平面向量测试题(含答案)一
平面向量专题练习(带答案详解)
平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。
3 B。
2 C。
1 D。
02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。
-4 B。
-1 C。
1 D。
43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。
1 B。
5/3 C。
3/5 D。
7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。
-4 B。
-2 C。
2 D。
45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。
$\frac{8}{3}$ B。
$\frac{26}{9}$ C。
$\frac{2}{3}$ D。
$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。
18 B。
平面向量经典试题(含答案)
平面向量1如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC ⋅= .〖解析〗在ABC ∆中,有余弦定理得2222cos1207BC AB AC AB AC ︒=+-⋅⋅=,7BC =,由正弦定理得3sin 7C ∠=,则2cos 7C ∠=,在ADC ∆中,由余弦定理求得222132cos 9AD DC AC DC AC C =+-⋅⋅∠=,则133AD =,由余弦定理得891coc ADC ∠=,1388||||cos ,7()3391AD BC AD BC AD BC ⋅=⋅=⨯⨯-=-. 〖答案〗83-.2.)已知AOB ∆,点P 在直线AB 上,且满足2()OP tPA tOB t R =+∈,则PA PB=( )A 、13B 、12C 、2D 、3〖解析〗如图所示,不妨设,OA a OB b ==;找共线,对于点P 在直线AB 上,有AP AB λ=;列方程,因此有AP AO OP =+2a tPA tb =-++,即12a tbAP t-+=+;而AB AO OB a b =+=-+,即有11212tt tλλ⎧=⎪⎪+⎨⎪=⎪+⎩,因此1t =时13λ=.即有PA PB =12.〖答案〗B .3.在△ABC 中,π6A ∠=,D 是BC 边上任意一点(D 与B 、C 不重合),且22||||AB AD BD DC =+⋅,则B ∠等于 ▲ .〖解析〗当点D 无限逼近点C 时,由条件知BD DC ⋅趋向于零,||||AB AC =,即△ABC 是等边三角形.〖答案〗5π12. 4.如右图,在ABC ∆中,04,30AB BC ABC ==∠=,AD 是边BC上的高,则AD AC ⋅的值等于( )ABDCAB O Pab (第2题图)A .0B .4C .8D .-4【答案】B【解析】因为04,30AB BC ABC ==∠=,AD 是边BC 上的高, AD=2BD =1()2442AD AC AD AB BC AD AB AD BC ⋅=⋅+=⋅+⋅=⨯⨯=,选择B 5 在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是( ) A .2AC AC AB =⋅ B . 2BC BA BC =⋅C .2AB AC CD =⋅ D . 22()()AC AB BA BC CD AB⋅⨯⋅=〖解析〗由于 ||||AC AB AC AB ⋅=⋅cso ∠CAB=|AC |2, 可排除A.||||BA BC BA BC ⋅=⋅cos ∠ABC=||AC 2, 可排除B , 而||||AC CD AC CD ⋅=⋅cos(π-∠ACD)=-||||AC CD ⋅cos ∠ACD<0 , |2|AB >0 , ∴|2|AB ≠AC CD ⋅,可知选C . 〖答案〗C . 6)函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于( ).(,2)6A π-- .(,2)6B π-.(,2)6C π-.(,2)6D π解析 直接用代入法检验比较简单.或者设(,)a x y ''=根据定义cos[2()]26y y x x π''-=-+-,根据y 是奇函数,对应求出x ',y '答案 B7.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,且AC AE AF λμ=+,其中,R λμ∈,则+λμ= _________. 答案: 4/3 解析:设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+= 8在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 答案 B9.在△ABC 中,=++===n m AC n AB m AP PR CP RB AR 则若,,2,2 ( ) A .32 B .97 C .98 D .1答案:B10.设两个向量22(2cos )λλα=+-,a 和sin 2mm α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是 ( )A.[-6,1] B.[48], C.(-6,1] D.[-1,6]答案:A11.如图,已知正六边形123456PP P P P P ,下列向量的 数量积中最大的是( )A.1213,PP PPB. 1214,PP PPC. 1215,PP PPD. 1216,PP PP答案 A12.)已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则()A.a ⊥eB.e ⊥(a -e )C.a ⊥(a -e )D.(a +e )⊥(a -e ) 答案:B※※13.已知A ,B ,C 是平面上不共线上三点,动点P 满足⎥⎦⎤⎢⎣⎡++-+-=→→→→OC OB OA OP )21()1()1(31λλλ)0(≠∈λλ且R ,则P 的轨迹一定通过ABC ∆的A .内心 B. 垂心 C.重心 D.AB 边的中点 答案 C14. 如图所示,在△ABO 中,OC =41OA ,OD =21OB ,AD 与BC 相交于点M ,设OA =a ,OB =b .试用a 和b 表示向量______OM a b =+. 解 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m-1)a +n b .AD =OD -OA =21OB -OA =-a +21b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线. ∴存在实数t,使得AM =t AD , 即(m-1)a +n b =t(-a +21b ). ∴(m-1)a +n b =-t a +21t b .⎪⎩⎪⎨⎧=-=-21t n t m ,消去t 得:m-1=-2n ,即m+2n=1. ①又∵CM =OM -OC =m a +n b -41a =(m-41)a +n b .CB =OB -OC =b -41a =-41a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线. 8分∴存在实数t 1,使得CM =t 1CB ,∴(m-41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m , 消去t 1得,4m+n=1 ② 由①②得m=71,n=73, ∴OM =71a +73b .15.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN=2NC ,AM 与BN 相交于点P ,AP ∶PM 的值为______. 解 方法一 设e 1=BM ,e 2=CN , 则AM =AC +CM =-3e 2-e 1, BN =BC +CN =2e 1+e 2.因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使AP =λAM =-3λe 2-λe 1,BP =μBN =2μe 1+μe 2,∴BA =BP -AP =(λ+2μ)e 1+(3λ+μ)e 2,另外BA =BC +CA =2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴AP =54AM ,BP =53BN ,∴AP ∶PM=4∶1. 方法二 设AP =λAM , ∵AM =21(AB +AC )=21AB +43AN , ∴AP =2λAB +43λAN . ∵B 、P 、N 三点共线,∴AP -AB =t(AB -AN ),∴AP =(1+t)AB -t ANa b ∴∴⎪⎪⎩⎪⎪⎨⎧-=+=tt λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM=4∶1.16.设0≤θ<2π,已知两个向量1OP =(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . A.2B.3C.23 D.32答案 C17.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •的最小值为(A) 42- (B)32- (C) 422-+ (D)322-+答案:D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,22221tan 1cos 21tan 1x x ααα--==++.PA PB•22221cos 21x x x x α-=⋅=⋅+,令21t x =+,……使用基本不等式得min ()322PA PB •=-+.18.若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A.)323,⎡-+∞⎣B. )323,⎡++∞⎣C. 7,4⎡⎫-+∞⎪⎢⎣⎭D. 7[,)4+∞ 【答案】B【解析】因为(2,0)F -是已知双曲线的左焦点,所以214a +=,即23a =,所以双曲线方程为2213x y -=,设点P 00(,)x y ,则有220001(3)3x y x -=≥,解得PABO220001(3)3x y x =-≥,因为00(2,)FP x y =+,00(,)OP x y =,所以2000(2)OP FP x x y ⋅=++=00(2)x x ++2013x -=2004213x x +-,此二次函数对应的抛物线的对称轴为034x =-,因为03x ≥,所以当03x =时,OP FP ⋅取得最小值432313⨯+-=323+,故OP FP ⋅的取值范围是[323,)++∞,选B 。
高中数学平面向量经典练习题(附答案)
D、m= -2+2 3,n= 2 +2 3
12、已知向量a与b, 3a + b = 6,a − 3b = 8,若则a ⊥ b,则 + 的值是( )
A、2
B、9
C、 6
D、 10
13、在△APD 中,AC=CD,AB=2BC,点 E 在 PA 上,H 在 PD 上,F 是 EH 的中
点,G 是 PC 与 EH 的交点,则 =(
3 23
2
解得:a=2b
已知 C 是 AD 的中点,设 = n ,
所以
=
2
+2
设 S = t KS,
-----------------------------------------⑤
得:
= 2tb
+(1-t) b
-----------------------⑦
由⑤、⑦式中对应系数相等,2tb = 2 (1 − t) b = 2
( + )·( + )=0 ------------------------⑨
由⑦,⑧,⑨,得:
cos( + , + )= ( + )·(3 + )
+ ∙3 +
=0 所以:向量 + , + 的夹角为 90°
故答案为:C
第 18 题 解: 已知 2 − 3 = 7 等号两边同时平方,得: 4 2- 12 ∙ +9 2 = 7 将 = 2, · =3 代入上式, 4·22-12·3+9 2 = 7 化简得: = 3
则
=
。
=(3,2)
8、已知向量 , 满足 = 3 , ⊥(2 + 3 ),则向量 与 的夹角
平面向量单元测试题及答案
平面向量单元测试题(一)2一,选择题:1,下列说法中错误的是 ( )A .零向量没有方向B .零向量与任何向量平行C .零向量的长度为零D .零向量的方向是任意的2,下列命题正确的是 ( )A. 若→a 、→b 都是单位向量,则 →a =→bB . 若AB =DC ,则A 、B 、C 、D 四点构成平行四边形C. 若两向量→a 、→b 相等,则它们是始点、终点都相同的向量D. AB 与BA 是两平行向量3,下列命题正确的是 ( )A 、若→a ∥→b ,且→b ∥→c ,则→a ∥→c 。
B 、两个有共同起点且相等的向量,其终点可能不同。
C 、向量AB 的长度与向量BA 的长度相等,D 、若非零向量AB 与CD 是共线向量,则A 、B 、C 、D 四点共线。
4,已知向量(),1m =a ,若,a=2,则m =( )A .3 C. 1± D.3±5,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ∥→b ,则有( )A ,1x 2y +2x 1y =0,B , 1x 2y ―2x 1y =0,C ,1x 2x +1y 2y =0,D , 1x 2x ―1y 2y =0,6,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ⊥→b ,则有( )A ,1x 2y +2x 1y =0,B , 1x 2y ―2x 1y =0,C ,1x 2x +1y 2y =0,D , 1x 2x ―1y 2y =0,7,在ABC ∆中,若=+,则ABC ∆一定是 ( )A .钝角三角形B .锐角三角形C .直角三角形D .不能确定8,已知向量,,a b c 满足||1,||2,,a b c a b c a ===+⊥,则a b 与的夹角等于 ( )A .0120B 060C 030D 90o二,填空题:(5分×4=20分)9。
已知向量a 、b 满足==1,a 3-=3,则a +3=10,已知向量a =(4,2),向量b =(x ,3),且a //b ,则x =11,.已知 三点A(1,0),B(0,1),C(2,5),求cos ∠BAC =12,.把函数742++=x x y 的图像按向量a 经过一次平移以后得到2x y =的图像, 则平移向量a 是(用坐标表示)三,解答题:(10分×6 = 60分)13,设),6,2(),3,4(21--P P 且P 在21P P =,,则求点P的坐标14,已知两向量),1,1(,),31,,31(--=-+=b a 求a 与b 所成角的大小,15,已知向量a =(6,2),b =(-3,k ),当k 为何值时,有(1),a ∥b ?(2),a ⊥b ?(3),a 与b 所成角θ是钝角?16,设点A (2,2),B (5,4),O 为原点,点P 满足OP =OA +AB t ,(t 为实数);(1),当点P 在x 轴上时,求实数t 的值;(2),四边形OABP 能否是平行四边形?若是,求实数t 的值 ;若否,说明理由, 17,已知向量OA =(3, -4), OB =(6, -3),OC =(5-m, -3-m ),(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件;(2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值.18,已知向量.1,43),1,1(-=⋅=n m m n m 且的夹角为与向量向量π(1)求向量n ;(2)设向量)sin ,,(cos ),0,1(x x b a ==向量,其中R x ∈, 若0=⋅a n ,试求||b n +的取值范围.平面向量单元测试题2答案:一,选择题:A D C D B C C A二,填空题: 9,23; 10,6; 11,13132 12,)3,2(- 三,解答题:13,解法一:设分点P (x,y ),∵P P1=―22PP ,λ=―2 ∴ (x ―4,y+3)=―2(―2―x,6―y),x ―4=2x+4, y+3=2y ―12, ∴ x=―8,y=15,∴ P(―8,15)解法二:设分点P (x,y ),∵P P1=―22PP , λ=―2 ∴ x=21)2(24---=―8,y=21623-⨯--=15, ∴ P(―8,15)解法三:设分点P (x,y ),∵212PP P P =,∴―2=24x+, x=―8,6=23y+-, y=15, ∴ P(―8,15)14,解:a=22, b =2 , cos <a ,b >=―21, ∴<a ,b >=1200, 15,解:(1),k=-1; (2), k=9; (3), k <9,k ≠-116,解:(1),设点P (x ,0),AB =(3,2),∵OP =OA +AB t ,∴ (x,0)=(2,2)+t(3,2),⎩⎨⎧+=+=,22032,t t x 则由∴⎩⎨⎧-=-=,11t x 即(2),设点P (x,y ),假设四边形OABP 是平行四边形,则有OA ∥BP , ⇒ y=x ―1,OP ∥AB ⇒ 2y=3x ∴⎩⎨⎧-=-=32y x 即……①,又由OP =OA +AB t ,⇒(x,y)=(2,2)+ t(3,2),得 ∴⎩⎨⎧+=+=t y t x 2223即……②,由①代入②得:⎪⎪⎩⎪⎪⎨⎧-=-=2534t t ,矛盾,∴假设是错误的, ∴四边形OABP 不是平行四边形。
(完整版)平面向量单元测试卷及答案
《平面向量》单元测试卷一、选择题:(本题共10小题,每小题4分,共40分) 1.下列命题中的假命题是( ) A 、→-→-BA AB 与的长度相等; B 、零向量与任何向量都共线; C 、只有零向量的模等于零;D 、共线的单位向量都相等。
2.;;④;③∥;②是单位向量;①是任一非零向量,若1|b |0|a |b a |b ||a |b a ±=>>→→→→→→→→),其中正确的有(⑤→→→=b a a|| A 、①④⑤B 、③C 、①②③⑤D 、②③⑤3.首尾相接能,,;命题乙:把命题甲:是任意三个平面向量,,,设→→→→→→→→→→=++c b a 0c b a c b a 围成一个三角形。
则命题甲是命题乙的( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、非充分也非必要条件 4.)的是(下列四式中不能化简为→-AD A 、→-→-→-++BC CD AB )(B 、)()(→-→-→-→-+++CD BC MB AM C 、)()(→-→-→-→--++CB AD AB ACD 、→-→-→-+-CD OA OC5.),则(),(,),(设21b 42a -=-=→→A 、共线且方向相反与→→b a B 、共线且方向相同与→→b a C 、不平行与→→b aD 、是相反向量与→→b a6.如图1,△ABC 中,D 、E 、F 分别是边BC 、CA 和AB 的中点,G 是△ABC 中的重心,则下列各等式中不成立的是( )A 、→-→-=BE 32BG B 、→-→-=AG 21DG C 、→-→--=FG 2CGD 、→-→-→-=+BC 21FC 32DA 31图17.)(,则锐角∥,且),(,),(设=-+=--=→→→→θθθb a 41cos 1b cos 12aA 、4πB 、6πC 、3πD 、36ππ或 8.)所成的比是(分,则所成比为分若→-→--CB A 3AB C A 、23-B 、3C 、32-D 、-29.)的范围是(的夹角与,则若θ→→→→<⋅b a 0b a A 、)20[π,B 、)2[ππ,C 、)2(ππ,D 、]2(ππ,10.→→→→→→→→b a 4a b 3b a b a 的模与,则方向的投影为在,方向的投影为在都是非零向量,若与设 的模之比值为( ) A 、43B 、34 C 、73 D 、74二、填空题(本题共4小题,每题5分,共20分) 11.。
平面向量高考试题精选(含详细答案)
平面向量高考试题精选(一)一.选择题(共14小题)1.(2015•XX)设D为△ABC所在平面内一点,,则()A.B.C.D.2.(2015•XX)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.213.(2015•XX)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.64.(2015•XX)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥5.(2015•XX)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣26.(2015•XX)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π7.(2015•XX)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.8.(2014•XX)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值X围是()A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1] 9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B.C.D.110.(2014•XX)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.11.(2014•XX)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.012.(2014•XX)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.213.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B. C.D.14.(2014•XX)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4二.选择题(共8小题)15.(2013•XX)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.16.(2013•)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.17.(2012•XX)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=.18.(2012•)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为.19.(2011•XX)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为.20.(2010•XX)已知平面向量满足,且与的夹角为120°,则||的取值X围是.21.(2010•XX)如图,在△ABC中,AD⊥AB,,,则=.22.(2009•XX)若等边△ABC的边长为,平面内一点M满足=+,则=.三.选择题(共2小题)23.(2012•XX)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx 的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值X围.24.(2007•XX)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值X围.平面向量高考试题精选(一)参考答案与试题解析一.选择题(共14小题)1.(2015•XX)设D为△ABC所在平面内一点,,则()A.B.C.D.解:由已知得到如图由===;故选:A.2.(2015•XX)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得+4t≥2=4,∴17﹣(+4t)≤17﹣4=13,当且仅当=4t即t=时取等号,∴的最大值为13,故选:A.3.(2015•XX)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.6解:∵四边形ABCD为平行四边形,点M、N满足,,∴根据图形可得:=+=,==,∴=,∵=•()=2﹣,2=22,=22,||=6,||=4,∴=22=12﹣3=9故选:C4.(2015•XX)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.5.(2015•XX)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2解:选项A正确,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C正确,由向量数量积的运算可得()2=||2;选项D正确,由向量数量积的运算可得()•()=2﹣2.故选:B6.(2015•XX)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π解:∵(﹣)⊥(3+2),∴(﹣)•(3+2)=0,即32﹣22﹣•=0,即•=32﹣22=2,∴cos<,>===,即<,>=,故选:A7.(2015•XX)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.8.(2014•XX)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值X围是()A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1]】解:∵动点D满足||=1,C(3,0),∴可设D(3+cosθ,sinθ)(θ∈[0,2π)).又A(﹣1,0),B(0,),∴++=.∴|++|===,(其中sinφ=,cosφ=)∵﹣1≤sin(θ+φ)≤1,∴=sin(θ+φ)≤=,∴|++|的取值X围是.故选:D.9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B.C.D.1解:∵,∴的夹角为120°,设,则;=如图所示则∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2故选A10.(2014•XX)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故答案为:.11.(2014•XX)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.0解:由题意,设与的夹角为α,分类讨论可得①•+•+•+•=•+•+•+•=10||2,不满足②•+•+•+•=•+•+•+•=5||2+4||2cosα,不满足;③•+•+•+•=4•=8||2cosα=4||2,满足题意,此时cosα=∴与的夹角为.故选:B.12.(2014•XX)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.2解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D13.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B. C.D.【解答】解:∵D,E,F分别为△ABC的三边BC,CA,AB的中点,∴+=(+)+(+)=+=(+)=,故选:A14.(2014•XX)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4解:∵O为任意一点,不妨把A点看成O点,则=,∵M是平行四边形ABCD的对角线的交点,∴=2=4故选:D.二.选择题(共8小题)15.(2013•XX)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为2.16.(2013•)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.解:设P的坐标为(x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF与其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:317.(2012•XX)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则= 18.【解答】解:设AC与BD交于点O,则AC=2AO∵AP⊥BD,AP=3,在Rt△APO中,AOcos∠OAP=AP=3∴||cos∠OAP=2||×cos∠OAP=2||=6,由向量的数量积的定义可知,=||||cos∠PAO=3×6=18故答案为:1818.(2012•)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为1.【解答】解:因为====1.故答案为:119.(2011•XX)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为5.解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.20.(2010•XX)已知平面向量满足,且与的夹角为120°,则||的取值X围是(0,].解:令用=、=,如下图所示:则由=,又∵与的夹角为120°,∴∠ABC=60°又由AC=由正弦定理得:||=≤∴||∈(0,]故||的取值X围是(0,]故答案:(0,]21.(2010•XX)如图,在△ABC中,AD⊥AB,,,则=.【解答】解:,∵,∴,∵,∴cos∠DAC=sin∠BAC,,在△ABC中,由正弦定理得变形得|AC|sin∠BAC=|BC|sinB,,=|BC|sinB==,故答案为.22.(2009•XX)若等边△ABC的边长为,平面内一点M满足=+,则=﹣2.解:以C点为原点,以AC所在直线为x轴建立直角坐标系,可得,∴,,∵=+=,∴M,∴,,=(,)•(,)=﹣2.故答案为:﹣2.三.选择题(共2小题)23.(2012•XX)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx 的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值X围.【解答】解:(1)g(x)=3sin(x+)+4sinx=4sinx+3cosx,其‘相伴向量’=(4,3),g(x)∈S.(2)h(x)=cos(x+α)+2cosx=(cosxcosα﹣sinxsinα)+2cosx=﹣sinαsinx+(cosα+2)cosx∴函数h(x)的‘相伴向量’=(﹣sinα,cosα+2).则||==.(3)的‘相伴函数’f(x)=asinx+bcosx=sin(x+φ),其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f(x)取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan(2kπ+﹣φ)=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0)∪(0,].令m=,则tan2x0=,m∈[﹣,0)∪(0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0)∪(0,].24.(2007•XX)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值X围.】解:(Ⅰ)易知a=2,b=1,.∴,.设P(x,y)(x>0,y>0).则,又,联立,解得,.(Ⅱ)显然x=0不满足题设条件.可设l的方程为y=kx+2,设A(x1,y1),B(x2,y2).联立∴,由△=(16k)2﹣4•(1+4k2)•12>016k2﹣3(1+4k2)>0,4k2﹣3>0,得.①又∠AOB为锐角,∴又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4===∴.②综①②可知,∴k的取值X围是.。
平面向量测试题及答案
平面向量测试题及答案 This model paper was revised by LINDA on December 15, 2012.平面向量测试题一.选择题1.以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为的是( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .MD .3.已知=(3,4),=(5,12),与 则夹角的余弦为( )A .6563B .65C .513D .134. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )A .7B .10C .13D .4 5.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ) )(21→→-b a (B ) )(21→→-a b (C ) →a +→b 21 (D ) )(21→→+b a 6.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD =-5→a -3→b ,则下列关系式中正确的是 ( )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C )−→−AD =-−→−BC (D )−→−AD =-2−→−BC7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( )(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( )(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( )(A ) 21±-(B ) 12±(C ) 32±(D ) 23±11、若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )A. 2-或0;B.C. 2或D. 2或10.12、下面给出的关系式中正确的个数是( )① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤b a b a ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 3二. 填空题13.若),4,3(=AB A点的坐标为(-2,-1),则B点的坐标为 .14.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .15、已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是_________________。
平面向量的运算 练习(含答案)
6.2平面向量的运算练习一、单选题1.化简OP PS QS +-的结果等于( ). A .QPB .OQC .SPD .SQ2.如图,M 在四面体OABC 的棱BC 的中点,点N 在线段OM 上,且13MN OM =,设OA a =,OB b =,OC c =,则下列向量与AN 相等的向量是( )A .1133a b c -++B .1133a b c ++C .1166a b c -++D .1166a b c ++3.如图,在四边形ABCD 中,AC 与BD 交于点O ,若AD BC =,则下面互为相反向量的是( )A .AC 与CBB .OB 与ODC .AB 与DCD .AO 与OC4.已知平行四边形ABCD 中,E 为边AD 的中点,AC 与BE 相交于点F ,若EF xAB y AD =+,则( )A .11,36x y ==-B .11,24x y ==-C .11,33x y ==-D .11,23x y ==-5.()()32a b a b a +---=( ) A .5aB .5bC .5a -D .5b -6.已知向量a ,b 不共线,若2AB a b =+,37BC a b =-+,45CD a b =-,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线7.已知向量a 、b 满足2a =,5b =,且a 与b 夹角的余弦值为15,则()()23a b a b +⋅-=( ) A .30-B .28-C .12D .728.如图,在ABC 中,12AN NC =,P 是BN 上的一点,若1139AP m AB AC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .29C .23D .13二、多选题9.如图,在平行四边形ABCD 中,下列计算正确的是A .AB AD AC += B .AC CD DO OA ++= C .++=AB AC CD ADD .0AC BA DA ++=10.如图,D ,E ,F 分别是ABC 的边AB ,BC ,CA 的中点,则AF DB -等于( )A .FDB .EC C .BED .DF11.在ABC 中,12,33AE AB AD AC ==,记,BC a CA b ==,则下列结论中正确的是( ) A .()13AE a b =-- B .AD b =-C .()13DE b a =- D .AB a b =+12.设a ,b ,c 是三个非零向量,且相互不共线,则下列说法正确的是( ) A .若a b a b +=-,则a b ⊥ B .若a b =,则()()a b a b +⊥- C .若a c b c ⋅=⋅,则a b -不与c 垂直D .()()b c a a c b ⋅-⋅不与c 垂直三、填空题13.在ABC 中,,,D E F 分别是,,AB BC CA 的中点,则AE DB -=___________. 14.下列四个等式:①a +b =b +a ;①-(-a )=a ;①AB +BC +CA =0;①a +(-a )=0. 其中正确的是______(填序号).15.已知a ,b 是不共线的向量,OA a b λμ=+,32OB a b =-,23OC a b =+,若A ,B ,C 三点共线,则实数λ,μ满足__________.16.已知m 、n 是夹角为120°的两个单位向量,向量()1a tm t n =+-,若n a ⊥,则实数t =______.四、解答题17.如图,E ,F ,G ,H 分别是梯形ABCD 的边AB ,BC ,CD ,DA 的中点,化简下列各式:(1)DG EA CB ++; (2)EG CG DA EB +++.18.化简:(1)BA BC-;(2)AB BC AD+-;(3)AB DA BD BC CA++--.19.已知△OBC中,点A是线段BC的中点,点D是线段OB的一个三等分点(靠近点B),设AB=a→,AO=b→.(1)用向量a→与b→表示向量OC;(2)若35OE OA=,判断C,D,E是否共线,并说明理由.20.已知2,3,,a b a b ==的夹角为60︒,53,3c a b d a kb =+=+,当实数k 为何值时, (1)→→d//c(2)c d ⊥21.已知向量a 与b 的夹角3π4θ=,且3a =,22b =. (1)求a b ⋅,()(2)a b a b +⋅-; (2)求a b +;(3)a 与a b +的夹角的余弦值.22.已知向量,,a b c 满足:2a =,()R c a tb t =-∈,,3a b π=.(1)若1a b ⋅=,求b 在a 方向上的投影向量; (2)求||c 的最小值.答案1.B 2.A 3.B 4.A 5.B 6.B 7.B 8.D 9.AD 10.BCD 11.AC 12.AB 13.AF 14.①①①① 15.513λμ+=. 16.2317.(1)DG EA CB GC BE CB GB BE GE +++++===; (2)0EG CG DA EB EG GD DA AE ED DE ==+=++++++. 18.(1)BA BC CA -=.(2)AB BC AD AC AD DC +-=-=.(3)AB DA BD BC CA AB BD AD AC CB AD AD AB AB ++--=+-++=-+=. 19.解(1)①AB =a →,AO =b →,点A 是BC 的中点,∴AC =-a →.①OC OA AC =+=-a →-b →. (2)假设存在实数λ,使CE =λCD .①CE CO OE =+=a →+b →+35(-b →)=a →+25b →,11(33CD CB BD CB BO CB BA AO =+=+=++)=2a →+13(-a →+b →)=53a →+13b →,①a →+25b →=λ5133a b →→⎛⎫+ ⎪⎝⎭,①5131235λλ⎧=⎪⎪⎨⎪=⎪⎩,,此方程组无解, ①不存在实数λ,满足CE =λCD . ①C ,D ,E 三点不共线. 20.(1)若→→d//c ,得c d λ=,即53(3)a b a kb λ+=+,即35,3,k λλ=⎧⎨=⎩解得53λ=,95k =.(2)若c d ⊥,则0c d ⋅=,即53)(3)0(a b a kb +⋅+=,得()22159530k k ++⋅+=a a b b , ()115495233902k k ⨯++⨯⨯⨯+⋅=,解得2914k =-. 21.(1)已知向量a 与b 的夹角3π4θ=,且3a =,22b =,则3πcos364a b a b ⎛⋅=⋅⋅=⨯=- ⎝⎭, 所以()22()(2)296281a b a b a a b b +⋅-=-⋅-=---⨯=-;(2)()(222292a b a b a ab b +=+=+⋅+=+⨯-(3)a 与a b +的夹角的余弦值为()296cos ,535a a baa ba ab a a ba a b⋅++⋅-+====⨯⋅+⋅+ 22.(1)由数量积的定义可知:cos ,a bb a b a⋅=,所以b 在a 方向上的投影向量为: 11||cos ,||||||224a ab a a b a b a a a a ⋅<>=⋅=⋅=; (2)()()2222c a tb a tb a ta b tb =-=-=-⋅+又2a =,,3a b π=,所以()224c t bt b =-+令R x t b =∈所以22c x =-=所以当1x t b ==时,c 取到最小值为。
平面向量练习题(附答案)
平面向量练习题(附答案)-CAL-FENGHAI.-(YICAI)-Company One1平面向量练习题一.填空题。
1. BA CD DB AC +++等于________.2.若向量=(3,2),=(0,-1),则向量2-的坐标是________.3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________.4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________.5.已知向量=(1,2),=(3,1),那么向量2-21的坐标是_________.6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与共线,则||的值等于________.7.将点A (2,4)按向量=(-5,-2)平移后,所得到的对应点A ′的坐标是______.8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为 120,且|a|=2,|b|=5,则(2a-b )·a=______10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____11. 已知y x 且),3,2(),,(),1,6(--===∥,则x+2y 的值为_____12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +的最小值是 .14.将圆222=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 .二.解答题。
1.设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2+的模; (2)试求向量与的夹角;(3)试求与BC 垂直的单位向量的坐标.2.已知向量a =(θθcos ,sin )(R ∈θ),b =(3,3)(1)当θ为何值时,向量a 、b 不能作为平面向量的一组基底(2)求|a -b |的取值范围3.已知向量a 、b 是两个非零向量,当a +t b (t ∈R)的模取最小值时,(1)求t 的值(2)已知a 、b 共线同向时,求证b 与a +t b 垂直4. 设向量)2,1(),1,3(-==,向量垂直于向量,向量 平行于OA ,试求,时=+的坐标.5.将函数y=-x 2进行平移,使得到的图形与函数y=x 2-x -2的图象的两个交点关于原点对称.(如图)求平移向量a 及平移后的函数解析式.6.已知平面向量).23,21(),1,3(=-=若存在不同时为零的实数k 和t,使 .,,)3(2t k t ⊥+-=-+=且(1)试求函数关系式k =f (t )(2)求使f (t )>0的t 的取值范围.参考答案1.2.(-3,-4)°(21,321).6.73.7.(-3,2).8.-210.31-12. 90°13.2-14.51--或(1)∵ AB =(0-1,1-0)=(-1,1),AC =(2-1,5-0)=(1,5).∴ 2AB +AC =2(-1,1)+(1,5)=(-1,7).∴ |2AB +AC |=227)1(+-=50.(2)∵ |AB |=221)1(+-=2.|AC |=2251+=26,AB ·AC =(-1)×1+1×5=4. ∴ cos=||||AC AB ⋅=2624⋅=13132. (3)设所求向量为=(x ,y ),则x 2+y 2=1. ①又 BC =(2-0,5-1)=(2,4),由BC ⊥m ,得2 x +4 y =0. ② 由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x ∴ (552,-55)或(-552,55)即为所求.13.【解】(1)要使向量a 、b 不能作为平面向量的一组基底,则向量a 、b 共线 ∴ 33tan 0cos 3sin 3=⇒=-θθθ故)(6Z k k ∈+=ππθ,即当)(6Z k k ∈+=ππθ时,向量a 、b 不能作为平面向量的一组基底(2))cos 3sin 3(213)3(cos )3(sin ||22θθθθ+-=-+-=-b a而32cos 3sin 332≤+≤-θθ∴ 132||132+≤-≤-b a14.【解】(1)由2222||2||)(a bt a t b tb a +⋅+=+ 当的夹角)与是b a b a b b a t αα(cos ||||||222-=⋅-=时a+tb(t ∈R)的模取最小值(2)当a 、b 共线同向时,则0=α,此时||||b a t -= ∴0||||||||||||)(2=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b ∴b ⊥(a +t b )18.解:设020),,(=-=⋅∴⊥=x y y x ① 又0)1()2(3)2,1(,//=+---+=x y y x 即:73=-x y ②联立①、②得⎩⎨⎧==7,14y x ………10分 )6,11(),7,14(=-==∴于是.19.解法一:设平移公式为⎩⎨⎧-'=-'=k y y h x x 代入2x y -=,得到k h hx x y h x k y +-+-=-'-=-'2222.)(即,把它与22--=x x y 联立,得⎪⎩⎪⎨⎧--=+-+-=22222x x y k h hx x y设图形的交点为(x 1,y 1),(x 2,y 2),由已知它们关于原点对称,即有:⎩⎨⎧-=-=2121y y x x 由方程组消去y 得:02)21(222=++-+-k h x h x . 由.2102212121-==++=+h x x h x x 得且又将(11,y x ),),(22y x 分别代入①②两式并相加,得:.22221222121-+--++-=+k h x hx x x y y 241)())((0211212-+-+-+-=∴k x x x x x x . 解得)49,21(.49-==a k . 平移公式为:⎪⎪⎩⎪⎪⎨⎧-'=+'=4921y y x x 代入2x y -=得:22+--=x x y .解法二:由题意和平移后的图形与22--=x x y 交点关于原点对称,可知该图形上所有点都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可.22--=x x y 的顶点为)49,21(-,它关于原点的对称点为(49,21-),即是新图形的顶点.由于新图形由2x y -=平移得到,所以平移向量为49049,21021=-=-=--=k h 以下同解法一.20.解:(1).0)(])3[(.0,2=+-⋅-+=⋅∴⊥t k t 即).3(41,0)3(4,1,4,02222-==-+-∴===⋅t t k t t k 即(2)由f (t )>0,得.303,0)3()3(,0)3(412><<-->+>-t t t t t t t 或则即。
平面向量练习题(附答案)
平面向量练习题一.填空题。
1.AC DB CD BA 等于________.2.若向量a=( 3, 2),b=( 0,- 1),则向量 2 b-a的坐标是 ________.3.平面上有三个点 A(1,3),B(2,2),C( 7, x),若∠ ABC =90°,则x 的值为 ________.4.向量a、b满足 |a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________.5.已知向量a=(1,2),b=( 3,1),那么向量 2 a-1b的坐标是 _________.26.已知 A(- 1, 2),B(2,4),C(4,- 3),D(x ,1),若AB与CD共线,则| BD |的值等于 ________.7.将点 A(2,4)按向量a=(- 5,- 2)平移后,所得到的对应点A′的坐标是______.8.已知 a=(1,-2),b=(1,x),若 a⊥b,则 x 等于 ______9.已知向量 a,b 的夹角为120,且 |a|=2,|b|=5,则( 2a-b)· a=______10.设 a=(2,-3),b=(x,2x), 且 3a· b=4,则 x 等于 _____11.已知AB( 6,1), BC( x, y ), CD( 2 , 3), 且 BC ∥ DA ,则 x+2y 的值为_____12.已知向量 a+3b,a-4b 分别与 7a-5b,7a-2b 垂直,且 |a|≠0,|b|≠ 0,则 a 与 b 的夹角为____ 13.在△ ABC中, O 为中线 AM 上的一个动点,若AM=2 ,则O A O B OC的最小值是.22按向量 v=( 2,1)平移后,与直线x y0 相切,则λ的值为. 14.将圆xy2二.解答题。
1.设平面三点 A(1,0),B(0,1), C( 2, 5).( 1)试求向量 2 AB+AC的模;(2)试求向量AB与AC的夹角;( 3)试求与BC垂直的单位向量的坐标.2.已知向量a=(sin, cos)(R ),b=( 3 ,3 )(1)当为何值时,向量a、b不能作为平面向量的一组基底(2)求 |a-b|的取值范围3.已知向量a、 b 是两个非零向量,当a+t b(t∈R)的模取最小值时,(1)求 t 的值(2)已知a、b共线同向时,求证 b 与 a+t b 垂直4.设向量OA(3,1), OB( 1,2) ,向量OC垂直于向量OB,向量BC平行于OA,试求OD OA OC 时, OD的坐标 .5.将函数2进行平移,使得到的图形与函数2- x- 2的图象的两个交点关于原点y= - x y=x对称 .(如图 )求平移向量 a 及平移后的函数解析式.6.已知平面向量 a (13k 和 t, 使3 , 1), b ( ,). 若存在不同时为零的实数222k a t b, 且 x y.x a (t3) b, y(1)试求函数关系式 k=f (t)(2)求使 f( t)>0 的 t 的取值范围 .参考答案1.2.(- 3,- 4)3.74.90°11(2,32).6.73.7. (- 3,2).8. -2 9.1210.11.01312. 90 ° 13. 214. 1或 5( 1)∵ AB =( 0-1,1- 0)=(- 1,1), AC =( 2- 1,5- 0)=( 1,5).∴2 AB + AC= 2(- 1,1)+( 1, 5)=(- 1,7).∴ |2AB + AC2 2= 50.=(1)7|222.|AC = 1252 =26,(2)∵ |AB =( 1)1 =||ABAC=(- 1)× 1+1×5=4.·AB AC 42 13∴ cos =| AB||AC|= 226=13.( 3)设所求向量为 m=( x ,y ),则x 2+ y 2 =1. ①又BC =( 2- 0, 5- 1)=( 2,4),由 BC ⊥ m,得 2 x +4 y =0.②x2 5 x -2555y55 . 2 552 55.y由①、②,得 5 或5∴ ( 5 ,- 5 )或(- 5, 5 )即为所求.13.【解】( 1)要使向量 a 、 b 不能作为平面向量的一组基底,则向量a 、b 共线3 sin 33 cos0tan∴3k( k Z )k( k Z )故6,即当6时,向量 a 、 b 不能作为平面向量的一组基底(2) | a22b | (sin 3 )(cos 3)13 2( 3 sin3 cos )而2 33 sin3 cos2 3∴ 2 3 1 | ab | 2 3 12 2 2 214.【解】( 1)由 ( a tb )| b | t2a bt | a |t 2 a b| a | ( 是 a 与 b 的夹角)2cos 当2 | b || b |时 a+tb(t ∈R)的模取最小值t| a || b |(2 )当 a 、 b 共线同向时,则,此时∴ b (a tb ) b a tb2 b a | a || b | | b || a | | a || b | 0∴b⊥( a+t b)18.解:设OC( x , y ),OC OB OC OB0 2 y x0①又 BC // OA ,BC( x1, y2)3( y2) ( x1) 0即:3 yx7 ②x14 ,联立①、②得y7⋯⋯⋯ 10分OC(14 ,7), 于是 OD OC OA(11,6) .19.解法一:设平移公式为x x hy y k 代入y x 2,得到y k( x h ) 2 .即 y x 2 2 hx h 2k,把它与y2 2联立,x xy22hx2k x h2得yx x2设图形的交点为(x1, y1),( x2, y2),由已知它们关于原点对称,x1x 2y1y2由方程组消去 y得:2x22即有:(1 2 h ) x 2 hk0 .x11 2 h0 得 h1 x 2且 x1 x2.由22又将(x1, y1),( x2, y2)分别代入①②两式并相加,得:y1222y 2 x 1 x 2 2 hx 1 x 2h k 2 . 0( x 2 x 1 )( x 2x 1 )( x 1 x 2 )1 k2 9 .a 1 94k(, ). 解得42 4 .xx12y y 9224 代入 y2 .平移公式为:x 得:yx x22交点关于原点对称,可知该图形上所有点 解法二:由题意和平移后的图形与 y x x都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可 .1 91 922的顶点为( ,),y xx24 ,它关于原点的对称点为 (2 4 ),即是新图形的顶点 .h11 9 9yx2, k4 以下同由于新图形由 平移得到, 所以平移向量为224解法一 .20.解:( 1)xy ,x y 0 .即 [( at 23)b ] ( k at b )0.1t (t2a b 0 , a24 , b1,4 k t ( t 23) 0, 即 k3 ).241t (t 20 ,即 t (t 3 ) ( t 3)0,则 3 t 0或 t 3 .3)( 2)由 f(t)>0, 得4。
平面向量 单元测试(含答案)
《平面向量》一、选择题1.在矩形ABCD 中,O 是对角线的交点,若OC e DC e BC 则213,5===( )A .)35(2121e e +B .)35(2121e e -C .)53(2112e e - D .)35(2112e e - 2.化简)]24()82(21[31b a b a --+的结果是( )A .b a -2B .a b -2C .a b -D .b a -3.对于菱形ABCD ,给出下列各式: ①BC AB =②||||BC AB =③||||BC AD CD AB +=- ④||4||||22AB BD AC =+ 2其中正确的个数为 ( )A .1个B .2个C .3个D .4个4 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( )A .c b a =+B .d b a =-C .d a b =-D .b a c =-5.已知向量b a 与反向,下列等式中成立的是( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+6.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为 ( ) A .(1,5)或(5,-5) B .(1,5)或(-3,-5) C .(5,-5)或(-3,-5) D .(1,5)或(-3,-5)或(5,-5) 7.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e )43,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是 ( )A .①B .①③C .②③D .①②③ 8.与向量)5,12(=d 平行的单位向量为( )A .)5,1312(B .)135,1312(--C .)135,1312(或)135,1312(--D .)135,1312(±±9.若32041||-=-b a ,5||,4||==b a ,则b a 与的数量积为( )A .103B .-103C .102D .1010.若将向量)1,2(=a 围绕原点按逆时针旋转4π得到向量b ,则b 的坐标为( )A .)223,22(--B .)223,22(C .)22,223(-D .)22,223(-11.设k ∈R ,下列向量中,与向量)1,1(-=Q 一定不平行的向量是 ( )A .),(k k b =B .),(k k c --=C .)1,1(22++=k k dD .)1,1(22--=k k e12.已知12||,10||==b a ,且36)51)(3(-=b a ,则b a 与的夹角为( )A .60°B .120°C .135°D .150°二、填空题13.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 .14.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 15.已知)2,3(=a ,)1,2(-=b ,若b a b a λλ++与平行,则λ= .16.已知e 为单位向量,||a =4,e a 与的夹角为π32,则e a 在方向上的投影为 . 三、解答题17.已知非零向量b a ,满足||||b a b a -=+,求证: b a ⊥18.已知在△ABC 中,)3,2(=AB ,),,1(k AC =且△ABC 中∠C 为直角,求k 的值.19、设21,e e 是两个不共线的向量,2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、B 、D 三点共线,求k 的值.20.已知2||=a 3||=b ,b a 与的夹角为60o,b a c 35+=,b k a d +=3,当当实数k 为何值时,⑴c ∥dc⑵d21.如图,ABCD为正方形,P是对角线DB上一点,PECF为矩形,求证:①PA=EF;②PA⊥EF.22.如图,矩形ABCD内接于半径为r的圆O,点P是圆周上任意一点,求证:PA2+PB2+PC2+PD2=8r2.参考答案一.选择题:二、填空题:13. 120°; 14. 矩形 15、 1± 16. 2- 三、解答题: 17.证:()()22ba b a -=+⇒+=+⇒-=+0222222=⇒+-=++⇒b a b b a a b b a a为非零向量又b a ,b a ⊥∴18.解:)3,1()3,2(),1(--=-=-=k k AB AC BC0)3,1(),1(0=--⋅⇒=⋅⇒⊥⇒∠∠k k BC AC BC AC RT C 为 21330312±=⇒=-+-⇒k k k19.()212121432e e e e e e CB CD BD-=+--=-=若A ,B ,D 三点共线,则BD AB 与共线,BD AB λ=∴设即212142e e e k e λλ-=+由于不共线与21e e 可得:221142e e k e e λλ-==故8,2-==k λ20.⑴若c ∥d 得59=k ⑵若d c ⊥得1429-=k21.解以D 为原点DC 为x 轴正方向建立直角坐标系 则A(0,1), C:(1,0) B:(1,1))22,22(,r r P r DP 则设= )221,22(r r PA --=∴)0,22(:),22,1(r F r E 点为 )22,122(r r EF --=∴ 22)221()22(||r r PA -+-=∴ 22)22()221(||r r EF -+-=∴故EF PA =EF PA EF PA ⊥⇒=⋅0而22.证:PA PC AC PB PD BD-=-=,22222222||2||)(||||2||)(||PA PA PC PC PA PC AC PB PD PB PD PB PD BD +-=-=+-=-=∴0,,,=⋅=⋅⇒⊥⊥PC PA PB PD PC PA PB PD AC BD 故为直径 222222||||||||||||PD PC PB PA AC BD +++=+∴即2222222844r PD PC PB PA r r =+++=+。
平面向量测试题及答案
平面向量测试题及答案【篇一:平面向量单元测试与答案】1.已知△abc的三个顶点a、b、c及所在平面内一点p满足pa?pb?pc?ab,则点p与△abc的关系为( )a.p在△abc内部b.p在△abc外部 c.p在ab边所在直线上 d. p在△abc的ac边的一个三等分点上2.已知向量op?(1,1),op?(4,?4),且p2点分有向线段pp 所成的比为-2,则op的坐标是112( )a.(?53532,2)b.(2,?2)c.(7,-9) d.(9,-7) 3.设?i,?j分别是x轴,y轴正方向上的单位向量,op?3cos??i?3sin??j,??(0,??2),oq??i。
若用?来表示op与oq的夹角,则?等于a.?b.?2??c.?2??d.???5.设平面上有四个互异的点a、b、c、d,已知(db?dc?2da)?(ab?ac)?0,则△abc的形状是( )a.直角三角形b.等腰三角形 c.等腰直角三角形d.等边三角形6.设非零向量a与b的方向相反,那么下面给出的命题中,正确的个数是()b.c.15d.168.下列命题中:a?b?b?c则b?c,当且仅当a?0时成立其中正确命题的序号是a.①⑤ b.②③④ c.②③ d.①④⑤() 9.在△abc中,已知|ab|?4,|ac|?1,s?abc?3,则ab?ac的值为a.-2b.210.已知,a(2,3),b(-4,5),则与ab共线的单位向量是a.e?(?310,)b.e?(?3,)或(3101010,?1010)c.e?(?6,2)d.e?(?6,2)或(6,2)11.设点p分有向线段p31p2所成的比为4,则点p1分p2p所成的比为a.?37b.?74c.?7 d.?43712.已知a?(1,2),b?(?3,2),ka?b与a?3b垂直时k值为a.17 b.18 c.19 d.2013.已知向量a,b的夹角为?3,|a|?2,|b|?1,则|a?b|?|a?b|? .( ))))))(((((14.把一个函数图像按向量a?(?3,?2)平移后,得到的图象的表达式为y?sin(x??6)?2,则原函数的解析式为15.已知|a|=5,|b|=5, |c|=25,且a?b?c?0,则a?b?b?c?c?a=_______16.已知点a(2,0),b(4,0),动点p在抛物线y2=-4x运动,则使ap?bp取得最小值的点p的坐标是17.设向量oa?(3,1),ob?(?1,2),向量oc垂直于向量ob,向量bc 平行于oa,则od?oa?oc时,od的坐标为_________?????????????18.已知m=(1+cos2x,1),n=(1,3sin2x+a)(x,a∈r,a是常数),且y=om2on (o是坐标原点)⑴求y关于x的函数关系式y=f(x);??⑵若x∈[0,],f(x)的最大值为4,求a的值,并说明此时f(x)的图象可由y=2sin(x+)的图象26经过怎样的变换而得到.(8分)19.已知a(-1,0),b(1,0)两点,c点在直线2x?3?0上,且ac?ab,ca?cb,ba?bc成等差数列,20.已知:a 、b、c是同一平面内的三个向量,其中a =(1,2)⑴若|c|?25,且c//a,求c的坐标;⑵若|b|=21.已知向量a?(cos32x,sin32x),b?(cosx2,?sinx2),且x?[0,52?2],求 32,求?的值;(8分)⑴a?b及|a?b|;⑵若f(x)?a?b?2?|a?b|的最小值是参考答案?1.d 2.c 3.d 4.b 5.b 6.a 7.c 8.c 9.d 10.b 11.c 12.c13.2114.y?cosx 15.-2516.(0,0) ????????????????????17.解:设oc?(x,y),?oc?ob ,∴oc?ob?0,∴2y?x?0①又?bc//oa,bc?(x?1,y?2)3(y?2)?(x?1)?0即:3y?x?7② ?????????????????x?14,联立①、②得? ∴ oc?(14,7),于是od?oc?oa?(11,6)y?7?.18.解:⑴y=om2on=1+cos2x+3sin2x+a,得f(x)=1+cos2x+3sin2x+a;⑵f(x) =1+cos2x+3sin2x+a化简得f(x) =2sin(2x+当x=?6?6)+a+1,x∈[0,?6?2]。
高中数学平面向量专项测试(含答案)
高中数学平面向量专项测试(含答案)一、单选题(本大题共14小题,共70.0分)1. 设x R ∈,向量()(),1,1,2a x b ==-,且a b ⊥,则()a = A. 5 B. 25 C. 10 D. 102. ABC 中,点P 满足(),AP t AB AC BP AP CP AP =+⋅=⋅,则ABC 一定是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形 3. 若则,那么下面关于的判断正确的是() A.B. C. D.4. 若O 是ABC 所在平面内一点,且满足|||2|OB OC OB OC OA -=+-,则ABC 的形状是()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等边三角形 5. 已知向量(2,1)a =,(,2)b x =-,若//a b ,则a b +等于() A. (2,1)-- B. (2,1) C. (3,1)- D. (3,1)- 6. 已知||1a =,||2b =,且()a a b ⊥-,则向量a 与向量b 的夹角为()A. 6πB. 4πC. 3πD. 23π 7. 已知向量a ,b 满足||1a =,2b =,5a b -=,则2()a b -=A. 2B. 5C. 6D. 258. 已知向量(1,2)a =,(,4)b x =-,若//a b ,则a b ⋅等于() A. 10- B. 6- C. 0 D. 69. 已知O 为正ABC 内的一点,且满足(1)0OA OB OC λλ+++=,若OAB 的面积与OBC 的面积的比值为3,则λ的值为()A. 12B. 52C. 2D. 3 10. 已知下面四个命题:①0AB BA +=;②AB BC AC +=;③AB AC BC -=;④00.AB ⋅=其中正确的个数为()A. 1个B. 2个C. 3个D. 4个11. 已知向量(1,)a k =,(2,2)b =,且a b +与a 共线,那么k 的值为()A. 1B. 2C. 3D. 412. 已知菱形ABCD 的边长为a ,60ABC ∠=︒,则()BD CD ⋅=A. 232a -B. 234a -C. 234a D. 232a13. 如图,平行四边形ABCD 中,E 是BC 的中点,F 是AE 的中点,若AB a =,AD b =,则()AF =A. 1124a b -B. 1142a b + C. 1124a b +D. 14二、多选题(本大题共2小题,共10.0分)14. 已知(3,1)a =-,(1,2)b =-,则正确的有()A. 5a b ⋅=B. 与a 共线的单位向量是31010(,)1010-C. a 与b 的夹角为4πD. a 与b 平行15. 下列命题中正确的是()A. 若a b =,则32a b >B. BC BA DC AD --=C. 若向量,a b 是非零向量,则||||||a b a b a +=+⇔与b 方向相同D. 若//a b ,则存在唯一实数λ使得a b λ=三、单空题(本大题共8小题,共40.0分)16. 已知1e →,2e 是平面单位向量,且1212e e →⋅=,若平面向量b 满足121b e b e →⋅=⋅=,则||b =______. 17. 已知向量(2,1),(3,2),a b ==-若()(2),a b a b λ+⊥-则λ= ______.18. 在Rt OAB ∆中,90O ∠=︒,13OE OA =,23OF OB =,连接AF ,BE 相交于点M ,若OM OA OB λμ=+,则_____.λμ+=19. 已知向量a ,b ,||3a =,2a b ⋅=,则()a a b ⋅-=______ .20. 在边长为2正三角形ABC 中,D 为BC 边中点,则AD =______________21. 已知点(4,1)A ,(1,5)B ,则与向量AB 共线的单位向量为__________.22. 如图,11AB C ∆,122C B C ∆,233C B C ∆是三个边长为1的等边三角形,且有一条边在同一直线上,边33B C 上有2个不同的点1P ,2P ,则()212AB AP AP ⋅+=______.23. 已知1e ,2e 是平面单位向量,且,若平面向量b 满足121b e b e ⋅=⋅=,则||b =________.四、解答题(本大题共5小题,共60.0分) 24. 已知点(0,0)O ,(1,2)A ,(4,5)B 及OP OA t AB =+⋅,试问:(1)当t 为何值时,P 在x 轴上.(2)若OB OP ⊥,求t 的值25. 已知向量,,向量与夹角为,(1)求;(2)求在的方向上的投影.26. 已知||4a =,||3b =,()()23261.a b a b -⋅+= (1)求a 与b 的夹角θ;(2)求||a b +和||a b -27. 已知||4a =,||3b =,(23)(2)61.a b a b -⋅+=(1)求a 与b 的夹角θ;(2)求||a b +;答案和解析1.【答案】A解:因为a b ⊥ ,所以()1120x ⨯+⨯-=,解得2x =, 因此22215a →=+=2.【答案】B【解析】试题分析:设D 是BC 中点,由()AP t AB AC =+可得点P 在三角形ABC 的中线AD 所在直线上.再由BP AP CP AP ⋅=⋅,可得AP BC ⊥,从而得到三角形ABC 的边BC 上的中线与高线重合,可得三角形ABC 是等腰三角形.()AP t AB AC =+,设D 是BC 中点,则2AB AC AD +=,2AP t AD ∴=⋅,故点P 在三角形ABC 的中线AD 所在直线上.BP AP CP AP ⋅=⋅,()0AP BP CP ∴⋅-=,即0AP BC ⋅=,即.AP BC ⊥即AP BC ⊥,故三角形ABC 的边BC 上的中线与高线重合,所以,三角形ABC 是等腰三角形,其中AB AC =,3.【答案】B4.【答案】B5.【答案】A解:根据题意,向量(2,1)a =,(,2)b x =-,若//a b ,则有12(2)x ⋅=⋅-,即4x =-,即(4,2)b =--,则(2,1)a b +=--,6.【答案】B解:()a a b ⊥-;()0a a b ⋅-=;11cos ,0a b ∴-<>=; 2cos ,2a b ∴<>=; ∴向量a 与b 的夹角为.4π 7.【答案】A解:向量a ,b 满足||1a =,||2b =,a b →→-=可得22221425a b a b a b a b →→→→→→→→-=+-⋅=+-⋅=,解得0a b ⋅=, 所以2222448a b a b a b →→→→→→-=+-⋅=,所以2a b →→-=8.【答案】A 解:向量(1,2)a =,(,4)b x =-,//a b ,420x ∴--=, 2.x ∴=-则82810a b x ⋅=-=--=-,9.【答案】C解:(1)0OA OB OC λλ+++=, 变为()0.OA OC OB OC λ+++=如图,D ,E 分别是对应边的中点,由平行四边形法则知()2,2OA OC OE OB OC OD λλ+=+=,故OE OD λ=-①,//DE AB ,在正三角形ABC 中, 1111133263OBC AOB ABC ABC BEC S S S S S ==⨯==,且OBC 与BEC 同底边BC ,故O 点到底边BC 的距离等于E 到底边BC 的距离的三分之一,2OE OD ∴=-,由①②得 2.λ=10.【答案】C解:对于①,AB 与BA 是互为相反向量,0AB BA ∴+=,正确;对于②,根据向量的三角形合成法则知AB BC AC +=,正确;对于③,根据向量的减法法则知AB AC CB -=,AB AC BC ∴-=错误;对于④,根据平面向量数量积的定义知00AB ⋅=正确.综上,正确的命题是①②④.11.【答案】A解:(1,)a k =,(2,2)b =,(3,2)a b k ∴+=+,又a b +与a 共线,1(2)30k k ∴⨯+-=,解得: 1.k =12.【答案】D 解:菱形ABCD 的边长为a ,60ABC ∠=︒, 22BA a ∴=,21cos602BA BC a a a ⋅=⋅⋅︒=, ()BD CD BA BC CD ∴⋅=+⋅, 2BA BA BC =+⋅, 23.2a = 13.【答案】C解:由已知E 是BC 的中点,F 是AE 的中点, 则111222BE BC AD b ===,12AF AE =, 因为12AE AB BE AB BC =+=+,BC AD b ==, 则1122AE AB AD a b =+=+, 所以11111.22224AF AE a b a b ⎛⎫==+=+ ⎪⎝⎭14.【答案】AC解:A :31(1)(2)5a b ⋅=⨯+-⨯-=,A ∴正确,B :22||3(1)10a =+-=,∴与a 共线的单位向量为31010(,)1010-或31010(,)1010-,B ∴错误, C :22||3(1)10a =+-=,22||1(2)5b =+-=,cos a ∴<,522||||105a b b a b ⋅>===⋅⋅, a <,[0,]b π>∈,a ∴<,4b π>=,C ∴正确,D :3(2)(1)1⨯-≠-⨯,a ∴ 与b 不平行,D ∴错误,15.【答案】BC解:向量不能比较大小,所以A 不正确;BC BA DC BC CD AB BD AB AD --=++=+=,所以B 正确;若向量,a b 是非零向量,则||||||a b a b a +=+⇔与b 方向相同,所以C 正确;若//a b ,当0b ≠时,则存在唯一实数λ使得a b λ=,所以D 不正确.16.【答案】233解:1e →,2e 是平面单位向量,且1212e e →⋅=,1e →∴,2e 夹角为60︒,向量b 满足121b e b e →⋅=⋅=b ∴与1e →,2e 夹角相等,且为锐角,b ∴应该在1e ,2e 夹角的平分线上,即b <,1e b →>=<,230e >=︒,||1cos301b ⨯⨯︒=,23||3b ∴= 17.【答案】29解:向量(2,1)a =,(3,2)b =-,且2a b a b λ→→→→⎛⎫⎛⎫+⊥- ⎪ ⎪⎝⎭⎝⎭,()()1,3,243,22a b a b λλλ→→→→+=--=+-, 4366290λλλ--+-=-=,解得29λ=, 18.【答案】57解: 如下图,因为13OE OA =,23OF OB =, 所以32OM OA OB OA OF λμλμ→→→→→=+=+,3OM OA OB OE OB λμλμ→→→→→=+=+, 又 A ,M ,F 和B ,M ,E 三点共线,所以31231λμλμ⎧+=⎪⎨⎪+=⎩, 解得1747λμ⎧=⎪⎪⎨⎪=⎪⎩,所以5.7λμ+= 19.【答案】7解:向量a ,b ,||3a =,2a b ⋅=,则2()927.a a b a a b ⋅-=-⋅=-=20.解:边长为2的等边ABC , ||2AB →∴=,2AC →=,,60AB AC →→=︒, ()12AD AB AC =+ 2222AB AC AB AB AC AC →→→→→→∴+=+⋅+ 4222cos604=+⨯⨯⨯︒+ 444=++12.= ()1 3.2AD AB AC =+= 21.【答案】34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭解:(4,1)A ,(1,5)B ,()3,4.AB ∴=-(5AB ∴=-=,∴与向量AB 共线的单位向量是()1343,4,.555ABAB ⎛⎫±=±-=±- ⎪⎝⎭ 22.【答案】9解:由图可知,2330B AC ∠=︒,又2260AC B ∠=︒,222AB B C ∴⊥,又2233//B C B C ,233AB B C ∴⊥,2330AB C B ∴⋅=;2122331332()[()()]AB AP AP AB AC C P AC C P ∴⋅+=⋅+++,2323323233AB AC AB mC B AB AC AB nC B =⋅+⋅+⋅+⋅,232AB AC =⋅,23cos30=⨯︒,9.=23.【答案】2解: 12,e e →→ 是平面单位向量,且121,2e e →→=-, 则12,e e →→的夹角为120︒,因为平面向量 b → 满足121b e b e →→→→⋅=⋅= , 所以 b →与12,e e →→夹角相等,且为锐角,则b →应该在12,e e →→夹角的平分线上,即12,,60b e b e →→→→==︒,1cos 601b →⨯⨯︒= 则2b →=,24.【答案】解:由已知可得(1,2)OA =,(3,3)AB =,所以(13,23)OP OA t AB t t =+⋅=++,(1)当P 在x 轴上时,230t +=,解得23t =-; (2)若OB OP ⊥,则若0OB OP ⋅=,所以4(13)5(23)0t t +++=,即14270t +=,解得14.27t =- 25.【答案】解:(1)2(2)348a b →→⋅=⨯-+⨯=,a →==b →==cos 65a ba b θ→→→→⋅∴==⋅(2)b →在a →的方向上的投影为cos 6513b θ→==26.【答案】解:(1)(23)(2)61a b a b →→→→-⋅+=, 2244361a a b b →→→→∴-⋅-=,||4a →=,||3b →=,2244443cos 3361θ∴⨯-⨯⨯-⨯=, ∴解得1cos 2θ=-,120θ∴=︒ ;222(2)||216243cos120913a b a a b b →→→→→→+=+⋅+=+⨯⨯︒+=,||a b →→∴+=∴同理可得||a b →→-=27.【答案】解:(1)由(23)(2)61a b a b -⋅+=, 得2244361a a b b -⋅-=,将||4a =,||3b =,代入,整理得6a b ⋅=-; 61(2)cos 432||||a b a b θ⋅-===-⨯, 又0θπ,所以23πθ=,2222||243a b a a b b +=+⋅+=+。
平面向量专题练习题(附答案)
平面向量练习题一.填空题。
1. +++等于________.2.若向量=(3,2),=(0,-1),则向量2-的坐标是________.3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________.4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________.5.已知向量=(1,2),=(3,1),那么向量2-21的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若AB 与CD 共线,则|BD |的值等于________.7.将点A (2,4)按向量a =(-5,-2)平移后,所得到的对应点A ′的坐标是______.8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为120,且|a|=2,|b|=5,则(2a-b )·a=______10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____11. 已知BC CD y x BC AB 且),3,2(),,(),1,6(--===∥DA ,则x+2y 的值为_____12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____ 13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC + 的最小值是 .14.将圆222=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 . 1.0 2.(-3,-4) 3.7 4.90° 5.(21,321). 6.73. 7.(-3,2). 8.-2 9.12 10.31-11.0 12. 90° 13.2- 14.51--或二.解答题。
平面向量测试题(含答案)
平面向量章末检测一、选择题:本大题共10小题,每小题5分,共50分.1、下面给出的关系式中正确的个数是( )① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a⋅=⋅⑤b a b a ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 3 2.下列四式不能化简为AD 的是( )A .)++(B .(C .;-+BM AD MB D .;+-CD OA OC 3.已知a =(3,4),b =(5,12),a 与b 则夹角的余弦为( )A .6563B .65C .513 D .134. 已知a 、b 均为单位向量,它们的夹角为60°,那么3a b +=( )A .7B .10C .13D .45.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ) 1()2a b →→-(B ) 1()2b a →→-(C ) →a +12b → (D ) 1()2a b →→+6.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD =-5→a -3→b ,则下列关系式中正确的是 ( )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C )−→−AD =-−→−BC (D )−→−AD =-2−→−BC 7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( )(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数8.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( )(A ) (-14,16) (B )(22,-11) (C )(6,1) (D ) (2,4) 9.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( )(A ) 21±-(B ) 12±(C ) 32±(D ) 23±10、若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )A. 2-或0;B. C. 2或 D. 2或10.二、填空题:本大题共5个小题,每小题5分,共计25分.11.若),4,3(=A点的坐标为(-2,-1),则B点的坐标为 . 12.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .13、已知向量3,(1,2)a b ==,且b a⊥,则a 的坐标是_________________。
《平面向量》测试题及答案
《(一)平面向量》测试题一、选择题1.若三点P (1,1),A (2,-4),B (x,-9)共线,则( )A.x=-1B.x=3C.x=29D.x=512.与向量a=(-5,4)平行的向量是( )A.(-5k,4k )B.(-k 5,-k 4) C.(-10,2) D.(5k,4k)3.若点P 分AB 所成的比为43,则A 分BP 所成的比是( ) A.73B. 37C.-37D.-734.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为( )A.60°B.-60°C.120°D.-120°5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=( ) A.103 B.-103C.102D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =()A.⎝ ⎛⎭⎪⎫79,73B.⎝ ⎛⎭⎪⎫-73,-79C.⎝ ⎛⎭⎪⎫73,79D.⎝ ⎛⎭⎪⎫-79,-73 7.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为( ) A.323B.233C.2D.-528.设点P 分有向线段21P P的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( ) A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21)9.设四边形ABCD 中,有DC =21AB ,且|AD |=|BC |,则这个四边形是( )A.平行四边形B.矩形C.等腰梯形D.菱形10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为( )A.y=x+10B.y=x-6C.y=x+6D.y=x-1011.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2的图像,则a 等于( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2,1)12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是( )A.(2a,b)B.(a-b,a+b)C.(a+b,b-a)D.(a-b,b-a)二、填空题13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修4第二章平面向量教学质量检测
一.选择题(5分×12=60分):
1.以下说法错误的是( )
A.零向量与任一非零向量平行
B.零向量与单位向量的模不相等
C.平行向量方向相同
D.平行向量一定是共线向量 2.下列四式不能化简为AD 的是( )
A.;)++(BC CD AB
B.);+)+(+(CM BC M B AD
C.M
D.
3.已知=(3,4),=(5,12),与 则夹角的余弦为( )
A .
65
63
B.65 C.
513 D.13
4. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )
A.7
B .10
C.13
D.4
5.已知ABCDEF 是正六边形,且−→
−AB =→
a ,−→
−AE =→b ,则−→
−BC =( )
(A)
)(2
1
→→-b a (B) )(2
1
→→-a b (C) →a +→b 2
1 (D) )(2
1→
→+b a
6.设→
a ,→
b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→
−CD = -5→a -3→
b ,则下列关系式中正确的是 ( )
(A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C)−→−AD =-−→−BC (D )−→−AD =-2−→
−BC 7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →
2e 共线,则k 的值是( )
(A) 1 (B ) -1 (C) 1± (D) 任意不为零的实数 8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→
−BD =0,则四边形ABCD 是( )
(A) 矩形 (B) 菱形 (C ) 直角梯形 (D) 等腰梯形
9.已知M (-2,7)、N(10,-2),点P 是线段MN 上的点,且−→
−PN =-2−→
−PM ,则P 点的坐标为( )
(A ) (-14,16)(B) (22,-11)(C) (6,1) (D ) (2,4)
10.已知→
a =(1,2),→
b =(-2,3),且k→
a +→
b 与→
a -k →
b 垂直,则k =( )
(A) 21±
-(B) 12±(C) 32±(D) 23±
11、若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )
A. 2-或0; B . 25; C. 2或25; D . 2或10.
12、下面给出的关系式中正确的个数是( )
① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤b a b a ⋅≤⋅
(A) 0 (B) 1 (C) 2 (D ) 3
二. 填空题(5分×5=25分):
13.若),4,3(=AB A点的坐标为(-2,-1),则B 点的坐标为 . 14.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .
15、已知向量)2,1(,3==b a
,且b a ⊥,则a 的坐标是_________________。
16、ΔABC 中,A (1,2),B(3,1),重心G(3,2),则C 点坐标为________________。
17.如果向量 与b 的夹角为θ,那么我们称 ×b 为向量 与b 的“向量积”, ×b是一个向量,它的长度| ×b|=| ||b|sin θ,如果| |=4, |b|=3, ·b=-2,则| ×b |=____________。
18、(14分)设平面三点A (1,0),B(0,1),C(2,5). (1)试求向量2AB +AC 的模; (2)试求向量AB 与AC 的夹角; (3)试求与BC 垂直的单位向量的坐标.
19.(12分)已知向量
=
, 求向量b,使|b|=2|
|,并且
与b的夹角为。
20. (13分)已知平面向量).2
3
,
21(),1,3(=-=若存在不同时为零的实数k 和t,使 .,,)3(2t k t ⊥+-=-+=且
(1)试求函数关系式k =f (t )
(2)求使f (t )>0的t 的取值范围.
21.(13分)如图, =(6,1),,且。
(1)求x与y间的关系; (2)若,求x与y的值及四边形ABCD的面积。
22.(13分)已知向量a、b是两个非零向量,当a+t b(t∈R)的模取最小值时,(1)求t的值
(2)已知a、b共线同向时,求证b与a+t b垂直
参考答案
一、
选择题:1C、2C 、3A 、4C、5D 、6B 、7C 、8B 、9D 、10A 、11C 、12C 、
二. 填空题(5分×5=25分):
13 (1,3) .14 28 1 5 ( , )或( ,
) 16 (5,3) 17 235 三. 解答题(65分):
18、 (1)∵ AB =(0-1,1-0)=(-1,1),AC =(2-1,5-0)=(1,5). ∴ 2AB +AC =2(-1,1)+(1,5)=(-1,7). ∴ |2AB +AC |=227)1(+-=50.
(2)∵ |AB |=2
21)1(+-=2.|AC |=2251+=26,
AB ·AC =(-1)×1+1×5=4.
∴ c os θ =
|
|||AC AB AC AB ⋅=
26
24⋅=
13
13
2. (3)设所求向量为m =(x,y ),则x2+y2=1. ①
又 BC =(2-0,5-1)=(2,4),由BC ⊥m ,得2 x +4 y =0. ②
由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩
⎪⎪⎨⎧==.
-555
5
2y x ∴ (552,-55)或(-552,55)
即为所求.
19.由题设
, 设 b =
, 则由
,得
. ∴
, ﻫ
解得 sin α=1或 。
ﻫ 当si nα=1时,cos α=0;当 时,
556-5535565
53-。
故所求的向量
或。
ﻫ20.解:
(1)
.0)(])3[(.0,2
=+-⋅-+=⋅∴⊥b t a k b t a y x y x 即 ).
3(41
,0)3(4,1,4,0222
2
-==-+-∴===⋅t t k t t k b a b a 即
(2)由f(t)>0,得.303,0)3()3(,0)3(412
><<-->+>-t t t t t t t 或则即 21.解:(1)∵
,
∴ 由
,得x(y-2)=y(4+x), x +2y=0. ﻫ (2) 由
=(6+x, 1+y),。
ﻫ ∵
, ∴(6+x )(x-2)+(1+y)(y-3)=0, 又x+2y=0, ∴
或 ﻫ ∴当 时,
, ﻫ 当 时,。
ﻫ 故
同向,
22.解:(1)由2
2
2
2
||2||)(a bt a t b tb a +⋅+=+ 当的夹角)与是b a b a b b a t αα(cos |||
||
|222
-=⋅-
=时a+tb(t ∈R)的模取最小值 (2)当a 、b共线同向时,则0=α,此时|
||
|b a t -
= ∴0||||||||||||)(2
=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b ∴b ⊥(a +t b )。