单元法课后习题全部答案 王勖成

合集下载

第1章有限元法简介

第1章有限元法简介

Fix uix k ii 0 F v iy iy 0 0 K = = F jx u jx k ji 0 F jy v jy 0 0
k ij 0 uix 1 v 0 0 iy EA 0 l 1 k jj 0 u jx 0 0 0 v jy
钱学森
钱伟长
胡海昌
杨桂通
徐芝伦
软件名称
简介
MSC/Nastran
LS-Dyna MSC/Dytran MSC/Marc ANSYS FLUENT ABAQUS
著名结构分析程序,最初由NASA研制。
动力学分析程序(大多为显式算法) 非线性分析软件 通用结构分析软件(耦合场分析) 流场分析软件 非线性分析软件(非协调单元,非线性 直接解算方法)
令杆件两端节点分别产生单位位移,可以计算产生这样的单 位位移所需要的力,而力的大小就是刚度系数。 EA 首先取 ui 1,u j 0, 此 时 需 要 压 力 ui。 按 照 局 部 坐 标 系 l EA EA 和力的规定, Fi ui,F j ui, 则 l l EA EA ui l k , k
单元2 3
F3 10N
x
考虑y方向的单元刚度矩阵
Fi k ii k ij ui EA 1 1 ui = u l F u k k 1 1 jj j j ji j
若考虑y方向,则有:
——宏观假设
弹性力学的基本假定
2、线弹性(Linear elastic)
物体的变形与外力作用的关系是线性的, 除去外力,物体可回复原状 ,而且这个关系和 时间无关,也和变形历史无关,称为完全线弹 性材料

大学教材课后习题答案免费下载链接下部

大学教材课后习题答案免费下载链接下部

大学教材课后习题答案免费下载链接(上中下)190-290本资料由上网购返利网分享汽车理论习题答案(考研_作业).pdf→→/s/1zobam汽车理论第五版_课后习题答案(正确).pdf→→/s/1o67DaHk波动习题答案.pdf→→/s/1pJDGFyj泵与风机课后习题答案.pdf→→/s/1gdBph3H 流体力学习题解答李晓燕吴邦喜.pdf→→/s/1qWM2gAo液压与气压传动习题答案.pdf→→/s/1bnksUmV物理化学第五版习题解答(上下册).pdf→→/s/1sjvvFPj物理学教程第二版马文蔚下册课后答案完整版_cropped.pdf→→/s/1sj98Mct物理学第五版上册习题答案.pdf→→/s/1jG1F9NS王勖成《有限单元法》1-5章课后习题答案.pdf→→/s/1nt8vc3B理论力学教程_第三版_周衍柏_课后习题答案_总汇(1).pdf→→理论力学教程_第三版_周衍柏_课后习题答案_总汇.pdf→→/s/1eQABmxW电力系统分析课后习题答案.pdf→→/s/1bngpktD电动力学习题答案chapter5.pdf→→/s/1pJ7AZ5x电子商务法律与法规综合复习题与答案.pdf→→/s/1c0nEFUo电子测量技术基础课后习题答案上1,2,5,6,7,8.pdf→→/s/1hq3f7Is电子线路习题答案梁明理版.pdf→→/s/1bn5rEIr电工学简明教程(第二版)学习辅导与习题解答.pdf→→/s/1mgHQ6xi电机与拖动基础第三版李发海答案(全).pdf→→/s/1dD25KyP电气测试技术第三版_课后习题答案%28林德杰%29.pdf→→/s/1jGwVRE2电磁场与电磁波习题答案 (6).pdf→→/s/1bnrK3pX电磁场与电磁波习题答案 (7).pdf→→电磁场与电磁波习题答案 (8).pdf→→/s/1mgLUqCC电磁场与电磁波习题答案 .pdf→→/s/1hqsqmX2电磁场与电磁波习题答案2.pdf→→/s/1pJDGF0n电路(第五版)_课后习题答案(全)].邱关源_罗先觉_高等教育出版社.pdf→→/s/1sjtZPBR电路与电子学模拟复习题答案.pdf→→/s/1pJvzN6r电路第五版课后习题答案上册.pdf→→/s/1jG3bA30电路第五版课后习题答案下册.pdf→→/s/1jGn22Ke病理学试题库及答案.pdf→→/s/1hqp80wW 看完包过江苏材料员习题和答案——本人亲自考过.pdf→→/s/1qWyL8IS离散数学课后习题答案_屈婉玲(高等教育出版社).pdf→→/s/1gdghe9t算法导论课后习题与思考题答案合集.pdf→→/s/1pJqaiQf粤教版高中物理必修一课后习题答案(1~4章).pdf→→/s/1gdoU5qF线性代数习题册答案(理).pdf→→/s/1dD5n9ZV线性代数习题解答.pdf→→/s/1i3JY7PV线性规划习题答案.pdf→→/s/1hqiMQ00组合数学课后习题答案.pdf→→/s/1hqwuajE 组合逻辑电路课后习题答案.pdf→→/s/1bnnaNwF经典国外教材atkins物理化学第七版课后习题答案.pdf→→/s/1i39jobj经济学原理习题解答第五版%28微观、宏观).pdf→→/s/1sjm8rKT经济应用数学(三)概率论与数理统计修订版(袁荫棠编)习题答案.pdf →→/s/1ntsgiBR结构力学上龙驭求包世华课后习题答案.pdf→→/s/1eQiQVAU结构力学答案(全).pdf→→/s/1qW2Pud2结构力学课后习题答案.pdf→→/s/1kTKA1sN 结构力学龙驭球习题解答(ch2~ch3).pdf→→/s/1eQ676WM结构化学基础第四版习题答案.pdf→→/s/1jGkKEDw罗默《高级宏观经济学》课后习题答案中文版(金圣才主编).pdf→→/s/1c0h9fxe考研数学一历年真题答案(2002-2011).pdf→→/s/1qWoCltU胡寿松《自动控制原理》(第四版)课件_习题答案.pdf→→/s/1o6qcjqy自动控制原理习题解答(第二版)(余成波_张莲_胡.pdf→→/s/1pJsHZ0R自动控制原理习题解答.pdf→→/s/1bn3VJPH 船舶结构力学—课后习题答案.pdf→→/s/1lBC6西安理工大学_供电技术习题答案_机械工业出版社_第四版.pdf→→/s/1kTyVJSz西方经济学简明教程(第七版)习题参考答案.pdf→→/s/1bnmuORd计算机组成原理习题答案.pdf→→/s/1pJAYQQv计算机组成原理课后习题答案.pdf→→/s/1o68tfcA计算机编译原理课后习题答案第三版张幸儿.pdf→→/s/1eQikYlW计算机网络(第4版)习题答案(中文版).pdf→→/s/1dDcNuTj计算机网络(第五版)习题答案_谢希仁.pdf→→/s/1dDmWLJb计算机网络第四版习题答案(第五版上的很多题在这都能找到答案).pdf→→/s/1qWnqs0G计量经济学习题与解答于俊年主编对外经济贸易大学出版社.pdf→→/s/1i3hyUTv证券交易习题大全与答案.pdf→→/s/1o6NSibo证券投资基金章节习题及答案.pdf→→/s/1mgFiKWS课后习题答案(叶见曙主编结构设计原理1-9章).pdf→→/s/1pJ6Vfp5贾俊平_统计学_第四版_习题答案.pdf→→/s/1jG9hn0M软件工程导论(第五版)_(张海藩_着)_清华大学出版社_课后习题答案.pdf→→/s/1kT8zkz1软件工程导论-第五版_课后习题答案%28清华大学出版社%29张海藩著.pdf→→/s/1qWtvU9m软件工程导论_张海藩_第五版课后习题答案.pdf→→/s/1mgK802G运筹学基础及应用第五版胡运权主编课后练习答案.pdf→→/s/1o6K4t8e近代物理复习题答案.pdf→→/s/1bnzmbTl 通信原理_李晓峰_课后习题答案.pdf→→/s/1pJ2lyXX通信原理习题及答案(第六版)_樊昌信_曹丽娜_编著__国防工业出版社.pdf→→/s/1jGDQUJ8通信电子线路习题解答(严国萍版).pdf→→/s/1ntjs7hf逻辑代数基础课后习题答案.pdf→→/s/1o6ufVGe重点推荐---《数值分析》课后习题答案.pdf→→/s/1eQ456QQ量子力学习题解答-第3章.pdf→→/s/1sjoAeID量子力学练习题答案.pdf→→/s/1eQqsylG 金属材料学习题答案(曹志强老师的).pdf→→/s/1gdwvZFl钢结构基础(第二版)课后习题答案.pdf→→/s/1sjlSrut铁道社单片机习题参考答案.pdf→→/s/1o6qIbSA随机过程习题解答.pdf→→/s/1o6G0618集成电子技术基础教程(上)习题解答.pdf→→/s/1i3mO3fn雷达原理习题解答1.pdf→→/s/13XQ6U高一数学期末复习题及答案.pdf→→/s/1ntlu7g9高中物理必修1、必修2课后习题答案(人教版).pdf→→/s/1jGFSIME高二数列复习题答案.pdf→→/s/1o6lY2nC 高电压技术习题与答案.pdf→→/s/1sjEY8pB 高等代数北大第三版习题全解王萼芳石生明修订.pdf→→/s/1gdn87ZX高等代数_北大第三版_习题答案.pdf.pdf→→/s/1o6lYx6M高等土力学(李广信)1-5章部分习题答案(最新版).pdf→→/s/1jGC4XGa高等教育出版社离散数学课后习题完整答案.pdf→→/s/1dDy2aTb高考数学填空题解答策略.pdf→→/s/1vQmF8 高频电子线路习题答案_张肃文__第五版.pdf→→/s/1nt7Ff1v高鸿业版宏观经济学课后习题答案_%28第十二章到二十三章%29第五版全.pdf→→/s/1sjBAEq5王镜岩生物化学课后习题答案.pdf→→/s/1hqn649e《国际金融学》习题与答案→→/s/1eQ1NKe2 黄达《金融学》精编版(第二版)课后习题答案→→/s/1pJFI9j92014年江南大学微生物学教程(第二版周德庆)考研资料及历年真题答案→→/s/1hq7Pxfm中南大学土木工程材料课后习题及答案→→/s/1o64psNo本资料分上,中,下部三份,欢迎查阅下载建筑装修用花岗岩石材友情赞助。

计算力学 有限单元法 清华大学 王勖成

计算力学 有限单元法 清华大学 王勖成
(1)单元的类型与形式 (2)有限元法的理论基础与离散格式 (3)有限元方程的解法
3 有限元法的未来
1. 为真实模拟新材料、新结构的行为, 发展单元类型、新材料本构。 2. 为分析、模拟各类形式的结构在复杂工矿和 环境作用下的全 寿命过程的响应。 3. 有限元软件和CAD/CAM/CAE等软件系统共同 集成完整的虚拟产品发展系统
王勖成编著 清华大学出版社
教学参考资料:Zienkiewicz The finite element method Bathe Finite element procedures Batoz Modelisation des Structures
par La Medod Elements Finites
关于程序训练 通常安排在第5或第6周开始上机训练, 读懂程序(Fortan), 利用程序计算简单的 算例 (输入数据文件,约束条件, 精度分析等等),完成上机报告。
3.考核方法 平时习题 自选论文(程序实践) 考试
期中考试 期末考试 20% 40%
10% 30% 60%
教材和教材参考书: 教材: 有限单元法 FINITE ELEMENT METHOD
等著名学者著教材
解析单元嵌入有限元中
跨尺度计算 或称多尺度计算
0.3.3 对于各种物理问题的 可应用性
有限元法求解的是物理问题的控制方程, 对线弹性,弹塑性问题,粘弹塑性问题, 动力问题,屈曲问题,热传导问题, ……, 均可以进行有效的分析
针对不同物理问题的控制方程 未知场函数 选用合适的单元、形函数 相应的求解方法
0.4 有限元法的发展、现状和未来
1 有限元法的早期工作
1943 Courant从应用数学角度的考虑 1956 Turner、Clough等将刚架位移法 推广到弹性力学平面问题 1960 Clough第一次提出了“有限单元法” ( The finite element method )

土木工程中的数值方法-3-有限单元法-概述

土木工程中的数值方法-3-有限单元法-概述

259
8 奇异摄动理论
222
9 力学的公理化体系
199
10 克服声障、热障的力学理论
196
弹性力学基本方程:
体系形成
方法拓展
商用软件
学科交叉
60年代
70~80年代
90年代
至今
Turner &Clough
Argyris Melosh Jones Pian 冯康 Besseling
单元求解区 域上插值
(2) 变分方法 有限元方法最早的严格理论论证就是以这种形式给出的。
Ritz法要求被分析的问题存在一个“能量泛函”,由泛函取驻 值建立有限元方程。对于线性弹性问题就表现为最小位能/势 能原理、最小余能原理或其他形式的广义变分原理。Galerkin 法只要求被分析问题的 “本构关系/方程”存在。
(3) 加权残值法
Zienkiewicz (1921- )是需要特别提到的一位学者,他是英国威尔士(Wales)大学土木 工程学院教授,担任联合国教科文组织工程数值计算委员会主席,他在工程FEM计算方面作 出了卓越贡献,这些贡献主要体现在他的600多篇论文与25部专著中。1968年创办FEM主流 杂志《International Journal for Numerical Methods in Engineering》,有力地推动了 有限元在工程计算中的应用。
FEM求解工程问题过程
(1) 选取恰当的单元,建立单元有限元方程; (2) 网格剖分,离散求解域; (3) 将单元由局部坐标系转换到整体坐标系,并叠加 单元有限元方程,形成总体有限元方程; (4) 在总体有限元方程中引入强制边界条件; (5) 求总体有限元方程,得到节点解; (6) 后处理,求出单元内力、应力、应变、变形等。

第二章课后习题答案

第二章课后习题答案

第二章课后习题答案第二章牛顿定律2-1如图(a)所示,质量为m的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A)ginθ(B)gcoθ(C)gtanθ(D)gcotθ分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcotθ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2用水平力FN把一个物体压着靠在粗糙的竖直墙面上保持静止.当FN逐渐增大时,物体所受的静摩擦力Ff的大小()(A)不为零,但保持不变(B)随FN成正比地增大(C)开始随FN增大,达到某一最大值后,就保持不变(D)无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μFN范围内取值.当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()μgR(B)必须等于μgR(C)不得大于μgR(D)还应由汽车的质量m决定(A)不得小于分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A)它的加速度方向永远指向圆心,其速率保持不变(B)它受到的轨道的作用力的大小不断增加(C)它受到的合外力大小变化,方向永远指向圆心(D)它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(mgcoθ)使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程v2FNmginθm可判断,随θ角的不断增大过程,轨道支持力FN也将不R断增大,由此可见应选(B).2-5图(a)示系统置于以a=1/4g的加速度上升的升降机内,A、B两物体质量相同均为m,A所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为()(A)58mg(B)12mg(C)mg(D)2mg分析与解本题可考虑对A、B两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B两物体受力情况如图(b)所示,图中a′为A、B两物体相对电梯的加速度,ma′为惯性力.对A、B两物体应用牛顿第二定律,可解得FT=5/8mg.故选(A).讨论对于习题2-5这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA和aB均应对地而言,本题中aA和aB的大小与方向均不相同.其中aA应斜向上.对aA、aB、a和a′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6图示一斜面,倾角为α,底边AB长为l=2.1m,质量为m的物体从题2-6图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?解取沿斜面为坐标轴O某,原点O位于斜面顶点,则由牛顿第二定律有mginαmgμcoαma(1)又物体在斜面上作匀变速直线运动,故有l11at2ginαμcoαt2coα22则t2l(2)gcoαinαμcoα为使下滑的时间最短,可令dt0,由式(2)有dαinαinαμcoαcoαcoαμinα0则可得tan2α1o,49μ此时t2l0.99gcoαinαμcoα2-7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00某102kg,乙块质量为m2=1.00某102kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1)两物块以10.0m·s-2的加速度上升;(2)两物块以1.0m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a上升时,有FT-(m1+m2)g=(m1+m2)a(1)FN2-m2g=m2a(2)解上述方程,得FT=(m1+m2)(g+a)(3)FN2=m2(g+a)(4)(1)当整个装置以加速度a=10m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94某103N乙对甲的作用力为F′N2=-FN2=-m2(g+a)=-1.98某103N(2)当整个装置以加速度a=1m·s-2上升时,得绳张力的值为FT=3.24某103N此时,乙对甲的作用力则为F′N2=-1.08某103N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8如图(a)所示,已知两物体A、B的质量均为m=3.0kg物体A以加速度a=1.0m·s-2运动,求物体B与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B及滑轮列动力学方程,有mAg-FT=mAa(1)F′T1-Ff=mBa′(2)F′T-2FT1=0(3)考虑到mA=mB=m,FT=F′T,FT1=F′T1,a′=2a,可联立解得物体与桌面的摩擦力Ffmgm4ma7.2N2讨论动力学问题的一般解题步骤可分为:(1)分析题意,确定研究对象,分析受力,选定坐标;(2)根据物理的定理和定律列出原始方程组;(3)解方程组,得出文字结果;(4)核对量纲,再代入数据,计算出结果来.2-9质量为m′的长平板A以速度v′在光滑平面上作直线运动,现将质量为m的木块B轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析当木块B平稳地轻轻放至运动着的平板A上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1以地面为参考系,在摩擦力Ff=μmg的作用下,根据牛顿定律分别对木块、平板列出动力学方程Ff=μmg=ma1F′f=-Ff=m′a2a1和a2分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a=a1+a2,木块相对平板以初速度-v′作匀减速运动直至最终停止.由运动学规律有-v′2=2a由上述各式可得木块相对于平板所移动的距离为mv22μgmm解2以木块和平板为系统,它们之间一对摩擦力作的总功为W=Ff(+l)-Ffl=μmg式中l为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m′v′=(m′+m)v″由系统的动能定理,有μmg由上述各式可得11mv2mmv222mv22μgmm2-10如图(a)所示,在一只半径为R的半球形碗内,有一粒质量为m的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN的分力来提供的,由于支持力FN始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示O某y坐标,列出动力学方程,即可求解钢球距碗底的高度.解取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程FNinθmanmRω2inθ(1)Rh(3)且有coθR由上述各式可解得钢球距碗底的高度为hR可见,h随ω的变化而变化.gω22-11火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m的火车,以速率v沿半径为R的圆弧轨道转弯,已知路面倾角为θ,试求:(1)在此条件下,火车速率v0为多大时,才能使车轮对铁轨内外轨的侧压力均为零?(2)如果火车的速率v≠v0,则车轮对铁轨的侧压力为多少?分析如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量FNinθ提供(式中θ角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v0行驶.当火车行驶速率v≠v0时,则会产生两种情况:如图所示,如v>v0时,外轨将会对车轮产生斜向内的侧压力F1,以补偿原向心力的不足,如v<v0时,则内轨对车轮产生斜向外的侧压力F2,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解(1)以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有v2FNinθm(1)解(1)(2)两式可得火车转弯时规定速率为v0gRtanθ(2)当v>v0时,根据分析有v2FNinθF1coθm(3)RFNcoθF1inθmg0(4)解(3)(4)两式,可得外轨侧压力为v2F1mcoθginθR当v<v0时,根据分析有v2FNinθF2coθm(5)RFNcoθF2inθmg0(6)解(5)(6)两式,可得内轨侧压力为v2F2mginθcoθR2-12一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为m,圆筒半径为R,演员骑摩托车在直壁上以速率v作匀速圆周螺旋运动,每绕一周上升距离为h,如图所示.求壁对演员和摩托车的作用力.分析杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v1和v2两个分量,显然v1是竖直向上作匀速直线运动的分速度,而v2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力FN的水平分量FN2提供,而竖直分量FN1则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向解设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有FN1mg0(1)FN2v2m(2)Rv2vcoθv2πR2πR2h2(3)22FNFN1FN2(4)以式(3)代入式(2),得FN2m4π2R2v24π2Rmv222(5)2222R4πRh4πRh将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22FNFN1FN224π2Rv22mg4π2R2h2与壁的夹角φ为FN24π2Rv2arctanarctan222FN14πRhg讨论表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2-13一质点沿某轴运动,其受力如图所示,设t=0时,v0=5m·s-1,某0=2m,质点质量m=1kg,试求该质点7s末的速度和位置坐标.分析首先应由题图求得两个时间段的F(t)函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解由题图得0t52t,Ft5t7355t,由牛顿定律可得两时间段质点的加速度分别为a2t,0t5a355t,5t7对0<t<5s时间段,由adv得dtvtv00dvadt积分后得v5t再由v2d某得dtd某vdt某00某t积分后得某25tt将t=5s代入,得v5=30m·s-1和某5=68.7m对5s<t<7s时间段,用同样方法有133dvv0vt5a2dt得v35t2.5t82.5t再由得某=17.5t2-0.83t3-82.5t+147.87将t=7s代入分别得v7=40m·s-1和某7=142m2-14一质量为10kg的质点在力F的作用下沿某轴作直线运动,已知F =120t+40,式中F的单位为N,t的单位的s.在t=0时,质点位于某=5.0m处,其速度v0=6.0m·s-1.求质点在任意时刻的速度和位置.分析这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=dv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v(t);由速度的定义v=d某/dt,用积分的方法可求出质点的位置.解因加速度a=dv/dt,在直线运动中,根据牛顿运动定律有2某某5d某vdt5t120t40mdvdt依据质点运动的初始条件,即t0=0时v0=6.0m·s-1,运用分离变量法对上式积分,得vv0dv12.0t4.0dt0tv=6.0+4.0t+6.0t2又因v=d某/dt,并由质点运动的初始条件:t0=0时某0=5.0m,对上式分离变量后积分,有d某6.04.0t6.0tdt某t2某00某=5.0+6.0t+2.0t2+2.0t32-15轻型飞机连同驾驶员总质量为1.0某103kg.飞机以55.0m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0某102N·s-1,空气对飞机升力不计,求:(1)10s后飞机的速率;(2)飞机着陆后10s内滑行的距离.分析飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有dvαtdtvtαtdvv00mdtα2t得vv02mFmam因此,飞机着陆10s后的速率为v=30m·s-1又tα2d某vdt某0002mt某故飞机着陆后10s内所滑行的距离某某0v0tα3t467m6m2-16质量为m的跳水运动员,从10.0m高台上由静止跳下落入水中.高台距水面距离为h.把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为bv2,其中b为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求:(1)运动员在水中的速率v与y的函数关系;(2)如b/m=0.40m-1,跳水运动员在水中下沉多少距离才能使其速率v减少到落水速率v0的1/10?(假定跳水运动员在水中的浮力与所受的重力大小恰好相等)分析该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解(1)运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P-Ff-F=ma由题意P=F、Ff=bv2,而a=dv/dt=v(dv/dy),代入上式后得-bv2=mv(dv/dy)考虑到初始条件y0=0时,v0t2gh,对上式积分,有vdvmdy0v0vbvv0eby/m2gheby/m(2)将已知条件b/m=0.4m-1,v=0.1v0代入上式,则得ymvln5.76mbv0某2-17直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m=136kg,长l=3.66m.求当它的转速n=320r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)分析螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解设叶片根部为原点O,沿叶片背离原点O的方向为正向,距原点O为r处的长为dr一小段叶片,其两侧对它的拉力分别为FT(r)与FT(r+dr).叶片转动时,该小段叶片作圆周运动,由牛顿定律有dFTFTrFTrdr由于r=l时外侧FT=0,所以有m2ωrdrltFTrdFTlrmω2rdrlmω2222πmn222FTrlrlr2ll上式中取r=0,即得叶片根部的张力FT0=-2.79某105N负号表示张力方向与坐标方向相反.2-18一质量为m的小球最初位于如图(a)所示的A点,然后沿半径为r 的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.分析该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度at,与其相对应的外力Ft是重力的切向分量mginα,而与法向加速度an相对应的外力是支持力FN和重力的法向分量mgcoα.由此,可分别列出切向和法向的动力学方程Ft=mdv/dt和Fn=man.由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解小球在运动过程中受到重力P和圆轨道对它的支持力FN.取图(b)所示的自然坐标系,由牛顿定律得Ftmginαmdv(1)dtmv2FnFNmgcoαm(2)R由vdrdαrdα,得dt,代入式(1),并根据小球从点A运动到点Cdtdtv的始末条件,进行积分,有vv0vdvα90orginαdα得v则小球在点C的角速度为2rgcoαωv2gcoα/rrmv2mgcoα3mgcoα由式(2)得FNmr由此可得小球对圆轨道的作用力为FN3mgcoαFN负号表示F′N与en反向.2-19光滑的水平桌面上放置一半径为R的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0,求:(1)t时刻物体的速率;(2)当物体速率从v0减少到12v0时,物体所经历的时间及经过的路程.解(1)设物体质量为m,取图中所示的自然坐标,按牛顿定律,有mv2FNmanRFfmatdvdt由分析中可知,摩擦力的大小Ff=μFN,由上述各式可得v2dvμRdt取初始条件t=0时v=v0,并对上式进行积分,有t0dtRvdvμv0v2vRv0Rv0μt(2)当物体的速率从v0减少到1/2v0时,由上式可得所需的时间为t物体在这段时间内所经过的路程Rμv0vdt0tt0Rv0dtRv0μtRln2μ2-20质量为45.0kg的物体,由地面以初速60.0m·s-1竖直向上发射,物体受到空气的阻力为Fr=kv,且k=0.03N/(m·s-1).(1)求物体发射到最大高度所需的时间.(2)最大高度为多少?分析物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解(1)物体在空中受重力mg和空气阻力Fr=kv作用而减速.由牛顿定律得mgkvmdv(1)dt某2-25如图(a)所示,电梯相对地面以加速度a竖直向上运动.电梯中有一滑轮固定在电梯顶部,滑轮两侧用轻绳悬挂着质量分别为m1和m2的物体A和B.设滑轮的质量和滑轮与绳索间的摩擦均略去不计.已知m1>m2,如以加速运动的电梯为参考系,求物体相对地面的加速度和绳的张力.分析如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.解取如图(b)所示的坐标,以电梯为参考系,分别对物体A、B作受力分析,其中F1=m1a,F2=m2a分别为作用在物体A、B上的惯性力.设ar为物体相对电梯的加速度,根据牛顿定律有m1gm1aFT1m1ar(1)m2gm2aFT2m2ar(2)FT2FT2(3)由上述各式可得arm1m2gam1m22m1m2gam1m2FT2FT2由相对加速度的矢量关系,可得物体A、B对地面的加速度值为a1aram1m2g2m2am1m22m1am1m2gm1m2a2araa2的方向向上,a1的方向由ar和a的大小决定.当ar<a,即m1g-m2g-2m2a>0时,a1的方向向下;反之,a1的方向向上.某2-26如图(a)所示,在光滑水平面上,放一质量为m′的三棱柱A,它的斜面的倾角为α.现把一质量为m的滑块B放在三棱柱的光滑斜面上.试求:(1)三棱柱相对于地面的加速度;(2)滑块相对于地面的加速度;(3)滑块与三棱柱之间的正压力.分析这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意:(1)参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为aA的运动,这时,滑块沿斜面的加速度aBA,不再是它相对于地面的加速度aB了.必须注意到它们之间应满足相对加速度的矢量关系,即aB=aA+aBA.若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F,且有F=maA.(2)坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.(3)在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mgcoα,事实上只有当aA=0时,正压力才等于mgcoα.解1取地面为参考系,以滑块B和三棱柱A为研究对象,分别作示力图,如图(b)所示.B受重力P1、A施加的支持力FN1;A受重力P2、B施加的压力FN1′、地面支持力FN2.A的运动方向为O某轴的正向,Oy轴的正向垂直地面向上.设aA为A对地的加速度,aB为B对的地加速度.由牛顿定律得FN1inαmaA(1)FN1inαmaB某(2)FN1coαmgmaBy(3)FN1FN1(4)设B相对A的加速度为aBA,则由题意aB、aBA、aA三者的矢量关系如图(c)所示.据此可得aB某aAaBAcoα(5)aByaBAinα(6)解上述方程组可得三棱柱对地面的加速度为aAmginαcoα2mminαmginαcoαmmin2α滑块相对地面的加速度aB在某、y轴上的分量分别为aB某aBymmgin2αmmin2α则滑块相对地面的加速度aB的大小为aBaa2B某2Bym22mmm2in2αginαmmin2α其方向与y轴负向的夹角为amcotαθarctanB某arctanaBymmA与B之间的正压力FN1mmgcoα2mminα解2若以A为参考系,O某轴沿斜面方向[图(d)].在非惯性系中运用牛顿定律,则滑块B的动力学方程分别为mginαmaAcoαmaBA(1)mgcoαFN1maAinα0(2)又因FN1inαmaA0(3)FN1FN1(4)由以上各式可解得aAaBAmginαcoαmmin2αmmginαmmin2α由aB、aBA、aA三者的矢量关系可得m22mmm2in2αaBginαmmin2α以aA代入式(3)可得FN1mmgcoαmmin2α。

第一章课后习题答案

第一章课后习题答案

第一章课后习题答案1、5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生A和B之间正好有3个女生的排列是多少?解:(a) 若女生在一起,可将5个女生看作一个整体参与排列,有8!种方式,然后5个女生再进行排列,有5!种方式,根据乘法法则,共有8!5!种方式。

(b) 若女生两两不相邻,可将7个男生进行排列,有7!种方式,考虑到两个男生之间的6个位置和两头的2个位置,每个位置安排一个女生均符合题意,故从中选出5个位置,然后5个女生再进行排列,按顺序安排到这5个位置,有C(8, 5)5!种方式,根据乘法法则,共有7!C(8, 5)5!=7!P(8, 5)种方式。

(c) 若两男生A和B之间正好有3个女生,可以按照顺序操作如下:首先将女生分为两组,一组3人,一组2人,有C(5, 3)种方式;将男生A和B看作一个整体,加上其他5个男生,2人一组的女生进行排列,有8!种方式;将3人一组的女生安排到男生A和B之间进行排列,有3!种方式;男生A和B进行排列,有2!种方式。

根据乘法法则,所求的排列方式为8!C(5, 3)3!2!=8!P(5, 3)2!2、求3000到8000之间的奇整数的数目,而且没有相同的数字。

解:设介于3000到8000之间的奇整数表示为abcd,则a∈{3, 4, 5, 6, 7}, d∈{1, 3, 5, 7, 9},对a进行分类如下:(1) 若a∈{3, 5, 7},则d有4种选取方式,bc有P(8, 2)种方式,根据乘法法则,此类数字有3⨯4⨯P(8, 2)=672个(2) 若a∈{4, 6},则d有5种选取方式,bc仍有P(8, 2)种方式,根据乘法法则,此类数字有2⨯5⨯P(8, 2)=560个根据加法法则,3000到8000之间数字不同的奇整数的数目为672+560=1232个3、证明nC(n-1, r)=(r+1)C(n, r+1),并给出组合解释。

单元法课后习题全部答案 王勖成

单元法课后习题全部答案 王勖成
收敛性意义:当在 ∞ 维空间中选取试探函数,当试探函数的数目趋于 ∞ 时,利用里兹法得
到的近视解将收敛于精确解。
收敛条件:1 完备性,2 试探函数满足 Cm−1 连续性
思考题 1.0 里兹法的优缺点?举例说明 优点:理论简单,收敛性有严格的理论基础,得到的求解方程的系数矩阵是对称的,在场函 数事先满足强制边界条件情况下,解具有上下界性质。 缺点:当求解域的形状很不规则时候,里兹法所要找的试探函数难以满足全部的强制边界条 件,这样会降低精度。另外,由于其是基于变分原理,对于没有等价泛函的问题无法处理。
∫δ Ω
w
∂4w ∂x 2 ∂y 2
dxdy
∫ ∫ =
δ
Γ
w
∂3w ∂x∂y 2
nxds

δ

∂w ∂x
∂3w ∂x∂y2
dxdy
∫ ∫ ∫ =δ Γ
w
∂3w ∂x∂y2
nx ds

Γ
δ
∂w ∂x
∂2w ∂y 2
nx ds


δ
∂2w ∂x2
∂2w ∂y 2
dxdy
∫ ∫ ∫ =
−θ
ds
= 0 (1)
分部积分得
∫ ∫ ∫ Ω= δ w ∂∂4xw4 dxdy
Γ
δ
w
∂3w ∂x3
nx
ds

∂(δ w)
Ω ∂x
∂3w ∂x3 dxdy
∫ ∫ ∫ =δ w Γ
∂3w ∂x3
nx
ds

Γ
δ
∂w ∂x
∂2w ∂x2
nx ds


δ
∂2w ∂x2

ANASYS有限元计算与材力公式计算结果比较

ANASYS有限元计算与材力公式计算结果比较

ANASYS有限元计算与材⼒公式计算结果⽐较ANASYS有限元计算与材⼒公式计算结果⽐较摘要:基于有限元单元法理论,使⽤ANASYS软件计算悬臂和两端固定两种梁在简单荷载作⽤下的位移与应⼒,并与使⽤材料⼒学公式计算的结果作⽐较,分析误差产⽣的原因,以加深对有限单元法的理解。

关键词:ANASYS;有限元;材料⼒学ANASYS FEM calculation and build formula results Abstract:Based on the theory of finite element method yuan, calculated using software ANASYS cantilever beam and two fixed ends in a simple load of displacement and stress, and the use of the mechanical formula for the results of comparative analysis of the reasons for the error, to deepen the understanding of the finite element method.Key words: ANASYS; finite element method; material mechanics1.前⾔有限单元法是当今⼯程分析中获得最⼴泛应⽤的数值计算⽅法,其分析的基本概念是⽤较简单的问题代替复杂问题后再求解。

它将求解域看成是由许多称为有限元的⼩的互连⼦域组成,对每⼀单元假定⼀个合适且较简单的近似解,然后推导求解这个域总的满⾜条件,从⽽得到问题的解。

这个解不是准确解,⽽是近似解,因为实际问题被较简单的问题所代替。

由于⼤多数实际问题难以得到准确解,⽽有限元不仅计算精度⾼,⽽且能适应各种复杂形状,因⽽成为⾏之有效的⼯程分析⼿段。

自由度凝聚

自由度凝聚

自由度凝聚静力凝聚是论坛的一个老话题了,这里先作一个总结,然后给出论坛中关于该话题的索引。

请大家多提意见。

自由度凝聚是缩减自由度的一种方法,一般是通过用外部(或主)自由度表示内部(或从)自由度,从而使方程中去掉内部(或从)自由度的一种做法。

对于存在铰接点的梁单元,由于铰接点的弯矩为0是已知的,因此可以减少一个自由度,又由于铰接点处各梁的转角不一致,因为转角自由度可以凝聚掉,或者称为自由度释放。

一般自由度凝聚是在单元级别上进行的,用于子结构时可以将子结构看成是一个超级单元。

自由度凝聚的主要作用是(1)向外部提供统一的接口,如需要凝聚的单元与通常单元相连接时(2)减少数据的准备与输入,如子结构法。

(3)减少系统的求解规模。

常用自由度凝聚的几种单元:(1)端部带弹簧或者铰的梁单元(即存在半刚接连接的梁单元,铰接视为特例),这样对外而言都是6(平面)或者12(空间)的自由度。

(2)平面或者空间的Wilson单元,因为存在2(空间块体元为3)个内部自由度,而且这些自由度的位置未知,必须进行自由度凝聚。

(3)子结构:子结构看成为超级单元。

采用子结构可以减少数备准备与输入、减少求解规模等。

自由度凝聚分为静力自由度凝聚和动力自由度凝聚两种。

需要注意的是如果存在单元荷载,那么可以先按母单元来计算单元荷载向结点荷载的移置,然后用自由度凝聚的方法来计算凝聚后的荷载项。

在非线性分析时,应该是先生成相应时刻的母单元的刚度矩阵,然后再进行自由度凝聚,而不是只对线性刚度作凝聚。

论坛中关于自由度凝聚的索引什么是静力凝聚?/forum/viewthread.php?tid=28735&h=1&bpg=1&age=30考虑半刚性与几何非线性的梁元程序/forum/viewthread.php?tid=38210&h=1#1757543D 框架几何非线性时程分析问题(动力凝聚)/forum/viewthread.php?tid=21006&h=1#149408自由度聚合(B4. 非线性与预应力)/forum/viewthread.php?tid=22270&h=1#107953关于半刚半铰梁单元的一致质量矩阵的疑问参考文献[1]王勖成,邵敏编,有限单元法基本原理和数值方法,清华大学出版社,北京,1997。

矩形八结点单元刚度矩阵的通用公式

矩形八结点单元刚度矩阵的通用公式



’ (
%
(
[C]= %%0 0 0 0 0 0 0




x0

2y x
2xy
( (
%
(
0%%
&


x0

2y x
2xy 0


y 2x 0
2xy
y2 (( )
利用有限单元法的知识可得应变矩阵[ B] =[ C] [ A] -1, 对于弹性力
学平面应力问题的弹性矩阵[ D] 为:
* + 1 u 0
【摘 要】本文讨论分析了现行数值计算方法在计算平面问题的 矩 形 八 结 点 单 元 的 单 元 刚 度 矩 阵 中 存 在 的 缺 陷 , 给 出 了 数 学 计 算 软 件 MAPLE 在推导矩形八结点单元的单元刚度矩阵中的应用及其相应的 MAPLE 通用程序、单元刚度矩阵的通用计算公式, 并利用 MAPLE 自带 的 codegen 库自动给出了相应的 C、FO R TR AN 代码, 得出结论, 利用该通用公式来计算其单元刚度矩阵矩阵, 可以节约大量的计算时间与存 储空间以提高计算速度与精度, 并可将其应用到 C、FO R TR AN 中。
所谓终身体育是指一个人各个时期所接受的体育教育, 所参加的 体育活动, 所坚持的体育锻炼的总和。它强调体育在人的一生中的重 要性, 进行体育活动的必要性, 要求人们在人生的各个时期都应将体 育作为生活内容来安排和看待, 充分享受体育的乐趣。
如何使 学 生 在 校 期 间 即 能 够 学 到 全 面 的 体 育 知 识 、技 能 , 又 能 使 他 们 有 几 项 热 爱 的 可 以 坚 持 终 身 的 运 动 项 目 。如 何 使 他 们 既 能 在 校 阶 段锻炼身体, 又 能 使 他 们 愉 快 自 觉 地 在 一 生 中 从 事 体 育 运 动 、锻 炼 身 体。因此, 体育教学与终身体育的接轨已成为学校体育改革的重要课 题。

第2章 弹性力学平面问题有限单元法(1-3节)

第2章 弹性力学平面问题有限单元法(1-3节)

第二章 弹性力学平面问题有限单元法§2-1 三角形单元(triangular Element)三角形单元是有限元分析中的常见单元形式之一,它的优点是:①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。

一、结点位移和结点力列阵设右图为从某一结构中取出的一典型三角形单元。

在平面应力问题中,单元的每个结点上有沿x 、y 两个方向的力和位移,单元的结点位移列阵规定为: 相应结点力列阵为: (式2-1-1)二、单元位移函数和形状函数前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构造)一组在单元内有定义的位移函数作为近似计算的基础。

即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。

构造位移函数的方法是:以结点(i,j,m)为定点。

以位移(u i ,v i ,…u m v m )为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。

在平面应力问题中,有u,v 两个方向的位移,若假定单元位移函数是线性的,则可表示成:(,)123u u x y x y ααα==++546(,)v v x y x y ααα==++ (2-1-2)a{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m j i m ed d d d m j j i v u v u v u i {}ii j j m X Y X (2-1-1)Y X Y iej m m F F F F ⎧⎫⎪⎪⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎪⎪⎩⎭式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标)确定。

将3个结点坐标(x i,y i ),(x j,y j ),(x m,y m )代入上式得如下两组线性方程:123i i i u x y ααα=++123j j j u x y ααα=++ (a)123m m m u x y ααα=++和546i i i v x y ααα=++546j j j v x y ααα=++ (b)546m m m v x y ααα=++利用线性代数中解方程组的克来姆法则,由(a)可解出待定常数1α 、2α 、3α :11A Aα=22A Aα=33A Aα=式中行列式:1i i i j j j m m m u x y A u x y u x y =2111i i j j m mu y A u y u y =3111i i j jm mx u A x u x u =2111i i j j m mAx y A x y x y ==A 为△ijm 的面积,只要A 不为0,则可由上式解出:11()2m m i ij j a u a u a u A α=++ 21()2m m i ij j bu b u b u A α=++ (C )31()2m mi i j j c u c u c u A α=++式中:m m i j j a x y x y =- m m j i i a x y x y =- m i j j i a x y x y =-m i j b y y =- m j i b y y =- m i j b y y =- (d )m i j c x x =- m j i c x x =- m j i c x x =-为了书写方便,可将上式记为:m m i j i a x y x y =-m ij by y =- (,,)i j mm i jc x x =-(,,)i j m表示按顺序调换下标,即代表采用i,j,m 作轮换的方式便可得到(d)式。

王勖成《有限单元法》8-15章课后习题答案14

王勖成《有限单元法》8-15章课后习题答案14

•• 0 0 0 ρ / E −1 0 1 0 ρ = 由初始条件知道: a = ρ −1 ; a−∆t = − ∆t + ; 8 4Q 0 0 4Q 2 E Q
m = c M + c C = E 3 0 M 0 1 0 1 。
l = Q − ( K − c M ) a − ( c M − c C ) a = 0 + 2 E 0 1 a − E 3 0 a Q t 2 t 0 1 t −∆t t t t − ∆t Q 1 0 0 1
(*)
求 t + ∆t 时刻的位移:
M e13 = W ∫
1

1
N1a N1c dξ dη =
M e12×12
0 0 N '1 0 1 0 N '1 0 0 1 其中: N ' = 0 = W 1 N '1 0 4 0 0 0 0 0 0 N ' 1
0 0 0Байду номын сангаас
0 0 0
3 0 0 1 3 0 l 0 E at +∆t = Q t = + 2 E at − E at −∆t 0 1 Q 1 0 0 1
为了简便起见编写程序计算:Fortran 语言
program main implicit none integer::n double precision,dimension(2)::a0=0 !t-∆t 位置 double precision,dimension(2)::a1=0 !t 位置 double precision,dimension(2)::a2=0 !t+∆t 位置 double precision::tem1,tem2 a0(1)=0.0d0 do n=1,15 a2(1)=(0.0+2.0*a1(2)-3.0*a0(1))/3.0d0 a2(2)=1.0+2.0*a1(1)-1.0*a0(2) write(*,*)n a0=a1 ! a1=a2 !传递给下一个时刻 enddo end program write(*,*)a2 a0(2)=0.5d0 a1(1)=0.0d0 a1(2)=0.0d0 !初始值

王勖成《有限单元法》学习总结

王勖成《有限单元法》学习总结

一、绪论
1.2 有限元法特性:
① 对于复杂几何构型的适应性(单元在空间可以是一维、二 维或三维的,而每一种单元可以有不同形状); ② 对各种物理问题的可应用性(用单元内近似函数分片地表示 全求解域的未知场函数,并为限制场函数所满足的方程形式, 也为限制各个单元所对应方程必须是相同的形式); ③ 建立于严格理论基础上的可靠性(用于建立有限元方程的变 分原理或加权余量法在数学上以证明是微分方程和边界条件的 等效积分形式); ④ 适合计算机实现的高校性(有限元分析的各个步骤可以表达 成规范的矩阵形式,最后导致求解方程可以统一为标准的矩阵 代数问题,特别适合计算机编程和执行)。
王勖成《有限单元法》
(学习总结)
2020/3/8
汇报人:XXX 时 间:XXX
1
内容提纲
一、绪论 二、有限元法的理论基础-加权余量法和变分原理 三、弹性力学问题有限元方法的一般原理和表达式 四、单元和插值函数的构造 五、等参元与数值积分 六、有限元法运用中的若干实际考虑 七、线性代数方程组的解法 八、有限元分析计算机程序
由于
是任意的,满足上式时必然有
都等于零。这是与待定系数a的个数相等的方程组, 用以求近似解的经典方法叫做里兹法。
里兹法的实质是从一族假定解中寻求满足泛函变分的最好
解,显然近似解的精度与试探函数的选择有关。
二、有限元法理论基础-加权余量法和变分原理
2.3 变分原理和里兹方法 2.3.2 里兹方法:
张量形式的几何方程为:
其扩展形式为:
二、有限元法理论基础-加权余量法和变分原理
2.4 弹性力学的基本方程和变分原理 2.4.2 弹性力学基本方程的张量形式: 物理方程:
张量形式的物理方程为:

桥梁结构电算--第1讲

桥梁结构电算--第1讲

桥梁结构电算桥梁结构计算的特点结构形式多样大型桥梁超静定次数高荷载形式复杂最终受力状态与施工方法和施工过程有关结构力学的研究内容研究结构的组成和合理形式,确定合理的计算简图研究结构内力和变形的计算方法研究结构的稳定性和动力效应结构分析的基本特点运用计算机和有限元方法进行结构内力、位移、稳定性和动力特性的研究。

方法:有限元工具:计算机本课程的基本内容1 桥梁结构受力特征及分析方法;2 重力影响的计算方法;3 活载影响的计算方法;4 其它荷载影响的计算方法;5 软件BSAS的原理和使用方法。

第一部分基本原理和方法1 1 概概述本课程的性质、特点、基本内容(1)本课程性质、特点:本课程属于专业课,旨在把学过的计算机语言、程序设计、桥梁、力学等知识结构起来,用于桥梁结构分析。

特点是既强调基本概念,又重视实际操作,基本原理与软件使用结合(结合软件“桥梁结构分析系统BSAS”教学版的使用)。

本课程的性质、特点、基本内容(2)基本内容:基本原理部分:(a)桥梁结构受力特征及分析方法;(b)重力影响的计算方法;(c)活载影响的计算方法;(d)其它荷载影响的计算方法;(e)软件BSAS的原理和使用方法。

上机操作部分(约占60%课时)主要讲解和练习软件“桥梁结构分析系统BSAS forWindows”教学版的原理和使用方法。

本课程所要求的先修课程和知识1.算法语言和程序设计(C、C++、或Fortran);2.材料力学、结构力学、结构设计原理; 3.桥梁结构工程;4.微机操作。

第一部分基本原理和方法2 结构分析的基本方法分析方法(1)解析法建立精确的数学-物理模型,通过数学方程求解。

是一种对于模型精确求解的方法。

(2)数值法基于解析法的一种近似分析方法,包括:有限元,有限差分法,有限体积法,边界元法等有限元分析的基本概念有限元属于力学分析中的数值法,起源于航空工程中的矩阵分析,它是把一个连续的介质(或构件)看成是由有限数目的单元组成的集合体,在各单元内假定具有一定的理想化的位移和应力分布模式,各单元间通过节点相连接,并藉以实现应力的传递,各单元之间的交接面要求位移协调,通过力的平衡条件,建立一套线性方程组,求解这些方程组,便可得到各单元和结点的位移、应力。

结构力学第三版王焕定习题集及参考材料规范标准答案

结构力学第三版王焕定习题集及参考材料规范标准答案

2Bx2 EIMM E|P dS2Rsin°也$EI^PR 1 cos 2F p R 3 Rd ?2EI解 由图(a )、( b )可知结构在单位力和荷载作用下的内力都是对称 的,所以可只对一半进行积分然后乘以2来得到位移。

令内侧受拉为正,则Rsin代入公式,得3-1试用直杆公式求图示圆弧型曲梁 B 点水平位移。

EI 为常数。

M PF P Rcos* 3-2图示柱的A 端抗弯刚度为 El , B 端为EI /2,刚度沿柱长线性变 化。

试求B 端水平位移。

解以左侧受拉为正,则M x3M p 业61x 0,l代入公式,得iMM Pi1Bx d sBxElEI3| 4q °x , q o lxd x6l30EI(b )3-3试求图示结构考虑弯曲变形和剪切变形的挠度曲线方程。

截面为矩形,k=i.2。

qi qi2寸A—EI,GA~B ) 2qi qi2~2习题3-3图解令上侧受拉为正,别为x, 代入公式,By i MMo ElM p-dx则单位力和荷载作用下的弯矩和剪力表达式分qlxF Q 1ql lJ2x 0,iF QP ql1Elqlx1 kF Q F QPd x0 GAqi2d 1.2dx2 GA io1q' dx1.2qi2GA3-4试求图示桁架 C 点竖向位移和 CD 杆与CE 杆夹角的改变量。

已 知各杆截面相同, A =1.5 X 10"2 m 2 , E =210 GP a 。

解(1) C 点的竖向位移112.5kN 6m 25125kN 5m85 32 62.5kN 5m 2 75kN 6m 8 8 __________210 109 N/m 2 1.5 102 m 2 6.399 10 4 mCy210 109 N/m 2 1.5 102 m 250 kN 50 kN习题3-5图68 8(a)F N1图(b)F NP 图(kN )(2) CD杆与CE杆夹角的改变量F N2F NP ICD CEEA2 ( 0.15) 62.5kN 5m 0.25 ( 112.5kN) 6m210 109N/m21.5 102m28.333 10 5rad3-5图示桁架AB杆的 E ,其他杆的 E 。

末制导炮弹膛内过载影响因素数值分析

末制导炮弹膛内过载影响因素数值分析
泛 函极 值 问题 J :
寸出发 , 研究 导引部长度 以及弹带与 身管阴线强 制量对末 制
导炮 弹过载影响规律 。
1 末制导炮弹 与身管接触动力学建模
末 制导炮弹与身管接触过程 中同时伴 随 3种非 线性 : 大
变 形 引起 的 弹 带 材 料 非 线 性 , 膛 压 力 、 撞 力 等 几 何 非 线 炮 碰
射生成单条膛线 ; 通过旋转 则可以得到其余 的 4 7条膛线 ; 通
过 to 功能提取膛 线 f e 将其 映射 到 身管外 表 面 , ol a , c 再通 过
3 D单 元 成 型 的 Lna sl ier oi 能 即 可 映 射 得 到 过 渡 光 滑 的 变 d功
截 面身管 。等齐膛 线参 数见表 1 膛线 网格模 型及弹炮 耦合 ,
前 没 有 公 开 实 验 数 据 。文 中将 从 末 制 导 炮 弹 和 弹 带 结 构 尺
静摩 擦 情 况 :l l x J滑 动 摩 擦 情 况 下: ≤/ 碍 l ;
l l } 1 : 。
12 接 触 动 力 学 控 制 方 程 .
接触/ 碰撞界面处理有 拉格朗 日乘子法 、 函数法 、 罚 摄动 拉格 朗 日乘 子法 、 增广拉格 朗 日乘子 法等 。文 中采 用的罚 函 数法是通用 的算法 。采用罚 函数法 处理动接触 问题 , 需求解
为t 时刻节 点位 移 向量 ; B 为 接触约 束矩 阵 ; 。为 初 B 、 D
始法 向间隙。
收 稿 日期 :0 2— 5—1 21 0 9 作者简介 : 张振辉 (9 5 ) 男 , 1 8 一 , 硕士研究生 , 主要从事现代 火炮设计理论及方法研究 。
3 4
结合方式建模 。

有限单元法《第三版》王勖成源程序

有限单元法《第三版》王勖成源程序
C called by the main program
C besides,another 18 subroutines are called by above 7 subrortines
C=======================================================================
C muv:关于输入初始位移U0和初始速度V0的控制参数。
C omega:荷载的圆频率;
C cc1,cc2:振型阻尼参数,即C=cc1m+cc2k;
Hale Waihona Puke C tt:动力响应分析的总时间T;
C dt:时间步长
C alfa,delta:Newmark法的参数
endif
C======================================================================
C Solve dynamic response problem by central-difference method
common/com2/nf,nfstr,msolv,mprob,mtype,nva
C======================================================================
C nf:节点自由度;
C nfstr:
C msolv:分析类型;
C file=fin,fin是文件名
C status=sta sta=old new scratch unknown
C access=acc,acc-顺序或直接acc=sequential direct

有限元法——数值模拟

有限元法——数值模拟

钢框架梁柱十字形节点抗震性能数值模拟与理论分析摘要:梁柱节点在钢框架结构中扮演着举足轻重的角色,因此研究钢框架节点的抗震性能具有重要的意义。

本文通过ABAQUS有限元分析软件对钢结构梁柱十字形节点进行了建模分析,考查了全焊接连接节点在地震波作用下的受力性能。

研究表明:全焊接连接节点具有较好的抗震性能。

关键词:钢框架结构;剪切变形;节点域模型;有限元;非线性分析NUMERICAL AND THEORETICAL ANAL YSIS ON SEISMICPERFORMANCEOF THE CROSS-TYPE JOINT OF STEEL STRUCTUREAbstract:The beam-column connections in steel frame structures play an important role. Therefore, studying the seismic performance of the connection in steel frame has a great significance. In order to investigate the seismic performance of the connection in steel frame, this paper presents the cross-type model using the software “ABAQUS”. The results show that the weld connection has a good performance in seismic behavior.Keywords: Steel Frame Structure; Shear Deformation; Panel Zone Model; Finite Element Method; Nonlinear Analysis0 前言有限单元法(或称有限元法)是在当今工程分析中获得最广泛应用的数值分析计算方法。

有限元方法概述

有限元方法概述
北京航空航天大学
主要工学硕士数学课程

工程数学 计算方法(数值分析) 随机过程 矩阵论 运筹学(最优化方法) 图论 模糊数学 有限元方法 小波分析 应用泛函分析北 Nhomakorabea航空航天大学
数学课程在研究生培养中的重要性
科技发展日新月异,数学科学地位不断提
高,在自然科学和工程技术方面广泛应用。 数学的面貌发生很大变化,现代数学在理 论上更加抽象、方法上更加综合、应用上 更加广泛。 综合运用数学的能力关系到研究生的创新 能力和研究水平的提高,对研究生的论文 质量至关重要。
X
北京航空航天大学
(2)单元分析 用单元节点位移表示单元内部位移-第i个单元 中的位移用所包含的结点位移来表示。
ui 1 ui ( x xi ) u ( x ) ui Li ui 第i结点的位移 xi 第i结点的坐标
北京航空航天大学
第i个单元的应变 应力 内力
du ui 1 ui i dx Li
自重作用下等截面直杆的解
受自重作用的等截面直杆 如图所示,杆的长度为L, 截面积为A,弹性模量为 E,单位长度的重量为q, 杆的内力为N。 试求:杆的位移分布,杆 的应变和应力。
北京航空航天大学
材料力学解答
N ( x) q( L x)
x
N ( x) q ( L x) A A
d2y EI 2 P ( x L) dx
M ( x) EI d2y dx 2
x
和边界条件
y |x 0 0 dy |x 0 0 dx
M ( x) P ( x L)
北京航空航天大学
再如对于弹性力学问题,可以建立起基本方程与 边界条件,如下: 平衡方程: 几何方程: 物理方程: 边界条件:

基于有限元法验证圣维南原理

基于有限元法验证圣维南原理

基于有限元法验证圣维南原理摘要:圣维南原理是弹性力学中的最重要的基础性原理,本文主要是利用有限元方法,对圣维南原理进行验证。

文章首先是基于有限单元法的基本原理,进行平面有限元程序的编写,然后对所选模型进行有限元模型的建立,采用不同的荷载加载形式,利用编写的程序进行计算,最后对得到的结果从不同的方面进行分析,然后得出结论,对圣维南原理的正确性进行肯定。

关键词:有限元,圣维南原理,程序设计一、 引言圣维南原理(Saint Venant ’s Principle )是弹性力学的基础性原理[1],是法国力学家圣维南于1855年提出的。

其内容是:分布于弹性体上一小块面积(或体积)内的荷载所引起的物体中的应力,在离荷载作用区稍远的地方,基本上只同荷载的合力和合力矩有关;荷载的具体分布只影响荷载作用区附近的应力分布。

很多学者研究过圣维南原理的正确性,结果发现,它在大部分实际问题中成立。

有限元法(Finite Element Method )是求解复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要基础性原理。

将其应用到工程中,可成为探究物质客观规律的先进手段。

本文主要利用有限元法,进行程序设计,再利用该程序对圣维南原理进行验证,通过对施加不同的荷载情况下,比较构件内位移、应力的变化,进而对圣维南原理的正确性做出肯定。

二、 有限元基本原理及程序设计有限元分析包括三个方面[2]:1 有限元方法的基本数学力学原理;2 基于原理所形成的计算机程序;3 使用计算机进行计算。

首先来讨论一下有限元方法的基本数学力学原理。

本文所涉及的程序是基于3节点三角形单元(3-node triangular element ),每个单元有6个自由度,所有节点的位移组成位移矩阵U ,所有节点力组成荷载向量P 。

图1其形函数为:u 1u 2u 3v 1v 2v 3N i=(a i+b i x+c i y),i=1,2,3其中:a i=x j y m−x m y jb i=y j−y mc i=x m−x j应变转换矩阵:B i=12A [b i00c ic i b i],i=1,2,3弹性系数矩阵:D=E1−μ2[1μ0μ10001−μ2]单元刚度阵:K e=∫B T∙D∙B∙t∙A=[k11k12k13 k21k22k23 k31k32k33]其中:t---单元的厚度;A---为单元的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d2w = dx2

aπ 2 L2
sin
πx L
∫ = Π(w)
L EI
0
2
a2π 2 L2
sin 2
πx L
+
k a2 sin2 2
πx L
+
qa
sin
πx L
dx
=
EIa2π 4L3
4
+
kLa2 4
+
2L π
qa
∂Π =EIπ 4a + kLa + 2Lq =0 → a =− 4qL4
∂a 2L3 2 π
解:近似函数为
u(x)
=
N
i
(
x)ai
,不失一般性
余量为:
R(x)
=
A(u)

f
(x)
=
A(
Ni
(
x)ai
)

f
(x)
最小二乘配点法取权函数
w
j
= ∂∂a j A(Niai )δ (x − xk ) 其中j=1,...,n;
k=1,...,m
且m ≥ n
∫ 加权余量要求

w
j
Rd
Γ
δ
w
∂3w ∂y3
n
y
ds

∂(δ w)
Ω ∂y
∂3w ∂y3 dxdy
∫ ∫ ∫ =δ w Γ
∂3w ∂y3
ny
ds

Γ
δ
∂w ∂y
∂2w ∂y 2
ny ds


δ
∂2w ∂y 2
∂2w ∂y 2
dxdy
代入(1)化简,并利用:
= ∂w ∂n
∂w ∂x
nx
+
∂w ∂y
ny
aL − 2ax ,
w ′′ =
d 2w dx2
=
−2a
∫ = Π(w)
L 0
EI 2
4a2
+
k 2
a2 x2 (x

L)2
+
qax( x

L)dx
= 2EILa2 + ka2L5 − qaL3 60 6
∂Π ∂a
=4EILa + kaL5 30
− qL3 6
=0

a
=− 5qL2 120EI +
+
kw
+
q
=0
边界条件: d= 2w d= 2w 0 , d= 3w d= 3w 0
dx2
dx2
dx3
dx3
=x 0=x L
=x 0=x L
分强制边界和自然边界。
补充题 试作加权余量发的最小二乘配点法,并给出所得到的求解方程系数矩阵的特点分析。 (最小二乘配点法思路是,利用使求解域内所选各点处误差平方的总和为最少的条件,去建 立求解试函数系数的方程。配点法是强迫余量误差在所选点上为 0,最小二乘配点法则是余 量在所选点上的误差,满足平方和最小。)
习题 1.6 两端简支弹性基础上的梁受均不载荷。
∫ = Π(w)
L
EI
0 2
d 2w dx2
2
+
kw2 2
+
qwdx
∑ (1)
选取满足边界条件
的三角级数近似解 w =
n i =1
ai
sin
iπ x L

w = a sin π x ,= w ′ L
d=w dx
aπ L
cos π x , w ′′ = L

f
( xk
)]
m
m
∑ ∑ = =k
1= AT (N j )A (N i )ai − k
1
AT
(N
j)f
= Ka-P
(写成矩阵形式)
m
∑ = 因此, kij k= =1 AT (N j )A (N i ) k ji , 系数矩阵对称,且无需积分。
复习题 1.7 自然边界条件强制边界条件的区别何在?为什么这样命名?对于一个给定的微分方程,如何 区分这两类边界条件?
δ
w
L
+
L 0
EI
d 4w δ dx4
wdx
0
0
= δΠ(w)
∫L 0
EI
d 2w dx2
δ
d 2w dx2
+
kwδ
w
+
q= δ wdx
+
EI
d 2w dx2
d (δ w) dx
L

EI
d 3w dx3
δ
w
L
0
0
∫L
0
EI
d 4w dx4
+
kw
+
q
δ
wdx
微分方程:
EI
d 4w dx4

δ
∂2w ∂x2
∂2w ∂y 2
dxdy

Γ
δ
∂w ∂x
∂2w ∂y 2
nx
ds
+
δ
Γ
w
∂3w ∂x∂y2
nx ds
∫ ∫ ∫ =

δ
∂2w ∂y 2
∂2w ∂x2
dxdy

Γ
δ
∂w ∂y
∂2w ∂x2
ny
ds
+
δ
Γ
w
∂3w ∂y∂x2
ny ds
∫ ∫ ∫ Ω= δ w ∂∂4yw4 dxdy
= R( L) 3
0= , R( 2L) 3
0 ,从而可以解出待定系数 a1, a2 。带入(1)式可以得到φ 。
配点法仅考虑了有限个点的局部特性,子域法则要求在有限个子域 Ωi 内残量的积分
∫ R(x)dx = 0 为零,子域的个数仍然取决于未知函数个数,通常选取各子域的并集为整个 Ωi
待求区域,一般情况可以选择各子域大小相同,但对于某些局部变化较复杂的区域,可以缩 小子域的大小,使得子域分布更合理。例如取子域为
EIπ 5 + kπ L4
w=

4qL4
πx sin ,
EIπ 5 + kπ L4 L
当x= L, 2
wmax =
− 4qL4 EIπ 5 + kπ L4
(2) 选取满足边界条件的幂级数近似解
w = x(L − x)(a1 + a2x + ....) 取一次 w = ax(L − x)
w= ′
dw= dx
+
∂4w ∂y 4
q ( x,
= D
y)
位移边界条件
=w w= , ∂w θ ∂n
加权余量法(事先满足强制边界条件 w = w , ∂w = θ )得到等效积分形式: ∂n
∫ ∫

δ
w
D0
∂4w ∂x4
+
2
∂4w ∂x 2 ∂y 2
+
∂4w ∂y 4

q dxdy

Γθ
δ
w
∂w ∂n
∫ ∫ Ω=1
{x | 0 ≤ x ≤ L / 2}, Ω=2
{x | L / 2 ≤ x ≤ L} ,则利用= R(x)dx Ω1
0= , R(x)dx Ω2
0,
可以求出待定系数 a1, a2 。
伽辽金法作为加权余量法的特殊形式,权函数选择为插值函数 N1, N2 ,
∫ 这里
N1
(
x)
= x − Lx23 , N
EI
d 2w dx2
δ
d 2w dx2
+
kwδ
w
+

wdx
∫ ∫ L 0
EI
ddx2= w2 dd2δx2w dx
EI
d 2w dx2
d (δ w) dx
L

L
EI
0
d 3w dx3
d
(δ w) dx
dx
0
∫ =
EI
d 2w dx2
d (δ w) dx
L

EI
d 3w dx3
思考题 1.8 泛函在什么条件下有极值?了解泛函是否有极值的意义何在?
= δΠ 0 且或δ 2Π > < 0 , 泛函极值性对于判断解的近似性质有意义,利用它可以对解的
上下界做出估计。 思考题 1.9 什么是里兹法?通过它建立的求解方法有什么特点?里兹方法收敛性的定义是 什么?收敛条件是什么? 里兹法:在某一函数空间寻找试探函数,利用加权值的独立变分性将该函数的驻值问题转化 为该函数关于权值的极值问题。其特点是:试探函数是全域的,解的精度依赖于试探函数的 选取,其收敛性有明确的结论。
−θ
ds
= 0 (1)
分部积分得
∫ ∫ ∫ Ω= δ w ∂∂4xw4 dxdy
Γ
δ
w
∂3w ∂x3
nx
ds

∂(δ w)
Ω ∂x
∂3w ∂x3 dxdy
∫ ∫ ∫ =δ w Γ
∂3w ∂x3
nx
ds

Γ
δ
∂w ∂x
∂2w ∂x2
nx ds


δ
∂2w ∂x2
∂2w ∂x2
dxdy
收敛性意义:当在 ∞ 维空间中选取试探函数,当试探函数的数目趋于 ∞ 时,利用里兹法得
相关文档
最新文档