九年级数学圆的中考试题

合集下载

2020年九年级数学中考《圆》综合专题复习试题(含答案)

2020年九年级数学中考《圆》综合专题复习试题(含答案)
1 ∴∠AOH=2∠AOC=60°.
1 ∵AH=2AC= 3,
AH ∴OA=sin60°=2. ∴⊙O 半径的长为 2. (2)证明:在 BM 上截取 BE=BC,连接 CE, ∵∠ABC=120°,BM 平分∠ABC, ∴∠MBA=∠MBC=60°. ∵BE=BC, ∴△EBC 是等边三角形.
∴CE=CB=BE,∠BCE=60°. ∴∠BCD+∠DCE=60°. ∵∠ACM=∠ABM=60°,∴∠ECM+∠DCE=60°. ∴∠ECM=∠BCD. ∵∠CAM=∠CBM=60°,∠ACM=∠ABM=60°. ∴△ACM 是等边三角形.∴AC=CM. ∴△ACB≌△MCE(SAS).∴AB=ME. ∵ME+EB=BM, ∴AB+BC=BM.
基础题组
1.(2019·保定一模)已知⊙O 的半径 OA 长为 2,若 OB= 3,则可以得到的正确图形可
能是(A)
2.(2019·广州)平面内,⊙O 的半径为 1,点 P 到 O 的距离为 2,过点 P 可作⊙O 的切线条
数为(C)
A.0 条
B.1 条
C.2 条
D.无数条
3.如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,以点 A 为圆心作圆.如果⊙A 与线
则∠D=27°.
基础题组
1.(2019·柳州)如图,A,B,C,D 是⊙O 上的点,则图中与∠A 相等的角是(D)
A.∠B
B.∠C
C.∠DEB
D.∠D
A︵B
A︵B
2.(2019·吉林)如图,在⊙O 中, 所对的圆周角∠ACB=50°.若 P 为 上一点,
∠AOP=55°,则∠POB 的度数为(B)
A.30°
3 切,连接 OC,则 tan∠OCB= 5 .

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

圆中的新定义问题1(2023•淮安模拟)在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知A (3,0),B (5,0),①在点P 1(6,0),P 2(1,-2),P 3(3,2)中,线段AB 的融合点是 P 1,P 3 ;②若直线y =t 上存在线段AB 的融合点,求t 的取值范围;(2)已知⊙O 的半径为4,A (a ,0),B (a +1,0),直线l 过点T (0,-1),记线段AB 关于l 的对称线段为A B .若对于实数a ,存在直线l ,使得⊙O 上有A B 的融合点,直接写出a 的取值范围.【解答】解:(1)①∵P 1(6,0),A (3,0),∴P 1A 的线段垂直平分线与x 轴的交点为92,0,∴P 1是线段AB 的融合点;∵P 2(1,-2),B (5,0),设直线P 2B 的垂直平分线与x 轴的交点为(a ,0),∴(a -1)2+4=(5-a )2,解得a =52,∴直线P 2B 的垂直平分线与x 轴的交点为52,0,∴P 2不是线段AB 的融合点;∵P 3(3,2),B (5,0),设直线P 3B 的垂直平分线与x 轴的交点为(b ,0),∴(b -3)2+4=(5-b )2,解得b =3,∴直线P 3B 的垂直平分线与x 轴的交点为(3,0),∴P 3是线段AB 的融合点;故答案为:P 1,P 3;②线段AB 的融合点在以A 、B 为圆心,AB 为半径的圆及内部,∵A (3,0),B (5,0),∴AB =2,当y =t 与圆相切时,t =2或t =-2,∴-2≤t ≤2时,直线y =t 上存在线段AB 的融合点;(2)由(1)可知,A B 的融合点在以A 、B 为圆心,A B 为圆心的圆及内部,∵A (a ,0),B (a +1,0),∴AB =A B =1,∵⊙O 上有A B 的融合点,∴圆O 与圆A 、B 有交点,∴圆O 与圆A 、圆B 的公共区域为以O 为圆心2为半径,以O 为圆心6为半径的圆环及内部区域,当a >0时,a 的最大值为62-12=35,最小值为22-12-1=3-1,∴3-1≤a ≤35;当a <0时,a 的最大值为-22-12=-3,最小值为-62-12-1=-35-1,∴-35-1≤a ≤-3;综上所述:a 的取值范围为3-1≤a ≤35或-35-1≤a ≤-3.2(2023•西城区校级模拟)在平面内,C 为线段AB 外的一点,若以点A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点.特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1)如图1,在平面直角坐标系xOy 中,点M 的坐标为(-1,0),点N 的坐标为(1,0),在点P 1(2,1),P 2(-1,2),P 332,12 中,线段MN 的直角点是 P 2、P 3 ;(2)在平面直角坐标系xOy 中,点A ,B 的坐标分别为(t ,0),(0,4).①若t =4,如图2所示,若C 是线段AB 的直角点,且点C 在直线y =-x +8上,求点C 的坐标;②如图3,点D 的坐标为(m ,-2),⊙D 的半径为1,若⊙D 上存在线段AB 的等腰直角点,求出m 的取值范围.【解答】解:(1)∵P 2(-1,2),M (-1,0),∴P 2M ⊥MN ,∴P 2是线段MN 的直角点;∵M (-1,0),N (1,0),∴MN =2,∵P 332,12,∴P 3O =1,∴P 3在以O 为圆心,MN 为直径的圆上,∴∠MP 3N =90°,∴P 3是线段MN 的直角点;故答案为:P 2、P 3;(2)①∵A (4,0),B (0,4),∴OA =OB =4,∴∠OAB =∠OBA =45°.根据题意,若点C 为线段AB 的直角点,则需要分三种情况:当点B 为直角顶点,过点B 作BC 1⊥AB 于点C 1,过点C 1作C 1M ⊥y 轴于点M ,∴∠C 1BM =45°,∴C 1M =BM ,设C 1M =BM =a ,∴C 1(a ,a +4),∴-a +8=a +4,解得a =2,∴C 1(2,6);当点A 为直角顶点,过点A 作AC 2⊥AB 于点C 2,过点C 2作C 2N ⊥x 轴于点N ,∴∠C 2AN =45°,∴C 2N =AN ,设C 2N =AN =b ,∴C 2(b +4,b ),∴-(b +4)+8=b ,解得b =2,∴C 2(6,2);当点C 为直角顶点,取AB 的中点P ,则P (2,2),设C 3的横坐标为t ,则C 3(t ,-t +8),由直角三角形的性质可知,C 3P =BP =AP =22,∴(t -2)2+(-t +6)2=(22)2,解得t =4,∴C3(4,4),综上,点C的坐标为(2,6)或(6,2)或(4,4).②如图,以AB为边向下作正方形ABC1C2,连接AC1,BC2交于点C3,则C1,C2,C3是线段AB的等腰直角点.根据点A的运动可知,点C1在直线l1:x=-4上运动,C2在直线l2:y=-x-4上运动,C3在直线l3:y=-x上运动.设l2与y=-2相交于点K,l3与y=-2相交于点L,∴K(2,-2),L(2,-2).由此可得出临界情况如图:如图3(1)中,当⊙D与l1相切时,m=-5;如图3(2)中,当⊙D与l2相切时,点F为切点,连接DF,则ΔDFK为等腰直角三角形,且DF=1,∴DK=2;∴D(-2+2,-2),即m=-2+2;如图3(3)中,当⊙D与l3相切时,点G为切点,连接DG,则ΔDGL为等腰直角三角形,且DG=1,∴DL=2;∴D(2-2,-2),即m=2-2;如图3(4)中,当⊙D与l3相切时,点H为切点,连接DH,则ΔDHL为等腰直角三角形,且DH=1,∴DL=2;∴D(2+2,-2),即m=2+2;综上,符合题意的m的取值范围:-5≤m≤-2+2或2-2≤m≤2+2.3(2023•秀洲区校级二模)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”;(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是③.(填序号)①矩形②菱形③正方形(2)如图1,RtΔABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,sin C=35,若四边形ABED是“婆氏四边形”,求DE的长;(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD= 180°,①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.【解答】(1)解:∵平行四边形ABCD为⊙O的内接四边形,∴∠ABC=∠ADC,∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴平行四边形ABCD是矩形,∵四边形ABCD是“婆氏四边形”,∴AC⊥BD,∴矩形ABCD是正方形,故答案为:③;(2)解:∵∠BAC=90°,AB=6,sin C=35,∴BC=10,AC=8,∴BD为直径,∴∠BED =∠DEC =90°,∵四边形ABED 是“婆氏四边形”,∴AE ⊥BD ,∴AD =DE ,AB =BE =6,设AD =DE =m ,则CD =8-m ,EC =4,在Rt ΔEDC 中,m 2+42=(8-m )2,解得m =3,∴DE =3;(3)①证明:如图2,设AC ,BD 相交于点E ,∵∠DCA =12∠AOD ,∠BDC =12∠BOC ,∠BOC +∠AOD =180°,∴∠DCA +∠BDC =12(∠AOD +∠BOC )=12×180°=90°,∴∠CED =90°,∴AC ⊥BD ,∵四边形ABCD 是⊙O 的内接四边形,∴四边形ABCD 是“婆氏四边形”;②解:过点O 作OM ⊥AD 交于M ,过O 作ON ⊥BC 交于N ,∴AM =12AD ,BN =12BC ,∠AMO =∠BNO =90°,∴∠AOM +∠OAM =90°,∵OA =BO =CO =DO ,∴∠AOM =12∠AOD ,∠BON =12∠BOC ,∵∠BOC +∠AOD =180°,∴∠AOM =∠OBN ,∴ΔOAM ≅ΔBON (AAS ),∴ON =AM =12AD ,∵AD +BC =4,设ON =AM =n ,则AD =2n ,BC =4-2n ,BN =2-n ,在Rt ΔBON 中,BO =n 2+(2-n )2=2(n -1)2+2,当n =1时,BO 有最小值2,∴⊙O 半径的最小值为2.4(2022秋•西城区期末)给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点A (-1,-2),B (5,-2),C (-1,4).(1)在点D (-4,0),E (2,2),F (6,0)中,与点O 关于线段AB 双对合的点是 D ,F ;(2)点K 是x 轴上一动点,⊙K 的直径为1,①若点A 与点T (0,t )关于⊙K 双对合,求t 的取值范围;②当点K 运动时,若ΔABC 上存在一点与⊙K 上任意一点关于⊙K 双对合,直接写出点K 的横坐标k 的取值范围.【解答】解:(1)当A 点是D 点的中点时,对应点为(2,-4);当B 点是D 点的中点时,对应点为(14,-4);当A 点是E 点的中点时,对应点为(-4,-6);当B 点是E 点的中点时,对应点为(8,-6);当A 点是F 点的中点时,对应点为(-8,-4);当B 点是F 点的中点时,对应点为(4,-4);当A 点是O 点的中点时,对应点为(-2,-4);当B 点是O 点的中点时,对应点为(10,-4);∴D 、F 与点O 关于线段AB 双对合,故答案为:D 、F ;(2)①设K(k,0),∵A(-1,-2),T(0,t),∴A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,-t),∵点A与点T(0,t)关于⊙K双对合,∴A点关于点K的对称点在以G为圆心,∵⊙K的直径为1,∴点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,如图所示,∵点A与点T(0,t)关于⊙K双对合,∴当圆G与圆H有交点,∵GH=1+(t+2)2,∴1+(t+2)2≤2,解得-2-3≤t≤-2+3;②∵A(-1,-2),B(5,-2),C(-1,4),K(k,0),∴A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k-5,2),C点关于K点的对称点G(2k+1, -4),∴ΔABC上任意一点关于K点对称点在阴影区域,∵ΔABC上存在一点与⊙K上任意一点关于⊙K双对合,∴阴影区域与圆K有公共交点,∵阴影部分是由ΔEGF边上任意一点为圆心,1为半径的圆构成的区域,如图1时,k-(2k+1)=12+1,解得k=-52;如图2时,2k+1-k=12+1,解得k=12;∴-52≤k≤12时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;过点K作KN⊥EG交于N,直线EG交x轴于点M,设直线EG的解析式为y=k x+b,∴(2k-5)k +b=2 (2k+1)k +b=-4 ,解得k =-1b=2k-3 ,∴y=-x+2k-3,∴M(2k-3,0),∵直线y=-x与y=-x+2k-3平行,∴∠KMN=45°,∴KM=2KN=322,如图3时,k-(2k-3)=322,解得k=3-322,如图4时,2k-3-k=322,解得k=3+322,∴3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;综上所述:-52≤k≤12或3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合.5(2022•钟楼区模拟)概念认识:平面内,M为图形T上任意一点,N为⊙O上任意一点,将M、N两点间距离的最小值称为图形T到⊙O的“最近距离”,记作d(T-⊙O).例:如图1,在直线l上有A、C、O三点,以AC为对角线作正方形ABCD,以点O为圆心作圆,与l交于E、F两点,若将正方形ABCD记为图形T,则C、E两点间的距离称为图形T到⊙的“最近距离”.数学理解:(1)在平面内有A、B两点,以点A为圆心,5为半径作⊙A,将点B记为图形T,若d(T-⊙A)=2,则AB= 3或7.(2)如图2,在平面直角坐标系中,以O(0,0)为圆心,半径为2作圆.①将点C(4,3)记为图形T,则d(T-⊙O)=.②将一次函数y=kx+22的图记为图形T,若d(T-⊙)>0,求k的取值范围.推广运用:(3)在平面直角坐标系中,P的坐标为(t,0),⊙P的半径为2,D、E两点的坐标分别为(5,5)、(5,-5),将ΔDOE记为图形T,若d(T-⊙P)=1,则t=.【解答】解:(1)如图1中,∵d(T-⊙A)=2,∴CB=CB′=2,∵AC=5,∴AB′=5-2=3,AB=5+2=7.故答案为:3或7.(2)①如图2中,连接OC交⊙O于E.∵C(4,3),∴OC=42+32=5,∵OE=2,∴EC=3,∴d(T-⊙O)=3.故答案为:3.②如图,设直线y=kx+22与⊙O相切于E,K.连接OK,OE.∵OE⊥DE,OK⊥DK,OD=22,OE=OK=2,∴DK=OD2?OK2=(22)2-22=2,DE=OD2?OE2=(22)2-22=2,∴DE=OE=DK=OK,∴四边形DEOK是菱形,∵∠DKO=∠DEO=90°,∴四边形DEOK是正方形,∴∠ODE=∠ODK=45°,∴直线DE的解析式为y=-x+22,直线DK的解析式为y=x+22,∵d(T-⊙O)>0,∴观察图象可知满足条件的k的值为-1<k<1且k≠0.(3)如图3-1中,当点P在DE的右边时.∵D(5,5),∴∠DOP=45°,∵d(T-⊙P)=1,∴OP=5+1+2=8∴t=8.如图3-2中,当点P在∠DOE的外侧时,由题意可知OM=1,OP=1+2=3,t=-3.综上所述,满足条件的t的值为8或-3.6(2022秋•昌平区期末)已知:对于平面直角坐标系xOy中的点P和⊙O,⊙O的半径为4,交x轴于点A,B,对于点P给出如下定义:过点C的直线与⊙O交于点M,N,点P为线段MN的中点,我们把这样的点P叫做关于MN的“折弦点”.(1)若C(-2,0).①点P1(0,0),P2(-1,1),P3(2,2)中是关于MN的“折弦点”的是 P1,P2 ;②若直线y=kx+3(k≠0).上只存在一个关于MN的“折弦点”,求k的值;(2)点C在线段AB上,直线y=x+b上存在关于MN的“折弦点”,直接写出b的取值范围.【解答】解:(1)①连接OP,∵P点是弦MN的中点,∴OP⊥MN,∴∠CPO=90°,∴P点在以CO为直径的圆上,∵C(-2,0),∴P点在以(-1,0)为圆心,1为半径的圆上,∵点P1(0,0),P2(-1,1)在该圆上,∴点P1(0,0),P2(-1,1)是关于MN的“折弦点”,故答案为:P1,P2;②由①可知,P点在以(-1,0)为圆心,1为半径的圆上,设圆心D(-1,0),∵直线y=kx+3(k≠0)上只存在一个关于MN的“折弦点”,∴直线y=kx+3(k≠0)与圆D相切,过点D作DF垂直直线y=kx+3交于点F,∵直线y=kx+3与x轴交于点E-3k,0,与y轴交于点G(0,3),∴DE=-1+3k,OF=3k,OG=3,∵∠DFE=∠EOG=90°,∴ΔEGO∽ΔEFD,∴DF GO =ED EG,∴13=3k-13+3k2,解得k=3 3;(2)由(1)可知,P点在以OC为直径的圆上,∵直线y=x+b上存在关于MN的“折弦点”,∴直线y=x+b与圆D相交或相切,过D点作DF垂直直线y=x+b交于点F,∵直线y=x+b与x轴交于点(-b,0),与y轴交于点(0,b),当C点与A点重合时,b有最大值,此时D(-2,0),∴(-2+b)2=8,解得b=22+2或b=22+2(舍);当C点与B点重合时,b有最小值,此时D(2,0),∴(-b-2)2=8,解得b=22-2(舍)或b=-22-2;∴-22-2≤b≤22+2时,直线y=x+b上存在关于MN的“折弦点”.7(2022秋•东城区校级月考)如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°<∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(2,2),P2(2,0),P3(2,1)中,⊙O的环绕点是 P1 ;②直线y=3x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为2,圆心为(0,t),以-m,33m(m>0)为圆心,33m为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.【解答】解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN,当∠MPN=60°时,∵PT平分∠MPN,∴∠TPN=∠MPT=30°,∵TM⊥PM,TN⊥PN,∴∠TNP=∠PMT=90°,∴TP =2TM =2,以T 为圆心,TP 为半径作⊙T .观察图象可知:当60°<∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),故答案为:P 1;②如图中,设小圆交y 轴的正半轴于F ,当直线y =3x +b 经过点F 时,b =1,当直线y =3x +b 与大圆相切于K (在第二象限)时,连接OK ,由题意B (0,b ),A -b 3,0,所以OB =b ,OA =b 3,AB =103b ,∵OK =2,12×AB ×OK =12×OA ×OB ,∴b =210,观察图象可知,当1<b <210时,线段AB 上存在⊙的环绕点,根据对称怀可知:当-210<b <-1时,线段AB 上存在⊙的环绕点,综上所述,满足条件的b 的值为1<b <210或-210<b <-1;(2)如图中,不妨设E -m ,33m (m >0),则点E 直线y =-33x 上,∵m >0,∴点E 在射线OE 上运动,作EM ⊥x 轴;∵E -m ,33m (m >0),∴OM =m ,EM =33m ,以E -m ,33m (m >0)为圆心,33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON ,观察图象可知:以E -m ,33m (m >0)为圆心,33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,当⊙T 的圆心在y 轴的正半轴上时,假设以T 为圆心,4为半径的圆与射线ON 相切于D ,连接TD ,∵tan ∠EOM =EM OM=33,∴∠EOM =30°,∵OM ,ON 是⊙E 的切线,∴∠EON =∠EOM =30°.∴∠TOD =30°,∴OT =2DT =8,∴T (0,8),当⊙T 的圆心在y 轴的负半轴上时,且经过点O (0.0)时,T (0,-4),观察图象可知,当-4<t <8时,在图象上存在⊙T 的环绕点.8(2022秋•海淀区校级月考)对于平面直角坐标系中的线段AB 和点P (点P 不在线段AB 上),给出如下定义:当PA =PB 时,过点A (或点B )向直线PB (或PA )作垂线段,则称此垂线段为点P 关于线段AB 的“测度线段”,垂足称为点P 关于线段AB 的“测度点”.如图所示,线段AD 和BC 为点P 关于线段AB 的“测度线段”,点C 与点D为点P关于线段AB的“测度点”.(1)如图,点M(0,4)、N(2,0),①点P的坐标为(5,4),直接写出点P关于线段MN的“测度线段”的长度4;②点H为平面直角坐标系中的一点,且HM=HN,则下列四个点:Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,是点H 关于线段MN的“测度点”的是;(2)直线y=-34x+6与x轴、y轴分别交于点A与点B,①点G为平面直角坐标系中一点,且GA=GB,若一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,直接写出k的取值范围为;②⊙O的半径为r,点C与点D均在⊙O上,且线段CD=65r.点K与点O位于线段CD的异侧,且KC=KD,若在线段AB上存在点K关于线段CD的“测度点”,直接写出r的取值范围为.【解答】解:(1)①∵M(0,4)、P(5,4),∴MP⎳x轴,∴点P关于线段MN的“测度线段”的长度为4,故答案为:4;②∵过点N作NF⊥MH交于F点,过点M作MG⊥NH交于点G,∵∠MFN=∠MGN=90°,∴F、G点在以MN为直径的圆上,设MN的中点为E,∵点M(0,4)、N(2,0),∴E(1,2),MN=25,∴点H关于线段MN的“测度点”在以E为圆心,5为半径的圆上,且不与M、N重合,∵Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,Q1E=5,Q2E=5,Q3E=2,Q4E=5,∴Q1,Q2是点H关于线段MN的“测度点”,故答案为:Q1,Q2;(2)①当x=0时,y=6,∴B(0,6),当y=0时,x=8,∴A(8,0),∴AB的中点F(4,3),AB=10,由(1)可知,点G关于线段AB的“测度点”在以F为圆心,5为半径的圆上,且不与A、B点重合,∵一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,∴直线y=kx-14k+3与圆F相切或相交,过点F作FK垂直直线y=kx-14k+3交于点K,直线与y轴的交点为T,过点F作FL⎳KT交于交y轴于点L,过点L作SL⊥KT交于点S,∴LS =FK =5,∴LF 的直线解析式为y =kx -4k +3,∴L (0,-4k +3),T (0,-14k +3),∴TL =-10k ,∵sin ∠LTS =5-10k =11+k 2,∴k =±33,∴-33≤k ≤33时,一次函数y =kx -14k +3上存在点G 关于线段AB 的“测度点”,故答案为:-33≤k ≤33;②由(1)可知,K 点关于线段CD 的“测度点”在以CD 为直角的半圆上,且不与C 、D 重合,当CD ⎳AB ,且AB 与圆P 相切时,r 有最小值,由①可得,45=35r 6-r ,解得r =247,当CD 在AB 上时,r 有最大值,r =6,∴247≤r <6时,线段AB 上存在点K 关于线段CD 的“测度点”,故答案为:247≤r <6.9(2022•盐城一模)对于平面内的两点K 、L ,作出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90°,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点A (4,0),在点Q 1(0,4),Q 2(2,23),Q 3(-2,23),Q 4(22,-22)中,是点A 关于点O 的锐角旋转点的是 Q 2,Q 4 .(2)已知点B (5,0),点C 在直线y =2x +b 上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围.(3)点D 是x 轴上的动点,D (t ,0),E (t -3,0),点F (m ,n )是以D 为圆心,3为半径的圆上一个动点,且满足n ≥0.若直线y =2x +6上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.【解答】解:(1)如图,∵A (4,0),Q 1(0,4),∴OA =OQ 1=4,∠AOQ 1=90°,∴点Q 1不是点A 关于点O 的锐角旋转点;∵Q 2(2,23),作Q 2F ⊥x 轴于点F ,∴OQ 2=OF 2+Q 2F 2=22+(23)2=4=OA ,∵tan ∠Q 2OF =232=3,∴∠Q 2OF =60°,∴点Q 2是点A 关于点O 的锐角旋转点;∵Q 3(-2,23),作Q 3G ⊥x 轴于点G ,则tan ∠Q 3OG =Q 3G OG=232=3,∴∠Q3OG =60°,∴OQ 3=OG cos ∠Q 3OG =2cos60°=4=OA ,∵∠AOQ 3=180°-60°=120°,∴Q 3不是点A 关于点O 的锐角旋转点;∵Q 4(22,-22),作Q 4H ⊥x 轴于点H ,则tan ∠Q 4OH =Q 4H OH =2222=1,∴∠Q 4OH =45°,∵OQ 4=OH cos ∠Q 4OH =22cos45°=4=OA ,∴Q 4是点A 关于点O 的锐角旋转点;综上所述,在点Q 1,Q 2,Q 3,Q 4中,是点A 关于点O 的锐角旋转点的是Q 2,Q 4,故答案为:Q 2,Q 4.(2)在y 轴上取点P (0,5),当直线y =2x +b 经过点P 时,可得b =5,当直线y =2x +b 经过点B 时,则2×5+b =0,解得:b =-10,∴当-10<b <5时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线y =2x +b 上,过点O 作OG ⊥直线y =2x +b ,垂足G 在第四象限时,如图,则OT =-b ,OS =-12b ,∴ST =OS 2+OT 2=-12b 2+(-b )2=-52b ,当OG =5时,b 取得最小值,∵5×-52b =-b ×-12b ,∴b =-55,∴-55≤b <5.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,如图3(2)中,阴影部分与直线y =2x +6相切于点G ,tan ∠EMG =2,SG =3,过点G 作GI ⊥x 轴于点I ,过点S 作SJ ⊥GI 于点J ,∴∠SGJ =∠EMG ,∴tan ∠SGJ =tan ∠EMG =2,∴GJ =355,SJ =655,∴GI =GJ +JI =3+355,∴MI =12GI =32+3510,∴OE =IE +MI -OM =352-32,即x E =t -3=352-32,解得t =352+32,如图3(3)中,阴影部分与HK 相切于点G ,tan ∠OMK =tan ∠EMH =2,EH =6,则MH =3,EM =35,∴x E =t -3=-3-35,解得t =-35,观察图象可知,-35≤t <3+352+32.10(2022秋•姜堰区期中)如图1,在平面内,过⊙T 外一点P 画它的两条切线,切点分别为M 、N ,若∠MPN ≥90°,则称点P 为⊙T 的“限角点”.(1)在平面直角坐标系xOy 中,当⊙O 半径为1时,在①P 1(1,0),②P 2-1,12,③P 3(-1,-1),④P 4(2,-1)中,⊙O 的“限角点”是②④;(填写序号)(2)如图2,⊙A 的半径为2,圆心为(0,2),直线l :y =-34x +b 交坐标轴于点B 、C ,若直线l 上有且只有一个⊙A 的“限角点”,求b 的值.(3)如图3,E (2,3)、F (1,2)、G (3,2),⊙D 的半径为2,圆心D 从原点O 出发,以2个单位/s 的速度沿直线l :y =x 向上运动,若ΔEFG 三边上存在⊙D 的“限角点”,请直接写出运动的时间t (s )的取值范围.【解答】解:(1)∵⊙O 半径为1,∴当P 为圆O 的“限角点”时,1<OP ≤2,∵OP 1=1,OP 2=52,OP 3=2,OP 4=5,∴⊙O 的“限角点”是P 2,P 3,故答案为:②③;(2)∵⊙A 的半径为2,∴当P 为圆A 的“限角点”时,2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P m ,-34m +b ,∴PA =2,此时AP ⊥BC ,令x =0,则y =b ,∴C (0,b ),令y =0,则x =43b ,∴B 43b ,0 ,∴tan ∠OCB =OB OC =43=AP CP ,∴CP =32,∴AC =52,∴|b -2|=52,∴b =92或b =-12;(3)∵圆心D 从原点O 出发,以2个单位/s 的速度沿直线l 移动,∴圆沿x 轴正方向移动t 个单位,沿y 轴正方向移动t 个单位,∴移动后D 点坐标为(t ,t ),设ΔEFG 边上的点P 是圆D 的“限角点”,则2<PD ≤2,在圆D 移动的过程中,当DF =2时,(t -1)2+(t -2)2=4,解得t =3-72或t =3+72,当t =3-72时,ΔEFG 边上开始出现⊙D 的“限角点”,当圆D 移动到E 点在圆上时,DE =2,(t -2)2+(t -3)2=2,解得t =5+32或t =5-32,∴3-72≤t <5-32时,ΔEFG 边上存在⊙D 的“限角点”,当圆D 再次移动到点F 在圆上时,DF =2,(t -2)2+(t -1)2=2,解得t =3+32或t 3-32,当t =3+32时,ΔEFG 三边上开始又要出现⊙D 的“限角点”;设直线EG 的解析式为y =kx +b ,直线y =x 与直线EG 的交点设为点H ,∴2k +b =33k +b=2 ,解得k =-1b =5 ,解得y =-x +5,联立方程组y =-x +5y =x,解得x =52y =52,∴H 52,52,当DH =2时,2t -52 2=4,解得t =2+52或t =-2+52,∴当t =2+52,ΔEFG 边上存在⊙D 的“限角点”,∴3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”;综上所述:3-72≤t <5-32或3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”.11(2022秋•西城区校级期中)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P绕点M逆时针旋转90°,得到点P ,点P 关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图1,若点M在坐标原点,点N(1,1),①点P(-2,0)的“对应点”Q的坐标为 (2,0) ;②若点P的“对应点”Q的坐标为(-1,3),则点P的坐标为;(2)如图2,已知⊙O的半径为1,M是⊙O上一点,点N(0,2),若P(m,0)(m>1)为⊙O外一点,点Q为点P的“对应点”,连接PQ.①当点M(a,b)在第一象限时,求点Q的坐标(用含a,b,m的式子表示);②当点M在⊙O 上运动时,直接写出PQ长的最大值与最小值的积为.(用含m的式子表示)【解答】解:(1)①∵P(-2,0),∴P点绕点M逆时针旋转90°得到点P (0,-2),∵点P 关于点N的对称点为Q,∴Q(2,0);故答案为:(2,0);②∵Q的坐标为(-1,3),∴Q点关于N(1,1)的对称点为P (3,-1),将P 绕M点顺时针旋转90°得到点P,过P 作P F⊥x轴于点F,过点P作PE⊥x轴于点E,∵∠P OP=90°,∴∠POE+∠FOP =90°,∵∠EPO+∠EOP=90°,∴∠FOP =∠EPO,∵OP=OP ,∴ΔPOE≅△OP F(AAS),∴EO=P F=1,PE=OF=3,∴P(-1.-3),故答案为:(-1,-3);(2)①过点M作EF⊥x轴于点F,过点P 作P E⊥EF交于点E,由(1)可得ΔMPF≅△P ME(AAS),∴MF=EP ,FP=ME,∵M(a,b),P(m,0),∴EF=b+m-a,EP =b,∴P (a+b,b+m-a),∵点N(0,2),∴Q(-a-b,4-b-m+a);②P点绕O点逆时针旋转90°后得到点G,∴G(0,m),∵P (a+b,b+m-a),∴GP =2(a 2+b 2),∵M (a ,b )在圆O 上,∴a 2+b 2=1,∴GP =2,∴P 在以G 为圆心,2为半径的圆上,设G 点关于N 点的对称点为H ,则H (0,4-m ),∴QH =2(a 2+b 2)=2,∴Q 点在以H 为圆心2为半径的圆上,∴PQ 的最大值为PH +2,PQ 的最小值为PH -2,∴PQ 长的最大值与最小值的积为(PH +2)(PH -2)=2m 2-8m +14,故答案为:2m 2-8m +14.12(2022•秦淮区二模)【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD 是矩形,⊙O 1和⊙O 2都与边AD 相切,⊙O 2与边AB 相切,⊙O 1和⊙O 3都经过点B ,⊙O 3经过点D ,3个圆都经过点C .在这3个圆中,是矩形ABCD 的第Ⅰ类圆的是①,是矩形ABCD 的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD ,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.【解答】解:(1)由定义可得,①的矩形有一条边AD 与⊙O 1相切,点B 、C 在圆上,∴①是第Ⅰ类圆;②的矩形有两条边AD 、AB 与⊙O 2相切,点C 在圆上,∴②是第Ⅱ类圆;故答案为:①,②;(2)如图1,设AD =6,AB =4,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =4-r ,由垂径定理可得,BF =CF =3,在Rt ΔBOF 中,r 2=(4-r )2+32,解得r =258;如图2,设AD =4,BC =6,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =6-r ,由垂径定理可得,BF =CF =2,在Rt ΔBOF 中,r 2=(6-r )2+22,解得r =103;综上所述:第Ⅰ类圆的半径是258或103;如图3,AD =6,AB =4,过点O 作MN ⊥AD 交于点M ,交BC 于点N ,连接OC ,设AB 边与⊙O 的切点为G ,连接OG ,∴GO ⊥AB ,设OM =r ,则OC =r ,则ON =4-r ,∵OG =r ,∴BN =r ,∴NC =6-r ,在Rt ΔOCN 中,r 2=(4-r )2+(6-r )2,解得r =10-43,∴第Ⅱ类圆的半径是10-43;(3)①如图4,第一步,作线段AD 的垂直平分线交AD 于点E ,第二步,连接EC ,第三步,作EC 的垂直平分线交EF 于点O ,第四步,以O 为圆心,EO 为半径作圆,∴⊙O 即为所求第Ⅰ类圆;②如图5,第一步:作∠BAD 的平分线;第二步:在角平分线上任取点E ,过点E 作EF ⊥AD ,垂足为点F ;第三步:以点E 为圆心,EF 为半径作圆E ,交AC 于点G ,连接FG ;第四步:过点C 作CH ⎳FG ,CH 交AD 于点H ;第五步:过点H 作AD 的垂线,交∠BAD 的平分线于点O ;第六步:以点O 为圆心,OH 为半径的圆,⊙O 即为所求第Ⅱ类圆.13(2021秋•海淀区校级期末)新定义:在平面直角坐标系xOy 中,若几何图形G 与⊙A 有公共点,则称几何图形G 的叫⊙A 的关联图形,特别地,若⊙A 的关联图形G 为直线,则称该直线为⊙A 的关联直线.如图,∠M 为⊙A 的关联图形,直线l 为⊙A 的关联直线.(1)已知⊙O 是以原点为圆心,2为半径的圆,下列图形:①直线y =2x +2;②直线y =-x +3;③双曲线y =2x,是⊙O 的关联图形的是①③(请直接写出正确的序号).(2)如图1,⊙T 的圆心为T (1,0),半径为1,直线l :y =-x +b 与x 轴交于点N ,若直线l 是⊙T 的关联直线,求点N 的横坐标的取值范围.(3)如图2,已知点B (0,2),C (2,0),D (0,-2),⊙I 经过点C ,⊙I 的关联直线HB 经过点B ,与⊙I 的一个交点为P ;⊙I 的关联直线HD 经过点D ,与⊙I 的一个交点为Q ;直线HB ,HD 交于点H ,若线段PQ 在直线x =6上且恰为⊙I 的直径,请直接写出点H 横坐标h 的取值范围.【解答】解:(1)由题意①③是⊙O的关联图形,故答案为①③.(2)如图1中,∵直线l1y=-x+b是⊙T的关联直线,∴直线l的临界状态是和⊙T相切的两条直线l1和l2,当临界状态为l1时,连接TM(M为切点),∴TM=1,TM⊥MB,且∠MNO=45°,∴ΔTMN是等腰直角三角形,∴TN=2,OT=1,∴N(1+2,0),把N(1+2,0)代入y=-x+b中,得到b=1+2,同法可得当直线l2是临界状态时,b=-2+1,∴点N的横坐标的取值范围为-2+1≤N x≤2+1.(3)如图3-1中,当点Q在点P是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H与点C重合,此时H(2,0),得到h的最大值为2,如图3-2中,当点P在点Q是上方时,直线PB,QD交于点H,当圆心I在x轴上时,点H(-6,0)得到h的最小值为-6,综上所述,-6≤h<0,0<h≤2.14(2022春•海淀区校级月考)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”.已知O(0,0),A(1,1),B(m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2,n=1时,如图1,线段BC与线段OA的“冰雪距离”是1.②当m=2时,线段BC与线段OA的“冰雪距离”是1,则n的取值范围是.(2)如图2,若点B落在圆心为A,半径为1的圆上,当n≥1时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为1,线段BC的中点为M.求点M随线段BC运动所走过的路径长.【解答】解:(1)①当m=2,n=1时,B(2,1),C(2,3).线段BC与线段OA的冰雪距离为AB=1.故答案为:1.②当m=2时,点A到直线BC的距离为1.若线段BC与线段OA的冰雪距离是1,则点A到BC的垂线的垂足在线段BC上,∴n≤1≤n+2,即-1≤n≤1.故答案为:-1≤n ≤1.(2)如图,B 2(0,1)为圆A 与y 轴的切点,B 11-22,1+22满足∠B 1AO =90°.当B 在B 1右侧时,冰雪距离d ≥B 1A =22.当B 在弧B 1B 2上时,冰雪距离d 为点B 到OA 的距离,结合图象可知,当且仅当B 处在点B 2时,d 取最小值22.(3)如图,当点B 位于图中弧DI 、线段IH 、弧HG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当点C 位于图中弧DE 、线段EF 、弧FG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当线段BC 由图中B 1D 向上平移到DC 3时,或由B 2G 向上平移到GC 4时,线段BC 与线段OA 的“冰雪距离”始终为1.对应中点M 所走过的路线长为:2π+4+22.15(2022•东城区校级开学)对于⊙C 和⊙C 上的一点A ,若平面内的点P 满足:射线AP 与⊙C 交于点Q (点Q 可以与点P 重合),且1≤PAQA ≤2,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标 (2,0)(答案不唯一);(2)若点B 是点A 关于⊙O 的“生长点”,且满足∠BAO =30°,求点B 的纵坐标t 的取值范围;(3)直线y =3x +b 与x 轴交于点M ,且与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是.【解答】解:(1)根据“生长点”定义,点P 的坐标可以是(2,0),故答案为:(2,0)(答案不唯一);(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,使得∠OAM =30°,并在射线AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N ,则由题意,线段MN 和M N 上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴∠MHA =90°,即∠OAM +∠AMH =90°.∵AC 是⊙O 的直径,∴∠AMC =90°,即∠AMH +∠HMC =90°.∴∠OAM =∠HMC =30°.∴tan30°=MH AH=HC MH =33,设MH=y,则AH=3y,CH=33y,∴AC=AH+CH=433y=2,解得y=32,即点M的纵坐标为32.又由AN=2AM,A为(-1,0),可得点N的纵坐标为3,故在线段MN上,点B的纵坐标t满足:32≤t≤3,由对称性,在线段M N 上,点B的纵坐标t满足:?3≤t≤?3 2,∴点B的纵坐标t的取值范围是:32≤t≤3或?3≤t≤?32.(3)如图,Q是⊙O上异于点A的任意一点,延长AQ到P,使得PA=2AQ,∵Q的轨迹是以O为圆心,1为半径的圆,∴点P的运动轨迹是以K(1,0)为圆心,2为半径的圆,当直线MN与⊙K相切于点R时,连接KR,在RtΔKMR中,∠KRM=90°,∵直线y=3x+b与x轴夹角为60°,∴∠KMR=60°,KR=2,∴KM=2÷sin60°=433,∴OM=1+433,∴ON=3OM=4+3,∴b=-4-3,当直线MN经过G(0,-1)时,满足条件,此时b=-1,观察图象可知:当-4-3≤b≤-1时,线段MN上存在点A关于⊙O的“生长点”,根据对称性,同法可得当1≤b≤4-3时,也满足条件.故答案为:-4-3≤b≤-1或1≤b≤4-3.16(2022•东城区校级开学)在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0,如图,点A(-23,0),B(0,2).(1)如果⊙O的半径为2,那么d(A,⊙O)= 23-2 ,d(B,⊙O)=;(2)如果⊙O的半径为r,且d(⊙O,AB)>0,求r的取值范围;(3)如果C(0,m)是y轴上的动点,⊙C的半径为1,使d(⊙C,AB)<1,直接写出m的取值范围为.【解答】解:(1)∵⊙O的半径为2,A(-23,0),B(0,2),∴OB=2,OA=23>2,∴点A在⊙O外,点B在⊙O上,∴d(A,⊙O)=23-2,d(B,⊙O)=0,故答案为:23-2;0;(2)如图1,过点O 作OD ⊥AB 于点D ,在Rt ΔAOB 中,∵tan ∠BAO =OB OA =223=33,∴∠BAO =30°.在Rt ΔADO 中,sin ∠BAO =DO OA =12=DO23,∴DO =3,∵d (⊙O ,AB )=0,∴r 的取值范围是0<r <3或r >23;(3)如图2,过点C 作CN ⊥AB 于点N ,由(2)知,∠BAO =30°.∵C (m ,0),当点C 在点B 的上边时,m >2,此时,d (⊙C ,AB )=BC ,∴BC ≤1,即m -2≤1,解得m ≤3;当点C 与点B 重合时,m =2,此时d (⊙C ,AB )=0,当点C 在点B 的下边时,m <2,∴BC =2-m ,∴CN =BC ⋅sin ∠OBA =32(2-m ).∵d (⊙C ,AB )<1,⊙C 的半径为1,∴0<32(2-m )<1.∴2-233<m <2.综上所述:2-233<m ≤3.故答案为:2-233<m ≤3.17(2021秋•润州区校级月考)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的反称点的定义如下:若在射线CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时,①分别判断点M (3,1),N 32,0,T (-1,3)关于⊙O 的反称点是否存在?若存在,直接求其坐标;②将⊙O 沿x 轴水平向右平移1个单位为⊙O ′,点P 在直线y =-x +1上,若点P 关于⊙O ′的反称点P ′存在,且点P ′不在坐标轴上,则点P 的横坐标的取值范围 1-2≤x ≤1+2且x ≠2-2 ;(2)⊙C 的圆心在x 轴上,半径为1,直线y =-x +12与x 轴,y 轴分别交于点A 、B ,点E 与点D 分别在点A 与点B 的右侧2个单位,线段AE 、线段BD 都是水平的,若四边形ABDE 四边上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,直接写出圆心C 的横坐标的取值范围.。

2022年九年级中考数学考点训练——几何专题:《圆的综合》(一)及答案

2022年九年级中考数学考点训练——几何专题:《圆的综合》(一)及答案

备战2022最新年九年级中考数学考点训练——几何专题:《圆的综合》(一)1.对于平面内⊙C和⊙C外一点P,若过点P的直线l与⊙C有两个不同的公共点M,N,点Q为直线l上的另一点,且满足(如图1所示),则称点Q是点P关于⊙O的密切点.已知在平面直角坐标系xOy中,⊙O的半径为2,点P(4,0).(1)在点D(﹣2,1),E(1,0),F(3,)中,是点P关于⊙O的密切点的为.(2)设直线l方程为y=kx+b,如图2所示,①k=﹣时,求出点P关于O的密切点Q的坐标;②⊙T的圆心为T(t,0),半径为2,若⊙T上存在点P关于⊙O 的密切点,直接写出t的取值范围.2.A,B是⊙C上的两个点,点P在⊙C的内部.若∠APB为直角,则称∠APB为AB关于⊙C的内直角,特别地,当圆心C在∠APB 边(含顶点)上时,称∠APB为AB关于⊙C的最佳内直角.如图1,∠AMB是AB关于⊙C的内直角,∠ANB是AB关于⊙C的最佳内直角.在平面直角坐标系xOy中.(1)如图2,⊙O的半径为5,A(0,﹣5),B(4,3)是⊙O 上两点.①已知P1(1,0),P2(0,3),P3(﹣2,1),在∠AP1B,∠AP2B,∠AP3B,中,是AB关于⊙O的内直角的是;②若在直线y=2x+b上存在一点P,使得∠APB是AB关于⊙O的内直角,求b的取值范围.(2)点E是以T(t,0)为圆心,4为半径的圆上一个动点,⊙T 与x轴交于点D(点D在点T的右边).现有点M(1,0),N(0,n),对于线段MN上每一点H,都存在点T,使∠DHE是DE关于⊙T的最佳内直角,请直接写出n的最大值,以及n取得最大值时t的取值范围.3.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连结AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)△ABC中,BC=9,tanB=,tanC=,点D是BC边上的“好点”,求线段BD的长.(3)如图3,△ABC是⊙O的内接三角形,OH⊥AB于点H,连结CH并延长交⊙O于点D.①求证:点H是△BCD中CD边上的“好点”.②若⊙O的半径为9,∠ABD=90°,OH=6,请直接写出的值.4.如图,⊙O是△ABD的外接圆,AB为直径,点C是弧AD的中点,连接OC,BC分别交AD于点F,E.(1)求证:∠ABD=2∠C.(2)若AB=10,BC=8,求BD的长.5.如图,在平面直角坐标系xOy中,A(0,8),B(6,0),C(0,3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△PAB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.6.如图,已知Rt△ABC中,∠A=30°,AC=6.边长为4的等边△DEF沿射线AC运动(A、D、E、C四点共线).当等边△DEF的边DF、EF与Rt△ABC的边AB分别相交于点M、N(M、N不与A、B重合)时,设AD=x.(1)则△FMN的形状是,△ADM的形状是;(2)△ABC与△DEF重叠部分的面积为y,求y关于x的函数解析式,并写出的取值范围;(3)若以点M为圆心,MN为半径的圆与边AC、EF同时相切,求此时MN的长.7.如图,以点O为圆心,OE为半径作优弧EF,连接OE,OF,且OE=3,∠EOF=120°,在弧EF上任意取点A,B(点B在点A 的顺时针方向)且使AB=2,以AB为边向弧内作正三角形ABC.(1)发现:不论点A在弧上什么位置,点C与点O的距离不变,点C与点O的距离是;点C到直线EF的最大距离是.(2)思考:当点B在直线OE上时,求点C到OE的距离,在备用图1中画出示意图,并写出计算过程.(3)探究:当BC与OE垂直或平行时,直接写出点C到OE的距离.8.如图,在平面直角坐标系中,点A的坐标为(6,0),点B的坐标为(0,2),点M从点A出发沿x轴负方向以每秒3cm的速度移动,同时点N从原点出发沿y轴正方向以每秒1cm的速度移动.设移动的时间为t秒.(1)若点M在线段OA上,试问当t为何值时,△ABO与以点O、M、N为顶点的三角形相似?(2)若直线y=x与△OMN外接圆的另一个交点是点C.①试说明:当0<t<2时,OM、ON、OC在移动过程满足OM+ON =OC;②试探究:当t>2时,OM、ON、OC之间的数量关系是否发生变化,并说明理由.9.如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.10.如图,在△ABC中,∠BAC=90°,∠B=60°,AB=2.AD⊥BC 于D.E为边BC上的一个(不与B、C重合)点,且AE⊥EF于E,∠EAF=∠B,AF相交于点F.(1)填空:AC=;∠F=.(2)当BD=DE时,证明:△ABC≌△EAF.(3)△EAF面积的最小值是.(4)当△EAF的内心在△ABC的外部时,直接写出AE的范围.参考答案1.解:(1)当圆心在坐标原点时,直线l为y=0时,∵⊙O的半径为2,点P(4,0).∴M(2,0),N(﹣2,0),PM=2,PN=6,=,∵,∴=,设Q点坐标为(x,y),则QM=|2﹣x|,QN=|x﹣(﹣2)|=|x+2|,∴=,∴|2+x|=3|2﹣x|,∴2+x=6﹣3x,或2+x=3x﹣6,∴x=1,或x=4,∴E(1,0)是点P关于⊙O的密切点.故答案为:E.(2)①依题意直线l:y=kx+b过定点P(4,0),∵k=﹣∴将P(4,0)代入y=﹣x+b得:0=﹣×4+b,∴b=,∴y=﹣x+.如图,作MA⊥x轴于点A,NB垂直x轴于点B,设M(x,﹣x+),由OM=2得:x2+=4,∴5x2﹣4x﹣10=0,则M,N两点的横坐标xM,xN是方程5x2﹣4x﹣10=0的两根,解得xM=,xN=,∴AB=,PA=,PB=,∵,∴=,=,∴=,∴HA=,∴OH=OA﹣HA=﹣=1,∴Q(1,1).②点P关于⊙O的密切点的轨迹为切点弦ST(不含端点),如图所示:∴﹣1≤t<0或2<t≤3.2.解:(1)如图1,∵P1(1,0),A(0,﹣5),B(4,3),∴AB==4,P1A==,P1B==3,∴P1不在以AB为直径的圆弧上,故∠AP1B不是AB关于⊙O的内直角,∵P2(0,3),A(0,﹣5),B(4,3),∴P2A=8,AB=4,P2B=4,∴P2A2+P2B2=AB2,∴∠AP2B=90°,∴∠AP2B是AB关于⊙O的内直角,同理可得,P3B2+P3A2=AB2,∴∠AP3B是AB关于⊙O的内直角,故答案为:∠AP2B,∠AP3B;(2)∵∠APB是AB关于⊙O的内直角,∴∠APB=90°,且点P在⊙O的内部,∴满足条件的点P形成的图形为如图2中的半圆H(点A,B均不能取到),过点B作BD⊥y轴于点D,∵A(0,﹣5),B(4,3),∴BD=4,AD=8,并可求出直线AB的解析式为y=2x﹣5,∴当直线y=2x+b过直径AB时,b=﹣5,连接OB,作直线OH交半圆于点E,过点E作直线EF∥AB,交y 轴于点F,∵OA=OB,AH=BH,∴EH⊥AB,∴EH⊥EF,∴EF是半圆H的切线.∵∠OAH=∠OAH,∠OHB=∠BDA=90°,∴△OAH∽△BAD,∴,∴OH=AH=EH,∴OH=EO,∵∠EOF=∠AOH,∠FEO=∠AHO=90°,∴△EOF≌△HOA(ASA),∴OF=OA=5,∵EF∥AB,直线AB的解析式为y=2x﹣5,∴直线EF的解析式为y=2x+5,此时b=5,∴b的取值范围是﹣5<b≤5.(3)∵对于线段MN上每一个点H,都存在点T,使∠DHE是DE 关于⊙T的最佳内直角,∴点T一定在∠DHE的边上,∵TD=4,∠DHT=90°,线段MN上任意一点(不包含点M)都必须在以TD为直径的圆上,该圆的半径为2,∴当点N在该圆的最高点时,n有最大值,即n的最大值为2.分两种情况:①若点H不与点M重合,那么点T必须在边HE上,此时∠DHT =90°,∴点H在以DT为直径的圆上,如图3,当⊙G与MN相切时,GH⊥MN,∵OM=1,ON=2,∴MN==,∵∠GMH=∠OMN,∠GHM=∠NOM,ON=GH=2,∴△GHM≌△NOM(ASA),∴MN=GM=,∴OG=﹣1,∴OT=+1,当T与M重合时,t=1,∴此时t的取值范围是﹣﹣1≤t<1,②若点H与点M重合时,临界位置有两个,一个是当点T与M重合时,t=1,另一个是当TM=4时,t=5,∴此时t的取值范围是1≤t<5,综合以上可得,t的取值范围是﹣﹣1≤t<5.3.解:(1)如答图1,当CD⊥AB或点D是AB的中点是,CD2=AD•BD;(2)作AE⊥BC于点E,由,可设AE=4x,则BE=3x,CE=6x,∴BC=9x=9,∴x=1,∴BE=3,CE=6,AE=4,设DE=a,①如答图2,若点D在点E左侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3﹣a)(6+a),即2a2+3a﹣2=0,解得,a2=﹣2(舍去),∴.②如答图3,若点D在点E右侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3+a)(6﹣a),即2a2﹣3a﹣2=0,解得a1=2,(舍去)∴BD=3+a=3+2=5.∴或5.(3)①如答图4,连接AD,BD,∵∠CHA=∠BHD,∠ACH=∠DBH∴△AHC∽△DHB,∴,即AH•BH=CH•DH,∵OH⊥AB,∴AH=BH,∴BH2=CH•DH∴点H是△BCD中CD边上的“好点”.②.理由如下:如答图4,∵∠ABD=90°,∴AD是直径,∴AD=18.又∵OH⊥AB,∴OH∥BD.∵点O是线段AD的中点,∴OH是△ABD的中位线,∴BD=2OH=12.在直角△ABD中,由勾股定理知:AB===6.∴由垂径定理得到:BH=AB=3.在直角△BDH中,由勾股定理知:DH===3.又由①知,BH2=CH•DH,即45=3CH,则CH=.∴==,即.4.(1)证明:∵C是的中点,∴=,∴∠ABC=∠CBD,∵OB=OC,∴∠ABC=∠C,∴∠ABC=∠CBD=∠C,∴∠ABD=∠ABC+CBD=2∠C;(2)解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∴AC==6,∵C是的中点,∴OC⊥AD,∴OA2﹣OF2=AF2=AC2﹣CF2,∴52﹣OF2=62﹣(5﹣OF)2,∴OF=1.4,又∵O是AB的中点,∴BD=2OF=2.8.5.解:(1)如图1,∵A(0,8),B(6,0),C(0,3),∴OA=8,OB=6,OC=3,∴AC=5,∵△ACD∽△AOB,∴,∴∴CD的=,∴⊙P的半径为;(2)在Rt△AOB中,OA=8,OB=6,∴==10,如图2,当⊙P与AB相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,即,∴AD=4,CD=3,∵CD为⊙P的直径,∴CP=,过点P作PE⊥AO于点E,∵∠PEC=∠ADC=90°,∠PCE=∠ACD,∴△CPE∽△CAD,∴,即,∴,∴,∴△POB的面积==;(3)①如图3,若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=,∴△PAB的面积=.②如图4,若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90°,由(2)可得CF=3,过点P作PG⊥AB于点G,则DG=,则PG为△DCF的中位线,PG=,∴△PAB的面积==.综上所述,在整个运动过程中,△PAB的面积是定值,定值为.6.解:(1)如图1,∵△DEF是等边三角形,∴∠FDE=∠F=60°.∵∠A=30°,∴∠AMD=∠FDE﹣∠A=30°,∴∠FMN=∠AMD=30°,∴∠MNF=90°,即△FMN是直角三角形,∵∠FDE=60°,∴∠AMD=∠FDE﹣∠A=30°,∴∠AMD=∠A,∴DM=DA,∴△ADM是等腰三角形;故答案为:直角三角形,等腰三角形;(2)如图2,△ADM是等腰三角形,∴DM=AD=x,FM=4﹣x,又∵∠FED=60°,∠A=30°,∴∠FNM=90°,∴MN=MF•sinF=(4﹣x),FN=,∴y==,=.当0<x≤2时,∴y=S四边形DENM=S△FDE﹣S△FMN=4,当2≤x<4时,CD=6﹣x,∵∠BCE=90°,∠PDC=60°,∴PC=(6﹣x),∴,=.(3)如图3,点M作MG⊥AC于点G,由(2)得DM=x,∵∠MDG=60°,∴MG=,MNF=90°∴MN⊥FC要使以点M为圆心,MN长为半径的圆与边AC、EF相切,则有MG=MN,∴,解得:x=2,∴圆的半径MN=.7.解:(1)如图1,连接OA、OB、OC,延长OC交AB于点G,在正三角形ABC中,AB=BC=AC=2,∵OA=OB,AC=BC,∴OC垂直平分AB,∴AG=AB=1,∴在Rt△AGC中,由勾股定理得:CG===,在Rt△AGO中,由勾股定理得:OG===2,∴OC=2﹣;如图2,延长CO交EF于点H,当CO⊥EF时,点C到直线EF的距离最大,最大距离为CH的长,∵OE=OF,CO⊥EF,∴CO平分∠EOF,∵∠EOF=120°,∴∠EOH=∠EOF=60°,在Rt△EOH中,cos∠EOH=,∴cos60°==,∴OH=,∴CH=CO+OH=,∴点C到直线EF的最大距离是.故答案为:2﹣;.(2)如图3,当点B在直线OE上时,由OA=OB,CA=CB可知,点O,C都在线段AB的垂直平分线上,过点C作AB的垂线,垂足为G,则G为AB中点,直线CG过点O.∴由∠COM=∠BOG,∠CMO=∠BGO∴△OCM∽△OBG,∴=,∴=,∴CM=,∴点C到OE的距离为.(3)如图4,当BC⊥OE时,设垂足为点M,∵∠EOF=120°,∴∠COM=180°﹣120°=60°,∴在Rt△COM中,sin∠COM=,∴sin60°==,∴CM=CO=(2﹣)=﹣;如图5,当BC∥OE时,过点C作CN⊥OE,垂足为N,∵BC∥OE,∴∠CON=∠GCB=30°,∴在Rt△CON中,sin∠CON=,∴sin30°==,∴CN=CO=(2﹣)=﹣;综上所述,当BC与OE垂直或平行时,点C到OE的距离为﹣或﹣.8.解:(1)由题意,得OA=6,OB=2.当0<t<2时,OM=6﹣3t,ON=t.若△ABO∽△MNO,则=,即=,解得t=1.若△ABO∽△NMO,则=,即=,解得t=1.8.综上,当t为1或1.8时,△ABO与以点O、M、N为顶点的三角形相似.(2)①当0<t<2时,在ON的延长线的截取ND=OM,连接CD、CN、CM,如图所示:∵直线y=x与x轴的夹角为450,∴OC平分∠AOB.∴∠AOC=∠BOC.∴CN=CM.又∵在⊙O中∠CNO+∠CMO=180°,∠DNC+∠CNO=180°,∴∠CND=∠CMO.∴△CND≌△CMO(SAS).∴CD=CO,∠DCN=∠OCM.又∵∠AOB=90°,∴MN为⊙O的直径,∴∠MCN=90°.∴∠OCM+∠OCN=90°.∴∠DCN+∠OCN=90°.∴∠OCD=90°.又∵CD=CO,∴OD=OC.∴ON+ND=OC.∴OM+ON=OC.②当t>2时,过点C作CD⊥OC交ON于点D,连接CM、CN,如图所示:∵∠COD=45°,∴△CDO为等腰直角三角形,∴OD=OC.∵MN为⊙O的直径,∴∠MCN=90°.又∵在⊙O中,∠CMN=∠CNM=45°,∴MC=NC.又∵∠OCD=∠MCN=90°,∴∠DCN=∠OCM.∴△CDN≌△COM(SAS).∴DN=OM.又∵OD=OC,∴ON﹣DN=OC.∴ON﹣OM=OC.9.证明:(1)如图,连接OD,OC,在Rt△ABC中,∠ACB=90°,点O是AB的中点,在Rt△ABD中,∠ADB=90°,点O是AB的中点,∴OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四个点在以点O为圆心的同一个圆上;(2)由(1)知,A,B,C,D四个点在以点O为圆心的同一个圆上,且AD=BD,∴,∴CD平分∠ACB;(3)由(2)知,∠BCD=45°,∵∠ABC=60°,∴∠BEC=75°,∴∠AED=75°,∵DF∥BC,∴∠BFD=∠ABC=60°,∵∠ABD=45°,∴∠BDF=180°﹣∠BFD﹣∠ABD=75°=∠AED,∵∠DFE=∠BFD,∴△DEF∽△BDF,∴,连接OD,则∠BOD=90°,OB=OD,在Rt△DOF中,根据勾股定理得,OD2+OF2=DF2,∴OB2+OF2=BF•EF,即BO2+OF2=EF•BF.10.解:(1)∵∠BAC=90°,∠B=60°,AB=2,tanB=,∴AC=AB•tanB=2tan60°=2;∵AE⊥EF,∴∠AEF=90°,∵∠EAF=∠B=60°,∴∠F=90°﹣∠EAF=90°﹣60°=30°.故答案为:2,30°;(2)证明:当BD=DE时,∵AD⊥BC于D,∴AB=AE,∵∠AEF=90°,∠BAC=90°,∴∠AEF=∠BAC,又∠EAF=∠B,∴△ABC≌△EAF(ASA);(3)∵∠AEF=90°,∠EAF=60°,tan∠EAF=,∴EF=AE•tan∠EAF=AE•tan60°=AE,∴S△EAF=AE•EF=AE×AE=AE2,当AE⊥BC时,AE最短,S△EAF最小,此时∠AEB=90°,sinB=,∴AE=AB•sinB=2sin60°=2×=,S△EAF=AE2=×3=,∴△EAF面积的最小值是,故答案为:;(4)当△EAF内心恰好落在AC上时,设△EAF的内心为N,连接EN,如图:∵N是△EAF的内心,∴AN平分∠EAF,EN平分∠AEF,∴∠EAC=∠AEF=×60°=30°,∵∠BAC=90°,∴∠BAE=∠BAC﹣∠EAC=90°﹣30°=60°,又∵∠B=60°,∴△ABE是等边三角形,∴AE=AB=2,∵E为BC上的一点,不与B、C重合,由(1)可知AC=2,∴当△EAF的内心在△ABC的外部时,.故答案为:.。

2023年中考九年级数学高频考点提升练习--圆的综合题(含答案)

2023年中考九年级数学高频考点提升练习--圆的综合题(含答案)

2023年中考九年级数学高频考点提升练习--圆的综合题1.如图,在⊙ O中,弦AC,BD相交于点M,且∠OAC=∠OBD.(1)求证:AC=BD;(2)若OA=4,∠OAC=30°,当AC⊥BD时,求:①图中阴影部分面积.②弧CD的长.2.已知⊙O中,弦AB=AC,⊙BAC=120°(1)如图①,若AB=3,求⊙O的半径.(2)如图②,点P是⊙BAC所对弧上一动点,连接PB、PA、PC,试请判断PA、PB、PC之间的数量关系并说明理由.3.如图(1),已知矩形ABCD中,AB=6cm,BC=2√3cm,点E为对角线AC 上的动点.连接BE,过E作EB的垂线交CD于点F.(1)探索BE与EF的数量关系,并说明理由.(2)如图(2),过F作AC垂线交AC于点G,交EB于点H,连接CH.若点E从A出发沿AC方向以2√3cm/s的速度向终点C运动,设E的运动时间为ts.①是否存在t,使得H与B重合?若存在,求出t的值;若不存在,说明理由;②t为何值时,△CFH是等腰三角形;③当CG=GH时,求△CGH的面积.4.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD是⊙O的切线;(2)求证:⊙C=2⊙DBE.(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)5.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,⊙ABC中,点D 是BC边上一点,连结AD,若AD2=BD⋅CD,则称点D是⊙ABC中BC边上的“好点”.(1)如图2,⊙ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)⊙ABC中,BC=9,tanB=43,tanC=23,点D是BC边上的“好点”,求线段BD的长.(3)如图3,⊙ABC是⊙O的内接三角形,OH⊙AB于点H,连结CH并延长交⊙O于点D.①求证:点H是⊙BCD中CD边上的“好点”.②若⊙O的半径为9,⊙ABD=90°,OH=6,请直接写出CHDH的值.6.如图,⊙O为等边⊙ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B 重合),连接DA,DB,DC.(1)求证:DC是⊙ADB的平分线;(2)设四边形ADBC的面积为S,线段DC的长为x,试用含x的代数式表示S;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,⊙DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.7.在⊙ABC中,D,E分别是⊙ABC两边的中点,如果弧DE(可以是劣弧、优弧或半圆)上的所有点都在⊙ABC的内部或边上,则称弧DE为⊙ABC的中内弧.例如,图1中弧DE是⊙ABC其中的某一条中内弧.(1)如图2,在边长为4 √3的等边⊙ABC中,D,E分别是AB,AC的中点.画出⊙ABC的最长的中内弧DE,并直接写出此时弧DE的长;(2)在平面直角坐标系中,已知点A(2 √3,6),B(0,0),C(t,0),在⊙ABC中,D,E分别是AB,AC的中点.①若t=2 √3,求⊙ABC的中内弧DE所在圆的圆心P的纵坐标的取值范围;②请写出一个t的值,使得⊙ABC的中内弧DE所在圆的圆心P的纵坐标可以取全体实数值.8.如图,⊙O是⊙ABC的外接圆,AC是直径,过点O作OD⊙AB于点D,延长DO 交⊙O于点P,过点P作PE⊙AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若⊙POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.9.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=32CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ=,DF=.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)当点P在点A右侧时,作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长.10.如图,⊙ABC中,⊙ACB=90°,D是边AB上一点,且⊙A=2⊙DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.11.已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM 在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持⊙ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:ABPB=OMBM;(3)若AO=2 √6,且当MO=2PO时,请直接写出AB和PB的长.12.(问题情境)如图①,小区A、B位于一条笔直的道路l的同侧,为了方便A,B两个小区居民投放垃圾,现在l上建一个垃圾分类站C,使得C与A,B的距离之比为2:1.(1)(初步研究)在线段AB上作出点C,使CACB=2.如图,做法如下:第一步:过点A作射线AM,以A为圆心,任意长为半径画弧,交AM于点P1;以P1为圆心,AP1长为半径画弧,交AM于点P2;以P2为圆心,AP1长为半径画弧,交AM于点P3.第二步:连接BP3,作∠AP2C=∠AP3B,交AB于点C.则点C即为所求.请证明所作的点C满足CACB=2.(2)(深入思考)如图,点C在线段AB上,点D在直线AB外,且DADB=CACB=2.求证:DC是∠ADB的平分线.(3)(问题解决)如图,已知点A,B和直线l,点C在线段AB上,且CACB=2.用直尺和圆规完成下列作图.(保留作图痕迹,不写作法)(⊙)在直线AB上作出点E(异于点C),使EAEB=2;(⊙)在直线l上作出点F,使FAFB=2.13.在矩形ABCD中,BC=2AB,点E是对角线AC上任意一点,过点E作AD的垂线分别交AD,BC于点F,G,作FH平行AC交CD于点H.(1)证明:EF=CH.(2)连结GH交AC于点K,若AE:CK=3,求AE:EK的值.(3)作⊙FGH的外接圆⊙O,且AB=1.①若⊙O与矩形的边相切时,求CH的长.②作点E关于GH的对称点E',当E'落在⊙O上时,直接写出⊙FGH的面积。

河北省中考数学复习 圆 第29讲 圆的基本性质试题(含解析)-人教版初中九年级全册数学试题

河北省中考数学复习 圆 第29讲 圆的基本性质试题(含解析)-人教版初中九年级全册数学试题

第29讲 圆的基本性质1. (2012,某某)如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是(D)第1题图A. AE >BEB. 弧AD =弧BCC. ∠D =12∠AEC D. △ADE ∽△CBE 【解析】 ∵CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,∴AE =BE ,弧AC =弧BC .∴A ,B 两选项错误.∵∠AEC 不是圆心角,∴∠D ≠12∠AE C. ∴C 选项错误.∵∠AED =∠CEB =90°,∠DAE =∠BCE ,∴△ADE ∽△CBE .∴D 选项正确.2. (2015,某某)如图,AC ,BE 是⊙O 的直径,弦AD 与BE 相交于点F .下列三角形中,外心不是点O 的是(B)第2题图A. △ABEB. △ACFC. △ABDD. △ADE【解析】 只有△ACF 的三个顶点不都在⊙O 上,故外心不是点O 的是△ACF .3. (2016,某某)如图所示的为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是(B)第3题图A. △ACD 的外心B. △ABC 的外心C. △ACD 的内心D. △ABC 的内心【解析】 由网格图,知点O 是边AC ,BC 的垂直平分线的交点.根据三角形外心的定义,知点O 是 △ABC 的外心.圆的有关概念例1 下列语句正确的是(D)A. 长度相等的两条弧是等弧B. 平分弦的直径垂直于弦C. 相等的圆心角所对的弧相等D. 经过圆心的每一条直线都是圆的对称轴【解析】 能完全重合的两条弧是等弧,所以A 选项错误.平分弦(不是直径)的直径垂直于弦,所以B 选项错误.在同圆或等圆中,相等的圆心角所对的弧相等,所以C 选项错误.经过圆心的每一条直线都是圆的对称轴,所以D 选项正确.针对训练1 如图,半圆O 是一个量角器,△AOB 为一纸片,AB 交半圆于点D ,OB 交半圆于点C .若点C ,D ,A 在量角器上对应的读数分别为45°,70°,160°,则∠B 的度数为(A)训练1题图A. 20°B. 30°C. 45°D. 60°【解析】 如答图,连接OD ,则∠DOC =70°-45°=25°,∠AOD =160°-70°= 90°.∵OD =OA ,∴∠ADO =∠A =45°.∵∠ADO =∠B +∠DOB ,∴∠B =45°-25°= 20°.训练1答图针对训练2 如图,点P 在线段AB 上,PA =PB =PC =PD .当∠BPC =60°时,∠BDC 的度数为(B)训练2题图A. 15°B. 30°C. 25°D. 60°【解析】 ∵PA =PB =PC =PD ,∴点A ,B ,C ,D 在以点P 为圆心,PB 的长为半径的圆上.∴∠BDC =12∠BPC =12×60°=30°.确定圆的条件例2 (2010,某某)如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是(B)例2题图A. 点PB. 点QC. 点RD. 点M【解析】如答图,连接BC,作AB和BC的垂直平分线,它们相交于点Q,则点Q即为圆心.例2答图针对训练3 在平面直角坐标系中,点A的坐标是(-1,0),点B的坐标是(3,0),在y 轴的正半轴上取一点C,使A,B,C三点确定一个圆,且使AB为圆的直径,则点C的坐标是(A)A. (0,3)B. (3,0)C. (0,2)D. (2,0)【解析】如答图,连接AC,CB.根据题意可证得△AOC∽△COB,∴OCOA=OBOC,即OC2=OA·OB.∴OC2OC= 3.故点C的坐标为(0,3).训练3答图针对训练4 如图,在矩形ABCD中,E为AB的中点,有一圆过C,D,E三点,且此圆分别与AD,BC相交于P,Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:甲:连接DE,EC,作∠DEC的平分线EM,作DE的垂直平分线,交EM于点O,则点O即为所求.乙:连接PC,QD,两线段交于一点O,则点O即为所求.对于甲、乙两人的作法,下列判断正确的是(A)训练4题图A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确【解析】 对于甲,易知ED =EC ,∴△DEC 为等腰三角形.进而易知EM 为CD 的垂直平分线.∴点O 为两垂直平分线的交点,即点O 为△CDE 的外心.∴点O 为此圆的圆心.对于乙,∵∠ADC =90°,∠DCB =90°,∴PC ,QD 为此圆的直径.∴PC 与QD 的交点O 为此圆的圆心.因此甲、乙两人皆正确.圆的基本性质例3 (2018,某某裕华区模拟)如图,在半径为5的⊙O 中,弦AB =6,C 是优弧AB 上一点(不与点A ,B 重合),则cos C 的值为(D)例3题图A. 43B. 34C. 35D. 45【解析】 如答图,作直径AD ,连接BD .∵AD 为直径,∴∠ABD =90°.在Rt △ABD 中,∵AD =10,AB =6,∴BD =102-62=8.∴cos D =BD AD =810=45.∵∠C =∠D ,∴cos C =45.例3答图针对训练5 (2018,某某模拟)如图,在半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD .若DE =6,∠BAC +∠EAD =180°,则弦BC 的长是(A)训练5题图A. 8B. 10C. 11D. 12【解析】 如答图,作直径CF ,连接BF ,则∠FBC =90°.∵∠BAC +∠EAD =180°,∠BAC +∠BAF =180°,∴∠DAE =∠BAF .∴弧DE =弧BF .∴BF =DE =6.∴BC =CF 2-BF 2=8.训练5答图 针对训练6 (2018,某某)已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数为(D)A. 30°B. 60°C. 30°或150°D. 60°或120°【解析】 如答图.在Rt △OAD 中,∵OA =10,OD =5,∴cos ∠AOD =OD AO =12.∴∠AOD =60°.同理可得∠BOD =60°.∴∠AOB =∠AOD +∠BOD =60°+60°=120°.∴弦AB 所对的圆周角的度数是60°或120°.训练6答图垂径定理例4 (2018,某某,导学号5892921)已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8 cm ,则AC 的长为(C)A. 2 5 cmB. 4 5 cmC. 2 5 cm 或4 5 cmD. 2 3 cm 或4 3 cm【解析】 如答图,连接AC ,AO .∵⊙O 的直径CD =10 cm ,AB ⊥CD ,AB =8 cm ,∴AM =12AB =12×8=4(cm),OD =OC =5 cm.当点C 的位置如答图①所示时,∵OA =5 cm ,AM = 4 cm ,CD ⊥AB ,∴OM =OA 2-AM 2=52-42=3(cm).∴CM =OC +OM =5+3=8(cm).∴AC =AM 2+CM 2=42+82=45(cm).当点C 的位置如答图②所示时,同理可得OM =3 cm.∵OC =5 cm ,∴MC =5-3=2(cm).∴在Rt △AMC 中,AC =AM 2+MC 2=42+22= 25(cm).综上所述,AC 的长为2 5 cm 或4 5 cm.例4答图针对训练7 (2018,某某)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5 cm ,CD =8 cm ,则AE 的长为(A)训练7题图A. 8 cmB. 5 cmC. 3 cmD. 2 cm【解析】 ∵CD ⊥AB ,CD =8 cm ,∴CE =12CD =4 cm.在Rt △OCE 中,OC =5 cm ,CE =4 cm ,∴OE =OC 2-CE 2=3 cm.∴AE =AO +OE =5+3=8(cm).一、 选择题1. (2018,聊城)如图,在⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC . 若∠A =60°,∠ADC =85°,则∠C 的度数是(D)第1题图A. 25°° C. 30° D. 35°【解析】 ∵∠A =60°,∠ADC =85°,∴∠B =85°-60°=25°,∠CDO =95°. ∴∠AOC =2∠B =50°.∴∠C =180°-95°-50°=35°.2. (2018,威海)如图,⊙O 的半径为5,AB 为弦,C 为弧AB 的中点.若∠ABC =30°,则弦AB 的长为(D)第2题图A. 12B. 5C. 532D. 53 【解析】 如答图,连接OA ,OC ,OC 与AB 相交于点E .∵∠ABC =30°,∴∠AOC = 60°.由AB 为弦,C 为弧AB 的中点,易知OC ⊥AB ,AE =BE .在Rt △OAE 中,AE =OA · sin ∠AOC =5×32=532,∴AB =2AE =5 3.第2题答图3. (2018,某某)如图,⊙A 过点O (0,0),C (3,0),D (0,1),B 是x 轴下方⊙A 上的一点,连接BO ,BD ,则∠OBD 的度数是(B)第3题图A. 15°B. 30°C. 45°D. 60°【解析】 如答图,连接DC .∵C (3,0),D (0,1),∴∠DOC =90°,OD =1,OC = 3.∴∠DCO =30°.∴∠OBD =∠DCO =30°.第3题答图4. (2018,某某)如图,BC 是⊙O 的直径,A 是⊙O 上的一点,∠OAC =32°,则∠B 的度数是(A)第4题图A. 58°B. 60°C. 64°D. 68°【解析】 ∵OA =OC ,∴∠C =∠OAC =32°.∵BC 是直径,∴∠CAB =90°.∴∠B = 90°-32°=58°.5. (2018,贵港)如图,点A ,B ,C 均在⊙O 上.若∠A =66°,则∠OCB 的度数是(A)第5题图A. 24°B. 28°C. 33°D. 48°【解析】 ∵∠A =66°,∴∠COB =132°.∵CO =BO ,∴∠OCB =∠OBC =12×(180°-132°)=24°.6. (2018,某某)如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB 的度数为(C)第6题图A. 35°B. 45°C. 55°D. 65°【解析】 由圆周角定理,得∠ABC =∠ADC =35°.∵AB 为⊙O 的直径,∴∠ACB =90°.∴∠CAB =90°-∠ABC =55°.7. (2018,某某)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是弧AC 上的点.若∠BOC =40°,则∠D 的度数为(B)第7题图A. 100°B. 110°C. 120°D. 130°【解析】 ∵∠BOC =40°,∴∠AOC =180°-40°=140°.∴∠D =12×(360°-140°)=110°.8. (2018,某某)如图,点A ,B ,C ,D 在⊙O 上,∠AOC =140°,B 是弧AC 的中点,则∠D 的度数是(D)第8题图A. 70°B. 55°° D. 35°【解析】 如答图,连接OB .∵B 是弧AC 的中点,∴∠AOB =12∠AOC =70°.由圆周角定理,得∠D =12∠AOB =35°.第8题答图9. (2018,滨州)已知半径为5的⊙O 是△ABC 的外接圆.若∠ABC =25°,则劣弧AC 的长为(C)A. 25π36B. 125π36C. 25π18D. 5π36【解析】 如答图,连接AO ,CO .∵∠ABC =25°,∴∠AOC =50°.∴劣弧AC 的长为50π·5180=25π18.第9题答图10. (2018,某某)如图,AC 是⊙O 的直径,弦BD ⊥AO 于点E ,连接BC ,过点O 作OF ⊥BC 于点F .若BD =8 cm ,AE =2 cm ,则OF 的长是(D)第10题图A. 3 cmB. 6 cmC. 2.5 cmD. 5 cm【解析】 如答图,连接OB .∵AC 是⊙O 的直径,弦BD ⊥AO ,BD =8,∴BE =DE =4.∵AE =2,∴在Rt △OEB 中,OE 2+BE 2=OB 2,即OE 2+42=(OE +2)2.解得OE =3.∴OB =3+2=5.∴EC Rt △EBC 中,BC =BE 2+EC 2=42+82=4 5.∵OF ⊥BC ,∴∠OFC =∠CEB =90°.∵∠C =∠C ,∴△OFC ∽△BEC .∴OF BE =OC BC ,即OF 4=545.解得OF = 5.所以OF 的长是 5 cm.第10题答图二、 填空题11. (2018,某某)在同圆中,已知弧AB 所对的圆心角是100°,则弧AB 所对的圆周角是50°.【解析】 由圆周角定理,得弧AB 所对的圆周角为50°.12. (2018,某某模拟)如图,截面为圆形的油槽内放入一些油.若圆的直径为150 cm ,油的深度DC 为30 cm ,则油面宽度AB 是120cm.第12题图【解析】 ∵OC ⊥AB ,∴AD =BD =12AB .∵OC =OB =12×150=75(cm),∴OD =OC -CD =75-30=45(cm).在Rt △OBD 中,BD =OB 2-OD 2=752-452=60(cm),∴AB =2BD =120 cm.13. (2018,某某)如图,方格纸上每个小正方形的边长均为1个单位长度,点O ,A ,B ,C 在格点(两条网格线的交点叫格点)上,以点O 为原点建立直角坐标系,则过A ,B ,C 三点的圆的圆心坐标为(-1,-2).第13题图【解析】 如答图,连接AB ,CB ,作AB ,CB 的垂直平分线,相交于点D .所以点D 是过A ,B ,C 三点的圆的圆心.所以点D 的坐标为(-1,-2).第13题答图14. (2018,某某)如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得AD =10 cm ,点D 在量角器上的读数为60°,则该直尺的宽度为( 533)cm.第14题图【解析】 如答图,连接OC ,OD ,OC 与AD 相交于点E .∵直尺一边与量角器相切于点C ,∴OC ⊥AD .∵AD =10,∠DOB =60°,∴∠DAO =30°.∴OE =533,OA =1033.∴CE =OC -OE =OA -OE =533.即该直尺的宽度是533cm.第14题答图三、 解答题15. (2018,枣庄)如图,在Rt △ACB 中,∠C =90°,AC =3 cm ,BC =4 cm ,以BC 为直径作⊙O 交AB 于点D .(1)求线段AD 的长;(2)E 是线段AC 上的一点,当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.第15题图【思路分析】 (1)由勾股定理易求得AB 的长.可连接CD ,知CD ⊥AB ,易知Rt △ADC ∽Rt △ACB ,可得关于AC ,AD ,AB 的比例关系式,即可求出AD 的长.(2)当ED 与⊙O 相切时,由切线长定理知EC =ED ,则∠ECD =∠EDC .连接OD ,证OD ⊥DE 即可.解:(1)如答图,连接CD . 在Rt △ACB 中,∵AC =3 cm ,BC =4 cm ,∠ACB =90°, ∴AB =5 cm. ∵BC 为直径,∴∠ADC =∠BDC =90°. ∵∠A =∠A ,∠ADC =∠ACB , ∴Rt △ADC ∽Rt △ACB . ∴AC AB =AD AC. ∴AD =AC 2AB =325=95(cm).(2)当E是AC的中点时,直线ED与⊙O相切.理由:如答图,连接OD.∵DE是Rt△ADC的中线,∴ED=EC.∴∠EDC=∠ECD.∵OC=OD,∴∠ODC=∠OCD.∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°.∴ED⊥OD.∴直线ED与⊙O相切.第15题答图16. (2018,某某,导学号5892921)如图,在△ABC中,AB=AC,以AB为直径的半圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆形和菱形ABFC的面积.第16题图【思路分析】 (1)根据对角线相互平分的四边形是平行四边形,证明四边形ABFC是平行四边形,再根据邻边相等的平行四边形是菱形即可证明.(2)连接BD.利用勾股定理构建方程即可解决问题.(1)证明:∵AB是直径,∴∠AEB=90°.∴AE⊥BC.∵AB =AC , ∴BE =CE . ∵AE =EF ,∴四边形ABFC 是平行四边形. ∵AC =AB ,∴四边形ABFC 是菱形. (2)解:如答图,连接BD . ∵AB 是直径,∴∠ADB =∠BDC =90°. ∴AB 2-AD 2=CB 2-CD 2. ∴(7+CD )2-72=(2+2)2-CD 2. 解得CD =1.∴AB =AC =AD +CD =7+1=8. ∴BD =82-72=15. ∴S 半圆形=12π·42=8π,S 菱形ABFC =AC ·BD =815.第16题答图1. (2018,襄阳)如图,点A ,B ,C ,D 都在半径为2的⊙O 上.若OA ⊥BC ,∠CDA = 30°,则弦BC 的长为(D)第1题图A. 4B. 2 2C. 3D. 23【解析】 如答图.∵OA ⊥BC ,∴CH =BH ,弧AB =弧AC .∴∠AOB =2∠CDA =60°.∴BH =OB ·sin ∠AOB = 3.∴BC =2BH =2 3.第1题答图2. (2018,某某)如图,AB 是⊙O 的直径,C 是半径OA 的中点,过点C 作DE ⊥AB ,交⊙O 于D ,E 两点,过点D 作直径DF ,连接AF ,则∠DFA =30°.第2题图【解析】 ∵C 是半径OA 的中点,∴OC =12OD .∵DE ⊥AB ,∴∠CDO =30°.∴∠DOA =60°.∴∠DFA =30°.3. (2018,某某,导学号5892921)如图,D 是△ABC 的边BC 上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在弧BD 上.(1)求证:AE =AB ;(2)若∠CAB =90°,cos ∠ADB =13,BE =2,求BC 的长.第3题图【思路分析】 (1)由折叠得出∠AED =∠ACD ,AE =AC ,结合∠ABD =∠AED 知∠ABD =∠ACD ,从而得出AB =AC ,据此得证.(2)过点A 作AH ⊥BE 于点H ,由AB =AE 且BE =2知BH =EH =1.根据∠ABE =∠AEB =∠ADB 知cos ∠ABE =cos ∠ADB =BH AB =13,据此得AC =AB =3,利用勾股定理可得答案.(1)证明:由折叠的性质,知△ADE ≌△ADC . ∴∠AED =∠ACD ,AE =AC . ∵∠ABD =∠AED , ∴∠ABD =∠ACD . ∴AB =AC . ∴AE =AB .(2)解:如答图,过点A 作AH ⊥BE 于点H . ∵AB =AE ,BE =2, ∴BH =EH =1.∵∠ABE =∠AEB =∠ADB , ∴cos ∠ABE =cos ∠ADB =13.∴BH AB =13. ∴AB =3.∵∠CAB =90°,AC =AB =3, ∴BC =3 2.第3题答图。

中考数学复习《圆》经典题型及测试题(含答案)

中考数学复习《圆》经典题型及测试题(含答案)

中考数学复习《圆》经典题型及测试题(含答案)【专题分析】圆在中考中的常见考点有圆的性质及定理,圆周角定理及其推论,圆心角、圆周角、弧、弦之间的“等推”关系;切线的判定,切线的性质,切线长定理,弧长及扇形面积的计算,求阴影部分的面积等.对圆的考查在中考中以客观题为主,考查题型多样,关于圆的基本性质一般以选择题或填空题的形式进行考查,切线的判定等综合性强的问题一般以解答题的形式进行考查;圆在中考中的比重约为10%~15%.【解题方法】解决圆的有关问题常用的数学思想就是转化思想,方程思想和数形结合思想;常用的数学方法有分类讨论法,设参数法等.【知识结构】【典例精选】如图,⊙O的半径是3,点P是弦AB延长线上的一点,连结OP,若OP =4,∠APO=30°,则弦AB的长为( )A.2 5 B. 5C.213 D. 13【思路点拨】先过点O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,进而得出AB的值.【解析】如图,过点O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=4×sin 30°=2.∵OB=3,∴BC=OB2-OC2=32-22=5,∴AB=2 5.故选A.答案:A规律方法:利用垂径定理进行证明或计算,通常是在半径、圆心距和弦的一半所组成的直角三角形中,利用勾股定理构建方程求出未知线段的长.如图,从一块直径是8 m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是( )A.4 2 m B.5 m C. 30 m D.215 m【思路点拨】首先连结AO,求出AB,然后求出扇形的弧长BC,进而求出扇形围成的圆锥的底面半径,最后应用勾股定理求出圆锥的高即可.【解析】如图,连结AO,∵AB=AC,点O是BC的中点,∴AO⊥BC.又∵∠BAC=90°,∴∠ABO=∠ACO=45°,∴AB=2OB=2×(8÷2)=42(m).∴l BC=90π×42180=22π(m).∴将剪下的扇形围成的圆锥形的半径是22π÷2π=2(m).∴圆锥的高是422-22=30(m).故选C.答案:C规律方法:解决圆锥的相关问题,可以利用圆的周长等于扇形的弧长建立方程,利用方程解决问题.如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心、ED 为半径作半圆,交A,B所在的直线于M,N两点,分别以MD,ND为直径作半圆,则阴影部分的面积为( )A.9 5 B.18 5 C.36 5 D.72 5【思路点拨】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN 的面积-大半圆的面积,MN为半圆的直径,从而可知∠MDN=90°,在Rt△MDN 中,由勾股定理可知MN2=MD2+DN2,从而可得到两个小半圆的面积=大半圆的面积,故此阴影部分的面积=△DMN的面积,在Rt△AED中,ED=AD2+AE2=62+32=35,所以MN=65,然后利用三角形的面积公式求解即可.【解析】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积-大半圆的面积.∵MN为大半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积和=大半圆的面积.∴阴影部分的面积=△DMN 的面积.在Rt△AED中,ED=AD2+AE2=62+32=35,∴阴影部分的面积=△DMN的面积=12MN·AD=12×65×6=18 5.故选B.答案:B规律方法:求阴影部分的面积,一般是将所求阴影部分进行分割组合,转化为规则图形的和或差.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连结CD.(1)求证:∠A=∠BCD.(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【思路点拨】(1)根据圆周角定理可得∠ADC=90°,根据直角三角形的性质可得∠A+∠ACD=90°,再由∠DCB+∠ACD=90°,可得∠A=∠BCD;(2)当点M是BC的中点时,直线DM与⊙O相切.连结DO,证明∠ODM =90°,进而证得直线DM与⊙O相切.【自主解答】(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠A=∠BCD.(2)解:当点M是BC的中点时,直线DM与⊙O相切.理由如下:如图,连结DO,∵DO=CO,∴∠1=∠2.∵∠BDC=90°,点M是BC的中点,∴DM=CM,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.规律方法:在判定一条直线是圆的切线时,如果这条直线和圆有公共点,常作出经过公共点的半径,证明这条直线与经过公共点的半径垂直,概括为“连半径,证垂直,得切线”.【能力评估检测】一、选择题1.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为( B )A.40° B.50° C.60° D.20°2.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为( C )A. 3 B.3 C.2 3 D.43.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( A )A.25° B.50° C.60° D.30°4.如图,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP 的度数为( B )A.15° B.30° C.60° D.90°5.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心、AB长为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为( D )A.6 B.7 C.8 D.96.如图,已知AB为⊙O的直径,AD切⊙O于点A,EC=CB.则下列结论中不一定正确的是( D )A.BA⊥DA B.OC∥AEC.∠COE=2∠CAE D.OD⊥AC7.如图,菱形ABCD的对角线BD,AC分别为2,23,以B为圆心的弧与AD,DC相切,则阴影部分的面积是( D )A.23-33π B.43-33πC.43-π D.23-π8.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为( B )A .13π cmB .14π cmC .15π cmD .16π cm9.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D .2 5 解:如图,连接OE ,OF ,ON ,OG .∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO =∠AFO =∠OFB =∠BGO =90°.∴四边形AFOE ,FBGO 都是正方形.∴AF =BF =AE =BG =2.∴DE =3.∵DM 是⊙O 的切线,∴DN =DE =3,MN =MG . ∴CM =5-2-MN =3-MN .在Rt △DMC 中,DM 2=CD 2+CM 2,∴(3+MN )2=(3-MN )2+42.∴NM =43.∴DM =3+43=133.故选A. 答案:A二、填空题10.在平面直角坐标系中,O 为坐标原点,则直线y =x +2与以O 点为圆心,1为半径的圆的位置关系为 相切.11.如图,圆内接四边形ABCD 两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E =30°,则∠F =40° .12.如图,正三角形ABC 的边长为2,点A ,B 在半径为2的圆上,点C 在圆内,将正三角形ABC 绕点A 逆时针旋转,当点C 第一次落在圆上时,点C 运动的路线长为 .【解析】设点C 落在圆上的点为C ′,连结OA ,OB ,OC ′,则OA =OB = 2.又∵AB =2,∴OA 2+OB 2=AB 2,∴∠AOB =90°,∴∠OAB =45°,同理∠OAC ′=45°,∴∠BAC ′=90°.∵△ABC 为等边三角形,∴∠CAB =60°,∴∠CAC ′=30°,∴点C 运动的路线长为30π×2180=π3.故答案为π3. 答案:π3 13.如图,在△ABC 中,∠BAC =90°,AB =5 cm ,AC =2 cm ,将△ABC 绕顶点C按顺时针方向旋转45°至△A 1B 1C 的位置,则线段AB 扫过区域(图中的阴影部分)的面积为 cm 2.【解析】在Rt△ABC 中,BC =AC 2+AB 2=29(cm),S 扇形BCB 1=45π×292360=29π8(cm 2),S △CB 1A 1=12×5×2=5(cm 2),S 扇形CAA 1=45π×22360=π2(cm 2),故S 阴影部分=S 扇形BCB 1+S △CB 1A 1-S △ABC -S 扇形CAA 1=29π8+5-5-π2=25π8(cm 2). 答案:25π8三、解答题14.如图,AB 是⊙O 的直径,BC 切⊙O于点B ,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P .求证:(1)PE =PD ;(2)AC ·PD =AP ·BC .证明:(1)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴EP BC =AE AB .又∵AD ∥OC ,∴∠DAE =∠COB ,∴△AED ∽△OBC ,∴ED BC =AE OB =AE 12AB =2AE AB .∴ED =2EP ,∴PE =PD . (2)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴AP AC =PE BC .∵PE =PD ,∴AP AC =PD BC,∴AC ·PD =AP ·BC . 15.如图,在△OAB 中,OA =OB =10,∠AOB =80°,以点O 为圆心,6为半径的优弧MN 分别交OA ,OB 于点M ,N .(1)点P 在右半弧上(∠BOP 是锐角),将OP 绕点O 逆时针旋转80°得OP ′,求证:AP =BP ′;(2)点T 在左半弧上,若AT 与弧相切,求点T 到OA 的距离;(3)设点Q 在优弧MN 上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.(1)证明:如图,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′.又∵OA=OB,OP=OP′,∴△AOP≌△BOP′.∴AP=BP′.(2)解:如图,连结OT,过点T作TH⊥OA于点H.∵AT与MN相切,∴∠ATO=90°.∴AT=OA2-OT2=102-62=8.∵12OA·TH=12AT·OT,即12×10×TH=12×8×6,∴TH=245,即点T到OA的距离为245.(3)10°,170°.16.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).解:(1)直线BC与⊙O相切.理由如下:如图,连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于点D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.∴直线BC与⊙O相切.(2)①设OA=OD=r,∵在Rt△BDO中,∠B=30°,∴OB=2r,∴在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.②∵在Rt△ODB中,∠B=30°,∴∠BOD=60°,∴S扇形ODE=60π×22360=23π,∴阴影部分面积为S△BOD-S扇形ODE=23-23π.11。

备考2021年九年级中考数学专题训练:《圆的综合》(五)

备考2021年九年级中考数学专题训练:《圆的综合》(五)

备考2021年九年级中考数学专题训练:《圆的综合》(五)1.如图,AB为⊙O的直径,CD⊥AB于点G,E是CD上一点,且BE=DE,延长EB至点P,连结CP,使PC=PE,延长BE与⊙O交于点F,连结BD,FD.(1)求证:CD=BF;(2)求证:PC是⊙O的切线;(3)若tan F=,AG﹣BG=,求ED的值.2.如图,AB是大半圆O的直径.OA是小半圆O1的直径,点C是大半圆O上的一个动点(不与点A、B重合),AC交小半圆O1于点D,DE⊥OC,垂足为E.(1)求证:AD=DC;(2)求证:DE是半圆O1的切线;(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论.3.已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cos C=,求⊙O的直径.4.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠CAB=120°,⊙O的半径等于5,求线段BC的长.5.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.6.如图,AB是⊙O的直径,BD、CD分别是过⊙O上点B、点C的切线,且∠BDC=110°,连结AC.(1)求∠A的度数;(2)若⊙O的直径为6,求的长.(结果保留π)7.如图,在Rt△ABC中,AC<AB,∠BAC=90°,以AB为直径作⊙O交BC于点D,E是AC的中点,连接ED.点F在上,连接BF并延长交AC的延长线于点G.(1)求证:DE是⊙O的切线;(2)连接AF,求的最大值.8.已知:AB为⊙O直径,点C为⊙O上一点,弦CD⊥AB,垂足为H,点E为上一点,连接CE、DE、DB,∠CDE=2∠CDB.(1)如图1,求证:CE=CD;(2)如图2,过点A作AM⊥CE,垂足为M,连接BE交CD于G,连接M,求证:MH∥EB;(3)如图3,在(2)的条件下,连接AE,若ED=,CM=,求△ABE的面积.9.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=2,求EF的长.10.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.参考答案1.解:(1)连接BC,∵BE=DE,∴∠BDE=∠DBE,在△BCD与△DFB中,∴△BCD≌△DFB(AAS)∴CD=BF(2)连接OC,∵∠COB=2∠CDB,∠CEB=∠CDB+∠DBE=2∠CDB ∴∠COB=∠CEB,∵PC=PE,∴∠COB=∠CEB=∠PCE,∵AB⊥CD,∴∠COB+∠OCG=90°,∴∠PCE+∠OCG=∠PCO=90°,∴OC⊥CP∵OC是半径,∴PC是⊙O的切线,(3)连接AD,∵AB是直径,∴∠ADB=90°,∵AB⊥CD,∴=,∴∠BDG=∠A=∠F∵tan∠F=∴tan∠A==,即AG=GD同理可得:BG=GD,∴AG﹣BG=GD﹣GD=,解得:GD=2,∴CD=2GD=4,∴BG=∴由勾股定理可知:BD=∵∠BCD=∠EDB,∠BDC=∠EBD,∴△BCD∽△EDB∴=∵BC=BD,∴ED===2.证明:(1)连接OD,∵AO为圆O1的直径,则∠ADO=90°.∵AC为⊙O的弦,OD为弦心距,∴AD=DC.(2)证明:∵D为AC的中点,O1为AO的中点,1又DE⊥OC,∴DE⊥O1D∴DE与⊙O1相切.(3)如果OE=EC,又D为AC的中点,∴DE∥O1O,又O1D∥OE,∴四边形O1OED为平行四边形.又∠DEO=90°,O1O=O1D,∴四边形O1OED为正方形.3.(1)证明:连接OM.∵OB=OM,∴∠1=∠3,又BM平分∠ABC交AE于点M,∴∠1=∠2,∴∠2=∠3,∴OM∥BE.∵AB=AC,AE是角平分线,∴AE⊥BC,∴OM⊥AE,∴AE与⊙O相切;(2)解:设圆的半径是r.∵AB=AC,AE是角平分线,∴BE=CE=3,∠ABC=∠C,又cos C=,∴AB=BE÷cos B=12,则OA=12﹣r.∵OM∥BE,即,解得r=2.4.则圆的直径是4.8.4.解:如右图所示,连接OD、AD.∵AB是直径,∴∠BDA=∠CDA=90°,又∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴∠ODE=∠CED=90°,∴DE是⊙O的切线;(2)∵⊙O半径是5,∴AB=10,∵△ABC是等腰三角形,且AD⊥BC,∴∠CAD=∠BAD=60°,在Rt△ADB中,BD=sin60°•AB=5,∴BC=10.5.(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.6.解:(1)连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°;(2)∵⊙O的直径为6,∵∠BOC=70°,∴的长==.7.(1)证明:连接OD,AD.∵AB为⊙O直径,点D在⊙O上,∴∠ADB=90°,∴∠ADC=90°,∵E是AC的中点,∴DE=AE,∴∠EAD=∠EDA,∵OA=OD,∴∠OAD=∠ODA,∵∠OAD+∠EAD=∠BAC=90°,∴∠ODA+∠EDA=90°,即∠ODE=90°,∴OD⊥DE,∵D是半径OD的外端点,∴DE是⊙O的切线;(2)解:过点F作FH⊥AB于点H,连接OF,∴∠AHF=90°.∵AB为⊙O直径,点F在⊙O上,∴∠AFB=90°,∴∠BAF+∠ABF=90°.∵∠BAC=90°,∴∠G+∠ABF=90°,又∠AHF=∠GAB=90°,∴△AFH∽△GBA,∴,由垂线段最短可得FH≤OF,当且仅当点H,O重合时等号成立.∵AC<AB,∴上存在点F使得FO⊥AB,此时点H,O重合,∴≤,即的最大值为.8.解:(1)∵AB为直径,CD⊥AB,∴,∴∠CEB=∠BED=∠CDB,∴∠CED=2∠CDB,又∵∠CDE=2∠CDB,∴∠CED=∠CDE,∴CE=CD;(2)∵弧AE=弧AE,∴∠ACE=∠ABE,∵AM⊥CE,CH⊥AB,∴∠AHC=∠AMC,则∠AHM=∠ACM,∴∠AHM=∠ABE,∴MH∥BE;(3)连接BC、AD、AE,过A作AF⊥DE,则∠AEF=∠ACD=∠ADC=∠AEC,∴△AEF≌△AEM(AAS),∴AF=AM,同理△AFD≌△AMC(AAS),∴MC=FD=FE+ED∴MC=EM+ED∴CM=+=∴CE=CM+ME=+=6 ∴CD=6,CH=3,∵MH∥BE,∴=,则HG=,CG=,∵弧BC=弧BD,∴∠BCD=∠CEB,∴△CGB∽△ECB,相似比CG:CE=:6=4:5,∴设BG=16k,BC=20k,BE=25k,过点C作CN⊥BE于N,∵∠CBE=∠CDE=2∠CEB,作NQ=NB,可证QC=QE=BC=25k,BQ=5k,BN=k,EN=k,∵CB2﹣BN2=CE2﹣EN2,∴(20k)2﹣(k)2=62﹣(k)2,解得k=,∴BC=20k=4,BH =,BC2=BH•BA,42=BA,BA==2R,∴⊙O半径为,则AB=,∵HG=,BH=,则tan∠ABE===tanα,则sinα=,cos,△ABE的面积=AB2sinαcosα=.9.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=2,∴,∴EF=4.10.解:(1)证明:连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.。

2023年九年级数学下册中考综合培优测试卷:圆的综合题【含答案】

2023年九年级数学下册中考综合培优测试卷:圆的综合题【含答案】

2023年九年级数学下册中考综合培优测试卷:圆的综合题一、单选题1.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( )A .B .C .D .18552245951252.如图,在以AB 为直径的半圆O 中,C 是它的中点,若AC=2,则△ABC 的面积是( )A .1.5B .2C .3D .43.如图, 、 分别是 的直径和弦,且 , ,交 于点AD AC ⊙O ∠CAD =30°OB ⊥AD AC B ,若 ,则 的长为( )OB =3BCA .B .3C .D .3233334.如图,直线AB 与⊙O 相切于点A ,弦CD ∥AB ,若⊙O 的直径为5,CD=4,则弦AC 的长为( )A .4B .C .5D .6255.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=88°,则∠BCD 的度数是( )A .88°B .92°C .106°D .136°6.如图,AB 是⊙O 的直径, ,∠COD =38°,则∠AEO 的度数是( )BC =CD =DEA .52°B .57°C .66°D .78°7.将圆心角为90°,面积为4π的扇形围成一个圆锥的一个侧面,所围成圆锥的底面半径为( )A .1B .2C .3D .48.如图,△ABC 的三个顶点都在⊙O 上,∠BAC 的平分线交BC 于点D ,交⊙O 于点E ,则与△ABD 相似的三角形有( )A .3个B .2个C .1个D .0个9.如图,已知点A ,B 在⊙O 上,⊙O 的半径为3,且△OAB 为正三角形,则 的长为( )ABA .B .π2C .D .3π2x 1=−163(舍去),x 2=010.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧弧AB 上任意一点(与点B 不重合),则∠BPC的度数为( )A.30°B.45°C.60°D.90°AB=AC11.如图所示,在⊙O中,,∠A=30°,则∠B=( )A.150°B.75°C.60°D.15°⊙O ABCDE AE CD∠AOC12.如图,与正五边形的两边,相切于A,C两点,则的度数是( )108°120°144°150°A.B.C.D.二、填空题13.如图,已知∠OCB=20°,则∠A= 度.14.如图①,在边长为8的等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,若将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC的边AC,BC相切,则图①中CE的长为 cm.15.如图,△ABC 内接于⊙O ,D 是弧BC 的中点,OD 交BC 于点H ,且OH=DH ,连接AD ,过点B 作BE ⊥AD 于点E ,连接EH ,BF ⊥AC 于M ,若AC=5,EH= ,则AF=  .3216.如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为(5,0),顶点D 在 ⊙O 上运动,则正方形面积最大时,正方形与⊙O 重叠部分的面积是 .17.已知⊙O 是以坐标原点为圆心,半径为1,函数y=x 与⊙O 交与点A 、B ,点P (x ,0)在x 轴上运动,过点P 且与OA 平行的直线与⊙O 有公共点,则x 的范围是 .18.若一个圆锥的侧面展开图是一个半径为10cm ,圆心角为144°的扇形,则该圆锥的底面半径为 cm .三、综合题19.如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB ,延长CD 交BA 的延长线于点E .(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)20.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长交BC的延长线于点F,且BF=BD.(1)求证:AC为⊙O的切线;(2)若CF=1,tan∠EDB=2,求⊙O的半径.21.如图,已知ʘO是Rt△ABC的外接圆,点D是ʘO上的一个动点,且C,D位于AB的两侧,联结AD,BD,过点C作CE⊥BD,垂足为E。

人教版九年级数学中考真题分类(解答题)专练: 圆的综合(一)有答案

人教版九年级数学中考真题分类(解答题)专练: 圆的综合(一)有答案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯人教版九年级数学中考真题分类(解答题)专练:圆的综合(一)1.(2020•齐齐哈尔)如图,AB为⊙O的直径,C、D为⊙O上的两个点,==,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.2.(2020•泸州)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6,CD=4,且CE=2AE,求EF的长.3.(2020•乐山)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.4.(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.5.(2020•德州)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.6.(2020•甘孜州)如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:∠CAD=∠CAB;(2)若=,AC=2,求CD的长.7.(2020•金华)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.8.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,=,求CD的长.9.(2020•衢州)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.10.(2020•嘉兴)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.参考答案1.(1)证明:连接OD,∵==,∴∠BOD=180°=60°,∵=,∴∠EAD=∠DAB=BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=AB=3,∴AD==3.2.(1)证明:如图1,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴,∴=,∴AC=9,∴AB==3,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH∥BC,∴△AHE∽△ABC,∴,∴==,∴AH=,EH=2,如图2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AFH+∠BFH=∠AFH+∠FAH=90°,∴∠FAH=∠BFH,∴△AFH∽△FBH,∴=,∴=,∴FH=,∴EF=﹣2.3.证明:(1)如图1,连接AD、BC,∵AB是半圆O的直径,∴∠ADB=90°,∵DE⊥AB,∴∠ADE=∠ABD,又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,∴DF=AF,∴∠DAF=∠ADF=∠ABD,又∵∠DAC=∠DBC,∴∠ABD=∠DBC,∴=,∴即点D平分;(2)如图2所示,连接OD、AD,∵点E是线段OA的中点,∴,∴∠AOD=60°,∴△OAD是等边三角形,∴AD=AO=AH,∴△ODH是直角三角形,且∠HDO=90°,∴DH是⊙O的切线.4.(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∵∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.5.(1)证明:连接OD,∵AB为⊙O的直径,点D是半圆AB的中点,∴∠AOD=AOB=90°,∵DH∥AB,∴∠ODH=90°,∴OD⊥DH,∴直线DH是⊙O的切线;(2)解:连接CD,∵AB为⊙O的直径,∴∠ADB=∠ACB=90°,∵点D是半圆AB的中点,∴=,∴AD=DB,∴△ABD是等腰直角三角形,∵AB=10,∴AD=10sin∠ABD=10sin45°=10×=5,∵AB=10,BC=6,∴AC==8,∵四边形ABCD是圆内接四边形,∴∠CAD+∠CBD=180°,∵∠DBH+∠CBD=180°,∴∠CAD=∠DBH,由(1)知∠AOD=90°,∠OBD=45°,∴∠ACD=45°,∵DH∥AB,∴∠BDH=∠OBD=45°,∴∠ACD=∠BDH,∴△ACD∽△BDH,∴,∴=,解得:BH=.6.(1)证明:如图1,连接OC,,∵CD是切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,∴∠1=∠4.∵OA=OC,∴∠2=∠4,∴∠1=∠2,即∠CAD=∠CAB.(2)解:如图2,连接BC,∵=,∴设AD=2x,AB=3x,∵AB是⊙O的直径,∴∠ACB=∠ADC=90°,∴∠ACB=90°,∵AD⊥DC,∴∠ADC=90°,∵∠DAC=∠CAB,∴△ACD∽△ABC,∴=,∴=,解得,x1=2,x2=﹣2(舍去),∴AD=4,∴CD==2.7.解:(1)∵的半径OA=2,OC⊥AB于点C,∠AOC=60°,∴AC=OA•sin60°=2×=,∴AB=2AC=2;(2)∵OC⊥AB,∠AOC=60°,∴∠AOB=120°,∵OA=2,∴的长是:=.8.(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tan A==tan∠BCE==,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴==,∵AD=8,∴CD=4.9.(1)证明:∵AE=DE,OC是半径,∴=,∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴=,∴=,∴CE=3.6,∵OC=AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.10.解:证法错误;证明:连结OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.。

中考数学复习 专题34 与圆的有关计算试题(A卷,含解析)-人教版初中九年级全册数学试题

中考数学复习 专题34 与圆的有关计算试题(A卷,含解析)-人教版初中九年级全册数学试题

与圆的有关计算一、选择题1. (某某东营,7,3分)如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是( ) A .40cm B .50cm C .60cm D .80cm【答案】A【逐步提示】本题考查弧长公式与圆锥侧面展开图,先计算圆锥的底面周长,再根据圆锥的底面周长等于扇形的弧长列出方程求解.【详细解答】解:圆锥的底面周长为:π×60=60πcm,所以扇形的弧长为60πcm.根据扇形的弧长公式可得27060180rππ=,解得r=40cm .故选A . 【解后反思】解答本题易出现两处错误:一是公式错误,如把弧长公式与扇形面积公式搞错搞混;二是把直径误以为半径.圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长,扇形的面积等于圆锥的侧面积. 【关键词】弧长公式;圆锥的侧面展开图2. (某某东营,17,4分)如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD 的面积为__________.【答案】25【逐步提示】本题考查弧长公式及扇形面积公式,【详细解答】解:∵正方形的边长为5,∴弧BD 的弧长=10,∴S 扇形ABD =111052522lr =⨯⨯=.故答案为25.【解后反思】解答本题需掌握:(1)弧长公式:l=180n r π;扇形面积公式:S 扇形=2360n r π=12lr .【关键词】弧长公式;扇形面积公式 3.4. .(某某某某,10,3分)如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙∠ACB=30°,AB=3,则阴影部分的面积是( )(A )32 (B )6π(C )32-6π (D )33-6π 【答案】C【逐步提示】本题考查切线的性质及扇形面积公式的应用,连接OB ,先由切线的性质求出圆心角∠AOB 的度数,再分别计算△AOB 和扇形BOD 的面积,相减可得阴影部分面积.【详细解答】解:连接OB ,∵AB 是⊙O 的切线,B 为切点,∴∠ABO=90°.∵∠ACB=30°,∴∠AOB=60°.在Rt△AOB 中,OB=tan AB AOB ∠=1.∴S 阴影=S △AOB -S 扇形BOD =12·AB ·OB -2601360π⨯⨯=32-6π.故选择C .【解后反思】计算阴影部分的面积,通常情况下运用转化的思想,将不规则的图形、零散的几个图形面积转化为规则图形之间的和差关系和相对集中形成的规则图形面积. 【关键词】切线的性质;扇形面积公式5. ( 某某某某,7,3分)如图,一扇形纸扇完全打开后,外侧两竹条和AC 的 夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则贴纸的面 积为().A . 175πcm 2B . 350πcm 2C .πcm 2D . 150πcm 2【答案】B【逐步提示】先由AB 和BD 的长求出AD 的长,再分别求出扇形BAC 和扇形DAE 的面积,然后根据“贴纸部分的面积等于扇形BAC 的面积减去扇形DAE 的面积”求解.【详细解答】解:∵AB =25cm ,BD =15cm ,∴AD =25-15=10cm ,∴S扇形BAC =2120251250=1803ππ⨯(cm 2),S 扇形DAE =212010200=1803ππ⨯(cm 2),∴贴纸部分的面积=125020035033πππ-=(cm 2),故选择B .【解后反思】1.弧长公式:l =nπr 180 ,扇形面积公式:S =360n 2r π=12lr ,其中n 为扇形圆心角的度数,r 为扇形半径.2.扇环的面积等于两个扇形面积之差. 【关键词】 扇形的面积计算6.( 某某某某,5,3分)如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为( )A .90°B .120°C .135°D .150°【答案】B【逐步提示】本题考查了三视图及圆锥侧面展开图的圆心角的计算,解决问题的关键是把图中的数据与圆锥结合起来.圆锥的主视图和左视图是一样的,数字“6”是底面直径,数字“2出圆锥的母线.然后利用扇形的弧长等于圆锥的底面周长即2180n Rl r ππ==,可以求得圆心角的度数. 626 第5题图【详细解答】解:圆锥的母线长=()226239+=,∵2180nR l r ππ==∴×923180n ππ⨯=,解得n =120°,故选择B . 【解后反思】了解圆锥的侧面展开图是扇形,扇形的弧长等于圆锥的底面周长,扇形的半径等于圆锥的母线.弄清楚这些关系才能正确解决问题.另外,左视图看到的两个量要清楚分别代表什么,不要把底面直径和周长混淆,导致解题错误.另外,对于涉及到圆锥的底面圆半径r 、母线长l 与圆锥侧面展开图的圆心角n 三个量之间的关系时,公式360r nl =的合理应用来得快捷得很,其推导过程如下:如图,由扇形ABC 的面积的两种表达形式可知,2123602n l l r ππ=⋅⋅,整理后即得360r nl =. 【关键词】左视图;圆锥的侧面展开图.7. (某某威海,16,3)如图,正方形ABCD 内接于⊙O ,其边长为4,则⊙O 的内接正三角形EFG 的边长为____________.O GFED C B A 第16题图【答案】6【逐步提示】先求得⊙O 的半径,再求得内接正三角形EFG 的边长。

中考数学专题练——专题11 圆(试题精选,含答案)

中考数学专题练——专题11 圆(试题精选,含答案)

专题十一圆一、单选题1.(2019·高新模拟)如图,O为圆心,是直径,是半圆上的点,是上的点.若,则的大小为()A. B. C. D.2.(2020·南通模拟)如图,点A,B,C,D都在⊙O上,BD为直径,若∠A=65°,则∠DBC的值是( )A. 65°B. 25°C. 35°D. 15°3.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是( )A. B. 2 C. 6 D. 84.(2020九上·奉化期末)如图,在菱形ABCD中,已知AB=4,∠B=60°,以AC为直径的⊙O与菱形ABCD 相交,则图中阴影部分的面积为( )A. B. C. D.5.(2019九上·温州月考)如图,△ABC内接于⊙O中,AB=AC,=60°,则∠B=( )A. 30°B. 45°C. 60°D. 75°6.(2020九上·中山期末)如图,AD是半圆的直径,点C是弧BD的中点,∠ADC=55°,则∠BAD等于()A. 50°B. 55°C. 65°D. 70°7.(2020九上·海曙期末)平面直角坐标系中,⊙P的圆心坐标为(-4,-5),半径为5,那么⊙P与y轴的位置关系是()A. 相交B. 相离C. 相切D. 以上都不是8.(2019九上·驻马店期末)如图,直径AB为3的半圆,绕A点逆时针旋转60°,此时点B到了点B′处,则图中阴影部分的面积是()A. 3πB.C. 6πD. 24π9.(2020九上·北仑期末)下列四个结论,不正确的是()①过三点可以作一个圆;②圆内接四边形对角相等③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等A. ②③B. ①③④C. ①②④D. ①②③④10.(2020九上·诸暨期末)如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为()A. 106°B. 116°C. 126°D. 136°11.(2019九上·武汉月考)如图,O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB 于点C,则△ABC的最大面积是()A. B. C. D.12.如图,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后刚好经过AB的中点D. 若⊙O的半径为,AB=8,则BC的长是()A. B. C. D.13.(2019九上·如皋期末)如图,▱ABCD中,,,,是边AB上的两点,半径为2的过点A,半径为1的过点、E、F分别是边CD,和上的动点则的最小值等于A. B. 6 C. D. 914.(2019·武汉模拟)点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为()A. B. C. D.15.(2019·武汉模拟)如图,⊙O内切于正方形ABCD,边AD,CD分别与⊙O切于点E,F,点M、N 分别在线段DE,DF上,且MN与⊙O相切,若△MBN的面积为8,则⊙O的半径为()A. B. 2 C. D. 216.(2020·长兴模拟)如图,AB为☉O的直径,P为弦BC上的点,∠ABC=30°,过点P作PD⊥OP交☉O 于点D,过点D作DE∥AB交AB的延长线于点E.若点C恰好是的中点,BE=6,则PC的长是()A. -8B. -3C. 2D. 12-17.(2019九上·宜兴月考)在平面直角坐标系中,直线经过点A(-3,0),点B(0,),点P的坐标为(1,0),与轴相切于点O,若将⊙P沿轴向左平移,平移后得到(点P的对应点为点P′),当⊙P′与直线相交时,横坐标为整数的点P′共有()A. 1个B. 2个C. 3个D. 4个18.(2019·海州模拟)如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. B. C. D.19.(2019·高台模拟)如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为6cm,AB=6 cm,则阴影部分的面积为()A. B. C. D.20.(2019九下·深圳月考)如图,△ABC内接于圆O,∠BOC=120°,AD为圆O的直径.AD交BC于P 点且PB=1,PC=2,则AC的长为( )A. B. C. 3 D. 2二、填空题21.(2019·嘉定模拟)如图,的半径长为5cm,内接于,圆心O在的内部,如果,cm,那么的面积为________cm22.(2019九上·黄石期末)如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=25°.求∠P的度数________.23.(2020九上·东台期末)如图,⊙O是△ABC的外接圆,已知∠ABO=40°,则∠ACB的大小为________.24.(2019·台江模拟)如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是________.25.(2019九上·道里期末)如图,已知,在中,,,,是ABC的内切圆,则这个圆的半径是________.26.(2020九上·北仑期末)如图,四边形ABCD中,∠BAD=∠BCD=90°,∠B=45°,DE⊥AC于E交AB 于F,若BC=2CD,AE=2,则线段BF=________。

九年级中考数学考点分类复习——圆

九年级中考数学考点分类复习——圆

中考数学考点分类复习——圆一、选择题1.下列三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等圆心角所对的弧相等.其中是真命题的是()A.①②B.②③C.①③D.①②③2.已知⊙O的半径为5,圆心O到点P的距离为4,则点P与⊙O的位置关系是( )A.点P在⊙O内B.点P的⊙O上C.点P在⊙O外D.点P在⊙O上或⊙O外3.如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是( )A.18° B.36° C.54° D.72°4.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( )A. 2B.22-2C.2- 2D.2-15.如图,PA,PB为⊙O的切线,A,B分别为切点,∠APB=60∘,点P到圆心O的距离OP=2,则⊙O的半径为( )A.12B.1 C.32D.26.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C.若∠ABO=20°,则∠C 的度数是( )A.70°B.50°C.45°D.20°7.如图,有一半径是1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,用此扇形铁皮围成一个圆锥,该圆锥的底面圆的半径长为( )A.2米B.22米 C.24米 D.28米8. 如图,△ABC是☉O的内接三角形,下列选项中,能使过点A的直线EF与☉O相切于点A的条件是()A.∠EAB=∠CB.∠B=90∘C.EF⊥ACD.AC是☉O的直径9.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是( )A.10B.8 2C.413D.24110.如图,P 是⊙O 外一点,PA 、PB 分别和⊙O 切于A 、B 两点,C 是AB ︵上任意一点,过C作⊙O 的切线分别交PA 、PB 于D 、E .若△PDE 的周长为12,则PA 的长为( )A .12B .6C .8D .411.如图,AB 与⊙O 相切于点C ,OA =OB ,⊙O 的直径为6 cm ,AB =6 3 cm ,则阴影部分的面积为( )A.()93-π cm 2B.()93-2π cm 2C.()93-3π cm 2D.()93-4π cm 212. 一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,选择的是( )A.①B.③C.②D.④13.如图,已知⊙O 的半径是2,点A ,B ,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A.23π-2 3B.23π- 3C.43π-2 3D.43π- 3 14. 如图,直线l 1 // l 2,⊙O 与l 1和l 2分别相切于点A 和点B .点M 和点N 分别是l 1和l 2上的动点,MN 沿l 1和l 2平移.⊙O 的半径为1,∠1=60∘.下列结论错误的是( )A.MN =4√33B.l 1和l 2的距离为2C.若∠MON =90∘,则MN 与⊙O 相切D.若MN 与⊙O 相切,则AM =√315.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB ,OD.若∠BOD =∠BCD ,则BD ︵的长为( )A.πB.32π C.2π D.3π 二.填空题16.在Rt △ABC 中,∠C =90°,CA =8,CB =6,则△ABC 内切圆的周长为______.17. △ABC 中,∠C =90∘,AB =4cm ,BC =2cm ,以点A 为圆心,以3.4cm 的长为半径画圆,则点C 在⊙O ________,点B 在⊙O ________.18.扇形的半径是9 cm ,弧长是3π cm ,则此扇形的圆心角为 度.19.如图,已知⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB =135°,则AB =______.20.如图,正六边形ABCDEF 内接于⊙O ,则∠ADF 的度数为 .21.如图,在圆O 中,AB 为直径,AD 为弦,过点B 的切线与AD 的延长线交于点C ,AD =DC ,则∠C =______度.22.如图,PA ,PB 分别与⊙O 相切于点A ,B ,⊙O 的切线EF 分别交PA ,PB 于点E ,F ,切点C 在AB ︵上.若PA 的长为2,则△PEF 的周长是 .23.如图,点A ,B ,C 均在6×6的正方形网格格点上,过A ,B ,C 三点的外接圆除经过A ,B ,C 三点外还能经过的格点数为 .24.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与BA 的延长线交于点D ,点E 在弧BC 上(不与点B 、C 重合),连结BE 、CE .若∠D =40°,则∠BEC =_______度.25.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y =k x经过正方形AOBC 对角线的交点,半径为6-32的圆内切于△ABC ,则k 的值为 .26. 如图,与相切,切点为,交于点,点是优弧上一点,若,则的度数为________.27. 如图,在⊙O 中,弦AB 、CD 相交于点E ,∠BDC =45∘,∠BED =95∘,则∠C 的度数为________度.28.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F .已知∠A =110°,∠C =30°,则∠DFE 的度数是______.29. 如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F,若⊙O的半径为√2,则BF的长为________.30. 如图,AB为半圆O的直径,C为AO的中点,CD⊥AB交半圆于点D,以C为圆心,CD为半径画弧DE交AB于E点,若AB=8cm,则图中阴影部分的面积为________cm2.(取准确值)三、解答题31.如图所示,CD是△ABC的中线,AB=2CD,∠B=60∘.求证:△ABC的外接圆的半径为CB.32. 如图所示,AB是⊙O的一条直径,CD是⊙O的一条弦,延长BA与DC的延长线相交于P点,若AB=2PC,∠P=36∘,求∠COD的度数.33.如图,在△ABC中,以AC为直径的⊙O分别交AB,BC于点D,E,连接DE,AD=BD,∠ADE=120°.(1)试判断△ABC的形状,并说明理由;(2)若AC=2,求图中阴影部分的面积.34.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=35,求⊙O的直径.35.如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,DE⊥AC,垂足为E.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)如果⊙O的直径为9,cos B=13,求DE的长36.如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A 点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于点G.(1)求证:EF是⊙O的切线;(2)求AE的长.37.如图, Rt △ABC 中,∠ABC=90°,以AB 为直径的⊙O 交AC 于点D ,过点D 的切线交BC 于E .(1)求证:12DE BC =;(2)若tanC=25,DE=2,求AD 的长.38.已知,在四边形ABCD 中,E 是对角线AC 上一点,ED =EC ,以AE 为直径的⊙O 与边CD 相切于D , 点B 在⊙O 上,连结OB .(1)求证:DE =OE ;(2)若AB ∥CD ,求证:四边形ABCD 是菱形.39.如图,在ABC ∆中,AB AC =,以AB 为直径作O 交BC 于点D ,过点D 作O 的切线DE 交AC 于点E ,交AB 延长线于点F .(1)求证:DE AC ⊥;(2)若10,8AB AE ==,求BF 的长.40. 如图,正六边形ABCDEF 内接于⊙O ,BE 是⊙O 的直径,连接BF ,延长BA ,过F 作FG ⊥BA ,垂足为G .(1)求证:FG 是⊙O 的切线;(2)已知FG =2√3,求图中阴影部分的面积.41.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点P 在⊙O 上,PB 与CD 交于点F ,∠PBC=∠C .(1)求证:CB ∥PD ;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.42.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.AH ,以点O为圆心,OA的长为半径作⊙O,过43.如图,点O是线段AH上一点,3点H作AH的垂线交⊙O于C,N两点,点B在线段CN的延长线上,连接AB交⊙O于点M,以AB,BC为边作ABCD.(1)求证:AD 是⊙O 的切线;(2)若13OH AH =,求四边形AHCD 与⊙O 重叠部分的面积; (3)若13NH AH =,54BN =,连接MN ,求OH 和MN 的长.44.已知ABC 内接于O ,BAC ∠的平分线交O 于点D ,连接DB ,DC .(1)如图①,当120BAC ∠=时,请直接写出线段AB ,AC ,AD 之间满足的等量关系式: ;(2)如图②,当90BAC ∠=时,试探究线段AB ,AC ,AD 之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求AD AB AC+ 的值.。

人教九年级中考数学复习题(六)--圆(含答.案)

人教九年级中考数学复习题(六)--圆(含答.案)

九年级中考数学复习题(六)圆一、选择题(每题3分,共30分)1、如图,⊙O 的半径13,弦AB 的长度是24,AB ON ⊥,垂足为N ,则ON=( )A 、5B 、7C 、9D 、112、如图,AB 是⊙O 的直径,BC 是⊙O 的弦,若 60=∠OBC ,则BAC ∠的度数是( )A 、 75B 、 60C 、 45D 、303、在Rt ABC ∆中,,4,3,90cm BC cm AC C ===∠ 则它的外心与顶点C 的距离为( )A 、cm 2B 、cm 5.2C 、cm 3D 、cm 44、已知⊙O 的半径为5,点O 到同一平面内直线l 的距离为4,则直线l 与⊙O 的位置关系是( )A 、相离B 、相切C 、相交D 、无法判断5、正六边形的边心距为3,则该正六边形的边长是( ) A 、3 B 、2 C 、3 D 、326、如图,PA ,PB 是⊙O 的切线,切点分别为A ,B ,若OA=2, 60=∠P ,则AB 的长为( ) A 、π32 B 、π C 、π34 D 、π35 7、如图,在半径为cm 13的圆形铁片上切下一块高为cm 8的弓形铁片,则弓形弦AB 的长为( )A 、cm 10B 、16cmC 、24cmD 、26cm8、如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则ADC ∠的大小为( )A 、 45B 、 30C 、 60D 、759、如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB 与小圆有公共点,则弦AB 的取值范围是( )A 、108≤≤AB B 、108≤<ABC 、54≤≤ABD 、54≤<AB10、如图,PA ,PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E ,交PA 、PB 于C 、D ,若⊙O 的半径为r ,PCD ∆的周长等于r 3,则APB ∠tan 的值是( )A 、13125B 、512C 、1353D 、1332二、填空题(每题4分,共24分)11、如图,⊙O 是ABC ∆的外接圆, 68=∠A ,则OBC ∠的大小是 .12、如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,⊙P 与x 轴交于OA 两点,点A 的坐标为(6,0),⊙P 的半径为13,则点P 的坐标为 .13、如图,AB 和⊙O 切于点B ,AB=5,OB=3,则A tan = .14、如图,正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是 .15、如图,正方形ABCD 内接于半径为2的⊙O ,则图中阴影部分的面积为 .16、如图,已知等边ABC ∆的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为 .三、解答题一(每题6分,共18分)17、如图,AT 切⊙O 于点A ,AB 是⊙O 的直径,若 40=∠ABT ,求ATB ∠的度数.18、如图,⊙O 的直径AB 过弦CD 的中点E ,若 25=∠C ,求D ∠的大小.19、已知一个圆锥的底面半径为2,母线长为5,求这个圆锥的侧面积.(结果保留π)四、解答题二(每题7分,共21分)20、如图,CD 为⊙O 的直径,弦AB 交CD 于点E ,连接BD 、OB.(1)求证:AEC ∆ DEB ∆;(2)若,2,8,==⊥DE AB AB CD 求⊙O 的半径.21、如图,在Rt ABC ∆中,90=∠B ,点O 在边AB 上,以点O 为圆心,OA 为半径的圆经过点C ,过点C 作直线MN ,使.2A BCM ∠=∠(1)判断直线MN 与⊙O 的位置关系,并说明理由;(2)若OA=4, 60=∠BCM ,求图中阴影部分的面积.22、如图,点O 为Rt ABC ∆斜边AB 上的一点,以OA 为半径的⊙O 与BC 切于点D ,与AC 交于点E ,连接AD.(1)求证:AD 平分BAC ∠;(2)若 60=∠BAC ,OA=2,求阴影部分的面积(结果保留π)五、解答题三(每题9分,共27分)23、如图,ABC ∆中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,交CA 的延长线于点E ,连结AD ,DE.(1)求证:D 是BC 的中点;(2)若DE=3,BD-AD=2,求⊙O 的半径;(3)在(2)的条件下,求弦AE 的长.24、如图,AB 是⊙O 的直径,点C 在AB 的延长线上,AB=4,BC=2,P 是⊙O 上半部分的一个动点,连接OP ,CP.(1)求OPC ∆的最大面积;(2)求OCP ∠的最大度数;(3)如图2,延长PO 交⊙O 于点D ,连接DB.当CP=DP 时,求证:CP 是⊙O 的切线.25、如图,点A 、B 、C 、D 是直径为AB 的⊙O 上的四个点,C 是劣弧BD 的中点,AC 与BD 交于点E.(1)求证:AC CE DC ⋅=2(2)若AE=2,EC=1,求证:AOD ∆是正三角形.(3)在(2)的条件下,过点C 作⊙O 的切线,交AB 的延长线于点H ,求ACH ∆的面积.九年级中考数学复习题(六)圆参考答案一、ADBCB CCCAB二、11、 22 12、(3,2) 13、53 14、2 15、2-π 16、π 三、 切解AT 、 :17⊙O 于点A ,AB 是⊙O 的直径,90=∠∴BAT90=∠+∠∴ATB ABT又40=∠ABT 504090=-=∠∴ATB18、解:,25,25=∠=∠∴=∠C A C ⊙O 的直径AB 过弦CD 的中点E ,∴,90, =∠∴⊥AED CD AB 652590=-=∠∴D19、解:ππ1025=⨯⨯=侧S ,答:这个圆锥的侧面积为.10π四、20、解:(1)证明:,,BED CEA DBE C ∠=∠∠=∠AEC ∆∴ .DEB ∆(2)设 ⊙O 的半径为r ,8,=⊥,AB CD AB CD 是直径 ,,4==∴BE AE在Rt ,OB BE ,OEOBE 222=+∆中 即,4)2(222r r =+-.5=∴r21、解:(1)MN 是⊙O 的切线,理由如下:连接OCOCA OAC OC OA ∠=∠∴=,,2,2A BCM A OCA A BOC ∠=∠∠=∠+∠=∠,BOC BCM ∠=∠∴,,90,90,90MN OC BCO BCM BCO BOC B ⊥∴=∠+∠∴=∠+∠∴=∠∴MN 是⊙O 的切线. .343163242136041203222130412060)1()2(2-=⨯⨯-⨯=-=∴===∴=∠==∆=∠∴=∠=∠∆ππOAC OAC S S S ,,BC OC BO ,BCO ,OA ,OC BCO Rt ,AOC ,BCM BOC 扇形阴影中在知由 .:)1(22OD 、连接证明BC 是⊙O 的切线,D 为切点,∴.BC OD ⊥.//BAC AD OAD ,CAD OADADO OA ,OD CAD ,ADO ACOD BC ,AC ∠∠=∠∠=∠∴=∠=∠∴∴⊥平分即又又(2)解:连接OE ,ED , ,,60OA OE BAC ==∠OAE ∆∴为等边三角形,.32360260602//3021,30,602ππ=⨯⨯==∴=∠=∠=∴∴∠=∠∴=∠=∠=∠=∠∴=∠∴∆∆ODEOEDAED S S ,EAD DOE S S AO ,ED OAD ,ADE ,BAC EAD OAD ADE AOE 扇形阴影又又五、为证明解AB 、 :)1(:23⊙O 的直径,.BC AD ⊥∴又,AC AB =.的中点是BC D ∴ ,AD BD AB ,,AD ,BD ABD Rt ,AD ,AD BD ,DE BD DE ,DC E ,C E ,B C B AC AB 101313123,,)2(2222=+=+=∴==∆=∴=-==∴=∴∠=∠∴∠=∠∠=∠∴=中在又又 则⊙O 的半径为.210 (3)连接BE ,AB 是⊙O 的直径,C ,C ,BEC ADC ,BEC ADC BEC ∠=∠=∠=∠∆∆=∠∴ 90,90中和在∴ADC ∆ ,BEC ∆.5104,51091063,=-=∴=⨯=⋅=∴=∴AC CE AE CA CB CD CE CBCA CE CD .44224)1(:24的最大面积为的面积最大此时边上的高为最大值时当是定值的边长解OPC ,BC OB ,OC OB OP ,,BC AB ,OPC ,,OC OC OP ,OC OPC 、∆∴=+===∴==∆⊥∴∆ (2)当PC 与⊙O 相切,.30,30,21sin 2490 的最大度数为中在的度数最大时即OCP OCP OC OP OCP ,,OP ,OC OPC ,OPC Rt ,OCP ,PC OP ∠∴=∠∴==∠∴===∠∆∠⊥(3)如图,连接AP 、BP , .4,,,,,.,PBD OPC PBDOPC BD ,,PC PD OC D C D A C A PC AP DB CP DB AP DOB AOP ∠=∠∴∆≅∆∴===∠=∠∴∠=∠∠=∠∴=∴==∴∠=∠ 又PD 是⊙O 的直径,,90,90PC OP OPC PBD ⊥∴=∠∴=∠∴又OP 是⊙O 的半径,∴CP 是⊙O 的切线.DCE ,ACD CDB ,DAC ,BD C 、∠=∠∠=∠∴ 又的中点是劣弧证明:)1(25ACD ∆∴ DCE ∆,AC CE DC CECD DC AD ⋅=∴=2, 312,1,2)2(=+=+=∴==EC AE AC EC AE3,32==∴DC DC 即,如图,连接OC ,OD ,,BD C 的中点是劣弧 3==∴DC BC ,AB 是⊙O 的直径, 90=∠∴ACB ,AB=32)3(32222=+=+BC AC , 3===∴OD OC OBDOC BOC ∆∆∴和均是正三角形,.,60180,120是正三角形又AOD OD ,OA BOD DOA BOD ∆∴==∠-=∠∴=∠∴,AGC G ,AH CG C 90:)3(=∠⊥则于点作过点解 是CH ⊙O 的切线,,90, =∠∴⊥∴HCO CH OC .4392333212133223323233212130,.30,30609090,60=⨯⨯=⋅=∴==∴===⨯==∴=∠∆=∴∆∴∠=∠∴=∠=-=∠-=∠∴=∠∆CG AH S ,AG AH ,AC ,AG AC CG ,CAG ,ACG Rt GH ,AG ,ACH H CAH CAB COH H COH AHC 中在是等腰三角形。

中考数学圆的综合综合经典题含详细答案

中考数学圆的综合综合经典题含详细答案

中考数学圆的综合综合经典题含详细答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253 8.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC .设⊙O 的半径为r .在Rt △AHC 中,tan ∠ACH =tan ∠G =AH HC =34,∵AH =33,∴HC =43,在Rt △HOC 中,∵OC =r ,OH =r ﹣33,HC =43,∴222(33)(43)r r -+=,∴r =2536,∵GM ∥AC ,∴∠CAH =∠M ,∵∠OEM =∠AHC ,∴△AHC ∽△MEO ,∴AH HC EM OE =,∴33432536EM =,∴EM =2538. 点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.3.如图,AB 为O 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O 的切线,理由见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE ∽即可解决问题.【详解】()1解:结论:DE 是O 的切线.理由:连接OD .CDB ADE ∠=∠,ADC EDB ∴∠=∠,//CD AB ,CDA DAB ∴∠=∠,OA OD =,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠, AB 是直径,90ADB ∴∠=,90ADB ODE ∴∠=∠=,DE OD ∴⊥,DE ∴是O 的切线.()2//CD AB ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,AC BD ∴=,AC BD ∴=,DCB DAB ∠=∠,EDB DAB ∠=∠,EDB DCB ∴∠=∠,CDB ∴∽DBE ,CD DB BD BE∴=, 2BD CD BE ∴=⋅,2AC CD BE ∴=⋅.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.4.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.5.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).38313 24313n+ 【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭. ∵h 32,∴1=32-1)2+14a 22, 解得a 283 . (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2,即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭ . ∵h =32 a n ,∴1=14a n 2+2312n na ⎛⎫- ⎪ ⎪⎝⎭, 解得a n =24331n n + .6.如图1,已知AB 是⊙O 的直径,AC 是⊙O 的弦,过O 点作OF ⊥AB 交⊙O 于点D ,交AC 于点E ,交BC 的延长线于点F ,点G 是EF 的中点,连接CG(1)判断CG 与⊙O 的位置关系,并说明理由;(2)求证:2OB 2=BC •BF ;(3)如图2,当∠DCE =2∠F ,CE =3,DG =2.5时,求DE 的长.【答案】(1)CG 与⊙O 相切,理由见解析;(2)见解析;(3)DE =2【解析】【分析】(1)连接CE ,由AB 是直径知△ECF 是直角三角形,结合G 为EF 中点知∠AEO =∠GEC =∠GCE ,再由OA =OC 知∠OCA =∠OAC ,根据OF ⊥AB 可得∠OCA +∠GCE =90°,即OC ⊥GC ,据此即可得证;(2)证△ABC ∽△FBO 得BC AB BO BF =,结合AB =2BO 即可得; (3)证ECD ∽△EGC 得EC ED EG EC =,根据CE =3,DG =2.5知32.53DE DE =+,解之可得.【详解】解:(1)CG 与⊙O 相切,理由如下:如图1,连接CE ,∵AB 是⊙O 的直径,∴∠ACB =∠ACF =90°,∵点G 是EF 的中点,∴GF =GE =GC ,∴∠AEO =∠GEC =∠GCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OF ⊥AB ,∴∠OAC +∠AEO =90°,∴∠OCA +∠GCE =90°,即OC ⊥GC ,∴CG 与⊙O 相切;(2)∵∠AOE =∠FCE =90°,∠AEO =∠FEC ,∴∠OAE =∠F ,又∵∠B =∠B ,∴△ABC ∽△FBO , ∴BC AB BO BF=,即BO •AB =BC •BF , ∵AB =2BO ,∴2OB 2=BC •BF ;(3)由(1)知GC =GE =GF ,∴∠F =∠GCF ,∴∠EGC =2∠F ,又∵∠DCE =2∠F ,∴∠EGC =∠DCE ,∵∠DEC =∠CEG ,∴△ECD ∽△EGC , ∴EC ED EG EC=, ∵CE =3,DG =2.5, ∴32.53DE DE =+,整理,得:DE2+2.5DE﹣9=0,解得:DE=2或DE=﹣4.5(舍),故DE=2.【点睛】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.7.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.【答案】(1)详见解析;(2)32π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,3PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴BD CD,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD 平分∠BAC ,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD 为等边三角形,∴∠ODB=60°,3 ,∴∠BDF=30°,∵BC ∥DF ,∴∠DBP=30°,在Rt △DBP 中,PD=123 ,3, 在Rt △DEP 中,∵37∴22(7)(3)- =2,∵OP ⊥BC ,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE ,∠BED=∠AEC ,∴△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=17 ,∴AE=577∵BE ∥DF , ∴△ABE ∽△AFD , ∴BE AE DF AD= ,即5757125DF = , 解得DF=12,在Rt △BDH 中,BH=123, ∴阴影部分的面积=△BDF 的面积﹣弓形BD 的面积=△BDF 的面积﹣(扇形BOD 的面积﹣△BOD 的面积)=22160(23)3123(23)23604π⨯⨯-3﹣2π.【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.8.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)【答案】(1)证明见解析 (2)233π- 【解析】【分析】 (1)连接OD ,只要证明OD ∥AC 即可解决问题;(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题.【详解】(1)连接OD .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∴BC 是⊙O 的切线.(2)连接OE ,OE 交AD 于K .∵AE DE =,∴OE ⊥AD .∵∠OAK =∠EAK ,AK =AK ,∠AKO =∠AKE =90°,∴△AKO ≌△AKE ,∴AO =AE =OE ,∴△AOE是等边三角形,∴∠AOE =60°,∴S 阴=S 扇形OAE ﹣S △AOE 260233604π⋅⋅=-⨯22233π=. 【点睛】本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.9.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积.【答案】(1)详见解析;(2)6334π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC,∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC ;(2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B,∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形,∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º,∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA,同理,CF =FM,∴AM =2CF=23,Rt △ACM 中,易得AC=23×32=3=OC, ∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =3∵△CDO ≌△EDO(AAS),∴332 ∴1332ABM S AB MO ∆=⨯= 同样,易求93AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形933633332ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.10.如图1,等腰直角△ABC 中,∠ACB=90°,AC=BC ,过点A ,C 的圆交AB 于点D ,交BC于点E ,连结DE(1)若AD=7,BD=1,分别求DE ,CE 的长(2)如图2,连结CD ,若CE=3,△ACD 的面积为10,求tan ∠BCD(3)如图3,在圆上取点P 使得∠PCD=∠BCD (点P 与点E 不重合),连结PD ,且点D 是△CPF 的内心①请你画出△CPF ,说明画图过程并求∠CDF 的度数②设PC=a ,PF=b ,PD=c ,若(a-2c )(b-2c )=8,求△CPF 的内切圆半径长.【答案】(1)DE=1,CE=32;(2)tan ∠BCD=14;(3)①135°;②2. 【解析】【分析】 (1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(a-2c )(b-2c )=8,消去字母a ,b 求出c 值,即求出△CPF 的内切圆半径长为22c . 【详解】(1)由图可知:设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得:AC 2+BC 2=AB 2,∵AB=AD+BD ,AD=7,BD=1,∴x 2+x 2=82,解得:x=42. ∵⊙O 内接四边形,∠ACD=90°,∴∠ADE=90°,∴∠EDB=90°,∵∠B=45°,∴△BDE 是等腰直角三形.∴DE=DB ,又∵DB=1,∴DE=1,又∵CE=BC-BE ,∴CE=42232-=.(2)如图所示:在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=12y , 又∵CE=3,∴BC=3+y ,∵S △ACB =S ACD +S DCB , ∴()1114242103y y 222⨯=+⨯+⨯, 解得:y=2或y=-11(舍去).∴EM=1,CM=CE+ME=1+3=4,又∵∠BCD=∠MCD ,∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D 切线PF 交CB的延长线于点F .∵∠CAD=45°,∴∠CPD=∠CAD=45°,又∵点D 是CPF ∆的内心,∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD∴∠CPF=90°∴∠PCF+∠PFC=90° ∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°,即∠CDF 的度数为135°.②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心,∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°,∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线,∴∠PCF=2∠DCF ,∠PFC=2∠DFC ,∴∠PCF+∠PFC=90°,∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°,∴四边形PKDN 是矩形,又∵KD=ND ,∴四边形PKDN 是正方形.又∵∠MBD=∠BDM=45°,∠BDM=∠KDP ,∴∠KDP=45°.∵PC=a ,PF=b ,PD=c ,∴PN=PK=C 2,∴NF=b c 2-,CK=a c 2-, 又∵CK=CM ,FM=FN ,CF=CM+FM ,∴CF=a b +,又∵S △PCF =S △PDF +S △PDC +S △DCF ,∴1111ab a c b c (a b 222222=⨯+⨯++-)×c 2,化简得:)2a b c c +-------(Ⅰ),又∵若(c )(c )=8化简得:()2ab a b 2c 8++=------(Ⅱ), 将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c =c =-∴2==, 即△CPF 的内切圆半径长为2.【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.11.如图,已知AB 是⊙O 的直径,BC 是弦,弦BD 平分∠ABC 交AC 于F ,弦DE ⊥AB 于H ,交AC 于G .①求证:AG =GD ;②当∠ABC 满足什么条件时,△DFG 是等边三角形?③若AB=10,sin∠ABD=35,求BC的长.【答案】(1)证明见解析;(2)当∠ABC=60°时,△DFG是等边三角形.理由见解析;(3)BC的长为145.【解析】【分析】(1)首先连接AD,由DE⊥AB,AB是O的直径,根据垂径定理,即可得到AD AE=,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE=∠ABD,又由弦BD平分∠ABC,可得∠DBC=∠ABD,根据等角对等边的性质,即可证得AG=GD;(2)当∠ABC=60°时,△DFG是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;(3)利用三角函数先求出tan∠ABD34=,cos∠ABD=45,再求出DF、BF,然后即可求出BC.【详解】(1)证明:连接AD,∵DE⊥AB,AB是⊙O的直径,∴AD AE=,∴∠ADE=∠ABD,∵弦BD平分∠ABC,∴∠DBC=∠ABD,∵∠DBC=∠DAC,∴∠ADE=∠DAC,∴AG=GD;(2)解:当∠ABC=60°时,△DFG是等边三角形.理由:∵弦BD平分∠ABC,∴∠DBC=∠ABD=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=30°,∴∠DFG=∠FAB+∠DBA=60°,∵DE⊥AB,∴∠DGF=∠AGH=90°﹣∠CAB=60°,∴△DGF 是等边三角形;(3)解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵∠DAC =∠DBC =∠ABD ,∵AB =10,sin ∠ABD =35, ∴在Rt △ABD 中,AD =AB•sin ∠ABD =6,∴BD =22AB BD -=8,∴tan ∠ABD =34AD BD =,cos ∠ABD =4=5BD AB , 在Rt △ADF 中,DF =AD•tan ∠DAF =AD•tan ∠ABD =6×34=92, ∴BF =BD ﹣DF =8﹣92=72, ∴在Rt △BCF 中,BC =BF•cos ∠DBC =BF•cos ∠ABD =72×45=145. ∴BC 的长为:145.【点睛】此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.12.如图,AB 是O 的直径,弦CD AB ⊥于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .(1)求证:DF 是O 的切线;(2)连接BC ,若30BCF ∠=︒,2BF =,求CD 的长.【答案】(1)见解析;(2)3【解析】【分析】(1) 连接OD,由垂径定理证OF为CD的垂直平分线,得CF=DF,∠CDF=∠DCF,由∠CDO=∠OCD,再证∠CDO +∠CDB=∠OCD+∠DCF=90°,可得OD⊥DF,结论成立.(2) 由∠OCF=90°, ∠BCF=30°,得∠OCB=60°,再证ΔOCB为等边三角形,得∠COB=60°,可得∠CFO=30°,所以FO=2OC=2OB,FB=OB= OC =2,在直角三角形OCE中,解直角三角形可得CE,再推出CD=2CE.【详解】(1)证明:连接OD∵CF是⊙O的切线∴∠OCF=90°∴∠OCD+∠DCF=90°∵直径AB⊥弦CD∴CE=ED,即OF为CD的垂直平分线∴CF=DF∴∠CDF=∠DCF∵OC=OD,∴∠CDO=∠OCD∴∠CDO +∠CDB=∠OCD+∠DCF=90°∴OD⊥DF∴DF是⊙O的切线(2)解:连接OD∵∠OCF=90°, ∠BCF=30°∴∠OCB=60°∵OC=OB∴ΔOCB为等边三角形,∴∠COB=60°∴∠CFO=30°∴FO=2OC=2OB∴FB=OB= OC =2在直角三角形OCE中,∠CEO=90°∠COE=60°CE3∠==sin COEOC2∴CF3==∴CD=2 CF23【点睛】本题考核知识点:垂径定理,切线,解直角三角形. 解题关键点:熟记切线的判定定理,灵活运用含有30°角的直角三角形性质,巧解直角三角形.13.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE=36.【解析】【分析】(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为AG AG,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA=2∠ABC.②如图2﹣1中,连接AG,作FH⊥AG于H.∵BD=OE,∠CDB=∠AEO=90°,∠B=∠AOE,∴△CDB≌△AEO(AAS),∴CD=AE,∵EC=EA,∴AC=2CD.∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 22221AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=, ∴PE 3. 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.14.设C 为线段AB 的中点,四边形BCDE 是以BC 为一边的正方形,以B 为圆心,BD 长为半径的⊙B 与AB 相交于F 点,延长EB 交⊙B 于G 点,连接DG 交于AB 于Q 点,连接AD .求证:(1)AD 是⊙B 的切线;(2)AD =AQ ;(3)BC 2=CF×EG .【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得AD BD =,再根据正方形的性质,可得90ADB ∠=;()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52G CDG BDG BCD ∠=∠=∠=∠=,继而求得67.5ADQ AQD ∠=∠=,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠,90DCF E ∠=∠=,即可证得Rt DCF ∽Rt GED ,根据相似三角形的对应边成比例,即可证得结论.【详解】证明:()1连接BD ,四边形BCDE 是正方形,45DBA ∴∠=,90DCB ∠=,即DC AB ⊥,C 为AB 的中点,CD ∴是线段AB 的垂直平分线,AD BD ∴=,45DAB DBA ∴∠=∠=,90ADB ∴∠=,即BD AD ⊥,BD 为半径,AD ∴是B 的切线;()2BD BG =,BDG G ∴∠=∠,//CD BE ,CDG G ∴∠=∠,122.52G CDG BDG BCD ∴∠=∠=∠=∠=, 9067.5ADQ BDG ∴∠=-∠=,9067.5AQB BQG G ∠=∠=-∠=, ADQ AQD ∴∠=∠,AD AQ ∴=;()3连接DF ,在BDF 中,BD BF =,BFD BDF ∴∠=∠,又45DBF ∠=,67.5BFD BDF ∴∠=∠=,22.5GDB ∠=, 在Rt DEF 与Rt GCD 中,67.5GDE GDB BDE DFE ∠=∠+∠==∠,90DCF E ∠=∠=,Rt DCF ∴∽Rt GED ,CF CD ED EG∴=, 又CD DE BC ==,2BC CF EG ∴=⋅.【点睛】本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.15.如图1,D 是⊙O 的直径BC 上的一点,过D 作DE ⊥BC 交⊙O 于E 、N ,F 是⊙O 上的一点,过F 的直线分别与CB 、DE 的延长线相交于A 、P ,连结CF 交PD 于M ,∠C =12∠P . (1)求证:PA 是⊙O 的切线;(2)若∠A =30°,⊙O 的半径为4,DM =1,求PM 的长;(3)如图2,在(2)的条件下,连结BF 、BM ;在线段DN 上有一点H ,并且以H 、D 、C 为顶点的三角形与△BFM 相似,求DH 的长度.【答案】(1)证明见解析;(2)PM =43﹣2;(3)满足条件的DH 的值为632- 或122311+. 【解析】【分析】(1)如图1中,作PH ⊥FM 于H .想办法证明∠PFH=∠PMH ,∠C=∠OFC ,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD ,PD 即可解决问题;(3)分两种情形①当△CDH ∽△BFM 时,DH CD FM BF =. ②当△CDH ∽△MFB 时,DH CD FB MF=,分别构建方程即可解决问题; 【详解】(1)证明:如图1中,作PH ⊥FM 于H .∵PD ⊥AC ,∴∠PHM =∠CDM =90°,∵∠PMH =∠DMC ,∴∠C =∠MPH ,∵∠C =12∠FPM ,∴∠HPF =∠HPM , ∵∠HFP+∠HPF =90°,∠HMP+∠HPM =90°,∴∠PFH =∠PMH ,∵OF =OC ,∴∠C =∠OFC ,∵∠C+∠CMD =∠C+∠PMF =∠C+∠PFH =90°,∴∠OFC+∠PFC =90°,∴∠OFP =90°,∴直线PA 是⊙O 的切线.(2)解:如图1中,∵∠A =30°,∠AFO =90°,∴∠AOF =60°,∵∠AOF =∠OFC+∠OCF ,∠OFC =∠OCF ,∴∠C =30°,∵⊙O 的半径为4,DM =1,∴OA =2OF =8,CD =3DM =3 ,∴OD =OC ﹣CD =4﹣3 ,∴AD =OA+OD =8+4﹣3 =12﹣3 ,在Rt △ADP 中,DP =AD•tan30°=(12﹣3 )×33 =43 ﹣1, ∴PM =PD ﹣DM =4 3﹣2.(3)如图2中,由(2)可知:BF =12BC =4,FM 3BF =3,CM =2DM =2,CD 3 , ∴FM =FC ﹣CM =3﹣2, ①当△CDH ∽△BFM 时,DH CD FM BF = , ∴34432=- ,∴DH =632 ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =-,∴DH 1223+ , ∵DN ()22443833--=-,∴DH <DN ,符合题意,综上所述,满足条件的DH 的值为62- 或1211+. 【点睛】 本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.。

中考数学——圆的综合的综合压轴题专题复习附答案解析

中考数学——圆的综合的综合压轴题专题复习附答案解析

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,在直角坐标系中,已知点A(-8,0),B(0,6),点M在线段AB上。

(1)如图1,如果点M是线段AB的中点,且⊙M的半径等于4,试判断直线OB与⊙M 的位置关系,并说明理由;(2)如图2,⊙M与x轴,y轴都相切,切点分别为E,F,试求出点M的坐标;(3)如图3,⊙M与x轴,y轴,线段AB都相切,切点分别为E,F,G,试求出点M的坐标(直接写出答案)【答案】(1)OB与⊙M相切;(2)M(-247,247);(3)M(-2,2)【解析】分析:(1)设线段OB的中点为D,连结MD,根据三角形的中位线求出MD,根据直线和圆的位置关系得出即可;(2)求出过点A、B的一次函数关系式是y=34x+6,设M(a,﹣a),把x=a,y=﹣a代入y=34x+6得出关于a的方程,求出即可.(3)连接ME、MF、MG、MA、MB、MO,设ME=MF=MG=r,根据S△ABC=12AO•ME+12BO•MF+12AB•MG=12AO•BO求得r=2,据此可得答案.详解:(1)直线OB与⊙M相切.理由如下:设线段OB的中点为D,如图1,连结MD,∵点M是线段AB的中点,所以MD∥AO,MD=4,∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上.又∵点D在直线OB上,∴直线OB与⊙M相切;(2)如图2,连接ME,MF,∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴806k bb-+=⎧⎨=⎩,解得:k=34,b=6,即直线AB的函数关系式是y=34x+6.∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=34x+6,得:﹣a=34a+6,得:a=﹣24 7,∴点M的坐标为(﹣242477,).(3)如图3,连接ME、MF、MG、MA、MB、MO,∵⊙M与x轴,y轴,线段AB都相切,∴ME⊥AO、MF⊥BO、MG⊥AB,设ME=MF=MG=r,则S△ABC=12AO•ME+12BO•MF+12AB•MG=12AO•BO.∵A(﹣8,0),B(0,6),∴AO=8、BO=6,AB=22AO BO=10,∴12r•8+12r•6+12r•10=12×6×8,解得:r=2,即ME=MF=2,∴点M的坐标为(﹣2,2).点睛:本题考查了圆的综合问题,掌握直线和圆的位置关系,用待定系数法求一次函数的解析式的应用,能综合运用知识点进行推理和计算是解答此题的关键,注意:直线和圆有三种位置关系:已知⊙O的半径为r,圆心O到直线l的距离是d,当d=r时,直线l和⊙O 相切.2.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=13,求AE的长.【答案】(1)证明见解析;(2)2【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)在Rt△AOD中,OA=1,sin D=13,∴OD=OAsinD=3,∴CD=OD﹣OC=2.∵AD=22OD OA-=22.又∵△CED∽△ACD,∴AD CDCD DE=,∴DE=2CDAD=2,∴AE=AD﹣DE=22﹣2=2.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.3.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,23),则以AB为边的“坐标菱形”的最小内角为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1【解析】分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.详解:(1)∵点A(2,0),B(0,3∴OA=2,OB3.在Rt△AOB中,由勾股定理得:AB22(),∴∠ABO=30°.223∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.故答案为:60°;(2)如图2.∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.∵⊙O2,且△OQ'D是等腰直角三角形,∴OD2OQ'=2,∴P'D=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴BD=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P,Q的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.4.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.【答案】(1)见解析;(2)1010. 【解析】分析:(1)要证DE 是⊙O 的切线,必须证ED ⊥OD ,即∠EDB+∠ODB=90°(2)要证AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又BD ⊥AC ,所以△ABC 为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可. 详解:(1)证明:连接O 、D 与B 、D 两点, ∵△BDC 是Rt △,且E 为BC 中点, ∴∠EDB=∠EBD .(2分) 又∵OD=OB 且∠EBD+∠DBO=90°, ∴∠EDB+∠ODB=90°. ∴DE 是⊙O 的切线. (2)解:∵∠EDO=∠B=90°,若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点, 又∵BD ⊥AC ,∴△ABC 为等腰直角三角形. ∴∠C AB=45°. 过E 作EH ⊥AC 于H , 设BC=2k ,则EH=2k ,AE=5k , ∴sin ∠CAE=10EH AE.点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.5.如图,A 是以BC 为直径的⊙O 上一点,AD ⊥BC 于点D ,过点B 作⊙O 的切线,与CA 的延长线相交于点E ,G 是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P . (1)求证:BF =EF :(2)求证:PA 是⊙O 的切线;(3)若FG=BF,且⊙O的半径长为32,求BD的长度.【答案】(1)证明见解析;(2) 证明见解析;(3)22【解析】分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.∴△BFC∽△DGC,△FEC∽△GAC,∴BFDG=CFCG,EFAG=CFCG,∴BFDG=EFAG,∵G是AD的中点,∴DG=AG,∴BF=EF;(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°,由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,又∵OA=OB,∴∠ABO =∠BAO , ∵BE 是圆O 的切线, ∴∠EBO =90°, ∴∠FBA +∠ABO =90°, ∴∠FAB +∠BAO =90°, 即∠FAO =90°, ∴PA ⊥OA , ∴PA 是圆O 的切线;(3)过点F 作FH ⊥AD 于点H ,∵BD ⊥AD ,FH ⊥AD , ∴FH ∥BC ,由(2),知∠FBA =∠BAF , ∴BF =AF . ∵BF =FG , ∴AF =FG ,∴△AFG 是等腰三角形. ∵FH ⊥AD , ∴AH =GH , ∵DG =AG , ∴DG =2HG . 即12HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°, ∴四边形BDHF 是矩形, ∴BD =FH , ∵FH ∥BC ∴△HFG ∽△DCG , ∴12FH HG CD DG ==, 即12BD CD =,∴23 2.15,3∵O的半径长为32,∴BC=62,∴BD=1BC=22.3点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.6.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作AC、CB、BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l为对称轴的交点.(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为;(2)如图3,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B与⊙O的圆心O重合,⊙O的半径为3,将它沿⊙O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为(请用含n的式子表示)【答案】(1)3π;(2)27π;(3)3.【解析】试题分析:(1)先求出AC的弧长,继而得出莱洛三角形的周长为3π,即可得出结论;(2)先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O重合旋转一周点I的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC的边长为3,∴∠ABC=∠ACB=∠BAC=60°,AC BC AB ==,∴AC BC l l ==AB l =603180π⨯=π,∴线段MN 的长为AC BC AB l l l ++=3π.故答案为3π;(2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,由题意知,AB ⊥DE ,AG ⊥AF ,∴∠BAG =120°,∴S 扇形BAG =21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S 矩形AGHF +S 扇形BAG )=3(6π+3π)=27π;(3)如图2,连接BI 并延长交AC 于D .∵I 是△ABC 的重心也是内心,∴∠DAI =30°,AD =12AC =32,∴OI =AI =3230AD cos DAI cos ∠=︒=3,∴当它第1次回到起始位置时,点I所经过的路径是以O 为圆心,OI 为半径的圆周,∴当它第n 次回到起始位置时,点I 所经过的路径长为n •2π•3=23n π.故答案为23n π.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出AC 的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I 第一次回到起点时,I 的路径,是一道中等难度的题目.7.在O 中,AB 为直径,C 为O 上一点.(Ⅰ)如图①,过点C 作O 的切线,与AB 的延长线相交于点P ,若28CAB ∠=︒,求P ∠的大小;(Ⅱ)如图②,D 为弧AC 的中点,连接OD 交AC 于点E ,连接DC 并延长,与AB 的延长线相交于点P ,若12CAB ∠=︒,求P ∠的大小. 【答案】(1)∠P =34°;(2)∠P =27°【解析】【分析】(1)首先连接OC,由OA=OC,即可求得∠A的度数,然后由圆周角定理,求得∠POC的度数,继而求得答案;(2)因为D为弧AC的中点,OD为半径,所以OD⊥AC,继而求得答案.【详解】(1)连接OC,∵OA=OC,∴∠A=∠OCA=28°,∴∠POC=56°,∵CP是⊙O的切线,∴∠OCP=90°,∴∠P=34°;(2)∵D为弧AC的中点,OD为半径,∴OD⊥AC,∵∠CAB=12°,∴∠AOE=78°,∴∠DCA=39°,∵∠P=∠DCA﹣∠CAB,∴∠P=27°.【点睛】本题考查切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.8.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠C=60°,AC=12,求BD的长.(3)若tan C=2,AE=8,求BF的长.【答案】(1)见解析;(2) 2π;(3)103. 【解析】 分析:(1)连接OD ,根据等腰三角形的性质:等边对等角,得∠ABC=∠C ,∠ABC=∠ODB ,从而得到∠C=∠ODB ,根据同位角相等,两直线平行,得到OD ∥AC ,从而得证OD ⊥EF ,即 EF 是⊙O 的切线;(2) 根据中点的性质,由AB=AC=12 ,求得OB=OD=12AB =6,进而根据等边三角形的判定得到△OBD 是等边三角形,即∠BOD=600,从而根据弧长公式七届即可; (3)连接AD ,根据直角三角形的性质,由在Rt △DEC 中, tan 2DE C CE == 设CE=x,则DE=2x ,然后由Rt △ADE 中, tan 2AE ADE DE ∠== ,求得DE 、CE 的长,然后根据相似三角形的判定与性质求解即可.详解:(1)连接OD ∵AB=AC ∴∠ABC=∠C∵OD=OB ∴∠ABC=∠ODB∴∠C=∠ODB ∴OD ∥AC又∵DE ⊥AC ∴OD ⊥DE ,即OD ⊥EF∴EF 是⊙O 的切线(2) ∵AB=AC=12 ∴OB=OD=12AB =6 由(1)得:∠C=∠ODB=600∴△OBD 是等边三角形 ∴∠BOD=600∴BD =6062180ππ⨯= 即BD 的长2π (3)连接AD ∵DE ⊥AC ∠DEC=∠DEA=900在Rt △DEC 中, tan 2DE C CE == 设CE=x,则DE=2x ∵AB 是直径 ∴∠ADB=∠ADC=900 ∴∠ADE+∠CDE=900 在Rt △DEC 中,∠C+∠CDE=900∴∠C=∠ADE 在Rt △ADE 中, tan 2AE ADE DE ∠== ∵ AE=8,∴DE=4 则CE=2∴AC=AE+CE=10 即直径AB=AC=10 则OD=OB=5∵OD//AE ∴△ODF ∽△AEF∴ OF OD AF AE = 即:55108BF BF +=+ 解得:BF=103 即BF 的长为103. 点睛:此题考查了切线的性质与判定、圆周角定理、等腰三角形的性质、直角三角形以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9.如图,已知AB 是⊙O 的直径,BC 是弦,弦BD 平分∠ABC 交AC 于F ,弦DE ⊥AB 于H ,交AC 于G .①求证:AG =GD ;②当∠ABC 满足什么条件时,△DFG 是等边三角形?③若AB =10,sin ∠ABD =35,求BC 的长.【答案】(1)证明见解析;(2)当∠ABC =60°时,△DFG 是等边三角形.理由见解析;(3)BC 的长为145. 【解析】【分析】(1)首先连接AD ,由DE ⊥AB ,AB 是O 的直径,根据垂径定理,即可得到AD AE =,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE =∠ABD ,又由弦BD 平分∠ABC ,可得∠DBC =∠ABD ,根据等角对等边的性质,即可证得AG=GD ;(2)当∠ABC=60°时,△DFG 是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;(3)利用三角函数先求出tan ∠ABD 34=,cos ∠ABD =45,再求出DF 、BF ,然后即可求出BC.【详解】(1)证明:连接AD ,∵DE ⊥AB ,AB 是⊙O 的直径,∴AD AE =,∴∠ADE =∠ABD ,∵弦BD 平分∠ABC ,∴∠DBC =∠ABD ,∵∠DBC =∠DAC ,∴∠ADE =∠DAC ,∴AG =GD ; (2)解:当∠ABC =60°时,△DFG 是等边三角形.理由:∵弦BD 平分∠ABC ,∴∠DBC =∠ABD =30°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB =90°﹣∠ABC =30°,∴∠DFG =∠FAB+∠DBA =60°,∵DE ⊥AB ,∴∠DGF =∠AGH =90°﹣∠CAB =60°,∴△DGF 是等边三角形;(3)解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵∠DAC =∠DBC =∠ABD ,∵AB =10,sin ∠ABD =35, ∴在Rt △ABD 中,AD =AB•sin ∠ABD =6,∴BD8,∴tan ∠ABD =34AD BD =,cos ∠ABD =4=5BD AB , 在Rt △ADF 中,DF =AD•tan ∠DAF =AD•tan ∠ABD =6×34=92, ∴BF =BD ﹣DF =8﹣92=72, ∴在Rt △BCF 中,BC =BF•cos ∠DBC =BF•cos ∠ABD =72×45=145.∴BC的长为:145.【点睛】此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.10.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=43,过A,D两点作⊙O,交AB于点E,(1)求弦AD的长;(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON 等于多少时,三点D、E、M组成的三角形是等腰三角形?(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.【答案】(1)23(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形(3)不变,理由见解析【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后根据含30°的直角三角形三边的关系得DN=123ON=33DN=1;当MD=ME,DE为底边,作DH⊥AE,由于3∠DAE=30°,得到3,∠DEA=60°,DE=2,于是OE=DE=2,OH=1,又∠M=∠DAE=30°,MD=ME ,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到∠DNO=45°,根据等腰直角三角形的性质得到;(3)连AP 、AQ ,DP ⊥AB ,得AC ∥DP ,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB ,∠AQC=∠P ,则∠PAQ=60°,∠CAQ=∠PAD ,易证得△AQC ≌△APD ,得到DP=CQ ,则DP-DQ=CQ-DQ=CD ,而△ADC 为等边三角形,DP-DQ 的值.【详解】解:(1)∵∠BAC =90°,点D 是BC 中点,BC =∴AD =12BC = (2)连DE 、ME ,如图,∵DM >DE ,当ED 和EM 为等腰三角形EDM 的两腰,∴OE ⊥DM ,又∵AD =AC ,∴△ADC 为等边三角形,∴∠CAD =60°,∴∠DAO =30°,∴∠DON =60°,在Rt △ADN 中,DN =12AD ,在Rt △ODN 中,ON =3DN =1, ∴当ON 等于1时,三点D 、E 、M 组成的三角形是等腰三角形;当MD =ME ,DE 为底边,如图3,作DH ⊥AE ,∵AD =∠DAE =30°,∴DH ∠DEA =60°,DE =2,∴△ODE 为等边三角形,∴OE =DE =2,OH =1,∵∠M =∠DAE =30°,而MD =ME ,∴∠MDE =75°,∴∠ADM =90°﹣75°=15°,∴∠DNO =45°,∴△NDH 为等腰直角三角形,∴NH=DH∴ON ﹣1;综上所述,当ON 等于11时,三点D 、E 、M 组成的三角形是等腰三角形;(3)当⊙O变动时DP﹣DQ的值不变,DP﹣DQ=23.理由如下:连AP、AQ,如图2,∵∠C=∠CAD=60°,而DP⊥AB,∴AC∥DP,∴∠PDB=∠C=60°,又∵∠PAQ=∠PDB,∴∠PAQ=60°,∴∠CAQ=∠PAD,∵AC=AD,∠AQC=∠P,∴△AQC≌△APD,∴DP=CQ,∴DP﹣DQ=CQ﹣DQ=CD=23.【点睛】本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.。

中考数学圆的综合(大题培优 易错 难题)含详细答案

中考数学圆的综合(大题培优 易错 难题)含详细答案

中考数学圆的综合(大题培优易错难题)含详细答案一、圆的综合1.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.2.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;(2)当⊙M与x轴相切时,求点Q的坐标;(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.【答案】(1)见解析;(2) Q的坐标为(32,9);(3)63 8.【解析】(1)解:连接AM、BM,∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= 12 PQ,∴A、B、P、Q四点在以M为圆心的同一个圆上。

中考数学复习《圆的证明与计算》经典题型及测试题(含答案)

中考数学复习《圆的证明与计算》经典题型及测试题(含答案)

中考数学复习《圆的证明与计算》经典题型及测试题(含答案)阅读与理解圆的相关知识的考查是中考数学中的一个重要内容,圆作为一个载体,常与三角形、四边形结合,考查切线的性质及判定、相似三角形的性质与判定、解直角三角形、求阴影面积等.解题时要先分析题干中的条件,然后从图象中挖掘隐含条件,最后再解题.类型一切线的判定判定一条直线是圆的切线,首先看圆的半径是否过直线与圆的交点,有半径则证垂直;没有半径,则连接圆心与切点,构造半径证垂直.例1 (2016·黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.【分析】(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;(2)连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得⊥OCA=⊥CAD,即可得到OC⊥AD,由于AD⊥CD,那么OC⊥CD,由此得证.【自主解答】(1)解:⊥AB是⊥O直径,C在⊥O上,⊥⊥ACB=90°,又⊥BC=3,AB=5,⊥由勾股定理得AC=4;(2)证明:⊥AC是⊥DAB的角平分线,⊥⊥DAC=⊥BAC,又⊥AD⊥DC,⊥⊥ADC=⊥ACB=90°,⊥⊥ADC⊥⊥ACB,⊥⊥DCA=⊥CBA,又⊥OA=OC,⊥⊥OAC=⊥OCA,⊥⊥OAC+⊥OBC=90°,⊥⊥OCA+⊥ACD=⊥OCD=90°,⊥DC是⊥O的切线.变式训练1.(2017·白银) 如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.类型二切线的性质已知某条直线是圆的切线,当圆心与切点有线段连接时,直接利用切线的性质:圆的切线垂直于过切点的半径;当圆心与切点没有线段相连时,则作辅助线连接圆心与切点,再利用切线的性质解题.例2 (2016·资阳) 如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连接BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=1时,求MN的长.【分析】(1)连接OD,由切线的性质可得∠CDB+∠ODB=90°,由AB是直径,可得∠ADB=90°,进而可得∠A+∠ABD=90°,进而求得∠A=∠BDC;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,再根据勾股定理求得MN的长.【自主解答】(1)如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠BDC+∠ODB=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∴∠A=∠BDC.(2)∵CM平分∠ACD,∴∠DCM=∠ACM.∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM.即∠DMN=∠DNM.∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN=变式训练2.(2017·长沙)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2=2﹣π∴S阴影类型三圆与相似的综合圆与相似的综合主要体现在圆与相似三角形的综合,一般结合切线的判定与性质综合考查,求线段长或半径.一般的解题思路是利用切线的性质构造角相等,进而构造相似三角形,利用相似三角形对应边成比例求出所求线段或半径.例3 (2017·兰州) 如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为5,CE=2,求EF的长.【分析】(1)由BC是⊙O的直径,得到∠BAF+∠FAC=90°,等量代换得到∠D+∠AOD=90°,于是得到结论;(2)连接BF,根据相似三角形的判定和性质即可得到结论.【自主解答】解:(1)∵BC是⊙O的直径,∴∠BAF+∠FAC=90°,∵∠D=∠BAF,∠AOD=∠FAC,∴∠D+∠AOD=90°,∴∠OAD=90°,∴AD是⊙O的切线;(2)连接BF,∴∠FAC=∠AOD,∴△ACE∽△OCA,∴,∴,∴AC=AE=,∵∠CAE=∠CBF,∴△ACE∽△BFE,∴,∴=,∴EF=.变式训练3.(2016·丹东)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.(1)证明:如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°. ∴∠BDC=∠ADO.∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A.(2)解:∵CE⊥AE,∴∠E=90°,∴DB∥EC,∴∠DCE=∠BDC.∵∠BDC=∠A,∴∠A=∠DCE.∵∠E=∠E,∴△AEC∽△CED,∴∴CE2=DE·AE,即16=2(2+AD),∴AD=6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学中考专项 圆 一、选择题 1.(市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( )(A ) 15 (B ) 30 (C ) 45 (D ) 602.(市西城区)如果圆柱的高为20厘米,底面半径是高的41,那么这个圆柱的侧面积是 ( )(A )100π平方厘米 (B )200π平方厘米(C )500π平方厘米 (D )200平方厘米3.(市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( )(A )225寸 (B )13寸 (C )25寸 (D )26寸 4.(市区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( )(A )6 (B )25 (C )210 (D )2145.(市区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于 ( )(A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米6.(市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘米和17厘米,则这两圆的圆心距为 ( )(A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米7.(市)如图,⊙O 为△ABC 的切圆,∠C =90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )(A )54 (B )45 (C )43 (D )65 8.(市)一居民小区有一正多边形的活动场.为迎接“AAPP ”会议在市的召开,小区管委会决定在这个多边形的每个顶点处修建一个半径为2米的扇形花台,花台都以多边形的顶点为圆心,比多边形的角为圆心角,花台占地面积共为12π平方米.若每个花台的造价为400元,则建造这些花台共需资金 ( )(A )2400元 (B )2800元 (C )3200元 (D )3600元9.(省)如图,AB 是⊙O 直径,CD 是弦.若AB =10厘米,CD =8厘米,那么A 、B 两点到直线CD 的距离之和为 ( )(A )12厘米 (B )10厘米 (C )8厘米 (D )6厘米10.(省)某工件形状如图所示,圆弧BC 的度数为60,AB =6厘米,点B 到点C 的距离等于AB ,∠BAC = 30,则工件的面积等于 ( )(A )4π (B )6π (C )8π (D )10π11.(市)如图,PA 切⊙O 于点A ,PBC 是⊙O 的割线且过圆心,PA =4,PB=2,则⊙O 的半径等于 ( )(A )3 (B )4 (C )6 (D )812.(市)已知⊙O 的半径为35厘米,⊙O '的半径为5厘米.⊙O 与⊙O '相交于点D 、E .若两圆的公共弦DE 的长是6厘米(圆心O 、O '在公共弦DE 的两侧),则两圆的圆心距O O '的长为 ( )(A )2厘米 (B )10厘米 (C )2厘米或10厘米 (D )4厘米13.(省)如图,两个等圆⊙O 和⊙O '的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( )(A ) 30 (B ) 45 (C ) 60 (D )9014.(省)如图,AB 是⊙O 的直径,∠C = 30,则∠ABD = ( )(A ) 30 (B ) 40 (C ) 50 (D ) 6015.(省)弧长为6π的弧所对的圆心角为60,则弧所在的圆的半径为( )(A )6 (B )62 (C )12 (D )1816.(省)如图,在△ABC 中,∠BAC = 90,AB =AC =2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为 ( )(A )1 (B )2 (C )1+4π (D )2-4π 17.(回族自治区)已知圆的接正六边形的周长为18,那么圆的面积为 ( )(A )18π (B )9π (C )6π (D )3π18.(省)如图,点P 是半径为5的⊙O 一点,且OP =3,在过点P 的所有弦中,长度为整数的弦一共有 ( )(A )2条 (B )3条 (C )4条 (D )5条19.(市)如图,正六边形ABCDEF 的边长的上a ,分别以C 、F 为圆心,a为半径画弧,则图中阴影部分的面积是 ( )(A )261a π (B )231a π (C )232a π (D )234a π20.(市)过⊙O 一点M 的最长的弦长为6厘米,最短的弦长为4厘米,则OM 的长为 ( )(A )3厘米 (B )5厘米 (C )2厘米 (D )5厘米21.(省)已知圆锥的底面半径是3,高是4,则这个圆锥侧面展开图的面积是 ( )(A )12π (B )15π (C )30π (D )24π22.(安微省)已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交P .PC =5,则⊙O 的半径为 ( )(A )335 (B )635 (C )10 (D )5 23.(市)如图:PA 切⊙O 于点A ,PBC 是⊙O 的一条割线,有PA =32,PB =BC ,那么BC 的长是 ( )(A )3 (B )32 (C )3 (D )3224.(省)如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是 ( )(A )π (B )1.5π (C )2π (D )2.5π25.(省)正六边形的半径为2厘米,那么它的周长为 ( )(A )6厘米 (B )12厘米 (C )24厘米 (D )122厘米26.(省)一个圆柱形油桶的底面直径为0.6米,高为1米,那么这个油桶的侧面积为 ( )(A )0.09π平方米 (B )0.3π平方米 (C )0.6平方米 (D )0.6π平方米27.(市)一个形如圆锥的冰淇淋纸筒,其底面直径为6厘米,母线长为5厘米,围成这样的冰淇淋纸筒所需纸片的面积是 ( )(A )66π平方厘米 (B )30π平方厘米 (C )28π平方厘米 (D )15π平方厘米28.(乌鲁木齐)在半径为2的⊙O 中,圆心O 到弦AB 的距离为1,则弦AB 所对的圆心角的度数可以是 ( )(A ) 60 (B ) 90 (C ) 120 (D ) 15029.(乌鲁木齐)将一长80厘米、宽40厘米的矩形铁皮卷成一个高为40厘米的圆柱形水桶的侧面,(接口损耗不计),则桶底的面积为 ( )(A )π1600平方厘米 (B )1600π平方厘米(C )π6400平方厘米 (D )6400π平方厘米 30.(市)如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD =10厘米,AP ∶PB =1∶5,那么⊙O 的半径是 ( )(A )6厘米 (B )53厘米 (C )8厘米 (D )35厘米31.(市)在Rt △ABC 中,已知AB =6,AC =8,∠A = 90.如果把Rt △ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把Rt △ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( )(A )2∶3 (B )3∶4 (C )4∶9 (D )5∶1232.(市)如图,⊙O 的弦AB =8厘米,弦CD 平分AB 于点E .若CE =2厘米.ED 长为 ( )(A )8厘米 (B )6厘米 (C )4厘米 (D )2厘米33.(市)如图,四边形ABCD 接于⊙O ,若∠BOD = 160,则∠BCD =( )(A ) 160 (B ) 100 (C ) 80 (D ) 2034.(市)如图,正方形ABCD 接于⊙O ,E 为DC 的中点,直线BE 交⊙O于点F .若⊙O 的半径为2,则BF 的长为 ( )(A )23 (B )22 (C )556 (D )554 35.(市)如图,AB 是⊙O 的直径,∠ACD = 15,则∠BAD 的度数为 ( )(A ) 75 (B ) 72 (C ) 70 (D )6536.(市)已知:点P 直线l 的距离为3,以点P 为圆心,r 为半径画圆,如果圆上有且只有两点到直线l 的距离均为2,则半径r 的取值围是 ( )(A )r >1 (B )r >2 (C )2<r <3 (D )1<r <537.(市)边长为a 的正方边形的边心距为 ( )(A )a (B )23a (C )3a (D )2a 38.(市)如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥的母线长为4,高线长为3,则圆柱的侧面积为 ( )(A )30π (B )76π (C )20π (D )74π39.(市)如图,扇形的半径OA =20厘米,∠AOB = 135,用它做成一个圆锥的侧面,则此圆锥底面的半径为 ( )(A )3.75厘米 (B )7.5厘米 (C )15厘米 (D )30厘米40.(市)如图,正六边形ABCDEF 中.阴影部分面积为123平方厘米,则此正六边形的边长为 ( )(A )2厘米 (B )4厘米 (C )6厘米 (D )8厘米41.(市)已知扇形的弧长是2π厘米,半径为12厘米,则这个扇形的圆心角是 ( )(A ) 60 (B ) 45 (C ) 30 (D ) 2042.(市)圆锥的高线长是厘米,底面直径为12厘米,则这个圆锥的侧面积是 ( )(A )48π厘米 (B )24π13平方厘米(C )48π13平方厘米 (D )60π平方厘米43.(市)如图,AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于 ( )(A )1 (B )2 (C )23 (D )26 44.(市)已知圆柱的母线长为5厘米,表面积为28π平方厘米,则这个圆柱的底面半径是 ( )(A )5厘米 (B )4厘米 (C )2厘米 (D )3厘米45.(市)半径相等的圆接正三角形、正方形、正六边形的边长之比为 ( )(A )1∶2∶3 (B )3∶2∶1(C )3∶2∶1 (D )1∶2∶346.(省)如图,若四边形ABCD 是半径为1和⊙O 的接正方形,则图中四个弓形(即四个阴影部分)的面积和为 ( )(A )(2π-2)厘米 (B )(2π-1)厘米(C )(π-2)厘米 (D )(π-1)厘米47.(市)如图,已知圆心角∠BOC = 100,则圆周角∠BAC 的度数是 ( )(A ) 50 (B ) 100 (C ) 130 (D ) 20048.(市)半径为5厘米的圆中,有一条长为6厘米的弦,则圆心到此弦的距离为 ( )(A )3厘米 (B )4厘米 (C )5厘米 (D )6厘米49.已知:Rt △ABC 中,∠C = 90,O 为斜边AB 上的一点,以O 为圆心的圆与边AC 、BC 分别相切于点E 、F ,若AC =1,BC =3,则⊙O 的半径为 ( )(A )21 (B )32 (C )43 (D )54 50.(市)已知:如图,E 是相交两圆⊙M 和⊙O 的一个交点,且ME ⊥NE ,AB 为外公切线,切点分别为A 、B ,连结AE 、BE .则∠AEB 的度数为 ( )(A )145° (B )140° (C )135° (D )130°二、填空题1.(市东城区)如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧上的一点,已知∠BAC = 80,那么∠BDC =__________度.2.(市东城区)在Rt △ABC 中,∠C = 90,A B=3,BC =1,以AC所在直线为轴旋转一周,所得圆锥的侧面展开图的面积是__________.3.(市海淀区)如果圆锥母线长为6厘米,那么这个圆锥的侧面积是_______平方厘米4.(市海淀区)一种圆状包装的保鲜膜,如图所示,其规格为“20厘米×60米”,经测量这筒保鲜膜的径1ϕ、外径2ϕ的长分别为3.2厘米、4.0厘米,则该种保鲜膜的厚度约为_________厘米(π取3.14,结果保留两位有效数字).5.(市)两个点O 为圆心的同心圆中,大圆的弦AB 与小圆相切,如果AB 的长为24,大圆的半径OA 为13,那么小圆的半径为___________.6.(市)已知⊙O 中,两弦AB 与CD 相交于点E ,若E 为AB 的中点,CE ∶ED =1∶4,AB =4,则CD 的长等于___________.7.(市)如图,AB 是⊙O 的直径,四边形ABCD 接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为___________.8.(市)如图,P 是⊙O 的直径AB 延长线上一点,PC 切⊙O 于点C ,PC =6,BC ∶AC =1∶2,则AB 的长为___________.9.(市)如图,四边形ABCD 接于⊙O ,AD ∥BC ,=,若AD =4,BC =6,则四边形ABCD 的面积为__________.10.(省)若一个圆柱的侧面积等于两底面积的和,则它的高h 与底面半径r 的大小关系是__________.11.(市)要用圆形铁片截出边长为4厘米的正方形铁片,则选用的圆形铁片的直径最小要___________厘米.12.(市)圆两条弦AB 和CD 相交于P 点,AB 长为7,AB 把CD 分成两部分的线段长分别为2和6,那么=__________.13.(市)△ABC 是半径为2厘米的圆接三角形,若BC =23厘米,则∠A 的度数为________.14.(市)如图,已知OA 、OB 是⊙O 的半径,且OA =5,∠AOB =15 ,AC ⊥OB 于C ,则图中阴影部分的面积(结果保留π)S =_________.15.(市)如图,圆接正六边形ABCDEF 中,AC 、BF 交于点M .则ABM S △∶AFM S △=_________.16.(市)两圆外离,圆心距为25厘米,两圆周长分别为15π厘米和10π厘米.则其公切线和连心线所夹的锐角等于__________度.17.(市)将两边长分别为4厘米和6厘米的矩形以其一边所在直线为轴旋转一周,所得圆柱体的表面积为_________平方厘米.18.(省)如图,在⊙O 的接四边形ABCD 中,∠BCD =130 ,则∠BOD 的度数是________.19.(省)已知⊙O 的半径为4厘米,以O 为圆心的小圆与⊙O 组成的圆环的面积等于小圆的面积,则这个小圆的半径是______厘米.20.(省)如图,⊙O 1的半径O 1A 是⊙O 2的直径,C 是⊙O 1上的一点,O 1C交⊙O 2于点B .若⊙O 1的半径等于5厘米,的长等于⊙O 1周长的101,则的长是_________.21.(省)正三角形的切圆与外接圆面积之比为_________.22.(省)如图,AB =8,AC =6,以AC 和BC 为直径作半圆,两圆的公切线MN 与AB 的延长线交于D ,则BD 的长为_________.23.(回族自治区)圆锥的母线长为5厘米,高为3厘米,在它的侧面展开图中,扇形的圆心角是_________度.24.(市)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足是G ,F 是CG 的中点,延长AF 交⊙O 于E ,CF =2,AF =3,则EF 的长是_________.25.(市)在⊙O 中,直径AB =4厘米,弦CD ⊥AB 于E ,OE =3,则弦CD 的长为__________厘米.26.(市)若圆锥底面的直径为厘米,线线长为5厘米,则它的侧面积为__________平方厘米(结果保留π).27.(省)如图,AB 为⊙O 的直径,P 点在AB 的延长线上,PM切⊙O 于M 点.若OA =a ,PM =3a ,那么△PMB 的周长的__________.28.(市)在半径9厘米的圆中, 60的圆心角所对的弧长为__________厘米.29.(省)扇形的圆心角为120 ,弧长为6π厘米,那么这个扇形的面积为_________.30.(市)如果圆O 的直径为10厘米,弦AB 的长为6厘米,那么弦AB 的弦心距等于________厘米.31.(市)某种商品的商标图案如图所求(阴影部分),已知菱形ABCD 的边长为4,∠A = 60,是以A 为圆心,AB 长为半径的弧,是以B 为圆心,BC 长为半径的弧,则该商标图案的面积为_________. 32.(省)已知,一个直角三角形的两条直角边的长分别为3厘米、4厘米、以它的直角边所在直角线为轴旋转一周,所得圆锥的表面积是__________.33.(乌鲁木齐)正六边形的边心距与半径的比值为_________.34.(乌鲁木齐)如图,已知扇形AOB 的半径为12,OA ⊥OB ,C 为OA 上一点,以AC 为直径的半圆1O 和以OB 为直径的半圆2O 相切,则半圆1O 的半径为__________.35.(市)如图,PA 、PB 与⊙O 分别相切于点A 、点B ,AC 是⊙O 的直径,PC 交⊙O 于点D .已知∠APB =60,AC =2,那么CD 的长为________.36.(市)底面半径为2厘米,高为3厘米的圆柱的体积为_________立方厘米(结果保留π).37.(市)边长为2厘米的正六边形的外接圆半径是________厘米,切圆半径是________厘米(结果保留根号).38.(市)如图,PT 是⊙O 的切线,T 为切点,PB 是⊙O 的割线交⊙O 于A 、B 两点,交弦CD 于点M ,已知:CM =10,MD =2,PA =MB =4,则PT 的长等于__________.39.(市)如图,扇形OAB 中,∠AOB =90,半径OA =1,C 是线段AB 的中点,CD ∥OA ,交于点D ,则CD =________.40.(市)已知扇形的圆心角为150 ,它所对的弧长为20π厘米,则扇形的半径是________厘米,扇形的面积是__________平方厘米.41.(市)如图,AB 是⊙O 直径,CE 切⊙O 于点C ,CD ⊥AB ,D 为垂足,AB =12厘米,∠B =30 ,则∠ECB =__________ ;CD =_________厘米.42.(市)如图,DE 是⊙O 直径,弦AB ⊥DE ,垂足为C ,若AB =6,CE =1,则CD =________,OC =_________.43.(市)如果把人的头顶和脚底分别看作一个点,把地球赤道作一个圆,那么身高压2米的汤姆沿着地球赤道环道环行一周,他的头顶比脚底多行________米.44.(省)已知:⊙O 的半径为1,M 为⊙O 外的一点,MA 切⊙O 于点A ,MA =1.若AB 是⊙O 的弦,且AB =2,则MB 的长度为_________.45.(市)如果圆的半径为4厘米,那么它的周长为__________厘米.三、初三数学关于圆方面的习题1.(市)已知:如图,△ABC 接于⊙O ,过点B 作⊙O 的切线,交CA 的延长线于点E ,∠EBC =2∠C . ①求证:AB =AC ; ②若tan ∠ABE =21,(ⅰ)求BC AB 的值;(ⅱ)求当AC =2时,AE 的长.2.(市)如图,PA 为⊙O 的切线,A 为切点,⊙O 的割线PBC 过点O 与⊙O 分别交于B 、C ,PA =8cm ,PB =4cm ,求⊙O 的半径.3.(省)已知:如图,BC 是⊙O 的直径,AC 切⊙O 于点C ,AB 交⊙O 于点D ,若AD ︰DB =2︰3,AC =10,求sin B 的值.4.(市海淀区)如图,PC 为⊙O 的切线,C 为切点,PAB 是过O 的割线,CD ⊥AB 于点D ,若tan B =21,PC =10cm ,求三角形BCD 的面积.5.(回族自治区)如图,在两个半圆中,大圆的弦MN 与小圆相切,D 为切点,且MN ∥AB ,MN =a ,ON 、CD 分别为两圆的半径,求阴影部分的面积.6.(省)已知,如图,以△ABC 的边AB 作直径的⊙O ,分别并AC 、BC 于点D 、E ,弦FG ∥AB ,S △CDE ︰S △ABC =1︰4,DE =5cm ,FG =8cm ,求梯形AFGB 的面积.7.(市)如图所示:PA 为⊙O 的切线,A 为切点,PBC 是过点O 的割线,PA =10,PB =5,求:(1)⊙O 的面积(注:用含π的式子表示); (2)cos ∠BAP 的值.8(2011模拟26)如图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,点P 是圆外一点,PA 切⊙O 于点A ,且PA=PB . (1)求证:PB 是⊙O 的切线;(2)已知PA=3,BC=1,求⊙O 的半径.9(2011年仙居)(10分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,CD AC =,0120=∠ACD ,(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.10、(2011年五模)如图,AB 为⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线交AB 的延长线于点D ,已知∠D =30°.⑴求∠A 的度数;⑵若点F 在⊙O 上,CF ⊥AB ,垂足为E ,CF =34, 求图中阴影部分的面积.ABCOE CB OF参考答案 一、选择题1.B 2.B 3.D 4.D 5.C 6.C 7.A 8.C 9.D 10.B 11.A 12.B 13.C 14.D 15.D 16.A 17.B 18.C 19.C 20.B 21.C 22.A 23.A 24.B 25.B 26.D 27.D 28.C 29.A 30.B 31.A 32.A 33.B 34.C 35.A 36.D 37.B 38.B 39.B 40.B 41.C 42.D 43.A 44.C 45.B 46.C 47.A 48.B 49.C 50.C二、填空题1.50 2.2π 3.18π 4.4105.7-⨯ 5.5 6.5 7.30° 8.9 9.25 10.h =r 11.4212.3或4 13.60°或120° 14.8252425-π 15.1:2 16.30 17.80π或120π 18.100° 19.22 20.π 21.1:4 22.1 23.288 24.4 25.2 26.15π 27.()a 23+ 28.3π 29.27π平方厘米 30.4 31.34 32.24π平方厘米或36π平方厘米 33.2334.4 35.774 36.12π 37.2,3 38.132 39.213- 40.24,240π 41.60°,33 42.9,4 43.4π 44.1或5 45.8π 三、解答题:1.(1)∵ BE 切⊙O 于点B ,∴ ∠ABE =∠C . ∵ ∠EBC =2∠C ,即 ∠ABE +∠ABC =2∠C , ∴ ∠C +∠ABC =2∠C ,∴ ∠ABC =∠C ,∴ AB =AC . (2)①连结AO ,交BC 于点F , ∵ AB =AC ,∴=,∴ AO ⊥BC 且BF =FC .在Rt △ABF 中,BFAF=tan ∠ABF , 又 tan ∠ABF =tan C =tan ∠ABE =21,∴ BF AF =21,∴ AF =21BF .∴ AB =22BF AF +=2221BF BF +⎪⎭⎫ ⎝⎛=25BF .∴452==BF AB BC AB . ②在△EBA 与△ECB 中,∵ ∠E =∠E ,∠EBA =∠ECB ,∴ △EBA ∽△ECB .∴ ⎪⎩⎪⎨⎧⋅==ECEA BE BC ABEB EA 2,解之,得516EA 2=EA ·(EA +AC ),又EA ≠0,∴511EA =AC ,EA =115×2=1110. 2.设⊙的半径为r ,由切割线定理,得PA 2=PB ·PC , ∴ 82=4(4+2r ),解得r =6(cm ). 即⊙O 的半径为6cm .3.由已知AD ︰DB =2︰3,可设AD =2k ,DB =3k (k >0). ∵ AC 切⊙O 于点C ,线段ADB 为⊙O 的割线, ∴ AC 2=AD ·AB ,∵ AB =AD +DB =2k +3k =5k , ∴ 102=2k ×5k ,∴ k 2=10, ∵ k >0,∴ k =10.∴ AB =5k =510.∵ AC 切⊙O 于C ,BC 为⊙O 的直径, ∴ AC ⊥BC . 在Rt △ACB 中,sin B =51010510==AB AC . 4.解法一:连结AC .∵ AB 是⊙O 的直径,点C 在⊙O 上, ∴ ∠ACB =90°. CD ⊥AB 于点D ,∴ ∠ADC =∠BDC =90°,∠2=90°-∠BAC =∠B .∵ tan B =21, ∴ tan ∠2=21.∴ CBACDB CD CD AD ===21. 设AD =x (x >0),CD =2x ,DB =4x ,AB =5x . ∵ PC 切⊙O 于点C ,点B 在⊙O 上,∴ ∠1=∠B . ∵ ∠P =∠P ,∴ △PAC ∽△PCB , ∴21==CB AC PC PA . ∵ PC =10,∴ PA =5,∵ PC 切⊙O 于点C ,PAB 是⊙O 的割线, ∵ PC 2=PA ·PB ,∴ 102=5(5+5 x ).解得x =3. ∴ AD =3,CD =6,DB =12. ∴ S △BCD =21CD ·DB =21×6×12=36. 即三角形BCD 的面积36cm 2.解法二:同解法一,由△PAC ∽△PCB ,得21==CB AC PC PA . ∵ PA =10,∴ PB =20. 由切割线定理,得PC 2=PA ·PB .∴ PA =201022-PB PC =5,∴ AB =PB -PA =15, ∵ AD +DB =x +4x =15,解得x =3, ∴ CD =2x =6,DB =4x =12. ∴ S △BCD =21CD ·DB =21×6×12=36. 即三角形BCD 的面积36cm 2.5.解:如图取MN 的中点E ,连结OE ,∴ OE ⊥MN ,EN =21MN =21a . 在四边形EOCD 中,∵ CO ⊥DE ,OE ⊥DE ,DE ∥CO , ∴ 四边形EOCD 为矩形. ∴ OE =CD ,在Rt △NOE 中,NO 2-OE 2=EN 2=22⎪⎭⎫⎝⎛a .∴ S 阴影=21π(NO 2-OE 2)=21π·22⎪⎭⎫⎝⎛a =28πa .6.解:∵ ∠CDE =∠CBA ,∠DCE =∠BCA ,∴ △CDE ∽△ABC .∴ 2⎪⎭⎫⎝⎛=∆∆AB DE S S ABC CDE∴AB DE =ABCCDE S S ∆∆=41=21,即215=AB ,解得 AB =10(cm ), 作OM ⊥FG ,垂足为M , 则FM =21FG =21×8=4(cm ), 连结OF , ∵ OA =21AB =21×10=5(cm ). ∴ OF =OA =5(cm ). 在Rt △OMF 中,由勾股定理,得OM =22FM OF -=2245-=3(cm ). ∴ 梯形AFGB 的面积=2FG AB +·OM =2810⨯×3=27(cm 2). 7.⎭⎬⎫的割线⊙是的切线⊙是O PBC O PA )1(⇒PA 2=PB ·PC ⇒PC =20⇒半径为7.5⇒圆面积为π4225(或56.25π)(平方单位).⎭⎬⎫∠=∠∠=∠P P BAP C )2(⇒△ACP ∽△BAP ⇒PB PA AB AC =⇒12=AB AC . 解法一:设AB =x ,AC =2x ,BC 为⊙O 的直径⇒∠CAB =90°,则 BC =5x . ∵ ∠BAP =∠C ,∴ cos ∠BAP =cos ∠C =55252==x x BC AC 解法二:设AB =x ,在Rt △ABC 中,AC 2+AB 2=BC 2, 即 x 2+(2x )2=152,解之得 x =35,∴ AC =65,∵ ∠BAP =∠C ,∴ ∴ cos ∠BAP =cos ∠C =5521556==BC AC。

相关文档
最新文档