD的面积为.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.14.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为______.15.若关于x的不等式组{3x+5<5x+1 x>a−1 解集为x>2,则a的取值范围是______.三、解答题(本大题共10小题,共100.0分)16.(8分)解不等式组:{3(x+1)>x−1 x+92>2x17.(10分)已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长18.(10分)解不等式组{4(x+1)≤7x+13,①x−4<x−83,②并求它的所有整数解的和.19.(10分)某工厂计划生产甲、乙两种机器共10台,其生产成本和利润如下表所示:(1)某工厂计划投入成本26万元,这些成本刚好生产出整数台机器.问:甲、乙两种机器各应安排生间多少台?(2)若工厂计划生产甲机器的数量不少于4台,并共能获利不少于16万元,问:工厂有哪几种生产方案?并说明哪种方案获利最大?最大利润是多少?20.(10分)如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A′,连接A′B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数表达式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(10分)如图,在四边形ABCD中,E是边BC的中点,F是边CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)若∠BCD=114°,求∠BAD的度数.23.(10分)用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6√3,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案1.D2.D3.B4.C5.C6.C7.A8.C9.B10.B11.4012.1413.1014.x>315.a≤316.解:{3(x+1)>x−1①x+92>2x②解不等式①得x>−2,解不等式②得x<3,∴不等式组的解集为−2<x<3.17.解:(1)∵∠C=90°,AB=10,AC=8,∴BC=√102−82=6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,{BD=BDCD=DE,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB−BE=10−6=4;(3)设CD=DE=x,则AD=8−x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8−x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD=√62+32=3√5.18.解:−3≤x<2.所有整数解的和为−5.19.解:(1)设甲、乙两种机器各应安排生间x台,(10−x)台,2x+5(10−x)=26,解得,x=8,则10−x=2,答:甲、乙两种机器各应安排生间8台、2台;(2)设生产甲种机器的数量为a台,{a+3(10−a)≥16a≥4,解得,4≤a≤7,∵a是整数,∴a=4,5,6,7,即工厂有四种进货方案,方案一:生产甲种机器4台,乙种机器6台;方案二:生产甲种机器5台,乙种机器5台;方案三:生产甲种机器6台,乙种机器4台;方案四:生产甲种机器7台,乙种机器3台;设利润为w元,w=a+3(10−a)=−2a+30,∴当a=4时,w取得最大值,此时w=22,即方案一获利最大,最大利润是22万元.20.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B=√CD2+(AC+BD)2=√41,∵6<√41,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4=√52−12=2√6(或√24)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,DQ=√52−42=3,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4−x)2+128x=1∴x=1,8;即:DQ=18故当DQ=3或1时,△ABQ为等腰三角形.821.解:(1)大货车、小货车各有12辆、8辆.(2)设到A地的大货车有x辆,则到A地的小货车有(10−x)辆,到B地的大货车有(12−x)辆,到B地的小货车有(x−2)辆,∴y=900x+500(10−x)+1000(12−x)+700(x−2)=100x+15600(2≤x≤10,且x为整数).(3)根据题意,得15x+10(10−x)≥140.解得x≥8.∴8≤x≤10.∴当x=8时,y取最小值,y最小=100×8+15600=16400.22.解:(1)连接AC,∵点E 是边BC 的中点,AE ⊥BC ,∴AB =AC(三线合一)同理AD =AC ,∴AB =AD ;(2)∵AB =AC ,AD =AC ,∴∠B =∠1,∠D =∠2,∴∠B +∠D =∠1+∠2,即∠B +∠D =∠BCD ,∵∠BAD +(∠B +∠D)+∠BCD =(4−2)⋅180°=360°,∠BCD =114°, ∴∠BAD =360°−114°−114°=132°.23.(1)3√3.(2)m ≥−2.解集在数轴上表示图略.24.解:(1)15 15 31 45(2)设y 1=k 1x.∵点A(31,310)在OA 上,∴31k 1=310.解得k 1=10.∴y 1=10x .设BC 段对应的函数关系式为y 2=k 2x +b ,∵点B(17,30),C(31,450)在BC 上,∴{17k 2+b =30,31k 2+b =450,解得{k 2=30,b =−480.∴y 2=30x −480(17≤x ≤31).当y 1=y 2时,则10x =30x −480,解得x =24.∴当x =24时,乙追上了甲.(3)由图象可知,当x >24且x ≤45时,乙在甲的前面.25.解:(1)如图①中,作点A 关于直线l 的对称点A′,连接A′B 交直线l 于P ,连接PA.则点P 即为所求的点.(2)如图②中,作DM//AC ,使得DM =EF =2,连接BM 交AC 于F ,∵DM=EF,DM//EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3√3,在Rt△ADO中,OD=√AD2−OA2=3,∴BD=6,∵DM//AC,∴∠MDB=∠BOC=90°,∴BM=√BD2+DM2=√62+22=2√10.∴DE+BF的最小值为2√10.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4√3,∴四边形ABCD的周长最大值为12+4√3.。

新北师大版八年级数学(下)第一次月考试卷(20201127223135)

新北师大版八年级数学(下)第一次月考试卷(20201127223135)

2015 — 2016学年度第二学期八年级数学月考试卷(一)亲爱的同学:你好!数学就是力量,自信决定成绩。

请你灵动智慧,缜密思 考,细致作答,努力吧,祝你成功!A 、有两条边相等的两个等腰三角形全等 C 两角对应相等的两个等腰三角形全等、两腰对应相等的两个等腰三角形全等 、一边对应相等的两个等边三角形全等4、已知a v b ,则下列不等式一定成立的是A . a+3> b+3B . 2a >2b5、不等式2x+3 > 0的最小整数解是()A . -1B . 1C . 0D . 2 6、足球比赛的记分规则是胜一场得3分,平一场得1分,负一场得0分.一个队共进行 14场比赛,得分不少于 20分,那么该队至少胜了 7、如图所示,DE 是线段AB 的垂直平分线,下列结论一定 成立的是()A. ED=CDB. / DAC M BC. / C>2Z BD. / B+Z ADE=901、 2、 3、题号 1 2 3 4 5 6 7 8 910 答案、精心选一选(本大题共 10小题,每小题3分,共30分•每小题给出四个答案,其中只有 一个是正确的). ) 三角形内有一点到三角形三顶点的距离相等,则这点 A 、三条中线的交点;C 、三条高的交战; 定是三角形的( 、三边垂直平分线的交点; 、三条角平分线的交点; 若等腰三角形的周长为A.11cmB.7.5cm下列命题中正确的是 ( 26cm 一边为 C11cm,则腰长为( ).11cm 或7.5cm D. 以上都不对).-a v — b D . a - b v 0A. 3 场 B 4场 C . 5场 D)&已知一个等腰三角形的两内角的度数的比为 1 : 4,则这个等腰三角形顶角的度数为(A. 20 °B. 120 °C. 20 。

或120°D. 36 °9、某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售, 但要保证利润率不低于5%则至多可打.................... ()A. 6折B . 7折C . 8折D . 9折10、如图,已知AB=AC / A=36°, AC的垂直平分线MN交AB于D, AC于M以下结论:①厶BCD是等腰三角形;②射线CD>^ ACB的角平分线;③厶BCD的周长C A BCE=AB+BC④厶ADI W^ BCD正确的有()A.①②B.①③C. ①②③D.③④二、细心填一填(本大题共5小题,每小题3分,共15分•请你把答案填在横线的上方).11、用不等式表示“ x与8的差是非负数” __________________ .12、如果关于x的方程3x 2k x 5的解是正数,则k的取值范围是 _________________13、若不等式a 1 x a 1的解集是x 1,则a的取值范围是__________________ .14、如图,在Rt△ ABC中,/ ACB=9C° , AB的垂直平分线DE交AC于点E,交BC的延长线于15、如图,在平面直角坐标系中,矩形OABC 点D是OA的中点,点P在BC上运动,当△ 为____________ 。

最新北师大版八年级下册数学平行四边形单元测试试题以及答案(4套题)

最新北师大版八年级下册数学平行四边形单元测试试题以及答案(4套题)

八年级下册平行四边形单元测试试题一、选择题。

(共12道选择题,每道选择题只有一个正确答案)1、平行四边形的周长是36厘米,相邻两个边的比是5:1,则较长边是()。

A、3B、15C、6D、304,取BC的中点为2、在等腰直角三角形ABC中,∠B=90°,AC=2P。

以点P为中心,将△ABC旋转180°,A点的对应点为A’,则AA’的距离是()。

2A、54B、58C、5D、53、如图,在▱ABCD中,AC+BD=24,BC=10,则△AOD的周长是()。

A、24B、22C、29D、174、已知平面直角坐标系中,以O(0,0),P(3,0),M(1,1),N(x,1),若以O,P,M,N为顶点的四边形是平行四边形,则x等于()。

A、﹣4或﹣2B、﹣1或﹣2C、4或﹣1D、4或﹣25、在长方形ABCD中,如下图,E、F、G、H分别是长方形四边的中点,AB=4,BC=10,则图中阴影部分的面积是()。

A、40B、20C、10D、86、如图,在平行四边形ABCD中,O是对角线AC、BD的交点,平行四边形的周长是32,△AOB比△AOD的周长小2,则AB、BC的长分别是()。

A 、6、10B 、7、9C 、5、7D 、8、107、如图,在平行四边形ABCD 中,CE :DE=3:2,则BEF DEF ABF S S S △△△::的比是( )。

A 、25:2:5B 、25:4:9C 、5:2:3D 、25:4:108、一个多边形的内角和是外角和的3倍,这个多边形是()边形。

A 、6B 、7C 、8D 、99、如果从一个等腰三角形的底边上任何一点分别作两腰的平行线,所得的平行四边形的周长等于()。

A、等腰三角形的周长B、等腰三角形周长的一半C、等腰三角形两腰长D、等腰三角形两腰长的一半10、如图,四边形ABCD是平行四边形,BG⊥AF,AF是∠BAD的平分4,则△CEF的面积是()。

线,若CD=6,BC=9,BG=24A、23B、22C、2D、211、如图,在平行四边形ABCD中,E、F在对角线AC上,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF,能判定四边形DEBF是平行四边形的有()个。

2020-2021学年度(北师大版)八年级下学期数学第一次月考试卷及答案

2020-2021学年度(北师大版)八年级下学期数学第一次月考试卷及答案

八年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共15小题,共45.0分)1.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD等于()A. 3B. 4C. 5D. 62.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A. 6B. 5C. 4D. 33.下列说法正确的是()A. 若a<b,则3a<2bB. 若a>b,则ac2>bc2C. 若−2a>2b,则a<bD. 若ac2<bc2,则a<b4.不等式3(1−x)>2−4x的解在数轴上表示正确的是()A. B.C. D.5.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A. 三角形中有一个内角小于或等于60°B. 三角形中有两个内角小于或等于60°C. 三角形中有三个内角小于或等于60°D. 三角形中没有一个内角小于或等于60°6.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,则AB,AC,CE的长度关系为()A. AB>AC=CEB.AB=AC>CEC. AB>AC>CED. AB=AC=CE7.小明准备用节省的零花钱买一台复读机,他已存有45元,计划从现在起以后每月节省30元,直到他至少有300元,设x月后他至少有300元,则符合题意的不等式是()A. 30x−45≥300B. 30x+45≥300C. 30x−45≤300D. 30x+45≤3008.x≥3的最小值是a,x≤−5的最大值是b,则a+b=()A. 1B. −1C. 2D. −29.已知等腰三角形的一条腰长是15,底边长是18,则它底边上的高为()A. 9B. 12C. 15D. 1810.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A. 9B. 6C. 4D. 311.不等式3(x−2)≤x+4的非负整数解有()个A. 4B. 5C. 6D. 无数个12.不等式组{x>−2 3x−4≤8−2x的最小整数解为()A. −1B. 0C. 1D. 413.如图,坐标平面内一点A(2,−1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A. 2B. 3C. 4D. 514.“双11”期间,某商店计划用160000元购进一批家电,其进价和售价如下表:类别彩电(元/台)冰箱(元/台)洗衣机(元/台)进价200016001000售价220018001100若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,则商店销售完这批家电后获得的利润最大为()A. 17000元B. 17200元C. 17400元D. 17600元15.若不等式组{2x−a<1−1<x<1,则(a−3)(b+3)的值为()x−2b>3的解集为A. 1B. −1C. 2D. −2二、填空题(本大题共5小题,共25.0分)16.如图,直线a,b过等边三角形ABC顶点A和C,且a//b,∠1=42°,则∠2的度数为______.17.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为______.18.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为______度.19.在实数范围内规定新运算“△”,其规则是:a△b=2a−b.已知不等式x△k≥1的解集在数轴上如图表示,则k的值是______.20.定义:对于实数a,符号[a]表示不大于a的最大整数,例如:[4.7]=4,[−π]=−4,+1]=−5,则x的取值范围为______.[3]=3,如果[x+23三、解答题(本大题共7小题,共80.0分)21.(8分)若关于x的方程1+x2−x =2mx2−4的解也是不等式组{1−x2>x−22(x−3)≤x−8的一个解,求m的取值范围.22.(8分)如图,在△ABC中,AB的垂直平分线分别交AB,BC于点D,E,∠B=30°,∠BAC=80°,且BC+AC=12cm,(1)求∠CAE的度数;(2)求△AEC的周长.23.(10分)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连结AM.(1)求证:EF=12AC;(2)若∠BAC=45°,求线段AM,DM,BC之间的数量关系.24.(12分)某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?25.(12分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低,马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元.A,B两种产品原来的运费和现在的运费(单位:元/件)如下表所示:(1)求每次运输的农产品中A,B产品各有多少件?(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的产品总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?26.(14分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.27.(16分)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN?如存在,请求出此时M、N运动的时间.答案1.A2.D3.D4.A5.D6.D7.B8.D9.B10.D11.C12.B13.C14.C15.D16.102°17.x≤118.3419.k=−320.−20≤x<−1721.解:原分式方程变形得:1−xx−2=2m(x−2)(x+2),方程两边同乘以最简公分母(x+2)(x−2)得:(x+2)(x−2)−x(x+2)=2m,x2−4−x2−2x=2m,−2x=2m+4,∴x=−m−2,∵不等式组{1−x2>x−2①2(x−3)≤x−8②,由①得:1−x>2x−4,−3x>−5,∴x<53,由②得:2x−6≤x−8,∴x≤−2,∴不等式组的解集为x≤−2,∵x=−m−2,∴−m−2≤−2,∴m≥0,∵关于x的方程1+x2−x =2mx2−4有意义,∴x≠±2,∴−m−2≠±2,∴m≠−4且m≠0,∴m>0.22.解:∵AB的垂直平分线分别交AB,BC于点D,E,∴BE=AE,∴∠BAE=∠B=30°,又∵∠BAC=80°,∴∠CAE=∠BAC−∠BAE=80°−30°=50°;(2)∵AE=BE,∴AE+CE+AC=BC+AC=12cm.即△AEC的周长为12cm.23.(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∴△AEC 为直角三角形, ∵点F 为AC 的中点, ∴EF =12AC ;(2)解:BC =AM +DM.理由如下: ∵∠BAC =45°,CE ⊥BD , ∴△AEC 是等腰直角三角形, ∵点F 为AC 的中点, ∴EF 垂直平分AC , ∴AM =CM ,∵CD =CM +DM =AM +DM ,CD =CB , ∴BC =AM +DM .24.解:(1)设A 、B 两种型号的扫地车每辆每周分别可以处理垃圾a 吨、b 吨,{a +2b =1002a +b =110, 解得,{a =40b =30,答:(1)求A 、B 两种型号的扫地车每辆每周分别可以处理垃圾40吨,30吨; (2)设购买A 型扫地车m 辆,B 型扫地车(40−m)辆,所需资金为y 元, {25m +20(40−m)≤91040m +30(40−m)≥1400,解得,20≤m ≤22, ∵m 为整数, ∴m =20,21,22, ∴共有三种购买方案,方案一:购买A 型扫地车20辆,B 型扫地车20辆; 方案二:购买A 型扫地车21辆,B 型扫地车19辆; 方案三:购买A 型扫地车22辆,B 型扫地车18辆; ∵y =25m +20(40−m)=5m +800, ∴当m =20时,y 取得最小值,此时y =900,答:方案一:购买A 型扫地车20辆,B 型扫地车20辆所需资金最少,最少资金是900万元.25.解:(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件, 根据题意得:{45x +25y =120030x +20y =1200−300,解得:{x =10y =30,答:每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件, (2)设增加m 件A 产品,则增加了(8−m)件B 产品,设增加供货量后得运费为W 元, 增加供货量后A 产品的数量为(10+m)件,B 产品的数量为30+(8−m)=(38−m)件, 根据题意得:W =30(10+m)+20(38−m)=10m +1060, 由题意得:38−m ≤2(10+m), 解得:m ≥6, 即6≤m ≤8,∵一次函数W 随m 的增大而增大 ∴当m =6时,W 最小=1120,答:产品件数增加后,每次运费最少需要1120元.26.解:设购买A 型号笔记本电脑x 台时的费用为w 元,(1)当x =8时,方案一:w =90%a ×8=7.2a ,方案二:w =5a +(8−5)a ×80%=7.4a ,∴当x =8时,应选择方案一,该公司购买费用最少,最少费用是7.2a 元;(2)若x ⩽5,方案一每台按售价九折销售,方案二每台按售价销售,所以采用方案一购买合算; 若x >5,方案一:w =90%ax =0.9ax ,方案二:当x >5时,w =5a +(x −5)a ×80%=5a +0.8ax −4a =a +0.8ax , 则0.9ax >a +0.8ax , x >10,∴x 的取值范围是x >10且x 为正整数27.解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,x +12=2x , 解得:x =12;(2)设点M 、N 运动t 秒后,可得到等边三角形△AMN ,如图①,AM=t×1=t,AN=AB−BN=12−2t,∵三角形△AMN是等边三角形,∴t=12−2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵{AC=AB∠C=∠B∠AMC=∠ANB,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y−12,NB=36−2y,CM=NB,y−12=36−2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。

2021-2022学年最新北师大版八年级数学下册第四章因式分解月考试题(含答案解析)

2021-2022学年最新北师大版八年级数学下册第四章因式分解月考试题(含答案解析)

北师大版八年级数学下册第四章因式分解月考考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解正确的是( ).A .()22242a a a a -=+B .()()2422a a a -+=+-C .()22211a a a -+=-D .()210251025a a a a -+=-+2、下列等式中,从左到右的变形是因式分解的是( )A .a (a -3)=a 2-3aB .(a +3)2=a 2+6a +9C .6a 2+1=a 2(6+21a )D .a 2-9=(a +3)(a -3)3、下列分解因式正确的是( )A .()244x x x x -+=--B .()222x xy x x x y ++=+C .()()()2x x y y y x x y -+-=-D .()22442x x x -+=+ 4、下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b ++D .214x x -+ 5、已知a +b =2,a -b =3,则22a b -等于( )A .5B .6C .1D .326、下列多项式中能用平方差公式分解因式的是( )A .﹣a 2﹣b 2B .x 2+(﹣y )2C .(﹣x )2+(﹣y )2D .﹣m 2+17、下列各式从左至右是因式分解的是( )A .()242(2)a a a -=+-B .()()2211x y x y x y --=+--C .222()x y x xy y +=++D .222()2x y x xy y -=++8、下列从左边到右边的变形,是因式分解的是( )A .(3﹣x )(3+x )=9﹣x 2B .x 2+y 2=(x +y )(x ﹣y )C .x 2﹣x =x (x ﹣1)D .2yz ﹣y 2z +z =y (2z ﹣yz )+z9、若a 、b 、c 为一个三角形的三边长,则式子()22a c b --的值( )A .一定为正数B .一定为负数C .可能是正数,也可能是负数D .可能为010、多项式22ax ay -分解因式的结果是( )A .()22a x y +B .()()a x y x y +-C .()()a x y x y ++D .()()ax y ax y +-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:4811x -=__.2、计算下列各题:(1)3x x ⋅=______; (2)()3ab =______; (3)()42m =______; (4)63x x +=______.3、因式分解:2a 2﹣4ab +2b 2=_____.4、在实数范围内因式分解:x 2﹣6x +1=_____.5、分解因式:﹣8a 3b +8a 2b 2﹣2ab 3=_____.三、解答题(5小题,每小题10分,共计50分)1、(1)计算:①20220220211(2021)(3)22π⎛⎫-+--⨯ ⎪⎝⎭;②()()43322222362436x y x y x y x y -+÷-;③(32)(32)a b a b +--+.(2)在实数范围内因式分解:①32222288a b a b ab -+-;②49x -.2、因式分解:(1)3244a a a -+(2)(1)(3)8x x ---3、因式分解:(1)326a ab +(2)2255x y -(3)22363x xy y -+-4、(1)按下表已填的完成表中的空白处代数式的值:(2)比较两代数式计算结果,请写出你发现的2()a b -与222a ab b -+有什么关系?(3)利用你发现的结论,求:222021404220202020-⨯+的值.5、(1)计算:(12a 3-6a 2+3a )÷3a(2)因式分解:32288a a a -+-参考答案-一、单选题1、C【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.【详解】解:A 、()()2222421a a a a a a -=+=+,故本选项错误;B 、()()()224422a a a a -+=--=-+-,故本选项错误;C 、()22211a a a -+=-,故本选项正确;D 、()2210255a a a -+=-,故本选项错误.故选:C .【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.2、D【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.【详解】解:A 、a (a -3)=a 2-3a ,属于整式乘法,不符合题意;B 、(a +3)2=a 2+6a +9,属于整式乘法,不符合题意;C 、6a 2+1=a 2(6+21a )不是因式分解,不符合题意;D 、a 2-9=(a +3)(a -3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.3、C【分析】根据因式分解的方法逐个判断即可.【详解】解:A. ()244x x x x -+=-+,原选项错误,不符合题意;B. ()2221x xy x x x y ++=++,原选项错误,不符合题意;C. ()()()2x x y y y x x y -+-=-,正确,符合题意; D. ()22442x x x -+=-,原选项错误,不符合题意;故选:C .【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.4、D【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A 、不能用完全平方公式因式分解,故本选项不符合题意; B 、不能用完全平方公式因式分解,故本选项不符合题意;C 、不能用完全平方公式因式分解,故本选项不符合题意;D 、221142x x x ⎛⎫-+=- ⎪⎝⎭能用完全平方公式因式分解,故本选项符合题意; 故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握()2222a ab b a b ±+=± 是解题的关键.5、B【分析】根据平方差公式因式分解即可求解【详解】∵a +b =2,a -b =3,∴22a b -()()236a b a b =+-=⨯=故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.6、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、22a b --,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B 、()2222x y x y +-=+,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意; C 、()()2222x y x y -=++-,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D 、()()2221111m m m m -+=-=+-,可以利用平方差公式进行分解,符合题意; 故选:D .【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.7、A【分析】根据因式分解的定义逐个判断即可.【详解】解:A 、()242(2)a a a -=+-,等式从左到右的变形属于因式分解,故本选项符合题意;B 、()()2211x y x y x y --=+--,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C 、222()x y x xy y +=++,是整式的乘法,不是因式分解,故本选项不符合题意;D 、222()2x y x xy y -=++,是整式的乘法,不是因式分解,故本选项不符合题意.故选:A .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.8、C【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.【详解】解:A 、(3﹣x )(3+x )=9﹣x 2属于整式的乘法运算,不是因式分解,不符合题意;B 、22()()x y x y x y -=+-,原式错误,不符合题意;C 、x 2﹣x =x (x ﹣1),属于因式分解,符合题意;D 、2yz ﹣y 2z +z =2(21)z y y -+,原式分解错误,不符合题意;故选:C .【点睛】本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.9、B【分析】先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【详解】解:原式=(a-c+b)(a-c-b),∵两边之和大于第三边,两边之差小于第三边,∴a-c+b>0,a-c-b<0,∵两数相乘,异号得负,∴代数式的值小于0.故选:B.【点睛】本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和>第三边,任意两边之差<第三边.10、B【分析】先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y).故选:B.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.二、填空题1、2(91)(31)(31)x x x ++-【分析】先把原式化为22291,x 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.【详解】解:原式22(91)(91)x x =+-2(91)(31)(31)x x x =++-,故答案为:2(91)(31)(31)x x x ++-.【点睛】本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.2、4x 33a b 8m ()331x x +【分析】(1)根据同底数幂相乘运算法则计算即可;(2)根据积的乘方的运算法则计算即可;(3)根据幂的乘方的运算法则计算即可;(3)根据提取公因式法因式分解即可.【详解】解:(1)34x x x ⋅=;(2)()333ab a b =;(3)()428m m =; (4)()63331x x x x +=+.故答案是:(1)4x ;(2)33a b ;(3)8m ;(4)()331x x +.【点睛】本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键.3、()22a b -【分析】先提取公因式2,再利用完全平方公式计算可得.【详解】解:原式=()()222222a ab b a b -+=-. 故答案为:()22a b -【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.4、(3x -+(3x --【分析】将该多项式拆项为22(3)x --,然后用平方差公式进行因式分解.【详解】261-+x x2(69)8x x =-+-22(3)x =--(33x x =-+--.故答案为:(33x x -+--.【点睛】本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.5、﹣2ab (2a ﹣b )2【分析】先提取公因式-2ab ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式=﹣2ab (4a 2﹣4ab +b 2)=﹣2ab (2a ﹣b )2,故答案为:﹣2ab (2a ﹣b )2.【点睛】本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式.三、解答题1、(1) ①912;②-6x 2y+4x-12;③9a 2-b 2+4b -4;(2)①-2ab 2(a -2)2;②(x 2+3)(x x 【分析】(1)①根据零指数幂、积的乘方、同底数幂的乘法计算即可;②利用多项式除以多项式计算即可;③根据平方差公式和完全平方公式计算即可;(2)①利用提取公因式和完全平方公式计算即可;②利用平方差公式计算即可;【详解】(1)①原式=1+9-12=912;②原式=36x 4y 3÷(﹣6x 2y 2)﹣24x 3y 2÷(﹣6x 2y 2)+3x 2y 2÷(﹣6x 2y 2),=-6x 2y+4x-12;③原式=[3a +(b -2)][3a -(b -2)],=(3a )2-(b -2)2,=9a 2-(b 2-4b +4),=9a 2-b 2+4b -4;(2)在实数范围内因式分解:①原式=-2ab 2(a 2-4a +4),=-2ab 2(a -2)2;②原式=(x 2+3)(x 2-3),=(x 2+3)(x x ;【点睛】本题主要考查了利用公式法和提公因式法进行因式分解,整除除法,实数混合运算,积的乘方,同底数幂的乘法,准确计算是解题的关键.2、(1)2(2)a a -;(2)(5)(1)x x -+【分析】(1)先提取公因式,再十字相乘法进行因式分解.(2)先去括号,再十字相乘法进行因式分解.【详解】解:(1)3244a a a -+=2(44)a a a -+=2(2)a a -(2)(1)(3)8(5)(1)x x x x ---=-+=2438x x -+-=245x x --(5)(1)x x =-+【点睛】本题考查了十字相乘法因式分解,对于形如2x px q ++的二次三项式,若能找到两数a b 、,使a b q ⋅=,且a b p +=,那么2x px q ++就可以进行如下的因式分解,即()()()22x px q x a b x ab x a x b ++=+++=++.3、(1)2a (a 2+3b );(2)5(x +y )(x ﹣y );(3)﹣3(x ﹣y )2.【分析】(1)直接提公因式2a 即可;(2)先提公因式,再利用平方差公式即可;(3)先提公因式,再利用完全平方公式即可.(1)解:326a ab +=2a (a 2+3b );(2)解:(2)原式=5(x 2﹣y 2)=5(x +y )(x ﹣y );(3)解:(3)原式=﹣3(x 2﹣2xy +y 2)=﹣3(x ﹣y )2.【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.4、(1)见解析;(2)()2222a b a ab b -=-+;(3)1【分析】(1)把每组,a b 的值分别代入2()a b -与222a ab b -+进行计算,再填表即可;(2)观察计算结果,再归纳出结论即可;(3)利用结论()2222a b a ab b -=-+可得2021,2020,a b 再代入进行简便运算即可. 【详解】解:(1)填表如下:(2)观察上表的计算结果归纳可得:()2222a b a ab b -=-+(3)222021404220202020-⨯+=2220212202120202020-⨯⨯+=()220212020-=1【点睛】本题考查的是代数式的求值,运算规律的探究,完全平方公式的应用,熟练的利用完全平方公式进行简便运算是解本题的关键.5、(1)4a 2-2a +1;(2)2a (a -2)2.【分析】(1)根据多项式除以单项式的法则进行计算即可;(2)先提公因式,再根据完全平方公式进行因式分解即可.【详解】解(1)(12a 3-6a 2+3a )÷3a=4a 2-2a +1;(2)32288a a a -+=2a(a2-4a+4)=2a(a-2)2.【点睛】本题考查了整式的除法,以及因式分解法,掌握运算法则和完全平方公式是解题的关键.。

(完整版)新北师大版八年级数学下册月考卷

(完整版)新北师大版八年级数学下册月考卷

2017~2018学年度第二学期三月八年级质量检测数 学 试 卷 时间:90分钟 满分:100分 试卷:共4页注意事项:1.答题前,考生先将自己的姓名、准考证号号码填写清楚。

2.在答题卡上必须用黑色字迹的签字笔书写,字体工整清楚。

3.请按照题号顺序在各题目区域内作答,超出答题区域、在草稿纸和试卷上答题无效。

一、选择题(每题3分,共30分)1. 如图,数轴所表示的不等式的解集是( )A. 3<xB. 3≤xC. 3>xD. 3≥x2.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A .120°B .90°C .60°D .30°3.若等腰三角形的两边长是3cm 和6cm ,则周长为( )A.9cmB.12cm C .15cm D.12cm 或15cm4.下列定理中,没有逆定理的是 ( )A .内错角相等,两直线平行B .直角三角形中两锐角互余C .相反数的绝对值相等D .等边对等角5.三角形内有一点到三角形三边的距离相等,则这点一定是三角形的( )A. 三条中线的交点;B. 三边垂直平分线的交点;C. 三条高的交点;D. 三条角平分线的交点.6. 如图,等腰△ABC 中,AB=AC ,∠A=20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A. 80°B. 70°C. 60°D. 50°7. 如图,已知AD//BC ,AE=CF ,∠AFD=∠CEB ,证明△ADF ≌△CBE 的依据是( )A .SASB .AASC .ASAD .HL8.已知五个正数的和等于1,求证这五个正数中至少有一个大于或等于51,若用反证法来证明这个结论,可以假设 ( )A .这五个正数全都小于51B .这五个正数至少有一个小于51 第6题图 第7题图C .这五个正数至多有一个小于51D .这五个正数至多有一个大于或等于51 9.由下列条件不能判定△ABC 为直角三角形的是( )A .∠A +∠B =∠C B .31=a ,41=b ,51=c C .(b +c )(b -c )=a 2 D. ∠A :∠B :∠C =1:2:310.已知关于x 的不等式3122-≥+x a x 的解集是1-≤x ,则a 的值是( ) A.0 B.1 C.1- D.31-二、填空题(每题3分,共15分)11.设a >b ,用“<”,或“>”填空:(1) a+3____b+3; (2) -2a____-2b ; (3)121--a _____121--b 12. 如图,若AB=AC=5,BC=6,AD ⊥BC ,则AD=__________13. 如图,△ABC 中,∠C=90°,BD 平分∠ABC 交AC 于D ,若CD =2cm ,则点D 到AB 的距离是_________cm .14. 如图,在△ABC 中,MN 是BC 的垂直平分线,DC=6cm ,DB=10cm ,则△ACD 的周长为_________cm .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是AC 边上一点,若AE=2,EM+CM 的最小值为__________.三、解答题(第17题5分,其他每题6分,共41分)16.(1)求下列不等式的正整数解....: 329->+-x x(2)解下列不等式,并把它的解集在数轴上表示出来:3121x x ≥+-D C B A M N 第13题图第12题图 第14题图 第15题图17.如图,已知在两条公路OA,OB的附近有C,D两个超市,现准备在两条公路的交叉路口附近安装一个监控摄像头,要求摄像头P的位置到两个超市的距离相等,且到两条公路的距离也相等,请你找出摄像头P的位置。

2022-2023学年初中八年级下数学北师大版月考试卷(含解析)

2022-2023学年初中八年级下数学北师大版月考试卷(含解析)

2022-2023学年初中八年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 10 小题,每题 5 分,共计50分)1. 如图,将三角形ABC沿BC所在直线向右平移得到三角形DEF.已知BE=3,BF=8,则EC长为( )A.2B.3C.4D.52. 下列各组数不能作为直角三角形边长的是( )A.3,4,5B.8,15,17C.7,9,11D.9,12,153. 若点P(3−x,x+1)位于平面直角坐标系中的第四象限,则x的取值范围在数轴上可表示为()A.B.C.D.4. 若a>b,则下列不等式变形错误的是( )A.a+1>b+1B.a2>b2C.3a−4>3b−4D.4−3a>4−3b5. 平面直角坐标系内一点P(−5,1)关于原点对称的点的坐标是( )A.(5,−1)B.(5,−1)C.(−5,−1)D.(5,1)6. 如图的方格纸中每一个小方格都是边长为1的正方形,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC为等腰三角形,这样的格点的个数有( )A.8个B.9个C.10个D.11个7. 不等式 −2x<4 的解集是()A.x>−2B.x<−2C.x>2D.x<28. 如图,按下面的程序运算,规定程序运行到“判断结果是否大于30”为一次运算.若运算进行了4次才停止,则x的取值范围是( )A.518<x≤394B.518≤x≤394C.7516<x≤518D.7516≤x≤5189. 如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4√3B.6√3C.8√3D.12√310. 如图所示,在完全重合放置的两张矩形纸片ABCD中,AB=4 GBC=8,将上面的矩形纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分的面积为()A.4√33B.185C.6D.365卷II(非选择题)二、填空题(本题共计 4 小题,每题 5 分,共计20分)11. 分别以下列四组数为一个三角形的边长:①6、8、10,②5、12、13,③8、15、17,④4、5、6,其中能构成直角三角形的有________(填序号).12. 用反证法证明“四边形的四个内角不能都是锐角”时,应首先假设________.13. 关于x的不等式组的整数解共有6个,则a的取值范围是________.14. 若△ABC∼△A′B′C′,∠A=50∘,∠C′=100∘,则∠B′的度数为________.三、解答题(本题共计 9 小题,每题 5 分,共计45分)15. 解下列不等式,并把解集在数轴上表示出来.(1)2x+13−5x−12≥−1.(2)x−22<7−x3.16. 两个大小不同且都含有30∘角的直角三角板按如图所示放置,将△ABC与△EDC的顶点C重合,其中∠ACB=∠DCE=90∘,∠CAB=∠CED=30∘.(1)如图1,当点E在AC上,点D在BC上时,CE:AE=2:3,求S△DCE:S四边形AEDB;(2)如图2,将△EDC绕着点C旋转一定角度时,求BD∶AE;(3)如图2,当点A,E,D在同一条直线上时,连接BD,若CD=1,BC=3,求BD.17. 如图,点D在△ABC的AB边上.(尺规作图,保留作图痕迹,不要求写作法)(1)作∠BDC的角平分线DE,交BC于点E;(2)作线段AC的垂直平分线,交AC于点F.18. 如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向下平移6个单位得到的△A1B1C1,并写出A1;(2)请画出△ABC关于原点对称的△A2B2C2,并写出点B2的坐标;(3)分别连接B2C和C2B,判断四边形CBC2B2是什么特殊的四边形(不用说明理由);19. 如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90∘,AB=13米,BC=12米,求这块空地的面积.20. 如图,已知一次函数y=43x+m的图象与x轴交于点A(−6,0),与y轴交于点B.(1)求m的值和点B的坐标;(2)在x轴上是否存在点C,使得△ABC的面积为16?若存在,求出点C的坐标;若不存在,请说明理由.21. 如图,点O为等边三角形ABC内一点,连接OA,OB,OC,以OB为一边作∠OBM=60∘,且BO=BM,连接CM,OM.(1)若AB=2,则△ABC的面积=________.(2)判断AO与CM的大小关系并证明;(3)若OA=2√7,OC=6,OB=8,探究线段OC,OM,CM满足的数量关系并证明.22. 解不等式:5x−13−2x+12>1 .23. 如图,在等边△ABC内有一点D,将△ABD绕点A逆时针旋转,使AB与AC重合,点D旋转至点E,连接DE.(1)求证:△ADE是等边三角形;(2)若AD=√3,BD=1,CD=2,求∠ADB的度数;(3)在(2)的条件下,求等边△ABC的边长.参考答案与试题解析2022-2023学年初中八年级下数学月考试卷一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】A【考点】平移的性质【解析】根据平移的性质证明BE=CF即可解决问题.【解答】解:由平移的性质可知,BC=EF,∴BE=CF=3,∵BF=8,∴EC=BF−BE−CF=8−3−3=2.故选A.2.【答案】C【考点】勾股定理的逆定理【解析】根据勾股定理的逆定理对四个选项中所给的数据看是否符合两个较小数的平方和等于最大数的平方即可.【解答】解:A,32+42=52,能构成直角三角形,故不符合题意;B,82+152=172,能构成直角三角形,故不符合题意;C,72+92≠112,不能构成直角三角形,故符合题意;D,92+122=152,能构成直角三角形,故不符合题意.故选C.3.【答案】D【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:∵点P(3−x,x+1)位于平面直角坐标系中的第四象限,∴{3−x>0,x+1<0,解得x<−1.故选D.4.【答案】D【考点】不等式的性质【解析】根据不等式的基本性质进行解答.【解答】解:A、在不等式a>b的两边同时加上1,不等式仍成立,即a+1>b+1.故本选项变形正确;B、在不等式a>b的两边同时除以2,不等式仍成立,即a2>b2.故本选项变形正确;C、在不等式a>b的两边同时乘以3再减去4,不等式仍成立,即3a−4>3b−4.故本选项变形正确;D、在不等式a>b的两边同时乘以−3再加上4,不等号方向改变,即4−3a<4−3b.故本选项变形错误.故选D.5.【答案】B【考点】关于原点对称的点的坐标【解析】根据关于原点对称的点的横坐标互为相反数,纵坐标也互为相反数解答.【解答】解:点P(−5,1)关于原点对称的点的坐标是(5,−1).故选:B.6.【答案】B【考点】等腰三角形的判定【解析】此题暂无解析【解答】此题暂无解答7.【答案】A【考点】解一元一次不等式【解析】此题暂无解析【解答】解:−2x<4x>−2.故选A.8.【答案】C【考点】一元一次不等式的运用【解析】根据程序运算进行了4次才停止,即可得出关于x的一元一次不等式,解之即可得出x的取值范围.【解答】解:依题意,①2x−3≤30,得:x≤332;②2(2x−3)−3≤30,则4x−9≤30,得:x≤394,③2(4x−9)−3≤30,则8x−21≤30,得:x≤518,④2(8x−21)−3>30,则16x−45>30,得:x>7516,即7516<x≤518.故选C.9.【答案】D【考点】作图—应用与设计作图等腰三角形的判定【解析】此题暂无解析【解答】解:连接OB,OD,OA,∵⊙O是等边△ABC的内切圆,∴∠OBD=30∘,∠BDO=90∘,∴OB=2OD=4,由勾股定理得:BD=√OB2−OD2=2√3,同理CD=2√3,∴BC=BD+CD=4√3,∵△ABC是等边三角形,A,O,D三点共线,∴AD=6,∴S△ABC=12BC⋅AD=12√3.故选D.10.【答案】B【考点】翻折变换(折叠问题)轴对称的性质勾股定理矩形的性质全等三角形的性质与判定【解析】由于AF =CF ,在Rt △ABF 中由勾股定理求得AF 的值,证得△ABF ≅△AGE ,有AE =AF ,即ED =AD −AE ,再由直角三角形的面积公式,求得Rt △AGE 中边AE 上的高,即可计算阴影部分的面积.【解答】解:由题意知,AF =FC ,AB =CD =AG =4,BC =AD =8在Rt △ABF 中,由勾股定理知AB 2+BF 2=AF 2,即42+(8−AF)2=AF 2,解得AF =5,∵∠BAF +∠FAE =∠FAE +∠EAG =90∘,∴∠BAF =∠EAG ,∵∠B =∠AGE =90∘,AB =AG ,∴△BAF ≅△GAE(AAS),∴AE =AF =5,ED =GE =3,过G 作GH ⊥AD ,垂足为H ,∵S △GAE =12AG ⋅GE =12AE ⋅GH ,∴4×3=5×GH ,∴GH =125,∴S △GED =12ED ⋅GH =12×3×125=185.故选B .二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11.【答案】①②③【考点】勾股定理的逆定理【解析】欲判断是否可以构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.【解答】解:62+82=102,能构成直角三角形;52+122=132,能构成直角三角形;82+152=172,能构成直角三角形;52+42≠62,不能构成直角三角形.故答案为:①②③.12.【答案】四边形的四个内角都是锐角【考点】反证法【解析】“四边形的四个内角不能都是锐角”的反面为四边形的四个内角都是锐角,据此直接写出逆命题即可.【解答】解:∵“四边形的四个内角不能都是锐角”的反面为四边形的四个内角都是锐角,∴应假设:四边形的四个内角都是锐角.故答案为:四边形的四个内角都是锐角.13.【答案】−6≤a<−5【考点】一元一次不等式组的整数解【解析】解不等式得出其解集为a <x <1,根据不等式组的整数解有6个得出其整数解得情况,从而得出字母a 的取值范围.【解答】解不等式x −a >0,得:x >a ,解不等式3−3x >0,得:x <1,则不等式组的解集为a <x <1,∵不等式组的整数解有6个,∴不等式组的整数解为0、−1、−2、−3、−4、−5,则−6≤a <−5,14.【答案】30∘【考点】相似三角形的性质三角形内角和定理【解析】先根据三角形内角和定理求出∠B 的度数,再根据相似三角形的性质即可得出结论.【解答】解:∵△ABC ∼△A ′B ′C ′,∴∠A =∠A ′,∵∠A =50∘,∴∠A ′=50∘,∴在△A ′B ′C ′中,∠B ′=180∘−∠A ′−∠C′=180∘−50∘−100∘=30∘.故答案为:30∘.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )15.【答案】解:(1)去分母得:2(2x +1)−3(5x −1)≥−6,去括号得:4x +2−15x +3≥−6,移项合并得:−11x ≥11,解得:x ≤1.表示在数轴上,如图所示:(2)去分母得:3(x−2)<2(7−x),去括号得:3x−6<14−2x,移项合并解得:x<4.表示在数轴上,如图所示:【考点】解一元一次不等式在数轴上表示不等式的解集【解析】(1)不等式移项合并,将x系数化为1,即可求出解集;(2)不等式去分母后,去括号,移项合并,将x系数化为1,即可求出解集.【解答】解:(1)去分母得:2(2x+1)−3(5x−1)≥−6,去括号得:4x+2−15x+3≥−6,移项合并得:−11x≥11,解得:x≤1.表示在数轴上,如图所示:(2)去分母得:3(x−2)<2(7−x),去括号得:3x−6<14−2x,移项合并解得:x<4.表示在数轴上,如图所示:16.【答案】解:(1)当点E在AC上,点D在BC上时,∵∠CAB=∠CED=30∘,∴DE//AB,∴△ABC∽△EDC,∴S△DCE:S△ABC=(CE)2:(CA)2=4:25,∴S△DCE:S四边形AEDB=4:21.(2)∵∠ACB=∠DCE=90∘,∴∠DCB=∠ACE.∵∠CAB =∠CED =30∘,∴DC:CE =1:√3, BC:CA =1:√3,∴DC:CE =BC:CA ,∴△DBC ∽△EAC ,∴BD:AE =1:√3.(3)由(2)可知,∵△DBC ∽△EAC ,∴∠AEC =∠BDC.∵点A ,E ,D 在同条一直线上,∠CED =30∘,∴∠AEC =∠BDC =150∘,∴∠ADB =150∘−60∘=90∘,设BD =x ,可知AE =√3x ,∴在Rt △ABD 中,x 2+(2+√3x)2=62,解得x 1=−√3+√352,x 2=−√3−√352 (舍).∴BD =−√3+√352.【考点】相似三角形的性质与判定旋转的性质相似三角形的性质含30度角的直角三角形勾股定理【解析】此题暂无解析【解答】解:(1)当点E 在AC 上,点D 在BC 上时,∵∠CAB =∠CED =30∘,∴DE//AB ,∴△ABC ∽△EDC ,∴S △DCE :S △ABC =(CE)2:(CA)2=4:25 ,∴S △DCE :S 四边形AEDB =4:21.(2)∵∠ACB =∠DCE =90∘,∴∠DCB =∠ACE.∵∠CAB =∠CED =30∘,∴DC:CE =1:√3, BC:CA =1:√3,∴DC:CE =BC:CA ,∴△DBC ∽△EAC ,∴BD:AE =1:√3.(3)由(2)可知,∵△DBC ∽△EAC ,∴∠AEC =∠BDC.∵点A ,E ,D 在同条一直线上,∠CED =30∘,∴∠AEC =∠BDC =150∘,∴∠ADB =150∘−60∘=90∘,设BD =x ,可知AE =√3x ,∴在Rt △ABD 中,x 2+(2+√3x)2=62,解得x 1=−√3+√352,x 2=−√3−√352 (舍).∴BD =−√3+√352.17.【答案】解:(1)如图,DE 即为所求.(2)如图,直线FG 即为所求.【考点】作角的平分线作线段的垂直平分线【解析】(1)根据尺规作基本图形的方法:①作∠ABC 的角平分线交AD 于点E 即可;②作线段DC 的垂直平分线交DC 于点F 即可.(2)连接EF ,根据等腰三角形的性质和三角形中位线定理,即可写出线段EF 和AC 的数量关系及位置关系.【解答】解:(1)如图,DE 即为所求.(2)如图,直线FG 即为所求.18.如图,△A1B1C1为所作,点A1的坐标为(1,−5);如图,△A2B2C2为所作,点B2的坐标为(−4,−2);四边形CBC2B2是平行四边形.【考点】作图-平移变换作图-旋转变换【解析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可;(2)利用关于原点对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可;(3)利用B2、C1、C2、B1的坐标可判断B2C1平行且等于C2B1,从而可判断四边形CBC2B2是平行四边形.【解答】如图,△A1B1C1为所作,点A1的坐标为(1,−5);如图,△A2B2C2为所作,点B2的坐标为(−4,−2);四边形CBC2B2是平行四边形.19.解:如图,连结AC .在△ACD 中,∵AD =4米,CD =3米,∠ADC =90∘,∴AC =5米.又∵AC 2+BC 2=52+122=132=AB 2,∴△ABC 是直角三角形,∴这块地的面积=△ABC 的面积−△ACD 的面积=12×5×12−12×3×4=24(平方米).【考点】三角形的面积勾股定理的逆定理勾股定理【解析】连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,那么△ABC 的面积减去△ACD 的面积就是所求的面积.【解答】解:如图,连结AC .在△ACD 中,∵AD =4米,CD =3米,∠ADC =90∘,∴AC =5米.又∵AC 2+BC 2=52+122=132=AB 2,∴△ABC 是直角三角形,∴这块地的面积=△ABC 的面积−△ACD 的面积=12×5×12−12×3×4=24(平方米).20.【答案】解:(1)把点A(−6,0)代入y =43x +m ,解得m=8,∴点B的坐标为(0,8).(2)存在,设C点坐标为(a,0).由题意,12⋅|a+6|⋅8=16,解得a=−2或−10,∴点C坐标为(−2,0)或(−10,0).【考点】一次函数图象上点的坐标特点一次函数的应用待定系数法求一次函数解析式三角形的面积【解析】(1)把点A(−6,0)代入y=43x+m,求出m,即可.(2)存在,设点C坐标为(a,0),由题意可得12⋅|a+6|⋅8=16,解方程即可.【解答】解:(1)把点A(−6,0)代入y=43x+m,解得m=8,∴点B的坐标为(0,8).(2)存在,设C点坐标为(a,0).由题意,12⋅|a+6|⋅8=16,解得a=−2或−10,∴点C坐标为(−2,0)或(−10,0).21.【答案】√3(2)AO=CM.证明如下:∵∠OBM=60∘,OB=BM,∴△OBM是等边三角形,∴OM=OB=MB,∵∠ABC=∠OBM=60∘,∴∠ABO=∠CBM.在△AOB和△CMB中,{OB=MB,∠ABO=∠CBM,AB=BC,∴△AOB≅△CMB(SAS),∴AO=CM.(3)OM2=OC2+CM2. 证明如下:∵△OBM是等边三角形,∴OM =OB =8,由(1)可知,CM =OA =2√7,在△OMC 中, OM 2=64,∴OC 2+CM 2=62+(2√7)2=64,∴OM 2=OC 2+CM 2.【考点】勾股定理三角形的面积等边三角形的性质等边三角形的性质与判定全等三角形的性质与判定勾股定理的逆定理【解析】此题暂无解析【解答】解:(1)如图,过点A 作AD ⊥BC 交于点D ,∵△ABC 为等边三角形,且AB =BC =2,∴∠ABC =60∘,BD =1,∴AD =√3,∴S △ABC =12BC ⋅AD =√3.故答案为:√3.(2)AO =CM .证明如下:∵∠OBM =60∘,OB =BM ,∴△OBM 是等边三角形,∴OM =OB =MB ,∵∠ABC =∠OBM =60∘,∴∠ABO =∠CBM .在△AOB 和△CMB 中,{OB =MB ,∠ABO =∠CBM ,AB =BC ,∴△AOB ≅△CMB(SAS),∴AO =CM .(3)OM 2=OC 2+CM 2. 证明如下:∵△OBM 是等边三角形,∴OM =OB =8,由(1)可知,CM =OA =2√7,在△OMC 中, OM 2=64,∴OC 2+CM 2=62+(2√7)2=64,∴OM 2=OC 2+CM 2.22.【答案】解:去分母得2(5x −1)−3(2x +1)>6,去括号得10x −2−6x −3>6,合并同类项移项得4x >11,解得x >114.【考点】解一元一次不等式【解析】此题暂无解析【解答】解:去分母得2(5x −1)−3(2x +1)>6,去括号得10x −2−6x −3>6,合并同类项移项得4x >11,解得x >114.23.【答案】(1)证明:由旋转的性质可得AE =AD ,∵△ABC 是等边三角形,∴∠DAE =∠BAC =60∘,∴△ADE 是等边三角形.(2)解:∵△ADE 是等边三角形,∴DE =AD =√3,∠AED =60∘,由旋转的性质可得CE =BD =1,∴∠AEC=∠AED+∠CED=150∘.∵△AEC是由△ADB旋转得到的,∴∠ADB=∠AEC=150∘.(3)解:如图,过点C作AE的垂线,交AE的延长线于点F,由(2)可知∠AEC=150∘,∴∠CEF=30∘.在Rt△CEF中,CF=12CE=12.根据勾股定理可知EF=√32,∴AF=AE+EF=√3+√32=3√32,在Rt△ACF中,AC=√AF2+CF2 =√274+14=√7,∴等边△ABC的边长为√7.【考点】旋转的性质等边三角形的性质与判定勾股定理含30度角的直角三角形【解析】111【解答】(1)证明:由旋转的性质可得AE=AD,∵△ABC是等边三角形,∴∠DAE=∠BAC=60∘,∴△ADE是等边三角形.(2)解:∵△ADE是等边三角形,∴DE=AD=√3,∠AED=60∘,由旋转的性质可得CE=BD=1,∴∠AEC=∠AED+∠CED=150∘.∵△AEC是由△ADB旋转得到的,∴∠ADB=∠AEC=150∘.(3)解:如图,过点C作AE的垂线,交AE的延长线于点F,由(2)可知∠AEC=150∘,∴∠CEF=30∘.在Rt△CEF中,CF=12CE=12.根据勾股定理可知EF=√32,∴AF=AE+EF=√3+√32=3√32,在Rt△ACF中,AC=√AF2+CF2 =√274+14=√7,∴等边△ABC的边长为√7.。

新北师大版八年级数学下册第四章《因式分解》单元复习题含答案解析 (13)

新北师大版八年级数学下册第四章《因式分解》单元复习题含答案解析 (13)

(共25题)一、选择题(共10题)1.将多项式ax2−4ax+4a分解因式,下列结果中正确的是( )A.a(x−2)2B.a(x+2)2C.a(x−4)2D.a(x+2)(x−2)2.已知∣a∣=5,b2=16,且ab<0,那么a−b的值为( )A.1B.9C.1或−1D.±93.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环.下面选项一定不是该循环的是A.4,2,1B.2,1,4C.1,4,2D.2,4,14.若xy>0,则∣x∣x +∣y∣∣y+1的值为( )A.−2B.3或−2C.3D.−1或35.若a,b互为相反数,c,d互为倒数,∣m∣=2,则代数式m2−3cd+a+bm的值为( ) A.−1B.1C.−7D.1或−76.按如图所示的运算程序,能使输出结果的值为11的是( )A.x=3,y=1B.x=2,y=2C.x=2,y=3D.x=0,y=1.5 7.已知x−2y=−3,则3(x−2y)2−5(x−2y)+6=( ).A.−6B.48C.−36D.188.对于正整数n,我们定义一种“运算”:①当n为奇数时,结果为n+1;②当n为偶数时,结果12n,并且运算重复进行.例如,取n=9,则若n=12,则第2019次运算的结果是( )A.2018B.2017C.2D.19.下列从左到右的变形,是因式分解的是( )A.(x−1)(x=2)=(x+2)(x−1)B.m2−1=(m+1)(m−1)C.x2+1=x(x+1x)D.a(a−b)(b+1)=(a2−ab)(b+1)10.下列多项式中,分解因式不正确的是( )A.a2+2ab=a(a+2b)B.a2−b2=(a+b)(a−b)C.a2+b2=(a+b)2D.4a2+4ab+b2=(2a+b)2二、填空题(共7题)11.计算(1−1112)(1−1122)(1−1132)⋯(1−1212)=.12.如果代数式3a+b的值为−4,那么代数式2(a+b)−4(2a+b)的值为.13.若多项式100x2+M能用平方差公式分解因式,则M代表的整式为.(写出一个即可)14.分解因式:x3+(2a+1)x2+(a2+2a−1)x+(a2−1)=.15.已知:xb+c−a =yc+a−b=za+b−c,则(b−c)x+(c−a)y+(a−b)z的值为.16.分解因式:x4+x2−2ax−a2+1=.17.分解因式:3y2−12=.三、解答题(共8题)18.已知关于x的代数式ax+b(a≠0),设代数式的值为y.(1) 如表中列出了当 x 分别取 −1,0,1,2 时对应的 y 值,则 a 的值为 ,b 的值为 .x⋯−1012⋯y⋯852−1⋯(2) 当 x 分别取 x 1,x 2 时,代数式的值分别记为 y 1,y 2.①若 x 1=m ,x 2=n 且 m −n =−1,y 1 比 y 2 大 5,求 a 的值; ②若 x 1=k ,x 2=k −1,比较 y 1 与 y 2 的大小.19. 假设图中由四个相邻点围成的正方形面积是一个单位面积,如何计算图 ① 点阵中多边形的面积?你可以把多边形分成若干小正方形和三角形,分别计算面积后相加,这是一个不错的办法.或者你可能想到通过剪拼的方法来计算,这个想法也很好.奥地利数学家皮克(Georg Pick ,1859∼1943)发现了一个计算点阵中多边形面积的公式:S =a +12b −1,其中 a 表示多边形内部的点数,b 表示多边形边界上的点数,S 表示多边形的面积.如图 ①,a =3,b =10,所以多边形面积 S =3+12×10−1=7(单位面积).这个结果与你算出的结果相同吗?请你在图 ② 的点阵中画一个多边形,并利用皮克公式计算它的面积.20. 为方便市民出行,甲、乙两家公司推出专车服务,运价收费如下:设行驶路程 x km 时,用含 x 的代数式表示乙公司的运价.(1) 当 3<x ≤6 时,则费用表示为 元;当 x >6 时,则费用表示为 元. (2) 当行驶路程 10 km 时,对于乘客来说,哪个专车更合算,为什么? (3) 当行驶路程 x km 时,对于乘客来说,哪个专车更合算,为什么?21. 因式分解:2x −8x 3.22.一个三位自然数abc(百位上的数字为a,十位上的数字为b,个位上的数字为c).若满足a+c=b,则称这个三位数为“和悦数”,并规定F(abc)=ac.如231,因为它的百位上的数字2与个位上的数字1之和等于十位上的数字3.所以231是“和悦数”,所以F(231)=2×1=2.(1) 请任意写出两个“和悦数”,并猜想任意一个“和悦数”是否是11的倍数,请说明理由;(2) 已知有两个十位上的数字相同的“和悦数”m,n(m>n),若F(m)−F(n)=5,求m−n的值.23.如图,是一个计算装置示意图,A,B是数据输入口,C是计算输出口,计算过程是由A,B分别输入自然数m和n,经计算后得自然数k由C输出,此种计算装置完成的计算满足以下三个性质:(1)若A,B分别输入1,则输出结果为1;(2)若A输入任何固定的自然数不变,B输入的自然数增大1,则输出结果比原来增大2;(3)若B输入任何固定的自然数不变,A输入的自然数增大1,则输出结果为原来的2倍.求:(1) 若A输入1,B输入4,此时的输出结果.(2) 若B输入1,A输入5,此时的输出结果.24.若一个正整数x能表示成a2−b2(a,b是正整数,且a>b)的形式,则称这个数为“明礼崇德数”,a与b是x的一个平方差分解.例如:因为5=32−22,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:M=x2+2xy=x2+2xy+y2−y2=(x+y)2−y2(x,y是正整数),所以M也是“明礼崇德数”,(x+y)与y是M的一个平方差分解.(1) 判断:9“明礼崇德数”(填“是”或“不是”).(2) 已知N=x2−y2+4x−6y+k(x,y是正整数,k是常数,且x>y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由.(3) 对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m既是“七喜数”,又是“明礼崇德数”,请求出m的所有平方差分解.25. 请回答问题:(1) 在实数范围内分解下列因式,将结果直接写在横线上:x 2−10x +25= . 19x 2+23x +1= .x 2−2√2x +2= .(2) 观察上述三个多项式的系数,有 (−10)2=4×1×25,(23)2=4×19×1,(2√2)2=4×1×2,于是猜测:若多项式 ax 2+bx +c (a >0) 是完全平方式,那么系数 a ,b ,c 之间一定存在某种关系.请你用数学式子表示这一猜想 .(3) 若多项式 x 2−2ax +c 和 x 2+2cx +a 都是完全平方式,利用(2)中的规律求 ac 的值.答案一、选择题(共10题) 1. 【答案】A【解析】ax 2−4ax +4a=a (x 2−4x +4)=a (x −2)2.【知识点】完全平方式、提公因式法2. 【答案】D【解析】 ∵∣a∣=5,b 2=16, ∴a =±5,b =±4, ∵ab <0,∴a =5,b =−4 或 a =−5,b =4, 则 a −b =9 或 −9, 故选:D .【知识点】绝对值的性质、简单的代数式求值3. 【答案】D【解析】如图的程序按照 4,2,1,4,2,1,⋯⋯ 循环. 【知识点】简单的代数式求值4. 【答案】D【解析】 ∵xy >0,∴x >0,y >0 或 x <0,y <0.①当 x >0,y >0 时,原式=1+1+1=3; ②当 x <0,y <0 时,原式=−1+−1+1=−1. 【知识点】简单的代数式求值5. 【答案】B【解析】 ∵a ,b 互为相反数,c ,d 互为倒数,∣m ∣=2, ∴a +b =0,cd =1,m =±2, ∴m 2−3cd +a+b m=4−3+0=1.【知识点】简单的代数式求值6. 【答案】A【解析】A 、把 x =3,y =1 代入运算程序中得:输出结果为 9+2=11,符合题意; B 、把 x =2,y =2 代入运算程序中得:4−4=0,不符合题意; C 、把 x =2,y =3,代入运算程序中得:4−6=−2,不符合题意; D 、把 x =0,y =1.5 代入运算程序得:0−3=−3,不符合题意.【知识点】简单的代数式求值7. 【答案】B【解析】考察整体代入,x−2y=−3,则3(x−2y)2−5(x−2y)+6=3×(−3)2−5×(−3)+ 6=27+15+6=48.【知识点】简单的代数式求值8. 【答案】D【解析】当n=12时,第一次运算结果为:6,第二次运算结果为:3,第三次运算结果为:4,第四次运算结果为:2,第五次运算结果为:1,第六次运算结果为:2,发现:当运算次数大于三次时,第奇数次运算结果为1,第偶数次结果为2.所以第2019次运算结果为:1.【知识点】简单的代数式求值9. 【答案】B【解析】A.是乘法交换律,故A错误;B.把一个多项式转化成几个整式积的形式,故B正确;C.没把一个多项式转化成几个整式积的形式,故C错误;D.整式的乘法,故D错误.【知识点】因式分解的定义10. 【答案】C【解析】A.原式=a(a+2b),不符合题意;B,原式=(a+b)(a−b),不符合题意;C.原式不能分解,符合题意;D.原式=(2a+b)2,不符合题意.【知识点】完全平方式二、填空题(共7题)11. 【答案】2021【解析】原式=(1+111)(1−111)(1+112)(1−112)⋯(1+121)(1−121)=1011×1112×⋯×2021×1211×1312×⋯×2221=1021×2211=20.【知识点】平方差12. 【答案】8【解析】2(a+b)−4(2a+b)=2a+2b−8a−4b=−6a−2b=−(6a+2b)=−2(3a+b),∵3a+b=−4,整体代入后,得2(a+b)−4(2a+b)=−2×(−4)=8.【知识点】整式的加减运算、简单的代数式求值13. 【答案】−1(答案不唯一)【解析】答案不唯一,当M=−1时,100x2+M=100x2−1=(10x)2−12=(10x+1)(10x−1).【知识点】平方差14. 【答案】(x+1)(x+a+1)(x+a−1)【知识点】分组分解法15. 【答案】0【解析】设xb+c−a =yc+a−b=za+b−c=m,则x=(b+c−a)m,y=(c+a−b)m,z=(a+b−c)m,(b−c)x+(c−a)y+(a−b)z=(b−c)(b+c−a)m+(c−a)(c+a−b)m+(a−b)(a+b−c)m=(b2−c2+c2−a2+a2−b2)m+(ac−ab−bc+ab−ac+bc)m=0【知识点】简单的代数式求值16. 【答案】(x2+x+a+1)(x2−x−a+1)【知识点】分组分解法17. 【答案】3(y+2)(y−2)【解析】3y2−12=3(y2−4)=3(y+2)(y−2).【知识点】平方差三、解答题(共8题) 18. 【答案】(1) −3;5(2) ① ∵x 1=m ,x 2=n ,∴y 1=ax 1+b =am +b ,y 2=ax 2+b =an +b , ∵y 1 比 y 2 大 5,∴y 1−y 2=am −an =a (m −n )=5, ∴a =5m−n,∵m −n =−1, ∴a =−5;② ∵x 1=k ,x 2=k −1,∴y 1=−3k +5,y 2=−3(k −1)+5, ∴y 1−y 2=−3<0, ∴y 1<y 2. 【解析】(1) 当 x =−1 时,y =8; 当 x =0 时,y =5, ∴{−a +b =8,b =5.解得:{a =−3,b =5.【知识点】简单的代数式求值、二元一次方程组的应用19. 【答案】略【知识点】简单的代数式求值20. 【答案】(1) (1.6x +2.2);(2.2x −1.4)(2) 当行驶路程 10 km 时,甲公司的运价为:6+2.1(10−3)=20.7(元); 乙公司的运价为:2.2×10−1.4=20.6(元); ∵20.7>20.6,∴ 当行驶路程 10 km 时,对于乘客来说,乙公司的专车更合算. (3) ①当 x ≤3 时,对于乘客来说,显然甲公司的专车更合算.②当 3<x ≤6 时,甲公司的运价为:6+2.1(x −3)=2.1x −0.3(元),乙公司的运价为 (1.6x +2.2) 元.如果 2.1x −0.3=1.6x +2.2,那么 x =5.即当 3<x <5 时,对于乘客来说,甲公司的专车更合算; 当 x =5 时,对于乘客来说,甲、乙两家公司的专车一样合算;当5<x≤6时,对于乘客来说,乙公司的专车更合算;②当x>6时,甲公司的运价为:6+2.1(x−3)=2.1x−0.3(元),乙公司的运价为(2.2x−1.4)元.如果2.1x−0.3=2.2x−1.4,那么x=11.即当6<x<11时,对于乘客来说,乙公司的专车更合算;当x=11时,对于乘客来说,甲、乙两家公司的专车一样合算;;当x>11时,对于乘客来说,甲公司的专车更合算.综上所述,当x<5或x>1时,对于乘客来说,甲公司的专车更合算;当x=5或x=11时,对于乘客来说,甲、乙两家公司的专车一样合算;当5<x<11时,对于乘客来说,乙公司的专车更合算.【解析】(1) 当3<x≤6时,乙公司的运价为:7+1.6(x−3)=1.6x+2.2(元);当x>6时,乙公司的运价为:7+1.6×3+2.2(x−6)=2.2x−1.4(元).【知识点】简单列代数式、一元一次方程的应用、简单的代数式求值21. 【答案】2x(1+2x)(1−2x).【知识点】提公因式法、平方差22. 【答案】(1) 设三位自然数为abc(1≤a≤9,0<b≤9,0<c≤9的整数),∵三位数abc是“和悦数”,∴b=a+c,取a=2,c=5,则b=7,∴三位数为275,取a=5,c=3,则b=8,∴三位数为583,任意一个“和悦数”是11的倍数,设三位自然数为abc,∵三位数abc是“和悦数”,∴b=a+c,∴三位数为100a+10(a+c)+c=110a+11c=11(10a+c),∵a,c是整数,∴10a+c是整数,∴11(10a+c)能被11整除,即:任意一个“和悦数”是11的倍数.(2) 设两个十位上的数字相同的“和悦数”为m=abc,n=ebd,(a≥e,当a=e时,c>d),则b=a+c=e+d,∴c−d=e−a,c=b−a.d=b−e.∴F(m)=a⋅c=a(b−c),F(n)=e⋅d=e(b−e),∵F(m)−F(n)=5,∴a ⋅(b −a )−e (b −e )=ab −a 2−eb −e 2=(ab −eb )−(a 2−e 2)=b (a −e )−(a +e )(a −e )=(a −e )(b −a −e )=5,∵a ,b ,e 是整数,∴a −e =1 或 a −e =5,∴m −n =(100a +10b +c )−(100e +10b +d )=(110a +11c )−(110e +11d )=110(a −e )+11(c −d )=110(a −e )−11(a −e )=99(a −e )=99 或 495.【知识点】提公因式法、整式的加减运算、平方差23. 【答案】(1) 根据题意得当 A 输入 1,B 输入 4 时,输出结果为 1+(4−1)×2=7.(2) 当 B 输入 1,A 输入 5 时,输出结果为 1×2×2×2×2=16.【知识点】简单的代数式求值、简单列代数式24. 【答案】(1) 是(2) ∵N =x 2−y 2+4x −6y +k ,∴N =(x 2+4x )−(y 2+6y )+k=(x 2+4x +4−4)−(y 2+6y +9−9)+k=(x +2)2−(y +32)−4+9+k =(x +2)2−(y +3)2+5+k,∵x >y +1,∴x +2>y +3,∴ 当 5+k =0 即 k =−5 时,N 是明礼崇德数,∴k =−5.(3) 满足条件的七喜数有 178,279 两个,∵m =a 2−b 2=(a +b )(a −b ) 时 x 是明礼崇德数,①当 m =178 时,m =1×178=2×89,i )当 m =1×178 时,{a +b =178,a −b =1,∴a =1792,b =1772,∵a ,b 均不为整数,∴ 不符合题意舍去,ii )当 m =2×89 时,{a +b =89,a −b =2,解之得 a =912,b =872,∵a ,b 均不为整数,∴ 不符合题意舍去,②当 m =279 时,m =1×279=3×93=9×31,i )当 m =1×279 时,{a +b =279,a −b =1,解之得 a =140,b =139,ii )当 m =3×93 时,{a +b =93,a −b =3,解之得 a =48,b =45,iii )当 m =9×31 时,{a +b =31,a −b =9,解之得 a =20,b =11,综上所述,m 既是“七喜数”又是明礼崇德数的所有平方差分解为 140 和 139,48 和 45,20 和 11.【解析】(1) ∵9=52−42=25−16,∴9 是明礼崇德数.【知识点】完全平方式、平方差、解二元一次方程组25. 【答案】(1) (x −5)2;(13x +1)2;(x −√2)2(2) b 2=4ac(3) 由题意得:{(2a )2=4c,(2c )2=4a,∴{a 2=c,c 2=a.∴a 2c 2=ac ,ac =1 或 0.【解析】(2) 由例子总结规律b2=4ac.【知识点】完全平方式、用代数式表示规律。

最新(北师大版)八年级下学期第一次月考数学试卷(含答案)

最新(北师大版)八年级下学期第一次月考数学试卷(含答案)

八年级下学期第一次月考数学试卷范围:第一章~第二章满分:150分考试用时:120分钟题号一二三总分得分一、选择题(本大题共15小题,共45.0分)1.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=12cm,则AB等于()A. 6cmB. 7cmC. 8cmD. 9cm2.在锐角△ABC内一点P满足PA=PB=PC,则点P是△ABC()A. 三条角平分线的交点B. 三条中线的交点C. 三条高的交点D. 三边垂直平分线的交点3.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为()A. 1B. 2C. 3D. 44.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A. M点B. N点C. P点D. Q点5.由下列条件不能判定△ABC是直角三角形的是()A. ∠A=37°,∠C=53°B. ∠A−∠C=∠BC. ∠A:∠B:∠C=3:4:5D. ∠A:∠B:∠C=2:3:56. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CE 平分∠ACD 交AB 于点E ,则下列结论一定成立的是( )A. BC =ECB. EC =BEC. BC =BED. AE =EC7. 已知a // b ,某学生将一直角三角板如图所示放置.如果∠1=35°,那么∠2的度数为( )A. 35°B. 55°C. 56°D. 65°8. 下列说法:①若直线PE 是线段AB 的垂直平分线,则EA =EB ;②若PA =PB ,EA =EB ,则直线PE 是线段AB 的垂直平分线;③若EA =EB ,则直线EP 是线段AB 的垂直平分线;④若PA =PB ,则点P 在线段AB 的垂直平分线上.其中正确的有( )A. 1个B. 2个C. 3个D. 4个9. 不等式组{2x +9>6x +1x −k <1的解集为x <2,则k 的取值范围为( )A. k >1B. k <1C. k ≥1D. k ≤110. 不等式组{2x >1−12x +1≥0的整数解x 的值为( )A. 0、1、2B. 1、2C. 2D. 111. 已知关于x 的不等式组{x >2a −3,2x ≥3(x −2)+5仅有三个整数解,则a 的取值范围是 ( )A. 12≤a <1B. 12≤a ≤1C. 12<a ≤1D. a <112. 商店里有如表两种节能灯:功率(kw)单价(元/只) 白炽灯 0.1 2 节能灯0.0432经了解知,这两种灯的使用寿命相同.已知王阿姨家所在地的电价为0.50元/kW·ℎ.如果仅考虑费用支出[用电量(kW·ℎ)=功率(kW)×时间(ℎ)],且节能灯较合算,则这两种灯的使用寿命需超过()A. 1000hB. 900hC. 1100hD. 800h13.某市自来水公司按如下标准收取水费:若每户每月用水不超过5m3,则每立方米收费1.5元;若每户每月用水超过5m3,则超过部分每立方米收费2元,小颖家某月的水费不少于15元,那么她家这个月的用水量(吨数为整数)至少是()A. 10.75m3B. 9m3C. 8m3D. 8.75m314.某人从一鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均元的价格把鱼全部卖给了乙,结果发现赚了钱,原每条b元,后来他又以每条a+b2因是()A. a<bB. a>bC. a=bD. 与a、b大小无关15.已知a,b为常数,ax+b>0的解集为x<1,则bx−a<0的解集是()5A. x>−5B. x<−5C. x>5D. x<5二、填空题(本大题共5小题,共25.0分)16.三角形三边长分别为3,4,5,那么最长边上的中线长等于______.17.如图,某失联客机从A地起飞,飞行1000km到达B地,再折返飞行1000km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为km.18.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为___________.(用含正整数n的代数式表示)19. 我们定义|a b cd|=ad −bc ,例如|2345|=2×5−3×4=10−12=−2,则不等式组1<|1x34|<3的解集是 . 20. 若关于x 的不等式组{x−24<x−13,2x −m ≤2−x 有且只有三个整数解,则m 的取值范围是 .三、解答题(本大题共7小题,共80.0分)21. (8分)解不等式组{3x −2>1,①x +9<3(x +1),②并把解集在数轴上表示出来.22. (8分)我们定义一个关于实数m ,n 的新运算,规定:m※n =4m −3n ,例如:5※2=4×5−3×2=14,若m 满足m※2<0,求m 的取值范围.23. (10分)解不等式:2x −1>3x−12.解:去分母,得2(2x−1)>3x−1.…(1)请完成上述解不等式的余下步骤;(2)解题回顾:本题“去分母”这一步的变形依据是_____________(填“A”或“B”).A.不等式两边都乘(或除以)同一个正数,不等号的方向不变B.不等式两边都乘(或除以)同一个负数,不等号的方向改变24.(12分)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.25. (12分)解不等式组:{3x ≤2x +1,①2x +5≥−1.②请结合题意填空,完成本题的解答. (1)解不等式①,得____________; (2)解不等式②,得____________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为___________.26. (14分)在△ABC 中,AB 、AC 边的垂直平分线分别交BC 边于点M 、N .(1)如图①,若△AMN 是等边三角形,则∠BAC =______°; (2)如图②,若∠BAC =135°,求证:BM 2+CN 2=MN 2.(3)如图③,∠ABC 的平分线BP 和AC 边的垂直平分线相交于点P ,过点P 作PH 垂直BA 的延长线于点H.若AB =4,CB =10,求AH 的长.27.(16分)如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO=∠DBO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长;(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当H在FC上移动、点G点在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.答案1.C2.D3.D4.A5.C6.C7.B8.C9.C 10.B 11.A 12.A 13.B 14.A 15.B 16.2.5 17.100018.(32)2n−2×√3319.13<x <1 20.1≤m <421.解:x >3.解集在数轴上表示略. 22.解:∵m※2=4m −3×2=4m −6,∴由m※2<0可得4m −6<0, 解得:m <32.23.解:(1)去括号,得4x −2>3x −1.移项,得4x −3x >2−1. 合并同类项,得x >1.(2)A24.证明:∵DE 是AB 的垂直平分线,∴EA =EB .∴∠EAB=∠B.∵∠C=90°,∴∠CAB+∠B=90°.又∵∠AED+∠EAB=90°,∴∠CAB=∠AED.25.(1)x≤1(2)x≥−3(3)略(4)−3≤x≤126.(1)120(2)如图①,连接AM、AN∵∠BAC=135°∴∠B+∠C=45°,又∵点M在AB的垂直平分线上∴AM=BM∴∠BAM=∠B,同理AN=CN,∠CAN=∠C∴∠BAM+∠CAN=45°∴∠MAN=90°,∴AM2+AN2=MN2;∴BM2+CN2=MN2;(3)如图②,连接AP、CP,过点P作PE⊥BC于点E ∵BP平分∠ABC,PH⊥BA,PE⊥BC∴PH=PE∵点P在AC的垂直平分线上∴AP=CP在Rt△APH和Rt△CPE中{AP=CPPH=PE∴Rt△APH≌Rt△CPE∴AH=CE,∵BP平分∠ABC,PH⊥BA,PE⊥BC∴∠HBP=∠CBP,∠BHP=∠BEP=90°∵BP=BP∴Rt△BPH≌Rt△BPE∴BH=BE,∴BC=BE+CE=BH+CE=AB+2AH ∴AH=(BC−AB)÷2=3.27.解:(1)∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△BCD中,{∠CAO=∠DBO ∠ACD=∠BCD CD=CD,∴△ACD≌△BCD(AAS),∴AC=BC;(2)如图2,过点D作DM⊥AC于M,∵CD平分∠ACB,OD⊥BC,∴DO=DM,在△BOD和△AMD中,{∠DBO=∠DAM∠BOD=∠AMD=90°DO=DM,∴△BOD≌△AMD(AAS),∴OB=AM,在Rt△DOC和Rt△DMC中,{DO=DMDC=DC,∴Rt△DOC≌Rt△DMC(HL),∴OC=MC,∵∠CAO=∠DBO,∠DEA=∠DBO,∴∠DAE=∠DEA,∵DM⊥AC,∴AM=EM,∴OB=EM,∵C(4,0),∴OC=4,∴BC+CE=OB+OC+MC−EM=2OC=8;(3)GH=OG+FH;证明:如图3,在GO的延长线上取一点N,使ON=FH,∵CD平分∠ACO,DF⊥AC,OD⊥OC,∴DO=DF,在△DON和△DFH中,{DO=DF∠DON=∠DFH=90°ON=FH,∴△DON≌△DFH(SAS),∴DN=DH,∠ODN=∠FDH,∵∠GDH=∠GDO+∠FDH,∴∠GDH=∠GDO+∠ODN=∠GDN,在△DGN和△DGH中,{DN=DH∠GDN=∠GDH DG=DG,∴△DGN≌△DGH(SAS),∴GH=GN,∵ON=FH,∴GH=GN=OG+ON=OG+FH.11。

(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》检测卷(答案解析)(2)

(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》检测卷(答案解析)(2)

一、选择题1.已知关于x 的分式方程422x k x x -=--的解为正数,则k 的取值范围是( ) A .80k -<<B .8k >-且2k ≠-C .8k >-且2k ≠D .4k <且2k ≠-2.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( )A .93010-⨯米B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米 3.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( ) A .二阶分式B .三阶分式C .四阶分式D .六阶分式 4.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变5.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .26.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯厨余垃圾分出量生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯= B .6608400147660840010x x ⨯=++ C .660840014147660840010x x ⨯=⨯++ D .7840066010146608400x x ++⨯= 7.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,16008.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12- 9.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .210.若x 2y 5=,则x y y+的值为( ) A .25 B .72 C .57 D .7511.a b c 三个有理数满足0a b c <<<,且1a b c ++=,b c M a +=,a c N b +=,a b P c+=,则M ,N ,P 之间的大小关系是( ) A .M P N <<B .M N P <<C .N P M <<D .P M N << 12.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3D .3- 二、填空题 13.已知44a b b a +=,则代数式2a b b a⎛⎫+ ⎪⎝⎭的值为_________. 14.若式子11x -有意义,则x 的取值范围是______________. 15.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.16.计算22a b a b a b-=-- _________.17.计算:()1211x x x x x ⎡⎤-⋅=⎢⎥+-⎣⎦______. 18.世界上最小、最轻的昆虫其质量只有0.000005用科学记数法表示0.000005是______克.19.计算22111m m m---,的正确结果为_____________. 20.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______. 三、解答题21.先化简,再求值:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭,其中22150x x +-=. 22.先化简,再求值:234()22m m m m m m-+⋅-+,其中m =1. 23.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”(1)下列分式中,_____是和谐分式(填写序号即可); ①211x x -+;②222a b a b--;③22x y x y +-;④222()a b a b -+ (2)若分式219x x ax -++为和谐分式,且a 为整数,请写出所有a 的值; (3)在化简22344a ab ab b b -÷-时,小东和小强分别进行了如下三步变形: 小东:原式()()22232223232232444444a b a ab b a a a a ab b b b ab b b ab b b --=-⨯=-=--- 小强:原式22223222444444()()()a a a a a a a b ab b b b b a b b a b b --=-⨯=-=--- 显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:____,请你接着小强的方法完成化简.24.(1)化简:22121a a a a a --+÷; (2)把(1)中化简的结果记作A ,将A 中的分子与分母同时加上1后得到B ,问:当1a >时,B 的值与A 的值相比变大了还是变小了?试说明理由.25.某同学化简分式2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭出现了错误,解答过程如下: 原式=22222121121x x x x x x x x x x++÷-÷-+--+=332222(1)(1)x x x x x x -+--- =22(1)2(1)x x x -+- (1)该同学解答过程从第 步开始错误的.(2)写出此题正确的解答过程,并从-2<x <3的范围内选取一个你喜欢的x 值代入求值.26.先阅读,再解答问题:恒等变形,是代数式求值的一个很重要的方法.利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当1x =+时,求32122x x x --+的值.为解答这道题,若直接把1x =+代入所求的式中,进行计算,显然很麻烦,我们可以通过恒等变形,对本题进行解答.方法:将条件变形,因1x =+,得1x -=算转化为有理数运算.由1x -=2220x x --=,即222x x -=,222x x =+. 原式)(2221222222x x x x x x x x =+--+=+--+=. 请参照以上的解决问题的思路和方法,解决以下问题:(1)若1x =,求322431x x x +-+的值;(2)已知2x =432295543x x x x x x ---+-+的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】令分母等于0解出增根,去分母后,把增根代入求出k 值;去分母解出x ,因为解为正数,从而求出k 的范围【详解】解:令x-2=0,解得分式方程的增根是2去分母得:()42x x k --=- 代入增根2,解得k=−2去分母解得x=k+83∵分式方程解为正数 ∴k+803> 解得k 8>- 综合所述k 的取值范围是:8k >-且2k ≠-故答案选B【点睛】本题主要考察了分式方程的增根,一元一次不等式等知识点,准确记住增根的解题步骤是解题关键.2.B解析:B【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可.【详解】解:1纳米=0.000 000 001米=10-9米,30纳米=30×10-9米=3×10-8米.故选:B .【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数. 3.A解析:A【分析】根据题意得出xy =1,可以用1x表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x , 把 y =1x ,代入22x x y ++22y y x +,得: 原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.4.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m n m n m n⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意; C 、226212=32438m n m n m n m n-⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意; D 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 5.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2, ∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.6.B解析:B【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可.【详解】5月份厨余垃圾分出率=660660x +,12月份厨余垃圾分出率=84007840010x + , ∴由题意得6608400147660840010x x ⨯=++, 故选:B .【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.7.A解析:A【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 8.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 9.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.10.D解析:D【分析】 根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D .【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.11.A【分析】根据a+b+c=1可以把M 、N 、P 分别化为1111,1,1a b c ---,再根据a<0<b<c 得到111,,a b c的大小关系后可以得到解答.【详解】解:∵a+b+c=1, ∴1111,1,1M N P a b c=-=-=-, ∵a<0<b<c , ∴1110,0,c b b c bc a--=>< ∴111a c b<<, ∴M<P<N ,故选A .【点睛】 本题考查分式的大小比较,熟练掌握分式的大小比较方法是解题关键.12.D解析:D【分析】先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.二、填空题13.【分析】解方程得到代入代数式即可得到结论【详解】解:两边同时乘以得:故答案为:【点睛】本题考查了分式的化简求值求得的值是解题的关键 解析:92解方程得到2a b =,代入代数式即可得到结论. 【详解】 解:44a b b a+=, 两边同时乘以a b 得:2()44a a b b +=⨯, ∴2a b=, 2219()222a b b a ∴+=+=. 故答案为:92. 【点睛】 本题考查了分式的化简求值,求得a b的值是解题的关键. 14.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.15.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.17.【分析】先把括号里的分式通分再相减然后运用分式乘法进行计算即可【详解】解:===故答案为:【点睛】本题考查了分式的混合运算掌握正确的运算顺序和运算法则是解题关键 解析:11x + 【分析】先把括号里的分式通分,再相减,然后运用分式乘法进行计算即可.【详解】 解:()1211x x x x x ⎡⎤-⋅⎢⎥+-⎣⎦, =()12(1)11x x x x x x x ⎡⎤+-⋅⎢⎥++-⎣⎦, =1(1)1x x x x x -⋅+-, =11x +, 故答案为:11x +.本题考查了分式的混合运算,掌握正确的运算顺序和运算法则是解题关键.18.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:解析:5×10-6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000005=5×10-6,故答案是:5×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键 解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】 解:22111m m m --- =22111m m m +-- =1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.20.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式= 11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 三、解答题21.242x x +;415【分析】 先根据分式混合运算的法则把原式进行化简,再把22150x x +-=变形为2215x x +=,最后代入化简结果中进行计算即可.【详解】 解:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭=22(2)4(2)(2)2x x x x x x x+--+÷-+- =22(2)(2)4(2)2x x x x x x x+-+-+⨯-- =242x x x x+++- =22444(2)x x x x x x ++--+ 242x x=+ 22150x x +-=2215x x ∴+=∴原式415=. 【点睛】 本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.4m +4,8.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把m 的值代入计算即可求出值.【详解】 解:原式=(2)(2)(2)(2)3(2)(2)m m m m m m m m m +-•+--++ =[3(2)(2)]m m m m++- =3(m +2)+(m ﹣2)=3m +6+m ﹣2=4m +4,当m =1时,原式=4+4=8.【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.23.(1)②;(2)10或6或-6;(3)小强通分找的是最简公分母,化简见解析【分析】(1)根据题意可以判断题目中的各个小题哪个是和谐分式,从而可以解答本题; (2)根据和谐分式的定义可以得到a 的值;(3)根据题意和和谐分式的定义可以解答本题.【详解】解:(1)211x x -+不符合和谐分式的定义,故①不是和谐分式, 2222()()a b a b a b a b a b --=-+-,故②是和谐分式, 221()()x y x y x y x y x y x y++==-+--,故③不是和谐分式, 2222()()()()a b a b a b a b a b a b a b-+--==+++,故④不是和谐分式, 故答案为:②;(2)分式219x x ax -++为和谐分式,且a 为整数,10a ∴=,6a =,6a =-;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分找的是最简公分母,故答案为:小强通分找的是最简公分母;小强: 原式22344a a ab b b b=-⨯- 22244()a a b a b b=-- 2244()()a a a b a b b --=- 24[()]()a a a b a b b --=- 24()()a a a b a b b -+=- 24()ab a b b =- 4()a a b b=-. 【点睛】本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答.24.(1)1a a -;(2)B 的值与A 的值相比变小了,理由见解析 【分析】(1)把除变乘,同时将除式的分子分母因式分解,约分即可; (2)由1a A a =-先求出1a B a+=,作差1(1)B A a a -=--,然后判断1(1)a a --符号即可.【详解】解:(1)原式221(1)a a a a -=⋅-. 1a a =-; (2)B 的值与A 的值相比变小了.理由如下:1,1a a A B a a+==-. ∴21(1)(1)11(1)(1)a a a a a B A a a a a a a ++---=-==----.∵1a >,∴10a ->,∴()11a a >0-, ∴0B A -<.∴B A <.∴B 的值与A 的值相比是变小了.【点睛】本题考查分式的除法,比较分式的大小,掌握分式的除法法则,和比较分式的大小的方法是解题关键.25.(1)一 ;(2)解答过程见解析,当2x =时,原式=4.【分析】(1)根据除法没有分配律,判断即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:(1)该同学解答过程从第一步开始错误的;故答案为:一;(2)2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭ 2(1)2(1)(1)(1)x x x x x x x +--=÷-- 2(1)(1)(1)1x x x x x x +-=⋅-+ 21x x =-, 要使原式有意义,1x ≠,0,1-,则当2x =时,原式22421==-. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.26.(1);(2)32【分析】(1)变形已知条件得到x +1x 2+2x =1,再利用降次和整体代入的方法把原式化为−x +1,然后把x 的值代入计算即可;(2)变形已知条件,把2x =+x 2−4x =−1或x 2=4x−1,再利用降次和整体代入的方法化简原式,从而得到原式的值.【详解】解:(1)∵1x=,∴x+1,∴(x+1)2=2,即x2+2x+1=2,∴x2+2x=1,∴原式=2x(x2+2x)−3x+1=2x−3x+1=−x+1=−−1)+1=;(2)∵2x=+∴x−2,∴(x−2)2=3,即x2−4x+4=3,∴x2−4x=−1或x2=4x−1,∴原式=()()()241419415513x x x x x-------++=12(16x2−8x+1−4x2+x−36x+9−5x+5)=12[12(4x−1)−48x+15]=12(48x−12−48x+15)=12×3=32.【点睛】本题考查了分式与整式的化简求值:化简求值题,一定要先化简再代入求值.使用整体代入和降幂的方法更简洁.。

最新北师大版八年级数学下册单元测试题全套及答案

最新北师大版八年级数学下册单元测试题全套及答案

最新北师大版八年级数学下册单元测试题全套及答案第1章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC.若∠ABC =67°,则∠1的度数为( B )A .23°B .46°C .67°D .78°2.如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.则下列结论错误的是( D )A .AD ⊥BCB .∠BAD =∠CADC .DE =DFD .BE =DE,第2题图) ,第3题图) ,第4题图)3.如图,在△ABC 中,∠C =90°,∠B =30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( C )A .6B .6 3C .9D .3 34.如图,在△ABC 中,∠B =40°,∠BAC =75°,AB 的垂直平分线交BC 于点D ,垂足为E.则∠CAD 等于( B )A .30°B .35°C .40°D .50°5.如图,AC =BD ,则补充下列条件后仍不能判定△ABC ≌△BAD 的是( D ) A .AD =BC B .∠BAC =∠ABD C .∠C =∠D =90° D .∠ABC =∠BAD6.已知三角形三内角之间有∠A =12∠B =13∠C ,它的最长边为10,则此三角形的面积为( D )A .20B .10 3C .5 3 D.2532,第5题图) ,第7题图) ,第8题图) ,第10题图)7.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图①,测得AC =2,当∠B =60°时,如图②,AC 等于( A )A. 2 B .2 C. 6 D .2 28.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C.若P 是BC边上一动点,则DP 长的最小值为( C )A .2B .2 2C .4D .4 29.下列说法:①斜边和一条直角边分别相等的两个直角三角形全等;②两个锐角分别相等的两个直角三角形全等;③有一个角和底边分别相等的两个等腰三角形全等;④一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.其中正确的有( B )A .1个B .2个C .3个D .4个10.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接BD ,BE.下列四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④BE 2=2(AD 2+AB 2).其中结论正确的个数是( C )A .1B .2C .3D .4二、填空题(每小题3分,共24分)11.如图,在△ABC 中,∠C =90°,∠A =30°,若AB =6 cm ,则BC =__3__cm .12.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,CD =4,则点D 到AB 的距离为__4__.,第11题图 第12题图 第13题图 第14题图)13.如图,已知点B ,C ,F ,E 在同一条直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是__AC =DF (答案不唯一)__.(只需写出一个)14.如图,△ABC 的周长为22 cm ,AB 的垂直平分线交AC 于点E ,垂足为D ,若△BCE 的周长为14 cm ,则AB =__8__cm .15.如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M.若AB =4 cm ,则DE =__23__cm .,第15题图) ,第16题图) ,第17题图)16.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是__5__.17.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米.当正方形DEFH 运动到什么位置,即当AE =__143__米时,有DC 2=AE 2+BC 2.18.下列命题:①到三角形三边距离相等的点是这个三角形三条角平分线的交点;②三角形三边的垂直平分线的交点到这个三角形的三个顶点的距离相等;③一个锐角和一条边分别相等的两个直角三角形全等;④顶角和底边对应相等的两个等腰三角形全等.其中真命题是__①②④__(填序号)三、解答题(共66分)19.(8分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.解:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D20.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,垂足为D.若△ABC的周长为20 cm,△BCE的周长为12 cm,求BC的长.解:∵DE垂直平分AB,∴AE=BE,∵△BCE的周长为12 cm,即BC+BE+CE=12,∴BC+AE +CE=12,即BC+AC=12,又∵△ABC的周长为20 cm,即AB+BC+AC=20,∴AB+12=20,则AB =8,∴AC=8,∴BC=20-AB-AC=20-8-8=4(cm)21.(8分)如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.解:(1)∵OB=OC,∴∠OBC=∠OCB,∵BE,CD是两条高,∴∠BDC=∠CEB=90°,又∵BC =CB,∴△BDC≌△CEB(AAS),∴∠DBC=∠ECB,∴AB=AC,∴△ABC是等腰三角形(2)点O 在∠BAC 的平分线上.理由:如图,连接AO.∵△BDC ≌△CEB ,∴DC =EB ,∵OB =OC ,∴OD =OE ,∵∠BDC =∠CEB =90°,∴点O 在∠BAC 的平分线上(或通过证Rt △ADO ≌Rt △AEO (HL ),得出∠DAO =∠EAO 也可)22.(8分)如图,∠AOB =90°,OM 平分∠AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA ,OB 相交于点C ,D ,问PC 与PD 相等吗?试说明理由.解:PC =PD.理由:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∵OM 平分∠AOB ,点P 在OM 上,∴PE =PF ,又∵∠AOB =90°,∴∠EPF =90°,∴∠EPF =∠CPD ,∴∠EPC =∠FPD.又∵∠PEC =∠PFD =90°,∴△PCE ≌△PDF (ASA ),∴PC =PD23.(10分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30°,在A ,C 之间选择一点B(A ,B ,C 三点在同一直线上).用测角仪测得塔顶D 的仰角为75°,且AB 间的距离为40 m .(1)求点B 到AD 的距离;(2)求塔高CD.(结果用根号表示)解:(1)过点B 作BE ⊥AD ,垂足为E ,∴∠AEB =90°,又∵∠A =30°,∴BE =12AB =12×40=20 m(2)AE =AB 2-BE 2=203,∵∠A +∠ADB =∠DBC =75°,∴∠ADB =75°-∠A =45°,∵BE ⊥AD ,∴∠BED =90°,∴∠DBE =∠ADB =45°,∴DE =BE =20,∴AD =AE +DE =203+20,∵CD ⊥AC ,∴∠C =90°,又∵∠A =30°,∴CD =12AD =12(203+20)=(103+10) m24.(12分)在△ABC 中,∠B =22.5°,边AB 的垂直平分线DP 交AB 于点P ,交BC 于点D ,且AE ⊥BC 于点E ,DF ⊥AC 于点F ,DF 与AE 交于点G ,求证:EG =EC.解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎨⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC (AAS ),∴EG =EC25.(12分)如图,已知△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是1 cm /s ,点Q 运动的速度是2 cm /s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t s ,解答下列问题:(1)当点Q 到达点C 时,PQ 与AB 的位置关系如何?请说明理由;(2)在点P 与点Q 的运动过程中,△BPQ 是否能成为等边三角形?若能,请求出t 的值;若不能,请说明理由.解:(1)当点Q 到达点C 时,PQ 与AB 垂直,即△BPQ 为直角三角形.理由:∵AB =AC =BC =6 cm ,∴当点Q 到达点C 时,AP =3 cm ,∴点P 为AB 的中点.∴QP ⊥BA (等腰三角形三线合一的性质) (2)假设在点P 与点Q 的运动过程中,△BPQ 能成为等边三角形,则有BP =BQ ,∴6-t =2t ,解得t =2,又∠B =60°,∴当t =2时,△BPQ 是等边三角形第2章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.据中央气象台报道,某日上海最高气温是22 ℃,最低气温是11 ℃,则当天上海气温t (℃)的变化范围是( D )A .t >22B .t ≤22C .11<t <22D .11≤t ≤222.(2016·新疆)不等式组⎩⎪⎨⎪⎧3x <2x +4,x -1≥2的解集是( C )A .>4B .x ≤3C .3≤x <4D .无解3.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( A ) A .3<x <5 B .-3<x <5 C .-5<x <3 D .-5<x <-34.如图a ,b ,c 分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是( C )A .a >c >bB .b >a >cC .a >b >cD .c >a >b5.如果点P(3-m ,1)在第二象限,那么关于x 的不等式(2-m)x +2>m 的解集是( B ) A .x >-1 B .x <-1 C .x >1 D .x <16.如图是一次函数y =kx +b 的图象,当y <2时,x 的取值范围是( C ) A .x <1 B .x >1 C .x <3 D .x >37.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,则实数a 的取值范围是( D )A .a ≥-1B .a <-1C .a ≤1D .a ≤-18.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥b ,2x -a <2b +1的解集为3≤x <5,则a ,b 的值为( A )A .a =-3,b =6B .a =6,b =-3C .a =1,b =2D .a =0,b =39.如图,函数y =2x 和y =ax +4的图象相交于点A(m ,3),则不等式2x <ax +4的解集为( A )A .x <32 B .x <3C .x >32D .x >310.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( B )A .买甲站的B .买乙站的C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二、填空题(每小题3分,共24分)11.(2016·绍兴)不等式3x +134>x3+2的解是__x >-3__.12.(2016·巴中)不等式组⎩⎪⎨⎪⎧3x -1<x +1,2(2x -1)≤5x +1的最大整数解为__0__.13.如果关于x 的不等式组⎩⎪⎨⎪⎧x >m -1,x >m +2的解集是x >-1,那么m =__-3__.14.要使关于x 的方程5x -2m =3x -6m +1的解在-3与4之间,m 的取值范围是__-74<m <74__.15.如图,函数y =ax -1的图象经过点(1,2),则不等式ax -1>2的解集是__x >1__.,第15题图),第16题图)16.已知不等式组⎩⎪⎨⎪⎧x +2a ≥1,2x -b <3的解集如图所示,则a -b 的值为__0__.17.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =3k -1,x +2y =-2的解满足x +y >1,则k 的取值范围是__k >2__.18.商店购进一批文具盒,进价每个4元,零售价每个6元,为促进销售,决定打折销售,但利润率仍不低于20%,那么该文具盒实际价格最多可打__8__折销售.三、解答题(共66分)19.(10分)解下列不等式组,并把解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2(x +1)≤x +3,x -4<3x ; (2)⎩⎪⎨⎪⎧2x >3x -2,①2x -13≥12x -23.② 解:-2<x ≤1 数轴表示略 解:-2≤x <2 数轴表示略20.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.解:解方程组得⎩⎨⎧x =3a +2,y =4-2a ,∵x >0,y >0,∴⎩⎨⎧3a +2>0,4-2a >0,解得-23<a <221.(8分)解不等式组⎩⎪⎨⎪⎧3(x -2)≥x -4,①2x +13>x -1,②并写出它所有的整数解.解:解不等式①得x ≥1,解不等式②得x <4,∴原不等式的解集是1≤x <4,∴原不等式组的整数解是x =1,2,322.(8分)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,3x +5a +4>4(x +1)+3a 恰有三个整数解,求实数a 的取值范围. 解:解不等式x 2+x +13>0得x >-25,解不等式3x +5a +4>4(x +1)+3a 得x <2a ,∵不等式组恰有三个整数解,∴2<2a ≤3,∴1<a ≤3223.(9分)如图,一次函数y 1=kx -2和y 2=-3x +b 的图象相交于点A(2,-1).(1)求k ,b 的值;(2)利用图象求当x 取何值时,y 1≥y 2?(3)利用图象求当x 取何值时,y 1>0且y 2<0?解:(1)将A 点坐标代入y 1=kx -2,得2k -2=-1,即k =12;将A 点坐标代入y 2=-3x +b 得-6+b=-1,即b =5 (2)从图象可以看出当x ≥2时,y 1≥y 2 (3)直线y 1=12x -2与x 轴的交点为(4,0),直线y 2=-3x +5与x 轴的交点为(53,0),从图象可以看出当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<024.(12分)甲,乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x 元,其中x >100.(1)根据题意,填写下表(物购计累 费花际实 130 290 … x 在甲商场127…在乙商场 126 …(2)当x 取何值时,(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?解:(1)271 100+(x -100)×90% 278 50+(x -50)×95% (2)根据题意得100+(x -100)×90%=50+(x -50)×95%,解得x =150.即当x =150时,小红在甲、乙两商场的实际花费相同 (3)由100+(x -100)×90%<50+(x -50)×95%,解得x >150;由100+(x -100)×90%>50+(x -50)×95%,解得x <150.∴当小红累计购物超过150元时,选择甲商场实际花费少,当小红累计购物超过100元而不到150元时,选择乙商场实际花费少25.(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲,乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件,则运输部门安排甲,乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x 件,则蔬菜有(x -80)件,由题意得x +(x -80)=320,解得x =200,∴x -80=120.则饮用水和蔬菜分别为200件和120件 (2)设租用甲种货车m 辆,则租用乙种货车(8-m )辆,由题意得⎩⎨⎧40m +20(8-m )≥200,10m +20(8-m )≥120,解得2≤m ≤4.∵m 为正整数,∴m =2或3或4.故安排甲、乙两种货车时有3种方案,设计方案分别为①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆 (3)3种方案的运费分别为①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.则运输部门应安排甲车2辆,乙车6辆,可使运费最少,最少运费是2960元第3章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B ,则点B 的坐标是( B ) A .(-5,3) B .(1,3) C .(1,-3) D .(-5,-1)2.如图,下列四个图形中,△ABC 经过旋转之后不能得到△A ′B ′C ′的是( D )3.(2016·青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是( B )4.如图,△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是( C )A .30°B .40°C .50°D .60°5.一个图形无论经过平移还是旋转,下列说法:①对应线段相等;②对应线段平行;③对应角相等;④图形的形状和大小都没有发生变化.其中正确的有( C )A.①②③B.①②④C.①③④D.②③④6.(2016·枣庄)已知点P(a+1,-a2+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )7.如图,将△ABC沿射线BC向右平移到△DCE的位置,连接AD,则下列结论:①AB∥CD;②AC=DE;③AD=BC;④∠B=∠ADC;⑤△ACD≌△EDC.其中正确的结论有( A )A.5个B.4个C.3个D.2个,第7题图),第8题图),第9题图),第10题图)8.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2.△A′B′C可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A,B′,A′在同一条直线上,则AA′的长为( A )A.6 B.4 3 C.3 3 D.39.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′是点B的对应点,点C′是点C的对应点),连接CC′,则∠CC′B′的度数是( D ) A.45°B.30°C.25°D.15°10.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为( C )A.(1,1) B.(2,2) C.(-1,1) D.(-2,2)二、填空题(每小题3分,共24分)11.如图,点D是等边三角形ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了__60__度.12.如图,△A′B′C′是由△ABC沿BC方向平移得到的,若BC=5 cm,AC=4.5 cm,B′C=2 cm,那么A′C′=__4.5__cm,A,A′两点之间的距离为__3__cm.,第11题图),第12题图),第14题图),第15题图)13.在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C,的对应点分别是A1,B1,C1,若点A1的坐标为(3,1),则点C1的坐标为__(7,-2)__.14.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为__2α__.15.如图,在△ABC中,∠BAC=115°,∠ACB=25°,把△ABC以AC为对称轴作对称变换得△ADC,又把△ABC绕点B逆时针旋转55°得△FBE,则∠α的度数为__145°__.16.如图,等腰直角三角形ABC的直角边AB的长为6 cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图中阴影部分的面积等于__63__cm2.,第16题图),第17题图),第18题图)17.如图是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的阴影部分构成一个中心对称图形,则这个白色小正形内的数字是__3__.18.如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α(0°<α<90°)后得到△DEC,设CD交AB于点F,连接AD,当旋转角α的度数为__40°或20°__时,△ADF是等腰三角形.三、解答题(共66分)19.(7分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6 cm,则BE=__6__cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.解:根据平移的性质得AC∥BE,∠ABC=∠BDE=100°,∴∠C=180°-∠CAB-∠ABC=180°-50°-100°=30°,由AC∥BE得∠CBE=∠C=30°20.(7分)如图,边长为4的正方形ABCD绕点D旋转30°后能与四边形A′B′C′D重合.(1)旋转中心是哪一点?(2)四边形A ′B ′C ′D 是什么图形?面积是多少?(3)求∠C ′DC 和∠CDA ′的度数;(4)连接AA ′,求∠DAA ′的度数.解:(1)点D (2)四边形A ′B ′C ′D ′是正方形,面积为4×4=16 (3)由题意得∠C ′DC =30°,∠CDA ′=90°-∠C ′DC =60° (4)∵AD =A ′D ,∠ADA ′=30°,∴∠DAA ′=(180°-30°)×12=75°21.(8分)(1)在平面直角坐标系中找出点A(-3,4),B(-4,1),C(-1,1),D(-2,3)并将它们依 次连接;(2)将(1)中所画图形先向右平移4个单位,再向下平移3个单位,画出第二次平移后的图形;(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?解:(1)画图略 (2)画图略 (3)将A 点与它的对应点A ′连接起来,则AA ′=32+42=5,∴将(1)中所画图形沿A 到A ′的方向平移5个单位长度得到(2)中所画图形.四边形A ′B ′C ′D ′与四边形ABCD 相比,对应点的横坐标分别增加了4,纵坐标分别减少了322.(10分)(2016·巴中)如图,方格中,每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图.(1)画出将△ABC 向右平移2个单位得到的△A 1B 1C 1;(2)画出将△ABC 绕点O 顺时针方向旋转90°得到的△A 2B 2C 2;(3)画出△ABC 关于原点对称的△A 3B 3C 3.解:图略23.(10分)如图,在△ABC中,∠BAC=120°,以BC为边向图形外作等边△BCD,把△ABD绕点D按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2.(1)求∠BAD的度数;(2)求AD的长.解:(1)因为△DCE是由△DBA旋转后得到的,∴DE=DA,∵∠BDC=60°,∴∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,∠BAD=∠BAC-∠DAE=120°-60°=60°(2)AD=AE =AC+CE=AC+AB=2+3=524.(12分)如图,在平面直角坐标系xOy中,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中△OMN的边NM重合;(3)求OE的长.解:(1)△OMN如图所示(2)△A′B′C′如图所示(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知B′C′平分∠A′B′O,且C′O⊥OB ′,∴B ′F =B ′O =OE =x ,FC ′=OC ′=OD =3.∵A ′C ′=AC =5,∴A ′F =52-32=4,∴A ′B ′=x +4,A ′O =5+3=8.在Rt △A ′B ′O 中,x 2+82=(4+x )2,解得x =6,即OE =625.(12分)如图,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得它们的斜边长为10 cm ,较小的锐角为30°,再将这两张三角形纸片摆成如图③的形状,且点B ,C ,F ,D 在同一条直线上,且点C 与点F 重合(在图③至图⑥中统一用F 表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决:(1)将图③中的△ABF 沿BD 向右平移到图④的位置,使点B 与点F 重合,请你求出平移的距离;(2)将图③中的△ABF 绕点F 顺时针方向旋转30°到图⑤的位置,A 1F 交DE 于点G ,请你求出线段FG 的长度;(3)将图③中的△ABF 沿直线AF 翻折到图⑥的位置,AB 1交DE 于点H ,请证明:AH =DH.解:(1)图形平移的距离就是线段BC 的长,∵在Rt △ABC 中,斜边长为10 cm ,∠BAC =30°,∴BC =5 cm.∴平移的距离为5 cm (2)∵∠A 1FA =30°,∴∠GFD =60°,又∵∠D =30°,∴∠FGD =90°.在Rt △DFG 中,由勾股定理得FD =5 3 cm ,∴FG =12FD =532cm (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,FD =FA ,EF =FB =FB 1,∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1.∴△AHE ≌△DHB 1(AAS ).∴AH =DH期中检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2016·哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是( D )2.若a >b ,则下列不等式变形错误的是( D )A .a +3>b +3 B.a 3>b 3C .2a -3>2b -3D .3-2a >3-2b3.(2016·临沂)不等式组⎩⎪⎨⎪⎧3x <2x +4,3-x 3≥2的解集,在数轴上表示正确的是( A )4.在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标是( D )A .(2,5)B .(-8,5)C .(-8,-1)D .(2,-1)5.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′等于( A )A .30°B .35°C .40°D .50°,第5题图) ,第6题图) ,第7题图),第8题图)6.在△ABC 中,∠C =90°,AD 平分∠BAC ,DE 垂直平分AB ,垂足为E.若CD =2,则BD 的长为( C )A .2B .3C .4D .57.如图,AD ⊥CD ,AE ⊥BE ,垂足分别为D ,E ,且AB =AC ,AD =AE.则下列结论:①△ABE ≌△ACD ;②AM =AN ;③△ABN ≌△ACM ;④BO =EO.其中正确的有( B )A .4个B .3个C .2个D .1个8.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC =5 cm ,△ADC 的周长为17 cm ,则BC 的长为( C )A .7 cmB .10 cmC .12 cmD .22 cm9.如图,已知MN 是△ABC 的边AB 的垂直平分线,垂足为点F ,∠CAB 的平分线AD 交BC 于点D ,且MN 与AD 交于点O ,连接BO 并延长交AC 于点E ,则下列结论中不一定成立的是( B ) A .∠CAD =∠BAD B .OE =OF C .AF =BF D .OA =OB,第9题图) ,第10题图)10.如图,将边为3的正方形ABCD 绕点A 沿逆时针方向旋转30°后得到正方形AEFH ,则图中阴影部分的面积为( B ) A.32- 3 B .3- 3 C .2- 3 D .2-32 二、填空题(每小题3分,共24分)11.如图,已知∠B =∠C ,添加一个条件使△ABD ≌△ACE(不标注新的字母,不添加辅助线).则添加的条件是__AB =AC (答案不唯一)__.12.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若AB =10 cm ,BC =8 cm ,BD =5 cm ,则△ABD 的面积为__15_cm 2__.,第11题图) ,第12题图) ,第13题图),第14题图)13.如图,在等边△ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为__33__.14.如图,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a +b =__2__.15.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围__a >-1__. 16.如图,OA ⊥OB ,△CDE 的边CD 在OB 上,∠ECD =45°,CE =4,若将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC 的长度为__2__.,第16题图) ,第17题图),第18题图)17.如图,点E 是正方形ABCD 内的一点,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =__135__°.18.如图,在△ABC 中,∠ACB =90°,AC =BC ,O 是AB 的中点,点D 在AC 上,点E 在BC 上,且∠DOE =90°.则下列结论:①OA =OB =OC ;②CD =BE ;③△ODE 是等腰直角三角形;④四边形CDOE 的面积等于△ABC 的面积的一半;⑤AD 2+BE 2=2OD 2;⑥CD +CE =2OA.其中正确的有__①②③④⑤⑥__(填序号)三、解答题(共66分)19.(8分)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E.(1)求证:△ACD ≌△AED ;(2)若∠B =30°,CD =1,求BD 的长.解:(1)∵AD 平分∠CAB ,∴∠CAD =∠EAD ,∵∠C =90°,DE ⊥AB ,∴∠C =∠DEA =90°,又∵AD =AD ,∴△ACD ≌△AED (AAS ) (2)∵DE ⊥AB ,∴∠DEB =90°,又∵由(1)得△ACD ≌△AED ,∴DE =CD =1,在Rt △BDE 中,∵∠B =30°,∴BD =2DE =220.(8分)解不等式组⎩⎪⎨⎪⎧3(x -1)<5x +1,x -12≥2x -4,并指出它的所有非负整数解. 解:解不等式组得-2<x ≤73,∴不等式组的非负整数解是0,1,221.(8分)如图,△ABO 与△CDO 关于O 点中心对称,点E ,F 在线段AC 上,且AF =CE.求证:FD =BE.解:根据中心对称的性质可得BO =DO ,AO =CO ,又∵AF =CE ,∴AO -AF =CO -CE ,即OF =OE.在△ODF 和△OBE 中,DO =BO ,∠DOF =∠BOE (对顶角相等),OF =OE ,∴△ODF ≌△OBE (SAS ),∴FD =BE22.(8分)如图,OA ⊥OB ,OA =45海里,OB =15海里,我国某岛位于O 点,我国渔政船在点B 处发现有一艘不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向该岛所在地O 点,我国渔政船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国渔政船行驶的航程BC.解:(1)如答图,连接AB,作AB的垂直平分线与OA交于点C.点C即为所求(2)连接BC,设BC=x海里,则CA=x海里,OC=(45-x)海里,在Rt△OBC中,BO2+OC2=BC2,即152+(45-x)2=x2,解得x=25.则我国渔政船行驶的航程BC为25海里23.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标.解:(1)图略(2)(2,-1)24.(12分)已知△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角形的斜边DF上.(1)利用图①证明:EF=2BC;(2)在三角板的平移过程中,在图②中线段EB =AH 是否始终成立(假定AB ,AC 与三角板斜边的交点为G ,H)?如果成立,请证明;如果不成立,请说明理由.解:(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC.∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC.∴CF =AC =BC ,∴EF =2BC (2)成立.∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC ,∵∠F =30°,∴∠CHF =60°-30°=30°.∴∠CHF =∠F .∴CH =CF .∵EF =2BC ,∴EB +CF =BC.又∵AH +CH =AC ,AC =BC ,∴EB =AH25.(12分)某文具商店销售功能相同的A ,B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售.设购买x 个A 品牌的计算器需要y 1元,购买x 个B 品牌的计算器需要y 2元,分别求出y 1,y 2关于x 的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.解:(1)设A 品牌计算器的单价为x 元,B 品牌计算器的单价为y 元,根据题意得⎩⎨⎧2x +3y =156,3x +y =122, 解得⎩⎨⎧x =30,y =32 (2)根据题意得y 1=0.8×30x ,即y 1=24x.当0≤x ≤5时,y 2=32x ;当x >5时,y 2=32×5+32(x -5)×0.7,即y 2=22.4x +48 (3)当购买数量超过5个时,y 2=22.4x +48.①当y 1<y 2时,24x <22.4x +48,解得x <30,即当购买数量超过5个而小于30个时,购买A 品牌的计算器更合算;②当y 1=y 2时,24x =22.4x +48,解得x =30,即当购买数量为30个时,购买A 品牌和B 品牌的计算器花费相同;③当y 1>y 2时,24x >22.4x +48,解得x >30,即当购买数量超过30个时,购买B 品牌的计算器更合算第4章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列从左边到右边的变形,属于因式分解的是( C )A .(3-x )(3+x )=9-x 2B .(y +1)(y -3)=-(3-y )(y +1)C .m 4-n 4=(m 2+n 2)(m +n )(m -n )D .4yz -2y 2z +z =2y (2z -yz )+z2.多项式mx 2-m 与多项式x 2-2x +1的公因式是( A )A .x -1B .x +1C .x 2-1D .(x -1)2 3.下列各式中,能用公式法分解因式的有( B )①-x 2-y 2;②-14a 2b 2+1;③a 2+ab +b 2;④-x 2+2xy -y 2;⑤14-mn +m 2n 2.A .2个B .3个C .4个D .5个4.把代数式3x 3-12x 2+12x 分解因式,结果正确的是( D ) A .3x (x 2-4x +4) B .3x (x -4)2 C .3x (x +2)(x -2) D .3x (x -2)25.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( B ) A .4x 2-4x +1=(2x -1)2 B .x 3-x =x (x 2-1) C .x 2y -xy 2=xy (x -y ) D .x 2-y 2=(x +y )(x -y ) 6.若a 2-b 2=14,a -b =12,则a +b 的值为( B )A .-12 B.12C .1D .27.已知多项式2x 2+bx +c 因式分解后为2(x -3)(x +1),则b ,c 的值为( D )A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 8.计算(-2)99+(-2)100的结果为( A ) A .299 B .2100 C .-299 D .-29.若多项式x 2-2(k -1)x +4是一个完全平方式,则k 的值为( D ) A .3 B .-1 C .3或0 D .3或-110.若三角形的三边长分别是a ,b ,c ,且满足a 2b -a 2c +b 2c -b 3=0,则这个三角形是( A ) A .等腰三角形 B .直角三角形C .等边三角形D .三角形的形状不确定 二、填空题(每小题3分,共24分)11.分解因式:4+12(x -y)+9(x -y)2=__(2+3x -3y )2__.12.若2a -b +1=0,则8a 2-8ab +2b 2的值为__2__.13.已知实数x ,y 满足x 2+4x +y 2-6y +13=0,则x +y 的值为__1__. 14.多项式2ax 2-8a 与多项式2x 2-8x +8的公因式为__2(x -2)__.15.若多项式(3x +2)(2x -5)+(5-2x)(2x -1)可分解为(2x +m)(x +n),其中m ,n 均为整数,则mn 的值为__-15__.16.已知长方形的面积为6m 2+60m +150(m >0),长与宽的比为3∶2,则这个长方形的周长为__10m +50__.17.已知代数式a 2+2a +2,当a =__-1__时,它有最小值,最小值为__1__.18.从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图甲,然后拼成一个平行四边形,如图乙,那么通过计算两个图形阴影部分的面积,可以验证成立的为__a 2-b 2=(a +b )(a -b )__.三、解答题(共66分)19.(12分)将下列各式分解因式:(1)2x 2y -8xy +8y; (2)a 2(x -y)-9b 2(x -y); 解:2y (x -2)2 解:(x -y )(a +3b )(a -3b )(3)9(m +2n )2-4(m -2n )2; (4)(y 2-1)2+6(1-y 2)+9. 解:(5m +2n )(m +10n ) 解:(y +2)2(y -2)220.(10分)先分解因式,再求值:(1)已知x -y =-23,求(x 2+y 2)2-4xy(x 2+y 2)+4x 2y 2的值;解:原式=(x -y )4,当x -y =-23时,原式=1681(2)已知x +y =1,xy =-12,求x (x +y )(x -y )-x (x +y )2的值.解:原式=-2xy (x +y ),当x +y =1,xy =-,原式=-2×(-12)×1=121.(6分)下列三个多项式:12x 3+2x 2-x ,12x 3+4x 2+x ,12x 3-2x 2,请选择你喜欢的两个多项式进行加法运算,再将结果因式分解.解:12x 3+2x 2-x +12x 3+4x 2+x =x 3+6x 2=x 2(x +6)(答案不唯一)22.(8分)甲,乙两同学分解因式x 2+mx +n ,甲看错了n ,分解结果为(x +2)(x +4);乙看错了m ,分解结果为(x +1)(x +9),请分析一下m ,n 的值及正确的分解过程.解:∵(x +2)(x +4)=x 2+6x +8,甲看错了n 的值,∴m =6,又∵(x +1)(x +9)=x 2+10x +9,乙看错了m 的值,∴n =9,∴原式为x 2+6x +9=(x +3)223.(8分)阅读下列解题过程:已知a,b,c为三角形的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4, (A)∴c2(a2-b2)=(a2+b2)(a2-b2), (B)则c2=a2+b2, (C)∴△ABC为直角三角形. (D)(1)上述解题过程中,从哪一步开始出现错误?请写出该步的代号__C__;(2)错误的原因__忽略了a2-b2=0,即a=b的可能__;(3)请写出正确的解答过程.解:∵a2c2-b2c2=a4b4,∴c2(a2-b2)=(a2+b2)(a2-b2),即c2(a2-b2)-(a2+b2)(a2-b2)=0,∴(a2-b2)(c2-a2-b2)=0,∴a2-b2=0或c2-a2-b2=0,即a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形24.(10分)有足够多的长方形和正方形的卡片,如图①(1)如果选取1号,2号,3号卡片分别为1张,2张,3张(如图②),可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系将多项式a2+3ab+2b2分解因式;(2)小明想用类似的方法将多项式2a2+7ab+3b2分解因式,那么需要1号卡片__2__张,2号卡片__3__张,3号卡片__7__张.试画出草图,写出将多项式2a2+7ab+3b2分解因式的结果.解:(1)画图略.a2+3ab+2b2=(a+b)(a+2b)(2)2,3,7.画图略.2a2+7ab+3b2=(2a+b)(a+3b)25.(12分)阅读下列计算过程:多项式x2-11x+24分解因式,可以采取以下两种方法:①将-11x拆成两项,即-6x-5x;将24拆成两项,即9+15,则:x2-11x+24=x2-6x+9-5x+15=(x2-6x+9)-5(x-3)=(x-3)2-5(x-3)=(x-3)(x-3-5)=(x-3)(x-8);②添加一个数(112)2,再减去这个数(112)2,则:x 2-11x +24=x 2-11x +(112)2-(112)2+24=[x 2-11x +(112)2]-254=(x -112)2-(52)2=(x -112+52)(x -112-52)=(x -3)(x -8). (1)根据上面的启发,请任选一种方法将多项式x 2+4x -12分解因式;(2)已知A =a +10,B =a 2-a +7,其中a >3,指出A 与B 哪个大,并说明理由.解:(1)x 2+4x -12=x 2+4x +4-16=(x +2)2-16=(x +6)(x -2) (2)B >A.理由:B -A =a 2-a +7-a -10=a 2-2a +1-4=(a -3)(a +1),∵a >3,∴a -3>0,a +1>0,∴B -A >0,即B >A第5章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( B )A .5B .4C .3D .22.若分式x 2-1x +1的值为零,则x 的值为( B )A .0B .1C .-1D .±1 3.在下列分式中,最简分式是( B ) A.x +1x 2-1 B.x +2x 2+1 C.y 2y 2 D.63y +34.下列各式从左到右的变形中正确的是( A ) A.x -12y12xy =2x -y xy B.0.2a +b a +2b =2a +b a +2b C .-x +1x -y =x -1x -y D.a +b a -b =a -b a +b5.计算a b +b a -a 2-b 2ab 的结果是( B )A.2a bB.2ba C.-2ab D.-2b a6.分式方程2x -2+3x 2-x =1的解为( A )A .1B .2 C.13D .0。

八年级下册数学(北师大版)第一次月考试题及答案

八年级下册数学(北师大版)第一次月考试题及答案

八年级数学试卷一参考答案及评分标准北师版一、选择题:(每题3分,共30分)二、填空题:(每小题3分,共24分)11、50°或80° 12、3 13、x <-5 14、4∶3 15、60︒16、-120 17、x ≦1 18、85三、解答题(19——26题,共66分)19(每小题3分,共12分)⑴ 6x ≤ ⑴x ﹤1 ⑴12x >- ⑴ 3x <20. 解:原方程化简为:2(x+m )-3(2x -1)=6m …………2分2x+2m -6x+3=6mx=-434-m …………4分 ∵方程解的负数 ∴-434-m ﹤0 ∴ 34m >…………6分 21.(本题6分)证明:∵∠A=∠D=90°,∴Rt △BAC 和Rt △CDB 中…………1分AC=BD ,BC=BC ,∴Rt △BAC ≌Rt △CDB .…………4分∴∠ACB=∠DBC .∴∠OCB=∠OBC .∴OB=OC …………6分22.(本题6分)证明:∵ AB =AC ,∴ ∠B =∠C .…………1分∵ DE ⊥BC 于点E ,∴∠FEB=∠FEC=90°.∴∠B+∠EDB=∠C+∠EFC=90°.∴∠EFC=∠EDB.…………4分∵∠EDB=∠ADF,∴∠EFC=∠ADF.∴△ADF是等腰三角形.…………6分23.(本题8分)解:∵∠C=90°,∠A=30°,∴∠ABC=60°,…………1分又∵BD是角平分线,∴∠ABD=∠DBC=30°,…………3分在Rt△BCD中,BD=2CD=10,…………4分又∵∠A=∠ABD=30°,∴AD=BD=10,…………6分∴AC=AD+DC=10+5=15(cm)…………8分24.(本题8分)解:(1)120×0.95=114(元).…………2分所以若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;…………3分(2)设购买商品的价格为x元,…………4分由题意得:0.8x+168<0.95x,…………5分解得:x>1120.…………7分所以当购买商品的价格超过1120元时,采用方案一更合算.…………8分25、(本题10分)解:BE=EC,BE⊥EC.…………2分理由如下:∵AC=2AB,点D是AC的中点,∴AB=AD=CD.…………3分∵∠EAD=∠EDA=45°,∴∠EAB=∠EDC=135°.…………5分∵EA=ED,∴△EAB≌△EDC.…………7分∴∠AEB=∠DEC,BE=EC.…………8分∴∠BEC=∠AED=90°.∴BE⊥EC.…………10分26、(本题10分)(1)证明:∵D是AB的中点,∴AD=BD.∵AG∥BC,∴∠GAD=∠FBD.∵∠ADG=∠BDF,…………3分∴△ADG≌△BDF.∴AG=BF.…………4分(2)连接EG,∵△ADG≌△BDF,∴GD=FD.∵DE⊥DF,∴EG=EF.…………6分∵AG∥BC,∠ACB=90°,∴∠EAG=90°.…………7分在Rt△EAG中,∵EG2=AE2+AG2=AE2+BF2∴EF2=AE2+BF2且AE=9,BF=18.…………9分10分说明:以上各题如有其他解(证)法,请酌情给分。

北师大八年级数学下册第二学期月考试卷.docx

北师大八年级数学下册第二学期月考试卷.docx

初中数学试卷 桑水出品八年级第二学期月考数学试卷一、选择题(每题3分,共30分)1.下列等式从左到右的变形为分解因式的是( )。

A .1)1)(1(2-=-+x x xB .4)2(3463222+-=+-x x x x C .()1111222a ab a b -=- D .22111242x x x ⎛⎫++=+ ⎪⎝⎭2.下列因式分解正确的是( )A .(x+2y )2=x 2+4xy+4y 2B .-x 2+2xy -y 2=(x -y )2C .(x -y )2+4xy=(x+y )2D .(2x+y )2-(x+2y )2=(3x+3y )(x -y )3.把多项式3m (x -y )-2(y -x )2分解因式的结果是( )A .(x -y )(3m -2x -2y )B .(x -y )(3m -2x+2y )C .(x -y )(3m+2x -2y )D .(y -x )(3m+2x -2y )4.若281(9)(3)(3)n x x x x -=++-,则n 等于( )。

A .2B .4C .6D .85.如果多项式x 2-mx -35分解因式为(x -5)(x+7),则m 的值为( )A .-2B .2C .12D .-12 6.代数式234251,,,,,28x x x y x y mπ+++中,是分式的有( ) A .1个 B .2个 C .3个 D .4个7.若把分式xyy x 2+中的x 和y 都扩大3倍,且0≠+y x ,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍8.“五·一”期间,几名同学包租一辆面包车前去旅游,面包车的租价为160元,出发时又增加了两名学生,结果每个学生比原来少出3元车费,若设参加旅游的学生共有x 人,则所列方程为( )A .160x -1602x +=3 B .1602x +-160x =3 C .160x -1602x -=3 D .1602x --160x =3 9.化简223111a a a a ++---+1等于( ) A .-11a + B .1a a + C .11a a -+ D .11a a +- 10.若关于x 的方程33211+=-++ax x x x 有增根1=-x ,则23a -的值为( )。

【新】北师大版八年级下册第一次月考数学试卷含答案 (2)

【新】北师大版八年级下册第一次月考数学试卷含答案 (2)

八年级(下)第一次月考数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或123.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>44.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣26.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.57.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.68.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥310.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三.解答题:本大题共6小题,满分56分.17.解不等式:.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的性质1,可判断A、B;根据不等式的性质2,可判断C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号的方向不变,故B正确;C、不等式的两边都乘以,不等号的方向不变,故C正确;D、不等式的两边都乘以﹣3,不等号的方向改变,故D错误;故选:D.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12【考点】等腰三角形的性质;三角形三边关系.【分析】分2是腰长与底边长两种情况讨论求解.【解答】解:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,综上所述,它的周长是10.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系进行判定.3.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>4【考点】解一元一次不等式;一元一次方程的解.【分析】把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.【解答】解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C.【点评】本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.4.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【考点】一元一次不等式的整数解.【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选D.【点评】此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.6.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.5【考点】勾股定理;等腰三角形的性质.【专题】动点型.【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.【解答】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.【点评】本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.7.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.6【考点】含30度角的直角三角形;等腰三角形的性质.【专题】计算题.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD 的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥3【考点】一次函数与一元一次不等式.【分析】把点的坐标代入直线方程得到a=﹣,然后将其代入不等式组﹣3≤a<0,通过不等式的性质来求k的取值范围.【解答】解:把点(0,3)(a,0)代入y=kx+b,得b=3.则a=﹣,∵﹣3≤a<0,∴﹣3≤﹣<0,解得:k≥1.故选C.【点评】本题考查了一次函数与一元一次不等式.把点的坐标代入直线方程得到a=﹣是解题的关键.10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:A.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.【点评】考查了解一元一次不等式,解答此题的关键是掌握不等式的性质,(1)不等式两边同加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边同乘(或同除以)同一个正数,不等号的方向不变;(2)不等式两边同乘(或同除以)同一个负数,不等号的方向改变.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是3.【考点】勾股定理.【分析】根据勾股定理得出a2+b2的值,再利用完全平方公式求出ab的值.【解答】解:∵a、b是直角三角形的两条直角边,直角三角形的周长为6,斜边长为2.5,∴a+b=3.5,a2+b2=2.52=6.25,(a+b)2=12.25,∴a2+b2+2ab=12.25,∴2ab=6,解得:ab=3.故答案为:3.【点评】此题主要考查了勾股定理以及完全平方公式,正确应用完全平方公式是解题关键.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是①②④.(填写所有真命题的序号)【考点】命题与定理;平行线的判定与性质.【专题】推理填空题.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①如果a∥b,a⊥c,那么b⊥c是真命题,故①正确;②如果b∥a,c∥a,那么b∥c是真命题,故②正确;③如果b⊥a,c⊥a,那么b⊥c是假命题,故③错误;④如果b⊥a,c⊥a,那么b∥c是真命题,故④正确.故答案为:①②④.【点评】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,难度适中.14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为x>.【考点】一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x>ax+4的解集即可.【解答】解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式2x>ax+4的解集为x>.故答案为:,【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【考点】等边三角形的判定与性质;三角形的重心;三角形中位线定理.【专题】压轴题.【分析】根据等边三角形的性质,可得AD的长,∠ABG=∠HBD=30°,根据等边三角形的判定,可得△MEH的形状,根据直角三角形的判定,可得△FIN的形状,根据面积的和差,可得答案.【解答】解:如图所示:,由△ABC是等边三角形,高AD、BE相交于点H,BC=4,得AD=BE=BC=6,∠ABG=∠HBD=30°.由直角三角的性质,得∠BHD=90°﹣∠HBD=60°.由对顶角相等,得∠MHE=∠BHD=60°由BG=2,得EG=BE﹣BG=6﹣2=4.由GE为边作等边三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE是等边三角形;S△ABC=AC•BE=AC×EH×3EH=BE=×6=2.由三角形外角的性质,得∠BIG=∠FGE﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=.=S△EFG﹣S△EMH﹣S△FINS五边形NIGHM=×42﹣×22﹣××1=,故答案为:.【点评】本题考查了等边三角形的判定与性质,利用了等边三角形的判定与性质,直角三角形的判定,利用图形的割补法是求面积的关键.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为或.【考点】勾股定理;等腰直角三角形.【专题】分类讨论.【分析】分①点A、D在BC的两侧,设AD与边BC相交于点E,根据等腰直角三角形的性质求出AD,再求出BE=DE=AD并得到BE⊥AD,然后求出CE,在Rt△CDE中,利用勾股定理列式计算即可得解;②点A、D在BC的同侧,根据等腰直角三角形的性质可得BD=AB,过点D作DE⊥BC 交BC的反向延长线于E,判定△BDE是等腰直角三角形,然后求出DE=BE=2,再求出CE,然后在Rt△CDE中,利用勾股定理列式计算即可得解.【解答】解:①如图1,点A、D在BC的两侧,∵△ABD是等腰直角三角形,∴AD=AB=×2=4,∵∠ABC=45°,∴BE=DE=AD=×4=2,BE⊥AD,∵BC=1,∴CE=BE﹣BC=2﹣1=1,在Rt△CDE中,CD===;②如图2,点A、D在BC的同侧,∵△ABD是等腰直角三角形,∴BD=AB=2,过点D作DE⊥BC交BC的反向延长线于E,则△BDE是等腰直角三角形,∴DE=BE=×2=2,∵BC=1,∴CE=BE+BC=2+1=3,在Rt△CDE中,CD===,综上所述,线段CD的长为或.故答案为:或.【点评】本题考查了勾股定理,等腰直角三角形的性质,难点在于要分情况讨论,作出图形更形象直观.三.解答题:本大题共6小题,满分56分.17.解不等式:.【考点】解一元一次不等式.【分析】利用不等式的基本性质,即可求得原不等式的解集.【解答】解:去分母得:6(5x+1)﹣3(x﹣2)>2(5x﹣1)+4(x﹣3),去括号得:0x+6﹣3x+6>10x﹣2+4x﹣12,移项得:30x﹣3x﹣10x﹣4x>﹣2﹣12﹣6﹣6,合并同类项得:13x>﹣26,系数化为1得:x>﹣13.【点评】本题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.【考点】二元一次方程组的解;解一元一次不等式.【专题】计算题;一次方程(组)及应用;一元一次不等式(组)及应用.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:方程组,解得:,∴x+y=1+a,∵x+y<2,∴1+a<2,解得:a<4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质.【分析】(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.首先根据OC是∠AOB的平分线,CD∥OB,判断出∠DOC=∠DC0,所以OD=CD=DM+CM;然后根据E是线段OC的中点,CD∥OB,推得CM=ON,即可判断出OD=DM+ON,据此解答即可.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.由(1),可得OD=DC=CM﹣DM,再根据CM=ON,推得OD=ON﹣DM即可.【解答】解:(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.证明:如图1,,∵OC是∠AOB的平分线,∴∠DOC=∠C0B,又∵CD∥OB,∴∠DCO=∠C0B,∴∠DOC=∠DC0,∴OD=CD=DM+CM,∵E是线段OC的中点,∴CE=OE,∵CD∥OB,∴,∴CM=ON,又∵OD=DM+CM,∴OD=DM+ON.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.证明:如图2,,由(1),可得OD=DC=CM﹣DM,又∵CM=ON,∴OD=DC=CM﹣DM=ON﹣DM,即OD=ON﹣DM.【点评】(1)此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.(2)此题还考查了等腰三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.【考点】全等三角形的判定与性质.【分析】连接BE,根据已知条件先证出∠BCE=∠ACD,根据SAS证出△ACD≌△BCE,得出AD=BE,再根据勾股定理求出AB,然后根据∠BAC=∠CAE=45°,求出∠BAE=90°,在Rt△BAE中,根据AB、AE的值,求出BE,从而得出AD.【解答】解:如图,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE====9,∴AD=9.【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、勾股定理,关键是根据题意作出辅助线,证出△ACD≌△BCE.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?【考点】一次函数的应用.【分析】(1)根据题意可知进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,由此可得出y与x的关系式;(2)先求出x的取值范围,再由x为整数即可得出结论.【解答】解:(1)根据题意得,进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,y=4000×(0.7x﹣9)+10000×(9﹣0.3x)=﹣200x+54000;(2)根据题意得,0.4x≥9﹣0.3x,解得x≥12,∴x的取值是12≤x≤30的整数.∵k=﹣200<0,∴y随x的增大而减小,∴当x=13时利润最大,即13名工人进行苹果采摘,17名工人进行加工,获利最大.【点评】本题考查的是一次函数的应用,根据题意列出关于x、y的关系式是解答此题的关键.22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【专题】证明题;几何综合题.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM 全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”证明△ADE和△CDN全等,根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键,难点在于最后一问根据角的度数得到相等的角.。

2022-2023学年北师大版八年级下数学月考试卷(含解析)

2022-2023学年北师大版八年级下数学月考试卷(含解析)

2022-2023学年初中八年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1. 下列汽车标志中,可以看作是中心对称图形的是 A. B. C. D.2. 等腰三角形的两边长分别为和,则此三角形的周长是( )A.B.C.D.或3. 已知,都是实数,且,则下列不等式的变形正确的是( )A.B.C.()5cm 10cm 15cm20cm25cm20cm 25cma b a <b 3a <3b−a +1<−b +1a +x >b +xbD.4. 如图,点,分别是的边和边上的点,且,=,是的角平分线,则的度数为A.B.C.D.5. 如图,在三角形中,,将此三角形绕点按顺时针方向旋转后得到三角形 ,若点 恰好落在线段上,,交于点,则的度数是 ( )A.B.C.D.6. 若不等式组的解为,则的取值范围是A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )>a 2b 2D E △ABC AB AC DE //BC ∠AED 64∘EC ∠DEB ∠ECB ()78∘68∘58∘48∘ABC ∠ACB =,∠B =90∘50∘C C A ′B ′B ′AB AC A ′B ′O ∠COA ′80∘70∘60∘50∘{x +2>2x −6,x <m x <8m ( )m ≥8m ≤8m <8m >87. 若,那么________(填“”“”或“”).8. 如图,在等边中,将绕顶点顺时针旋转,旋转角为,得到 .设的中点为,的中点为,,连接.当时,的长度为________;设 在整个旋转过程中,的取值范围是________A D 人\ B 第题图9. 如图,中,,的垂直平分线交于点,交于点,________.11. 不等式组的非负整数解为________.12. 如图,为等腰三角形的外接圆,是的直径,,为上任意一点(不与点,重合),直线交的延长线于点,在点处的切线交于点,则下列结论:①若,则的长为;②若,则AP 平分;③若,则;④无论点在上的位置如何变化,.其中正确结论的序号为________.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )a <b −2a +9−2b +9><=△ABC △ABC C a (<α<)0∘180∘ΔC A 1B 1AC D A 1B 1M AC =2MD a =60∘MD MD =x,x Ar ck NY t B 114△ABC ∠C =90∘AB BC D AB E ∠DAC =,∠B =20∘{x +2<3,−2x <4⊙O ABC AB ⊙O AB=12P BCˆB C CP AB Q ⊙O P PD BQ D ∠PAB =30∘PB ˆπPD //BC ∠CAB PB =BD PD =63–√P BC ˆCQ ⋅CP =108>−3x −2x +413. 解不等式,并把它的解集在数轴上表示出来. 14. 解不等式组:15. 已知:如图在中,是角平分线, ,, ,求的度数.16. 如图,沿方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从上的一点取,米, .那么另一边开挖点离多远正好使,,三点在一直线上(,结果精确到米)?17. 已知一次函数.(1)画出函数图象;(2)说出不等式解集是________;不等式解集是________;(3)求出函数图象与坐标轴的两个交点之间的距离.18. 在网格中建立如图所示的平面直角坐标系,是格点三角形(顶点是网格线的交点).−>−3x −25x +42x −(x −2)≤5,32>3x −1.1+5x 2△ABC BD DE//BC ∠A =60∘∠BDC =80∘∠BDE AC AC B ∠ABD =120∘BD =400∠D =30∘E D A C E ≈1.7323–√1y =−2x −6−2x −6>0−2x −6<010×10△ABC画出绕点逆时针方向旋转得到的;画出向下平移个单位长度得到的.19. 如图,等边三角形的边长为,为边上的一点,延长至,使,连接,交于点.求证若为的中点,求的长.20. 年月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进、两种类型的便携式风扇到地摊一条街出售.已知台型风扇和台型风扇进价共元,台型风扇和台型风扇进价共元.求型风扇、型风扇进货的单价各是多少元?小丹准备购进这两种风扇共台,根据市场调查发现,型风扇销售情况比型风扇好,小丹准备多购进型风扇,但数量不超过型风扇数量的倍,购进、两种风扇的总金额不超过元.根据以上信息,小丹共有哪几种进货方案?哪种进货方案费用最低?最低费用为多少? 21. 如图是实验室中的一种摆动装置,(虚线三角形)是底边为的等腰直角三角形,摆动臂可绕点旋转,摆动臂可绕点旋转,,.(1)△ABC O 90∘△A 1B 1C 1(2)△A 1B 1C 14△A 2B 2C 2ABC 2D AC AB E BE =CD DE BC P (1)DP =PE(2)D AC BP 20205A B 2A 5B 1003A 2B 62(1)A B (2)100A B A B 3A B 1170△ABC BC AD A DM D AD =30DM =10(1)A AM在旋转过程中,当,,三点在同一直线上时,的长为________;在旋转过程中,当,,三点为同一直角三角形的顶点时,求的长.22. 阅读理解题在平面直角坐标系中,点到直线的距离公式为:,例如,求点到直线的距离.解:由直线知:,,所以到直线的距离为:根据以上材料,解决下列问题:(1)求点到直线的距离.(2)若点到直线的距离为,求实数的值.23. 如图,一次函数与二次函数的图象交于,两点.利用图中条件,求两个函数的解析式;根据图象写出使的的取值范围为________.(1)A D M AM (2)A D M AM xOy P(,)x 0y 0Ax +By +C =0(+≠0)A 2B 2d =|A +B +C |x 0y 0+A 2B2−−−−−−−√P(1,3)4x +3y −3=04x +3y −3=0A =4B =3C =−3P(1,3)4x +3y −3=0d ==2|4×1+3×3−3|+4232−−−−−−√(0,0)P 13x −4y −5=0(1,0)P 2x +y +C =02–√C =kx +b y 1=a y 2x 2A(−1,n)B(2,4)(1)(2)<y 1y 2x参考答案与试题解析2022-2023学年初中八年级下数学月考试卷一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1.【答案】A【考点】中心对称图形【解析】根据中心对称图形的性质得出图形旋转,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.【解答】解:,旋转,与原图形能够完全重合是中心对称图形,故符合题意;,旋转,不能与原图形能够完全重合不是中心对称图形,故不符合题意;,旋转,不能与原图形能够完全重合不是中心对称图形,故不符合题意;,旋转,不能与原图形能够完全重合不是中心对称图形,故不符合题意;故选.2.【答案】C【考点】等腰三角形的性质【解析】分是腰长和底边两种情况讨论求解即可.【解答】解:是腰长时,三角形的三边分别为,,,∵,∴不能组成三角形;是腰长时,三角形的三边分别为,,,,能组成三角形,周长,综上所述,此三角形的周长是.180∘A 180∘B 180∘C 180∘D 180∘A 5cm 5cm 5cm 5cm 10cm 5+5=1010cm 5cm 10cm 10cm ∵5+10>10=5+10+10=25(cm)25cm C故选.3.【答案】A【考点】不等式的性质【解析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】、不等式的两边都乘以,不等号的方向不变,故正确;、不等式的两边都乘以,不等号的方向改变,故错误;、不等式的两边都加同一个整式,不等号的方向不变,故错误;、不等式的两边都除以,不等号的方向改变,故错误;4.【答案】C【考点】角平分线的性质平行线的性质【解析】首先根据角平分线的定义求出的度数,然后根据平行线的性质得到的度数.【解答】解:∵=,∴==,∵是的角平分线,∴==,∵,∴=,∴=.故选.5.【答案】C A 3A B −1B C CD 2D ∠DEC ∠ECB ∠AED 64∘∠DEB −180∘64∘116∘EC ∠DEB ∠DEC ∠CEB =∠DEB =×1212116∘58∘DE //BC ∠DEC ∠ECB ∠ECB 58∘CC【考点】旋转的性质【解析】【解答】解:∵在三角形中,=,=,∴==.由旋转的性质可知:=,∴==.又∵==,∴=,∴====.故选.6.【答案】A【考点】解一元一次不等式组【解析】分别解出不等式组中每一个不等式的解集,再根据同小取小及不等式组的解集为 ,从而得出的取值范围.【解答】解:由①得:,由②得:.∵不等式组的解集为,∴.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7.【答案】ABC ∠ACB 90∘∠B 50∘∠A −∠ACB −∠B 180∘40∘BC B'C ∠B ∠BB'C 50∘∠BB'C ∠A +∠ACB'+∠ACB'40∘∠ACB'10∘∠COA'∠AOB'∠OB'C +∠ACB'∠B +∠ACB'60∘C x <8m {x +2>2x −6,①x <m,②x <8x <m x <8m ≥8A >【考点】不等式的性质【解析】不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.【解答】解:∵,∴,∴.故答案为:.8.【答案】;【考点】旋转的性质作图-旋转变换勾股定理坐标与图形变化-旋转三角形中位线定理【解析】。

2022-2023学年北师大版八年级下数学月考试卷(含解析)

2022-2023学年北师大版八年级下数学月考试卷(含解析)

2022-2023学年初中八年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:110 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 如果,那么下列不等式中一定成立的是 A.B.C.D.2. 下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3. 下列各式中,从左到右的变形是因式分解的是( )a >b ()1−a >1−b1212a >b c 2c 2>a 2b 2a(+1)>b(+1)c 2c 22−2a +122a(a −1)+1A.=B.=C.=D.= 4.如图,在▱中,已知,,平分交于点,则的值为A.B.C.D.5. 若从边形的一个顶点出发,最多可以作条对角线,则该边形的内角和是( )A.B.C.D.6. 如图,在中,=,点是上的点,且=,垂直平分,垂足是.如果=,则等于( )A.B.C.D.7. 如图,平行四边形中, ,,对角线,相交于点,过点的直线分别交,于点,,且,则四边形的周长是( )2−2a +1a 22a(a −1)+1(x +y)(x −y)−x 2y 2−6x +5x 2(x −5)(x −1)+x 2y 2(x −y +2xy)2ABCD AB =5AD =2DE ∠ADC AB E BE ( )32.53.52n 3n 540∘720∘900∘1080∘△ABC ∠C 90∘E AC ∠1∠2DE AB D EC 4cm AE 10cm8cm6cm5cmABCD AB =8BC =10AC BD O O AD BC E F OE =3EFCDA.B.C.D.8. 关于的分式方程的解是正数,则的取值范围是( )A.且B.C.且且D.且9. 如图,在中, ,,过点作,垂足为,点为的中点,与交于点,若的长为,则的长为()A.B.C.D.10. 如图,正方形中,点为对角线的交点,点为正方形外一点,且满足,连接,若 ,则四边形的面积为( )20242832x −1=x x −1a (x −1)(x −2)a a >2a ≠−1a <2a >−2a ≠−1a ≠0a >−2a ≠0Rt △ABC ∠ACB =90∘AC =BC C CD ⊥AB D E BC AE CD F DF 2–√3AE 2–√22–√5–√25–√ABCD O P ∠BPC =90∘PO PO =4OBPCA.B.C.D.卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 若分式的值为零,则的值为________.12. 如图,平行四边形的周长为,,平分交的延长线于,则________.13. 如果不等式组的解集为,那么的取值范围是为________.14. 如图,在平行四边形中,连接,且,过点作于点,过点作于点,且,在的延长线上取一点,满足,则________.681016−4x 22−5x +2x 2x ABCD 10AB =2BE ∠ABC CD E DE ={x <5,x ≤mx <5m ABCD BD BD =CD A AM ⊥BD M D DN ⊥AB N DN =6DB P ∠ABD =∠MAP +∠PAB AP =▱ABCD AC O O AD BC15. 如图, 的对角线、相交于点,经过点,分别交、于点、,已知的面积是 ,则图中阴影部分的面积是________.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )16. 分解因式与解方程:分解因式:;解分式方程:.17. 先化简,再求值:,其中满足.18. 如图,点是正方形外一点,点下是线段上一点,是等腰直角三角形,其中,连接、.求证:;若,,求.19. 如图,在平面直角坐标系中,一次函数的图象与轴交于点 ,与轴交于点,且与正比例函数的图象交点为.求正比例函数与一次函数的关系式;若点在第二象限, 是以为直角边的等腰直角三角形,请求出点的坐标;在轴上是否存在一点使周长最小,若存在,求出点的坐标;在轴上求一点使为等腰三角形,请直接写出所有符合条件的点的坐标.20. 如图,在平面直角坐标系中,已知,,点在第一象限,=,=.▱ABCD AC BD O EF O AD BC E F ▱ABCD 100cm 2(1)a −2axy +a x 2y 2(2)+1=4x 3x +3x x +1(1−)÷−3x +2x −1+2x x 2x x +1x −x −1=0x 2E ABCD AE △EBF ∠EBF =90∘CE CF (1)△ABF ≅△CBE (2)AF =2BF =3tan ∠CFE xOy y =x +b k 1x A (−3,0)y B y =kx C(3,4)(1)(2)D △DAB AB D (3)x E △BCE E (4)x P △POC P A(0,2)B(1,0)C AB AC ∠BAC 90∘(1)求点到轴的距离;(2)点的坐标为________. 21. 某商场计划购进、两种品牌的卡通笔袋,品牌笔袋的进价是品牌笔袋的进价的倍,用元购进品牌笔袋的件数比用元购进品牌笔袋的件数少件.求每件品牌笔袋、品牌笔袋的进价分别是多少元?商场计划用元来购进、两种品牌笔袋,其中、两种品牌笔袋的总数量至少为件,设品牌笔袋购进件,那么品牌笔袋最多购进多少件?在的条件下,若品牌笔袋每件的售价是元,品牌笔袋每件的售价元,若、两种品牌笔袋全部售完,请求出总利润与的表达式?并求该超市利润最低是多少元? 22.如图,在正方形中,点,都在对角线上, . 求证:(1);(2)四边形是菱形.C y C A B A B 21004100B 10(1)A B (2)500A B A B 60A a A (3)(1)(2)A 15B 8A B W a ABCDEF AC ∠ABE =∠CBF BE =BF BEDF参考答案与试题解析2022-2023学年初中八年级下数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】D【考点】不等式的性质【解析】不等式的基本性质是解不等式的主要依据,分析中注意不等式的基本性质是有条件的,要确定符合其中的条件,再运用相关性质得出结论.【解答】解:,不等式的两边都乘以,不等号的方向改变,可得,不等式的两边都加上,不等号的方向不变,可得,故错误;,当时,,故错误;,时,,故错误;,不等式的两边都乘以,因为,不等号的方向不变,故正确.故选.2.【答案】B【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】解:,是轴对称图形,不是中心对称图形;,既是轴对称图形,也是中心对称图形;A −12−a <−b 121211−a <1−b 1212A B c=0ac 2=bc 2B C a <0<a 2b 2C D (+1)c 2+1>0c 2D D A B C,既不是轴对称图形,也不是中心对称图形;,既不是轴对称图形,也不是中心对称图形.故选.3.【答案】C【考点】因式分解的概念因式分解【解析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【解答】、=,等号的右边不是整式的积的形式,故此选项不符合题意;、=,这是整式的乘法,故此选项不符合题意;、=,是因式分解,故此选项符合题意;、=,等号的右边不是整式的积的形式,故此选项不符合题意;4.【答案】A【考点】平行四边形的性质等腰三角形的性质角平分线的定义【解析】根据平行四边形性质得出==,==,,求出=,推出==,代入=求出即可.【解答】解:∵四边形是平行四边形,,,∴,,,∴.∵平分,∴,∴,∴,∴.C D B A 2−2a +1a 22a(a −1)+1B (x +y)(x −y)−x 2y 2C x2−6x +5(x −5)(x −1)D +x 2y 2(x −y +2xy )2AD BC 2AB CD 5AB //CD ∠EDC ∠DEC AE DA 2BE BA −AE ABCD AD =2AB =5AD=BC =2AB=CD =5AB //CD ∠AED=∠CDE DE ∠ADC ∠ADE=∠EDC ∠ADE=∠AED AE =DA =2BE =BA −AE =3A故选.5.【答案】B【考点】多边形的内角和多边形的对角线【解析】本题考查了多边形内角和与对角线.【解答】解:∵从边形的一个顶点出发,最多可以作条对角线,∴,∴该边形的内角和为:.故选.6.【答案】B【考点】线段垂直平分线的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】B【考点】平行四边形的性质全等三角形的性质与判定【解析】A n 3n =6n (6−2)×180°=720°B CD =AB =8AD =BC =10根据平行四边形的对边相等得: ,,再根据平行四边形的性质和对顶角相等可以证明: ,根据全等三角形的性质,得:,,故四边形的周长为.【解答】解:四边形是平行四边形,,,,,,.在和中,,,,故四边形的周长为.故选.8.【答案】C【考点】分式方程的解【解析】【解答】解:,,,.要使方程有解,则且,即且 ;要使方程解为正数,则,即.综上,且且 .故选.9.【答案】C【考点】CD =AB =8AD =BC =10△AOE ≅△COF OF =OE =3CF =AE EFCD CD +EF +AD =24∵ABCD ∴CD =AB =8AD =BC =10OA =OC AD//BC ∴∠EAO =∠FCO ∠AEO =∠CFO △AOE △COF ∠EAO =∠FCO ,∠AEO =∠CFO ,OA =OC ,∴△AOE ≅△COF (AAS)∴OF =OE =3CF =AE EFCD CD +EF +AD =8+6+10=24B −1=xx −1a(x −1)(x −2)=1x −1a (x −1)(x −2)=x −2(x −1)(x −2)a(x −1)(x −2)x =a +2x ≠1x ≠2a ≠−1a ≠0a +2>0a >−2a >−2a ≠−1a ≠0C直角三角形斜边上的中线三角形中位线定理勾股定理等腰三角形的性质:三线合一相似三角形的性质与判定【解析】此题暂无解析【解答】解:连接,如图所示,在中,,,∴为等腰直角三角形.∵,∴,∴为等腰直角三角形.∵为的中点,∴是的中位线,,∴,,∴,∴.∵,∴,∴,∴,∴,在中,.故选.10.【答案】DE Rt △ABC ∠ACB =90∘AC =BC △ABC CD ⊥AB AD =BD =CD =AB 12△BCD E BC DE △ABC BE =CE =DEDE//AC DE =AC 12△DEF ∽△CAF ==DF CF DE AC 12DF =2–√3CF =22–√3CD =BD =2–√BE =CE =DE =1AC =2Rt △ABC AE ===C +A E 2C 2−−−−−−−−−−√+1222−−−−−−√5–√C正方形的性质全等三角形的性质与判定旋转的性质等腰三角形的判定与性质三角形的面积【解析】此题暂无解析【解答】解:将顺时针旋转形成,四边形为正方形,,,,,,,,点、点与点在一条直线上,由旋转而来,,,为等腰直角三角形,,,故四边形的面积为.故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )△OCP 90∘△OBQ ∵ABCD ∴CO =OB ∠COB =90∘∵∠BPC =90∘∴∠OCP +∠OBP =180∘∵△OBQ ≅△OCP ∴∠OCP =∠OBQ ∴∠OBQ +∠OBP =180∘∴Q B P ∵△OBQ △OCP 90∘∴OQ =OP =4∠QOP =90∘∴△QOP ∴=×OP ×OQ =8S △QOP 12∴S 四边形OBPC=+S △OCP S △OBP=+S △OBQ S △OBP=S △QOP=8OBPC 8B【考点】分式值为零的条件【解析】分式的值为零时,分子等于零,分母不等于零.【解答】解:依题意,得,且,所以,且,解得,,所以.故答案为:.12.【答案】【考点】平行四边形的性质角平分线的定义等腰三角形的性质【解析】根据平行四边形性质,角平分线的性质求解.【解答】解:设和的交点为,平行四边形周长为,且,故,平分,,−2−4=0x 22−5x +2≠0x 2(x −2)(x +2)=0(2x −1)(x −2)≠0x +2=0x =−2−21BE AD O ∵ABCD 10AB =2AD =BC =3∵BE ∠ABC ∴∠ABE =∠EBC ∵AB//EC,,又,,,,则.故答案为:.13.【答案】【考点】不等式的解集解一元一次不等式组【解析】根据“同小取较小”的原则进行解答即可.【解答】解:∵不等式组的解集为,∴,故答案为:.14.【答案】【考点】平行四边形的性质勾股定理等腰直角三角形【解析】根据,,可得,再根据,,即可得到,依据,,即可得到是等腰直角三角形,即可得到的值.【解答】解: ,,.∵AB//EC ∴∠ABE =∠BED AD//BC ∴∠AOB =∠OBC ∴∠OBC =∠BEC ∴BC =CE =3DE =CE −CD =3−2=11m ≥5{x <5,x ≤mx <5m ≥5m ≥562–√BD =CD AB =CD BD =BA AM ⊥BD DN ⊥AB DN =AM =6∠ABD =∠MAP +∠PAB ∠ABD =∠P +∠BAP △APM AP ∵BD =CD AB =CD ∴BD =BA ∵AM ⊥BD DN ⊥AB又,,.,,,是等腰直角三角形,,.故答案为:.15.【答案】【考点】全等三角形的性质与判定平行四边形的性质【解析】先证和全等,再根据割补法得出阴影部分面积和平行四边形面积之间的关系,即可解答.【解答】解:在平行四边形中,,∴.在和中,∴,∴,∴.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )16.【答案】解:原式.方程两边同乘以得:,解得:.经检验:是原分式方程的解.∵AM ⊥BD DN ⊥AB ∴DN =AM =6∵∠ABD =∠MAP +∠PAB ∠ABD =∠P +∠BAP ∴∠P =∠PAM ∴△APM ∴AP =PM ∴AP ==6A +P M 2M 2−−−−−−−−−−−√2–√62–√25cm 2△ODE △OBF ABCD AD//BC,OD =OB∠EDO =∠FBO △ODE △OBF ∠ODE =∠OBF ,OD =OB ,∠DOE =∠BOF ,△DOE ≅△BOF =S △DOE S △BOF =+=+S 阴影S △AOE S △BOF S △AOE S △DOE ===25c S △AOD 14S ▱ABCD m 225cm 2(1)=a(−2xy +)x 2y 2=a( x − y)2(2)3(x +1)4x +3(x +1)=3x x =−34x =−34【考点】解分式方程——可化为一元一次方程提公因式法与公式法的综合运用【解析】(1)首先提取公因式,再运用完全平方公式分解即可;(2)根据解分式方程步骤解方程即可,但要注意验根.【解答】解:原式.方程两边同乘以得:,解得:.经检验:是原分式方程的解.17.【答案】解:原式,∵,∴,则原式.【考点】分式的化简求值【解析】原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值.【解答】解:原式,∵,∴,a (1)=a(−2xy +)x 2y 2=a( x − y)2(2)3(x +1)4x +3(x +1)=3x x =−34x =−34=⋅−x +2−3x +2x(x +2)x −1x x +1=⋅−=x −=x −1x +2x(x +2)x −1x x +1x x +1x 2x +1−x −1=0x 2=x +1x 2=1=⋅−x +2−3x +2x(x +2)x −1x x +1=⋅−=x −=x −1x +2x(x +2)x −1x x +1x x +1x 2x +1−x −1=0x 2=x +1x 2则原式.18.【答案】证明:∵四边形是正方形,∴, ,∵是等腰直角三角形,其中,∴,∴,∴,在和中,∴.解:∵是等腰直角三角形,,∴,,∴,,由得,∴,,∴,∴.【考点】全等三角形的性质与判定正方形的性质勾股定理锐角三角函数的定义【解析】()由四边形是正方形可得出,,再由是等腰直角三角形可得出,通过角的计算可得出利用全等三角形的判定定理即可证出;()根据是等腰直角三角形可得出,,勾股定理求出,通过角的计算可得出,再根据全等三角形的性质可得出,,通过角的计算即可得出,从而得出.【解答】证明:∵四边形是正方形,∴, ,∵是等腰直角三角形,其中,∴,∴,∴,=1(1)ABCD AB =CB ∠ABC =90∘△EBF ∠EBF =90∘BE =BF ∠ABC −∠CBF =∠EBF −∠CBF ∠ABF =∠CBE △ABF △CBE AB =CB,∠ABF =∠CBE,BF =BE,△ABF ≅△CBE (SAS)(2)△EBF BF =3∠BFE =∠FEB =45∘BE =BF =3∠AFB =−∠BFE =180∘135∘EF ==3B +B E 2F 2−−−−−−−−−−√2–√(1)△ABF ≅△CBE ∠CEB =∠AFB =135∘AF =CE =2∠CEF =∠CEB −∠FEB =−=135∘45∘90∘tan ∠CFE ===CE EF 232–√2–√31ABCD AB =CB ∠ABC =90∘△EBF BE =BF ∠ABF =∠CBE SAS △ABF ≅△CBE 2△EBF ∠BFE =∠FEB BE =BF =3EF ∠AFB =135∘∠CEB =∠AFB =135∘CE =AF =2∠CEF =90∘tan ∠CFE (1)ABCD AB =CB ∠ABC =90∘△EBF ∠EBF =90∘BE =BF ∠ABC −∠CBF =∠EBF −∠CBF ∠ABF =∠CBE AB =CB,在和中,∴.解:∵是等腰直角三角形,,∴,,∴,,由得,∴,,∴,∴.19.【答案】解:正比例函数的图象经过点 ,∴,∴,∴正比例函数解析式为,∵一次函数的图象经过 ,,∴ ∴ ∴一次函数为.①当时,如图,作⊥轴垂足为,∵,,∴,∵,∴,∴, ,∴;②当时,作轴垂足为,同理得 ,∴, ,∴,∴点坐标为 或.存在;理由:如图,△ABF △CBE AB =CB,∠ABF =∠CBE,BF =BE,△ABF ≅△CBE (SAS)(2)△EBF BF =3∠BFE =∠FEB =45∘BE =BF =3∠AFB =−∠BFE =180∘135∘EF ==3B +B E 2F 2−−−−−−−−−−√2–√(1)△ABF ≅△CBE ∠CEB =∠AFB =135∘AF =CE =2∠CEF =∠CEB −∠FEB =−=135∘45∘90∘tan ∠CFE ===CE EF 232–√2–√3(1)y=kx C (3,4)4=3k k =43y =x 43y =x +b k 1A (−3,0)C (3,4){−3+b =0,k 13+b =4,k 1 =,k 123b =2,y =x +223(2)DA ⊥AB DM x M ∠DAM +∠BAO =90∘∠BAO +∠ABO =90∘∠DAM =∠ABO DA =AB ,∠DMA =∠AOB △DAM ≅△ABO (AAS)DM =AO =3AM =BO =2D (−5,3)B ⊥AB D ′N ⊥y D ′N △BN ≅△BAO D ′(AAS)N =BO =2D ′BN =AO =3(−2,5)D ′D (−5,3)(−2,5)(3)作关于轴对称点,连接,交轴于,此时周长最小.∵,∴ ,∵,∴的解析式为:.令,得,∴,∴点的坐标为 .当是腰,是顶角的顶点时,,则的坐标为或;当是腰,是顶角的顶点时,,则与关于对称,则的坐标是;当是底边时,设的坐标为,则,解得,此时的坐标是.综上可知的坐标为或或或.【考点】待定系数法求一次函数解析式待定系数法求正比例函数解析式全等三角形的性质与判定轴对称——最短路线问题勾股定理【解析】根据待定系数法即可解决;分两种情形讨论,添加辅助线构造全等三角形即可求出点坐标;先确定出点的位置,即可得出结论;分, ,三种情形即可得出结论.【解答】解:正比例函数的图象经过点 ,∴,∴,∴正比例函数解析式为,∵一次函数的图象经过 ,,∴ ∴ C x C ′BC ′x E △BCE C (3,4)(3,−4)C ′B (0,2)BC ′y =−2x +2y =00=−2x +2x =1E (1,0)(4)OC O OP =OC P (5,0)(−5,0)OC C CP =CO P O x =3P (6,0)OC P (a,0)(a −3+=)242a 2a =256P (,0)256P (5,0)(−5,0)(6,0)(,0)256(1)(2)D (3)E (4)OP =OC CP =CO PC =PO (1)y=kx C (3,4)4=3k k =43y =x 43y =x +b k 1A (−3,0)C (3,4){−3+b =0,k 13+b =4,k 1 =,k 123b =2,=x +22∴一次函数为.①当时,如图,作⊥轴垂足为,∵,,∴,∵,∴,∴, ,∴;②当时,作轴垂足为,同理得 ,∴, ,∴,∴点坐标为 或.存在;理由:如图,作关于轴对称点,连接,交轴于,此时周长最小.∵,∴ ,∵,∴的解析式为:.令,得,∴,∴点的坐标为 .当是腰,是顶角的顶点时,,则的坐标为或;当是腰,是顶角的顶点时,,则与关于对称,则的坐标是;当是底边时,设的坐标为,则,解得,此时的坐标是.综上可知的坐标为或或或.20.【答案】过点作轴于点,则==,y =x +223(2)DA ⊥AB DM x M ∠DAM +∠BAO =90∘∠BAO +∠ABO =90∘∠DAM =∠ABO DA =AB ,∠DMA =∠AOB △DAM ≅△ABO (AAS)DM =AO =3AM =BO =2D (−5,3)B ⊥AB D ′N ⊥y D ′N △BN ≅△BAO D ′(AAS)N =BO =2D ′BN =AO =3(−2,5)D ′D (−5,3)(−2,5)(3)C x C ′BC ′x E △BCE C (3,4)(3,−4)C ′B (0,2)BC ′y =−2x +2y =00=−2x +2x =1E (1,0)(4)OC O OP =OC P (5,0)(−5,0)OC C CP =CO P O x =3P (6,0)OC P (a,0)(a −3+=)242a 2a =256P (,0)256P (5,0)(−5,0)(6,0)(,0)256C CD ⊥y D ∠CDA ∠AOB 90∘∵=,∴=,∵=,∴=,∴=,在与中,,∴,∴=,∵点的坐标是,∴==,即点到轴的距离是;【考点】等腰直角三角形坐标与图形性质全等三角形的性质与判定【解析】此题暂无解析【解答】此题暂无解答21.【答案】解:设每件品牌笔袋的进价为元,品牌笔袋的进价为元.根据题意得:,,经检验, 是原方程的根,(元),答:每件品牌笔袋的进价为元,品牌笔袋的进价为元.设品牌笔袋购进件,由题意得,解得: ,∠BAC 90∘∠CAD +∠BAO 90∘∠AOB 90∘∠ABO +∠BAO 90∘∠CAD ∠ABO △CAD △ABO △CAD ≅△ABO(AAS)CD AO A (0,2)CD AO 6C y 2(2,3)(1)B x A 2x +10=1002x 100xx =5x =52x =2×5=10A 10B 5(2)A a a +≥60500−10a 5a ≤40A答:品牌笔袋最多购进件..∵,∴随着的增大而减小,由知, ,∴当时,(元),答:该超市利润最低是元.【考点】分式方程的应用一元一次不等式的实际应用一次函数的应用【解析】暂无暂无暂无【解答】解:设每件品牌笔袋的进价为元,品牌笔袋的进价为元.根据题意得:,,经检验, 是原方程的根,(元),答:每件品牌笔袋的进价为元,品牌笔袋的进价为元.设品牌笔袋购进件,由题意得,解得: ,答:品牌笔袋最多购进件..∵,∴随着的增大而减小,由知, ,∴当时,(元),答:该超市利润最低是元.22.【答案】证明:∵四边形是正方形,为对角线,A 40(3)W =(15−10)a +(8−5)×500−10a 5=5a +300−6a =−a +300k =−1<0W a (2)a ≤40a =40=−1×40+300=260W 最小260(1)B x A 2x +10=1002x 100xx =5x =52x =2×5=10A 10B 5(2)A a a +≥60500−10a 5a ≤40A 40(3)W =(15−10)a +(8−5)×500−10a 5=5a +300−6a =−a +300k =−1<0W a (2)a ≤40a =40=−1×40+300=260W 最小260(1)ABCD AC ∠BAE =∠BCF =45∘∴ .∵,,又∵已知,∴ ,∴.如图,连接,∵四边形是正方形,∴是的垂直平分线.∴,.由得,∴.∴四边形是菱形.【考点】全等三角形的性质与判定菱形的判定正方形的性质平行四边形的性质与判定全等三角形的性质定理全等三角形的判定菱形的判定与性质【解析】此题暂无解析【解答】证明:∵四边形是正方形,为对角线,∴ .∵,,又∵已知,∴ ,∴.如图,连接,∠BAE =∠BCF =45∘∠BEF =∠ABE +∠BAE ∠BFE =∠CBF +∠BCF ∠ABE =∠CBF ∠BEF =∠BFE BE =BF (2)BD ABCD AC BD BE =DE BF =DF (1)BE =BF BE =BF =DF =DE BEDF (1)ABCD AC ∠BAE =∠BCF =45∘∠BEF =∠ABE +∠BAE ∠BFE =∠CBF +∠BCF ∠ABE =∠CBF ∠BEF =∠BFE BE =BF (2)BD∵四边形是正方形,∴是的垂直平分线.∴,.由得,∴.∴四边形是菱形.ABCD AC BD BE =DE BF =DF (1)BE =BF BE =BF =DF =DE BEDF。

新北师大版八年级数学下册各章测试题附答案(全册)

新北师大版八年级数学下册各章测试题附答案(全册)

第一章《三角形的证明》水平测试一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配. A. ① B. ②C.③D. ①和②2.下列说法中,正确的是().A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图2,AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE=3cm ,那么AC长为().A .4cmB .5cmC .8cmD .34cm4.如图3,在等边ABC 中,,D E 分别是,BC AC 上的点,且BD CE ,AD 与BE 相交于点P ,则12的度数是(). A .045B .055C .060D .0755.如图4,在ABC 中,AB=AC ,36A ,BD 和CE 分别是ABC 和ACB 的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为().A .9个B .8个C .7个D .6个6.如图5,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有().A .1处B .2处C .3处D .4处7.如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN. 其中,正确结论的个数是().A .3个B .2个C .1个D .0个8.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在同一条直线上(如图7),可以证明ABC ≌EDC ,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ≌EDC 的条件是().A .ASAB .SASC .SSSD .HL9.如图8,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的位置,BE 交AD 于点F. 求证:重叠部分(即BDF )是等腰三角形.证明:∵四边形ABCD 是长方形,∴AD ∥BC又∵BDE 与BDC 关于BD 对称,∴23. ∴BDF 是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().①12;②13;③34;④BDC BDEA .①③B .②③C .②①D .③④10.如图9,已知线段a ,h 作等腰△ABC ,使AB =AC ,且BC =a ,BC 边上的高AD =h. 张红的作法是:(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB ,AC ,则△ABC 为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A. (1)B. (2)C. (3)D. (4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加一个条件是____________.2.如图11,在Rt ABC 中,090,BAC ABAC ,分别过点,B C 作经过点A 的直线的垂线段BD ,CE ,若BD=3厘米,CE=4厘米,则DE 的长为_______.3.如图12,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC 等于_________度.4.如图13,在等腰ABC 中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE 的周长为50,则底边BC 的长为_________. 5.在ABC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得的锐角为50,则图8底角B 的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点 B与点A 重合,折痕为DE ,则CD 的长为________.8.如图15,在ABC 中,AB=AC ,120A ,D 是BC 上任意一点,分别做DE ⊥AB于E ,DF ⊥AC 于F ,如果BC=20cm ,那么DE+DF= _______cm.9.如图16,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC于点E ,若4BE,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)1.(7分)如图18,在ABC 中,090ACB,CD 是AB 边上的高,30A . 求证:AB= 4BD.2.(7分)如图19,在ABC 中,090C ,AC=BC ,AD 平分CAB 交BC 于点D ,DE ⊥AB 于点E ,若AB=6cm. 你能否求出BDE 的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点. 现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正.确.的命题:命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC 中,90A ,AB=AC ,ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点 E.求证:12CEBD .5.(8分)如图22,在ABC 中,90C .(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.6.(8分)如图23,90AOB ,OM 平分AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.四、拓广探索(本大题12分)如图24,在ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若40A .(1)求NMB 的度数;(2)如果将(1)中A 的度数改为070,其余条件不变,再求NMB 的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A 改为钝角,你对这个规律性的认识是否需要加以修改?图21图24图23答案:一、精心选一选,慧眼识金1.C ;2.B ;3.D .点拨:BC=BE=3cm ,AB=BD=5cm ;4.C .点拨:利用ABD ≌BCE ;5.B ;6.D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B .点拨:①②正确;8.A ;9.C ;10.C .点拨:在直线MN 上截取线段h ,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACBDBC ;2.7厘米. 点拨:利用ABD ≌CAE ;3.030;4.23.点拨:由27BE CE ACAB,可得502723BC;5.070或020.点拨;当ABC 为锐角三角形时,70B;当ABC 为钝角三角形时,20B ;6.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;7.154cm . 点拨:设CDx ,则易证得10BDAD x .在Rt ACD 中,222(10)5x x ,解得154x.8.10.点拨:利用含030角的直角三角形的性质得,1122DE DFBD CDBC .9.2. 点拨:在Rt AEC 中,030AEC,由AE=BE= 4,则得AC=2;10.16.点拨:AB=26米,AC+BC=34米,故少走8米,即16步. 三、耐心做一做,马到成功1.∵90ACB ,30A ,∴AB=2BC ,60B .又∵CD ⊥AB ,∴030DCB ,∴BC=2BD.∴AB= 2BC= 4BD.2.根据题意能求出BDE 的周长. ∵090C ,90DEA,又∵AD 平分CAB ,∴DE=DC.在Rt ADC 和Rt ADE 中,DE=DC ,AD=AD ,∴Rt ADC ≌Rt ADE (HL ).∴AC=AE ,又∵AC=BC ,∴AE=BC.∴BDE 的周长DE DB EB BC EB AE EB AB .∵AB=6cm ,∴BDE 的周长=6cm.3.(1)①,③;②,④.(2)已知:D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点,且AB =AC ,∠ABE =∠ACD. 求证:OB =OC ,BE =CD.证明:∵AB=AC ,∠ABE =∠ACD ,∠A =∠A ,∴△ABE ≌△ACD (ASA ).∴BE=CD.又∵ABC ACB ,∴BCD ACB ACD ABC ABE CBE∴BOC 是等腰三角形,∴OB =OC.4.延长CE 、BA 相交于点 F.∵090,90EBF F ACF F ,∴EBF ACF .在Rt ABD 和Rt ACF 中,∵DBA ACF ,AB=AC ,∴Rt ABD ≌Rt ACF (ASA ). ∴BD CF .在Rt BCE 和Rt BFE 中,∵BE=BE ,EBC EBF ,∴RtBCE ≌Rt BFE (ASA ).∴CEEF. ∴1122CECFBD .5.(1)图略. 点拨:作线段AB 的垂直平分线.(2)连结BP.∵点P 到AB 、BC 的距离相等,∴BP 是ABC 的平分线,∴ABPPBC .又∵点P 在线段AB 的垂直平分线上,∴PA=PB ,∴A ABP .∴190303AABPPBC.6.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点 F.∵OM 平分AOB ,点P 在OM 上,∴PE=PF.又∵090AOB ,∴90EPF .∴EPF CPD ,∴E P CF P D.∴Rt PCE ≌Rt PDF (ASA ),∴PC=PD. 四、拓广探索(1)∵AB=AC ,∴BACB .∴11180180407022BA.∴90907020NMB B. (2)解法同(1).同理可得,035NMB.(3)规律:NMB 的度数等于顶角A 度数的一半.证明:设A.∵AB=AC ,∴BC ,∴11802B .∵090BNM ,∴11909018022NMB B.即NMB 的度数等于顶角A 度数的一半. (4)将(1)中的A 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.全品中考网全品第二章一元一次不等式(组)检测试题一、选择题(每小题3分,共36分)1.x 与y 的差的5倍与2的和是一个非负数,可表示为()(A )025y x (B )025y x(C )025y x (D )0225y x 2.下列说法中正确的是()(A )3x 是32x 的一个解. (B )3x 是32x 的解集. (C )3x是32x 的唯一解. (D )3x不是32x 的解.3. 不等式222xx 的非负整数解的个数是()(A )1 (B )2(C )3(D )44.已知正比例函数x m y 12的图象上两点2221,,,y x B x x A ,当21x x 时,有21y y ,那么m 的取值范围是()(A )21m(B )21m(C )2m (D )m 5.不等式组2.351,062xx的解集是()(A )32x (B )38x (C )38x (D )8x或3x 6.若,0ba 且0b,则b a b a ,,,的大小关系是()(A )b a b a (B )ba ab (C )baba(D )a b ba7.已知关于x 的一次函数72m mx y在51x上的函数值总是正的,则m 的取值范围是()(A )7m (B )1m (C )71m (D )以上答案都不对8.如果方程组.33,13yxk y x 的解为x 、y ,且42k,则y x的取值范围是()(A )10yx (B )210yx (C )11yx(D )13yx9.若方程x xm x m 53113的解是负数,则的取值范围是()(A )45m(B )45m(C )45m(D )45m10.两个代数式1x 与3x的值的符号相同,则x 的取值范围是()(A )3x (B )1x (C )21x (D )1x 或3x 11.若不等式33a xa 的解集是1x ,则a 的取值范围是()(A )3a (B )3a(C )3a(D )3a 12.若4224m m ,那么m 的取值范围是()(A )不小于 2 (B )不大于 2 (C )大于 2 (D )等于 2 二、填空题(每题3分,共24分)13. 当x _____时,代数式43x 的值是非正数. 14. 若不等式.32,12bxa x 的解集为11x ,那么ab 的值等于_____. 15.若x 同时满足不等式032x 与02x,则x 的取值范围是_____.m16.已知x 关于的不等式组.0,125ax x 无解,则a 的取值范围是_____.17. 如果关于x 的不等式51a x a 和42x 的解集相同,则a 的值为_____.18. 小马用100元钱去购买笔记本和笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小马最多能买_____枝钢笔.19.一个两位数,十位上的数字比个位数上的数字小2,若这个两位数处在40至60之间,那么这个两位数是_____.20. 已知四个连续自然数的和不大于34,这样的自然数组有_____组.三、解答题(每题8分,共40分)21.解不等式3225332xxx x ,并把它的解集在数轴上表示出来.22.求不等式组)2(.3212)1(,133211x xx x 的偶数解.23.已知关于y x,的方程组)2(.2)1(,32m yxm y x 的解y x,均为负数,求m 的取值范围.24. 关于y 的不等式组253,7.236y yt y t y 的整数解是3,2,1,0,1,求参数t 的取值范围.25. 甲乙两人先后去同一家商场买了一种每块0.50元的小手帕.商场规定凡购买不少于10块小手帕可优惠20%,结果甲比乙多花了4元钱,又知甲所花的钱不超过8元,在充分享受优惠的条件下,甲乙两人各买了多少块小手帕?参考答案一、选择题(每小题3分,共36分)1.解:x 与y 的差的5倍是y x 5,再与2的和是25y x ,是一个非负数为:025y x .故选(B )2.解:32x ,根据不等式基本性质2,两边都除以2,得23x.由此,可知3x 只是32x 的一个解.故选(A )3. 解:去括号,得.242x x 解得.2x 所以原不等式的非负数整数解为,2,1,0x共3个.故选(C )4.解:因为点2221,,,y x B x x A 在函数x m y 12的图象上,所以1112x m y ,2212x m y . 所以212112x x m y y . 因为当21x x 时,有21y y ,即当21x x ,021y y ,所以.012m 所以.21m故选(A )5.解: 由(1)得3x . 由(2)得8x.所以不等式组的解集是38x 故选(C )6.解:由,0b a且0b,得0a且b a.又根据不等式的性质2,得0,0ba.b ab a,.所以a b b a 故选(D )7.解:根据题意,令1x,则07my,得7m;令5x ,则077m y ,得1m .综上,得7m.故选(A )8.解:两个不等式相减后整理,得221kyx .由42k,得220k .所以10yx故选(A )9.解:方程x x m x m 53113的解为541mx,要使解为负数,必须054m ,即45m.故选(A )10.解: 因为代数式1x 与3x 的值的符号相同,可得.03,01xx 或.03,01xx 由第一个不等式组得,3x;由第二个不等式组得, 1x .故选(D )11.解:因为不等式33a x a 的解集是1x,所以03a .所以3a.故选(C )12.解:由4224m m ,得042m ,所以2m .故选(A )二、填空题(每题3分,共24分)13.解:根据题意,得043x .解得.34x14.解:由.32,12bxa x 得.23,21b xa x 所以.2123axb 又因为11x ,所以.123,121ba解得.2,1ba 所以.221ab 15.解:由032x ,得23x,由02x ,得2x .所以223x.16.解:原不等式组可化为.,3a x x 若不等式组有解,则3xa.3a.故当3a时, 不等式组无解. 所以a 的取值范围是3a . 17.解:由42x 得2x .因为不等式51a x a 和42x 的解集相同,所以不等式51a xa 的解集为.15a ax 215a a .解得7a.18.解:设小马最多能买x 枝钢笔.根据题意,得1003025x x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017~2018学年度第二学期三月八年级质量检测
数学试卷
时间:90分钟满分:100分试卷:共4页
注意事项:
1.答题前,考生先将自己的姓名、准考证号号码填写清楚。

2.在答题卡上必须用黑色字迹的签字笔书写,字体工整清楚。

3.请按照题号顺序在各题目区域内作答,超出答题区域、在草稿纸和试卷上答题无效。

一、选择题(每题3分,共30分)
1. 如图,数轴所表示的不等式的解集是()
A. 3
<
x B. 3

x C. 3
>
x D. 3

x
2.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()
A.120°B.90°C.60°D.30°3.若等腰三角形的两边长是3cm和6cm,则周长为()
C.15cm 或15cm
4.下列定理中,没有逆定理的是( )
A.内错角相等,两直线平行 B.直角三角形中两锐角互余
C.相反数的绝对值相等 D.等边对等角
5.三角形内有一点到三角形三边的距离相等,则这点一定是三角形的()
A. 三条中线的交点;
B. 三边垂直平分线的交点;
C. 三条高的交点;
D. 三条角平分线的交点.
6. 如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()
A. 80°
B. 70°
C. 60°
D. 50°
AD
5
1
5
1
5
1
5
1
5
1
下7. 如图,已知
列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠
C B.
3
1
=
a,4
1
=
b,
5
1
=
c
C.(b+c)(b-c)=a2 D. ∠A:∠B:∠C =1:2:3
10.已知关于x的不等式
3
1
2
2
-

+x
a
x
的解集是1
-

x,则a的值是()
A.0
B.1
C.1
- D.
3
1
-
第6题图第7题图
二、填空题(每题3分,共15分)
11.设a >b ,用“<”,或“>”填空:
(1) a+3____b+3; (2) -2a____-2b ; (3)1
21--a
_____12
1
--b 12. 如图,若AB=AC=5,BC=6,AD ⊥BC ,则AD=__________
13. 如图,△ABC 中,∠C=90°,BD 平分∠ABC 交AC 于D ,若CD =2cm ,则点D 到AB 的距离是_________cm .
14. 如图,在△ABC 中,MN 是BC 的垂直平分线,DC=6cm ,DB=10cm ,则△ACD 的周长为_________cm .
15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是AC 边上一点,若AE=2,EM+CM 的最小值为__________.
三、解答题(第17题5分,其他每题6分,共41分)
16.(1)求下列不等式的正整数解....
: 329->+-x x
(2)解下列不等式,并把它的解集在数轴上表示出来:
3
121x x ≥+-
17. 如图,已知在两条公路OA ,OB 的附近有C ,D 两个超市,现准备在两条公路的交叉路口附近安装一个监控摄像头,要求摄像头P 的位置到两个超市的距离相等,且到两条公路的距离也相等,请你找出摄像头P 的位置。

D C B A M N 第13题图
第12题图 第14题图 第15题图
18.已知∠1=∠2,∠BAC=90°,BC=DE,AC=AE,求证△ABC≌△ADE.
19.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,CD是△ABC的高,且AB=4,求CD的长
20.已知:如图,D是△ABC的BC边的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF.
求证:△ABC是等腰三角形.
21.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC 于点D,E,求证:AE=2CE.
22.在四边形ABCD中,AB=AD=8,CD=6,BC=10,∠
A=60°,求∠ADC的度数.
四、解答题(每题7分,共14分)
23.在△ABC中,AC=BC,∠C=90°,点D在AD上,DE⊥AB,垂足分别为E,且CD=DE.
(1)求证:AD是∠BAC的平分线;
(2)已知CD=DE=2,求AB的长.
24.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB 延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)若设AP=x,则PC=__________,QC=__________;(用含x的代数式表示)
(2)当∠BQD=30°时,求AP的长;
(3)在运动过程中线段DE的长是否发生变化如果不变,求出线段DE的长;如果变化请说明理由.。

相关文档
最新文档