集合间的基本关系练习题

合集下载

高中数学必修一人教A版1.2 集合间的基本关系-单选专项练习(含解析)(58)

高中数学必修一人教A版1.2 集合间的基本关系-单选专项练习(含解析)(58)

1.2 集合间的基本关系一、单选题1.若x A ∈,则1A x ∈,就称A 是伙伴关系集合,集合111,0,,,2,323M ⎧⎫=-⎨⎬⎩⎭的所有非空子集中具有伙伴关系的集合的个数是A .31B .7C .3D .1答案:B详解: 集合11102323M ⎧⎫=-⎨⎬⎩⎭,,,,, 的所有非空子集中具有伙伴关系的集合为:{}111111111123121323123323232323,,,,,,,,,,,,,,,,,,,,⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫----⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭ 故选B .2.已知集合{|523M x R x =∈--为正整数},则M 的所有非空真子集的个数是( )A .30B .31C .510D .511答案:C 解析:根据523x --为正整数可计算出集合M 中的元素,然后根据非空真子集个数的计算公式22n -(n 是元素个数)计算出结果.详解: 因为523x --为正整数,所以M =−12,0, 12,1,32,2,52,3,72},所以集合M 中共有9个元素,所以M 的非空真子集个数为29-2=510,故选C.点睛:本题考查用列举法表示集合以及计算集合的非空真子集的个数,难度较易.一个集合中含有n 个元素则:集合的子集个数为:2n ;真子集、非空子集个数为:21n -;非空真子集个数为:22n -.3.已知集合A{1,2,3},且A 中至少有一个奇数,则这样的集合有( ). A .2个B .3个C .4个D .5个答案:D 解析:分三种情况进行讨论,根据题意找出每种情况对应的子集的个数,进而得解. 详解:{}1,2,3A ,且A 中至少有一个奇数,∴当A 中只含1不含3时,{}=1,2A ,{}1;当A 中只含3不含1时,{}=3,2A ,{}3;当A 中既含1又含3时,{}=1,3A ,故与题意相符的集合A 共有5个.故选:D.点睛:本题考查集合真子集的定义,掌握真子集的定义是解决本题的关键,属于基础题.4.已知集合A =x|x =2n +3,n∈N},B =4,5,6,7,8,9},则集合A∩B 的子集的个数为( )A .6B .7C .8D .9答案:C解析:求出A∩B 后,由子集的定义可得.详解:因为合A =x|x =2n +3,n∈N},B =4,5,6,7,8,9},所以A∩B=5,7,9},所以所求子集个数为23=8个.故选:C .点睛:本题考查子集的概念,考查交集运算,属于基础题.含有n 个元素的集合12{,,,}n a a a 的子集个数为2n .5.设集合{|10}M x R x =∈≤,3a =,则下列关系正确的是: ( )A .a M ⊆B .a M ∉C .{}a M ∈D .{}a M ⊆答案:D解析:由题意3a =10≤a 是集合M 的元素即可得出结论详解:由题意可知:3a =≤所以a M ∈,{}a M ⊆故选D点睛:本题主要考查了元素与集合的关系和集合与集合的基本关系,属于基础题.6.欧拉公式:10i e π+=因为非常简洁地融合了数学中最基本的五个常数(自然指数的底e ,圆周率π,虚数单位i ,自然数单位1,以及0)而被人们称为世间最美数学公式,由公式中数值组成的集合{},,,1,0A e i π=,则集合A 不含无理数的子集共有A .8个B .7个C .4个D .3个答案:A解析:依题意,即求集合{},1,0i 的子集个数,根据含有n 个元素的集合的子集个数为2n 计算可得.详解:解:{},,,1,0A e i π=,e 、π为无理数则求集合A 不含无理数的子集个数,即求集合{},1,0i 的子集个数.因为集合{},1,0i 中含有3个元素,则其子集有328=个故选:A点睛:本题考查集合的子集个数的计算,属于基础题.7.已知集合20A x⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭,则集合A 的真子集的个数为 A .3B .4C .1D .2答案:C 解析:解方程求得集合A,即可求得其真子集个数.详解: 集合20A x⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭20=,可得2x =±而0x > ,所以2x =即{}2A =则所以集合A 的真子集为∅,有1个故选:C点睛:本题考查了分式方程的解法,真子集的个数,属于基础题.8.已知集合{}|1M x x =>,(){}2|lg 3N x y x x==-,则M N ⋃为( ) A .[)3,+∞B .()1,+∞C .()1,3D .()0,∞+答案:D解析:化简集合N ,根据并集运算即可.详解:由230x x ->,解得03x <<(){}22|lg 3{|30}(0,3)N x y x x x x x ∴==-=->=, ()0,M N ∞∴⋃=+,故选:D点睛:本题主要考查了二次不等式,集合的并集,属于容易题.9.请问下列集合关系式:(1)0φ∈(2){}0φ⊆(3){}0N ⊆中,正确的个数是A .0B .1C .2D .3答案:C解析:由空集的性质、元素与集合、集合与集合之间的关系即可判断.详解: ()1∅是不含有任何元素的一个集合,0为一个元素,故()1错误;()2由于∅是任何集合的子集.故()2正确;()3由于0N ∈ .故{}0N ⊆,()3正确;所以正确的个数为2.故选:C点睛:本题主要考查空集的定义及有关性质:空集是任何集合的子集.属于基础题,易错题.10.如果A=,那么( ) A .B .C .A φ∈D .答案:D详解:试题分析:集合A 中包含数字0,所以结合集合间的关系可知正确考点:元素集合间的关系11.集合2560{|}A x x x =-+=,{|3,}B x x a a A ==∈,则集合B 为( )A .9}B .6}C .{6,9}D .6}或9}或{6,9}答案:C解析:先求出集合A ,再求出集合B ,从而得出选项.详解:因为集合2{|}{23}5,60A x x x =-+==,所以{|3,}{6,9}B x x a a A ==∈=.故选:C.点睛:本题考查集合的知识点,属于基础题.12.下列关系中,表述正确的是( )A .0φ∈B .A φ∈C .Q π∈D .R ⊆答案:D解析:根据元素与集合的关系用∈,集合与集合的关系用⊆,可得结论.详解:解:空集不含任意元素,故A 错误;空集是集合,故B 错误;π是无理数,故C 错误;R ⊆,正确,可得D 正确.故选:D .13.已知全集1234{,,,}U a a a a =,集合A 是集合U 的恰有两个元素的子集,且满足下列三个条件:①若1a A ∈,则2a A ∈;②若2a A ∈,则3a A ∈;③若3a A ∈,则4a A ∉则集合A =( )A .12{,}a aB .13{,}a aC .23{,}a aD .24{,}a a答案:C解析:将集合U 的恰有两个元素的子集的集合全部列出,再检验是否满足①②③即可求解. 详解:因为全集1234{,,,}U a a a a =,集合A 是集合U 的恰有两个元素的子集,则集合A 可能为12{,}A a a =,不满足②;13{,}A a a =,不满足①;14{,}A a a =,不满足①;23{,}A a a =,满足①②③;24{,}A a a =,不满足②;34{,}A a a =,不满足③;所以23{,}A a a =,故选:C.14.集合}{1,2,3,4,5,6U =,}{1,4,5S =,}{2,3,4T =,则()U S C T ⋂的子集个数为A .1B .2C .3D .4答案:D解析:先求出U C T ,再求()U S C T ⋂中元素的个数,进而求出子集的个数.详解:由题可得{}1,5,6U C T =,所以(){}1,5U S C T ⋂=,里面有2个元素,所以子集个数为224=个 故选D点睛:本题考查集合的基本运算,子集的个数为2n 个,n 指元素个数15.在下列各组中的集合M 与N 中, 使M N 的是 A .{}{}13,3,1M N =-=-(,)() B .M =∅,{}0N =C .{}21,M y y x x R ==+∈,{}2(,)1,N x y y x x R ==+∈D .{}21,M y y x x R ==+∈,{}2(1)1,N t t y y R ==-+∈答案:D解析:因为有序数对()13-,与()3,1-不相同,所以A 错误; 因为集合M 是空集不含有任何元素,而0N ∈,所以B 错误;因为集合M 是当21,y x x R =+∈时所得的y 值所构成的集合,而集合N 表示的是当21,y x x R =+∈,所得的有序实数对(),x y 所构成的集合,所以C 错误;因为[)1,M =+∞,[)1,N =+∞,所以D 正确,详解:对于A 选项:有序数对()13-,与()3,1-不相同,所以M N ,故A 错误;对于B 选项:由M =∅得集合M 不含有任何元素,而{}0N =,0N ∈,所以M N ,故B 错误; 对于C 选项:由{}21,M y y x x R ==+∈得集合M 是当21,y x x R =+∈时所得的y 值所构成的集合, 而{}2(,)1,N x y y x x R ==+∈,集合N 表示的是当21,y x x R =+∈,所得的有序实数对(),x y 所构成的集合,所以M N ,故C 错误;对于D 选项,{}{}[)21,11,M y y x x R y y ==+∈=≥=+∞,{}{}[)2(1)1,11,N t t y y R t t ==-+∈=≥=+∞,所以M N ,故D 正确, 故选D.点睛:本题考查集合所表示的元素的意义,在判断时需分清集合中表示的是点集还是数集,理解元素的具体含义是什么,属于基础题.16.设非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈,给出如下四个命题:①若1m =,则{}1S =;②若12m =-,则114l ≤≤;③若12l =,则02m -≤≤;④若1l =,则10m -≤≤或1m =;其中正确的命题个数是( )A .1B .2C .3D .4答案:D解析:根据集合的定义,由m S ∈,l S ∈,得到2m S ∈,2l S ∈,即2m m ≥,21l ≤,然后利用一元二次不等式的解法化简后逐项判断.详解: ∵非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈∴m S ∈,l S ∈,则2m S ∈,2l S ∈,且2m m ≥,21l ≤即0m ≤或1m ≥,01l ≤≤且1m①当1m =时,有1l =,所以{}1s =,故正确; ②当12m =时,214m S =∈,所以114l ≤≤,故正确;③当12l =时,2m S ∈,所以212m ≤,所以02m -≤≤,故正确; ④当1l =时,可知10m -≤≤或1m =,故正确;故选:D点睛:本题主要考查集合的新定义,元素与集合的关系以及一元二次不等式的解法,还考查了逻辑推理、求解问题的能力,属于中档题.17.下列表述正确的是A .{0}∅=B .{0}∅⊆C .{0}∅⊇D .{0}∅∈ 答案:B详解:∅不含有任何元素,0}中含有一个元素0.空集是任何集合的子集,任何非空集合的真子集,所以答案是B .18.若集合{P x N x =∈≤,a = )A .a PB .{}a P ∈C .{}a P ⊆D .a P ∉答案:D解析:由a N =,结合元素与集合、集合与集合的关系即可得解.详解:因为a N =,集合{P x N x =∈≤,所以a P ∉,{}a P ⊆/.故选:D.点睛:本题考查了元素与集合、集合与集合关系的判断,属于基础题.19.已知集合{}|A x y ==,集合{}|0B x x a =-≥,A B ⊆,则a 的取值范围是( )A .[0,)+∞B .[1,)+∞C .(,1]-∞D .(,0]-∞答案:C解析:先分别求得集合A 、B ,再根据集合间的包含关系得出参数的范围.详解:因为{}[)|1A x y ===+∞,,{}[)|0,B x x a a =-≥=+∞,又A B ⊆, 所以1a ≤,所以a 的取值范围是(,1]-∞.故选:C.点睛:本题考查集合的含义和根据集合间的包含关系求参数的范围,属于基础题.20.设集合{|12}M x x =-≤<,{|0}N x x k =-≥,若M N ⊆,则k 的取值范围是( )A .1k ≤-B .1k ≥-C .2k ≤D .2k ≥答案:A解析:详解:由题意可知:{}|N x x k =≥,结合M N ⊆可得:则k 的取值范围是1k ≤- .本题选择A 选项.。

高一数学集合间的基本关系练习题及答案

高一数学集合间的基本关系练习题及答案

1.集合{a, b}的子集有( )之巴公井开创作创作时间:二零二一年六月三十日A.1个B.2个C.3个 D.4个【解析】集合{a, b}的子集有Ø, {a}, {b}, {a, b}共4个, 故选D.【谜底】D2.下列各式中, 正确的是( )A.23∈{x|x≤3} B.23∉{x|x≤3}C.23⊆{x|x≤3} D.{23}{x|x≤3}【解析】23暗示一个元素, {x|x≤3}暗示一个集合, 但23不在集合中, 故23∉{x|x≤3}, A、C不正确, 又集合{23}⃘{x|x≤3}, 故D不正确.【谜底】B3.集合B={a, b, c}, C={a, b, d}, 集合A满足A⊆B, A⊆C.则集合A的个数是________.【解析】若A=Ø, 则满足A⊆B, A⊆C;若A≠Ø, 由A⊆B, A⊆C知A是由属于B且属于C的元素构成, 此时集合A可能为{a}, {b}, {a, b}.【谜底】44.已知集合A={x|1≤x<4}, B={x|x<a}, 若A⊆B, 求实数a的取值集合.【解析】将数集A暗示在数轴上(如图所示), 要满足A⊆B, 暗示数a的点必需在暗示4的点处或在暗示4的点的右边, 所以所求a的集合为{a|a≥4}.一、选择题(每小题5分, 共20分)1.集合A={x|0≤x<3且x∈Z}的真子集的个数是( )A.5 B.6C.7 D.8【解析】由题意知A={0,1,2}, 其真子集的个数为23-1=7个, 故选C.【谜底】C2.在下列各式中毛病的个数是( )①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1}A.1 B.2C.3 D.4【解析】①正确;②错.因为集合与集合之间是包括关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选A.【谜底】A3.已知集合A={x|-1<x<2}, B={x|0<x<1}, 则( )A.A>B B.A BC.B A D.A⊆B【解析】如图所示,, 由图可知, B A.故选C.【谜底】C4.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若ØA, 则A≠Ø. 其中正确的有( )A .0个B .1个C .2个D .3个【解析】 ①空集是它自身的子集;②当集合为空集时说法毛病;③空集不是它自身的真子集;④空集是任何非空集合的真子集.因此, ①②③错, ④正确.故选B.【谜底】 B二、填空题(每小题5分, 共10分)5.已知Ø{x|x 2-x +a =0}, 则实数a 的取值范围是________.【解析】 ∵Ø{x|x 2-x +a =0}, ∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a≥0, a≤14. 【谜底】 a≤146.已知集合A ={-1,3,2m -1}, 集合B ={3, m 2}, 若B ⊆A, 则实数m =________.【解析】 ∵B ⊆A, ∴m 2=2m -1, 即(m -1)2=0∴m=1, 当m =1时, A ={-1,3,1}, B ={3,1}满足B ⊆A.【谜底】 1三、解答题(每小题10分, 共20分)7.设集合A ={x, y}, B ={0, x 2}, 若A =B, 求实数x, y.【解析】 从集合相等的概念入手, 寻找元素的关系, 必需注意集合中元素的互异性.因为A =B, 则x =0或y =0.(1)当x =0时, x 2=0, 则B ={0,0}, 不满足集合中元素的互异性, 故舍去.(2)当y =0时, x =x 2, 解得x =0或x =1.由(1)知x =0应舍去.综上知:x =1, y =0.8.若集合M ={x|x 2+x -6=0}, N ={x|(x -2)(x -a)=0}, 且N ⊆M, 求实数a 的值.【解析】 由x 2+x -6=0, 得x =2或x =-3.因此, M ={2, -3}.若a =2, 则N ={2}, 此时N M ;若a =-3, 则N ={2, -3}, 此时N =M ;若a≠2且a≠-3, 则N ={2, a},此时N 不是M 的子集,故所求实数a 的值为2或-3.9.(10分)已知集合M ={x|x =m +16, m∈Z }, N ={x|x =n 2-13, n∈Z }, P ={x|x =p 2+16, p∈Z }, 请探求集合M 、N 、P 之间的关系.【解析】 M ={x|x =m +16, m∈Z } ={x|x =6m +16, m∈Z }.N ={x|x =n 2-13, n∈Z } =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x =3n -26 n∈Z P ={x|x =p 2+16, p∈Z } ={x|x =3p +16, p∈Z }. ∵3n-2=3(n -1)+1, n∈Z .∴3n-2,3p +1都是3的整数倍加1, 从而N =P.而6m +1=3×2m+1是3的偶数倍加1, ∴M N =P.创作时间:二零二一年六月三十日。

集合间的基本关系练习题含答案

集合间的基本关系练习题含答案

集合间的基本关系练习题(1)1. 如图,已知全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},则图中阴影部分所表示的集合是()A.{3, 4}B.{−2, −1, 0}C.{1, 2}D.{2, 3, 4}2. 已知集合A={−1, 0, 1},则含有元素0的A的子集的个数为()A.2B.4C.6D.83. 设集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},则B=()A.{−1}B.{2}C.{−1, 2}D.{1, 2}4. 已知A={−2, 2011, x2−1},B={0, 2011, x2+3x},且A=B,则x的值为()A.1或−1B.0C.−2D.−15. 定义:设A,B是非空的数集,a∈A,b∈B,若a是b的函数且b也是a的函数,则称a与b是“和谐关系”.如等式b=a2,a∈[0, +∞)中a与b是“和谐关系”,则下列等中a与b是“和谐关系”的是()A.b=sin aa ,a∈(0,π2) B.b=a3+52a2+2a+1,a∈(−2,−23)C.(a−2)2+b2=1,a∈[1, 2]D.|a|+|b|=1,a∈[−1, 1]6. 已知集合:①{0};②{⌀};③{x|3m<x<m};④{x|a+2<x<a};⑤{x|x2+ 2x+5=0, x∈R}.其中,一定表示空集的是________(填序号).7. 当a满足________时,集合A={x|3x−a<0, x∈N+}表示集合{1}.8. 已知集合M={1, 2, 3, ..., n}(n>1, n∈N∗),则M的所有非空子集的元素和为________(只需写出数学表达式)=a+2},B={(x,y)|(a2−4)x+(a−2)y=7},若A∩9. 已知集合A={(x,y)|y−2x−1B=⌀,则实数a=________.10. 集合A={1, 2}共有________子集.11. 已知集合A={1,2,3,4}.(1)若M⊆A,且M中至少有一个偶数,则这样的集合M有多少个?(2)若B={x|ax−3=0},且B⊆A,求实数a的取值集合.12. 已知集合A={x|2m−10<x<m−1},B={x|2<x<6}.(1)若m=4,求A∩B;(2)若A⊆B,求m的取值范围.参考答案与试题解析集合间的基本关系练习题(1)一、选择题(本题共计 5 小题,每题 5 分,共计25分)1.【答案】A【考点】Venn图表达集合的关系及运算【解析】由阴影部分可知对应的集合为B∩∁U A,即可得到结论.【解答】解:阴影部分可知对应的集合为B∩(∁U A),∵全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},∴B∩(∁U A)={3, 4},故选A.2.【答案】B【考点】元素与集合关系的判断【解析】由集合子集的定义找出集合A的所有子集可得答案,【解答】已知集合A={−1, 0, 3},则由集合的子集定义可得A集合的所有子集为:⌀,{−1},{1},8},1},1},4,1},则含有元素0的A的子集为{6},{−1,{0,{−2,0,个数为4个,3.【答案】C【考点】集合的包含关系判断及应用【解析】本题的关键是认清集合B的研究对象,利用列举法写出集合B的元素即可.【解答】解:∵集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},−1∈A,且2−(−1)=3∉A,故1∈B;1∈A,但2−1=1∈A,不满足题意;2∈A,且2−2=0∉A,故2∈B;故B={−1, 2}.故选C.4.【答案】D【考点】集合的相等【解析】直接应用集合相等则集合中的元素完全相同来解决问题.【解答】解:∵A=B,即A和B中的元素完全相同,∴有{x2−1=0x2+3x=−2,解得:x=−1.故选D.5.【答案】A【考点】元素与集合关系的判断【解析】只要判断所给出的函数单调即可.【解答】解:A.∵a∈(0,π2),则a>sin a,∴b′=a cos a−sin aa2=cos a(a−sin a)a2>0,因此函数b在a∈(0,π2)上单调递增,正确;B.∵a∈(−2,−23),b′=3a2+5a+2=(3a+2)(a+1),∴a∈(−2, −1)时单调递增;a∈(−1, −23)时单调递减,因此不符合题意;C.∵(a−2)2+b2=1,a∈[1, 2],∴b=±√1−(a−2)2,b不是a的函数,舍去;D.∵|a|+|b|=1,a∈[−1, 1],∴b=±(1−|a|),b不是a的函数,舍去.故选:A.二、填空题(本题共计 5 小题,每题 5 分,共计25分)6.【答案】④⑤【考点】空集的定义、性质及运算【解析】利用单元素集、空集的定义直接求解.【解答】①{0}是单元素集;②{⌀}是单元素集;③当m<0时,{x|8m<x<m}不是空集;④{x|a+2<x<a}是空集;⑤{x|x2+7x+5=0, x∈R}是空集.∴一定表示空集的是④⑤.7.【答案】【考点】集合的含义与表示【解析】先解不等式3x−a<0,得,根据已知条件需限制a为:1<≤2,解不等式即得a满足的条件.【解答】解3x−a<0得.根据已知条件知:x=1,∴1<.解得3<a≤6.8.【答案】(n2+n)⋅2n−2【考点】子集与真子集【解析】由题意可知,集合中的元素出现的次数都是相等的,从而确定每个元素出现的次数,从而利用等差数列求和公式求和.【解答】若M={1, 2, 3, ...n},则集合M的所有非空子集中,集合M中的任何一个元素出现的次数都是相等的;考查1出现的次数,可看成集合{2, 3, 4, ...n}的子集个数,故共有2n−1个1,故M的所有非空子集的元素和为2n−1(1+2+3+4+...+n)=(n2+n)⋅2n−29.【答案】【考点】集合关系中的参数取值问题【解析】此题暂无解析【解答】此题暂无解答10.【答案】4【考点】子集与真子集【解析】对于有限集合,我们有以下结论:若一个集合中有n个元素,则它有2n个子集.【解答】解:集合A有2个元素,故有22=4个子集.故答案为:4.三、 解答题 (本题共计 2 小题 ,每题 5 分 ,共计10分 )11.【答案】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.(2)因为B ⊆A ,所以集合B 有两种可能:B =⌀,B ≠⌀.当B =⌀时,显然a =0,当B ≠⌀时,则a ≠0,得x =3a ,则有3a =1或3a =2或3a =3或3a =4, 解得a =3或a =32或a =1或a =34.综上,实数a 的取值集合是{0,34,1,32,3}.【考点】集合的包含关系判断及应用【解析】此题暂无解析【解答】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.12.【答案】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.【考点】交集及其运算集合的包含关系判断及应用【解析】(1)当m =3时,化简A ={x 2−3x −10≤0}=[−2, 5],B =(2, 7);从而求交集.(2)讨论当B ≠⌀时,{m −1<2m +1m −1≥−22m +1≤5;当B =⌀时,m −1≥2m +1,从而解得.【解答】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.。

1.2-集合间的基本关系

1.2-集合间的基本关系
3:已知集合A={xIx2-1=0},
B={xIx2-2ax+b=0},若B A且B≠Φ,
求a,b的值。
反馈练 习 用最恰当的符号连接下列集合:
N___Z N___Q R___Z R___Q
0___ ___0 ___
例: 判断正误
1.空集没有子集 × 2.空集是任何一个集合的真子集 × 3.任一集合必有两个或两个以上的子集 ×
(3)A={n n为12的正约数}与B={1,3,2,4,6,12}
(4) A m m 2k 1, k Z
B n n 4k 1, k Z
真子集的定义
对于两个集合A、B,
若集合 A B ,
并且B中至少有一个元素不属于A, 那么称集合A是集合B的真子集。 记作:A B(或B A) 读作:A真包含于B
2 A x x a2 2 a1 ,a R ,B y y b2 2b ,b R
2、课本P10练习1.2第一题
再观察下列两个集合,你发现什么?
③ A={x∣x是两条边相等的三角形} B={x∣x是等腰三角形}
④ A={2,4,6} B={6,4,2}
2.集合间的相等关系
如果集合A是集合B的子集,且 集合B是集合A的子集,此时集合A 与集合B中的元素是一样的,因此两 集合相等。
(或B真包含A)
规定:空集是任何非空集合的真子集。
(1)写出集合 a的所有子集和真子集。 (2)写出集合 a,b的所有子集和真子集。
(3)写出集合 a,b,c 的所有子集和真子集。
(4) 根据(1)(2)(3)你能猜想出 什么规律?
一般地,若集合A中有n个元素,则集合A
2 2 有 n个子集,2n-1个非空子集, n-1个
在平面上封闭曲线的内部代表集 合,这种图称为Venn图。

高中数学教师资格证笔试练题:集合间的基本关系(练习)

高中数学教师资格证笔试练题:集合间的基本关系(练习)

1.2 集合间的基本关系一、单选题1.下列各式中:①{}{}00,1,2∈;②{}{}0,1,22,1,0⊆;③{}0,1,2∅⊆;④{}0∅=;⑤{}{}0,1(0,1)=;⑥{}00=.正确的个数是( )A .1B .2C .3D .42.集合{}=1,2,3A 的子集个数为( )A .3B .6C .7D .83.满足条件∅ M ⫋{a ,b ,c }的集合M 共有( )A .3个B .6个C .7个D .8个 4.已知集合{}20,A x x x x R =+=∈,则集合A 的非空子集个数是( )A .1B .2C .3D .45.下列表述正确的有( )①空集没有子集;②任何集合都有至少两个子集;③空集是任何集合的真子集;④若∅是A 的真子集,则A ≠∅.A .0个B .1个C .2个D .3个 6.已知集合{}123,,A a a a =的所有非空真子集的元素之和等于9,则123a a a ++=( ) A .1 B .2 C .3 D .67.设集合A ={-1,1},集合B ={x |x 2-2ax +1=0},若B ≠∅,B ⊆A ,则a 等于( )A .-1B .0C .1D .±1二、多选题8.下列关系式正确的为( )A .{}{},,a b b a ⊆B .{}0=∅C .{}00∈D .{}0∅⊆ 9.下列集合的关系,正确的是( )A .{}∅∅B .{}∅=∅C .{}0⊇∅D .{}∅∈∅10.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 为( )A .{1,2}B .{2,3}C .{1,2,4}D .{2,3,4}11.已知集合{}{2,A x ax B =≤=-,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .0 D .2 12.已知集合{}12A x x =<<,{}232B x a x a =-<<-,下列说法正确的是( ) A .不存在实数a 使得A B =B .当4a =时,A B ⊆C .当04a ≤≤时,B A ⊆D .存在实数a 使得B A ⊆三、填空题13.已知集合{0,1}A =,则集合A 的子集个数为_____________.14.已知集合2,1A x Z x Z x ⎧⎫=∈∈⎨⎬-⎩⎭,则集合A 的真子集的个数为_________ 15.已知集合{1,2,}M m =-,{1,3}N =,若N M ⊆,则实数m 的值为_________. 16.设集合{}|23A x x =-≤,{}|B x x t =<,若A B ⊆,则实数t 的取值范围是_____.17.已知集合212|,,{|1,}33n n A x x n Z B x x n Z +⎧⎫==∈==+∈⎨⎬⎩⎭,则集合A 、B 的关系为A ____(B 从“,,⊆⊇=”选择合适的符号填空).四、解答题18.指出下列各对集合之间的关系:(1)A ={-1,1},B ={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A ={x |x 是等边三角形},B ={x |x 是等腰三角形};(3)A ={x |-1<x <4},B ={x |x -5<0};(4)M ={x |x =2n -1,n ∈N *},N ={x |x =2n +1,n ∈N *}.19.已知集合M 满足{}{}1,21,2,3,4,5M ⊆⊆,求所有满足条件的集合M .20.已知集合{}23,21,1A a a a =-++,集合{}0,1,B x =.(1)若3A -∈,求a 的值;(2)是否存在实数a ,x ,使A B =.21.已知集合{|4}A x x a =-=,集合{}1,2,B b =(1)是否存在实数a ,使得对任意实数b 都有A B ⊆成立?若存在,求出对应的a 值;若不存在,说明理由.(2)若A B ⊆成立,写出所有实数对(),a b 构成的集合.参考答案1.B解:①集合之间的关系是包含与不包含,因此{0}{0∈,1,2},不正确,应该为{0}{0,1,2};②{0,1,2}{2⊆,1,0},正确;③{0∅⊆,1,2},正确;④∅不含有元素,因此{0}∅;⑤{0,1}与{(0,1)}的元素形式不一样,因此不正确;⑥元素与集合之间的关系是属于与不属于的关系,应该为0{0}∈,因此不正确. 综上只有:②,③正确.2.D解:由题意得集合A 的子集个数为328=.3.B解:满足条件∅ M ⫋{a ,b ,c }的集合M 有:{a },{b },{c },{a ,b },{a ,c },{b ,c }.共6个,∴满足条件∅⫋M ⫋{a ,b ,c }的集合M 共有6个.4.C{}{}20,1,0A x x x x R =+=∈=-, 所以集合A 的非空子集个数为2213-=,5.B因为∅⊆∅,故①错;∅只有一个子集,即它本身.故②错;空集是任何集合的子集,是任何非空集合的真子集,故③错;空集是任何非空集合的真子集,故④正确,6.C解:集合{}123,,A a a a =的所有非空真子集为:{}{}{}{}{}{}123121323,,,,,,,,a a a a a a a a a ,则所有非空真子集的元素之和为:()12312132312339a a a a a a a a a a a a ++++++++=++=,所以1233a a a .7.D当B ={-1}时,x 2-2ax +1=0有两相等的实根-1,则()()()2224012110a a ⎧∆=--=⎪⎨---+=⎪⎩,解得a =-1; 当B ={1}时,x 2-2ax +1=0有两相等的实根1,则()222401210a a ⎧∆=--=⎪⎨-+=⎪⎩,解得a =1; 当B ={-1,1}时,x 2-2ax +1=0有两个不相等的实根-1,1,则()()()222240*********a a a ⎧∆=-->⎪⎪---+=⎨⎪-+=⎪⎩,无解,.综上:a =±1. 8.ACD解:对于选项A ,由于任何集合是它本身的子集,所以{}{},,a b b a ⊆,故A 正确;对于选项B ,{}0是指元素为0的集合,而∅表示空集,是指不含任何元素的集合,所以{}0≠∅,故B 错误;对于选项C ,{}0是指元素为0的集合,所以{}00∈,故C 正确;对于选项D ,由于空集是任何集合的子集,所以{}0∅⊆,故D 正确.9.ACDA .空集是任意非空集合的真子集,故A 正确;C.空集是任意集合的子集,因为{}0是含有一个元素的集合,所以{}0⊇∅正确;D.空集是空集构成的集合中的元素,满足属于关系,故D 正确,B 中左边是空集,右边是含有一个元素的集合,不相等,B 不正确;10.AC{}{}2320,1,2A x x x x R =-+=∈=∣ {}{05,}1,2,3,4B x x x N =<<∈=∣,A CB ⊆⊆,故四个选项中,{1,2}和{1,2,4}满足题意.11.ABC当0a =时,{}2A x ax R =≤=,显然B A ⊆,所以选项C 符合题意;当0a >时,{}22A x ax x x a ⎧⎫=≤=≤⎨⎬⎩⎭,若B A ⊆2a a ⇒即0a <≤B 符合题意;当0a <时,{}22A x ax x x a ⎧⎫=≤=≥⎨⎬⎩⎭,若B A ⊆,所以有221a a -≥⇒≥-,即10a -≤<,所以选项A 符合题意,故选:ABC12.AD选项A :若集合A B =,则有231,22,a a -=⎧⎨-=⎩,因为此方程组无解,所以不存在实数a 使得集合A B =,故选项A 正确.选项B :当4a =时,{}52B x x =<<=∅,不满足A B ⊆,故选项B 错误.若B A ⊆,则①当B =∅时,有232a a -≥-,1a ≥;②当B ≠∅时,有1,231,22a a a <⎧⎪->⎨⎪-<⎩此方程组无实数解;所以若B A ⊆,则有1a ≥,故选项C 错误,选项D 正确.故选:AD .13.4因为A 中元素个数为2,故其子集的个数为224=,14.15 因为21Z x ∈-,所以x -1是2的因数,即x -1可能是-1,-2,1,2,则2,1A x Z x Z x ⎧⎫=∈∈⎨⎬-⎩⎭={-1,0,2,3},所以真子集的个数为24-1=15.15.3-因为集合{1,2,}M m =-,{1,3}N =,且N M ⊆,所以3m -=,得3m =-,16.(5,)+∞ 由题意,集合{}|23{|15}A x x x x =-≤=-≤≤,又由{}|B x x t =<,且A B ⊆,所以5t >,即实数t 的取值范围是(5,)+∞.17.=解:由集合A 得:1|(21),3A x x n n Z ⎧⎫==+∈⎨⎬⎩⎭, 由集合B 得:1|(23),3B x x n n Z ⎧⎫==+∈⎨⎬⎩⎭, {|21x x n =+,}{|23n Z x x n ∈==+,}n Z ∈, A B ∴=,18.(1)集合A 的代表元素是数,集合B 的代表元素是有序实数对,故A 与B 之间无包含关系. (2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B . (3)集合B ={x |x <5},用数轴表示集合A ,B 如图所示,由图可知A B .(4)由列举法知M ={1,3,5,7,…},N ={3,5,7,9,…},故N M .19.解:①当M 中含有2个元素时,M 为{}1,2;②当M 中含有3个元素时,M 为{}1,2,3,{}1,2,4,{}1,2,5;③当M 中含有4个元素时,M 为{}1,2,3,4,{}1,2,3,5,{}1,2,4,5;④当M 中含有5个元素时,M 为{}1,2,3,4,5.故满足条件的集合M 为{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5,{}1,2,4,5,{}1,2,3,4,5.20.(1)2a =-;(2)不存在.(1)由题意,33a -=-或213a +=-,解得0a =或2a =-,当0a =时,{}3,1,1A =-,不成立;当2a =-时,{}5,3,5A =--,成立;∴2a =-.(2)由题意,210a +≠,若30a -=,则3a =,{}0,7,10A B =≠,不合题意;若210a +=,则12a =-,750,,24A B ⎧⎫=-≠⎨⎬⎩⎭,不合题意; ∴不存在实数a ,x ,使得A B =.21.(1)不存在,理由见解析;(2){(5,9),(6,10),(3,7),(2,6)}----.解:(1)由题意,集合{|4}A x x a =-={}4,4a a =-+,因为b 是任意实数,要使A B ⊆,必有4142a a -=⎧⎨+=⎩或4241a a -=⎧⎨+=⎩, 两个方程组都没有实数解,所以不存在满足条件的实数a .(2)由(1)知{}4,4A a a =-+,要使A B ⊆,则满足414a a b -=⎧⎨+=⎩或424a a b -=⎧⎨+=⎩或441a b a -=⎧⎨+=⎩或442a b a -=⎧⎨+=⎩, 解得59a b =⎧⎨=⎩或610a b =⎧⎨=⎩或37a b =-⎧⎨=-⎩或26a b =-⎧⎨=-⎩, 所以实数对(),a b 构成的集合为()()()(){}596103726----,,,,,,,.。

集合间的基本关系练习题

集合间的基本关系练习题

集合间的基本关系练习题集合间的基本关系一、选择题1.集合 $A=\{x\leq x<3 \text{ 且 } x\in Z\}$ 的真子集的个数为()A。

5 B。

6 C。

7 D。

82.已知集合 $A=\{x-1<x<2\}$,$B=\{x<x<1\}$,则()A。

$A>B$ B。

$A\subseteq B$ C。

$A\capB=\varnothing$ D。

$A$ 与 $B$ 的关系不确定3.已知 $M=\{1,2,a^2-3a-1\}$,$N=\{1,3\}$,若 $3\inM$ 且 $N\nsubseteq M$,则 $a$ 的取值为()A。

1 B。

4 C。

$-1$ 或 $-3$ D。

$-4$ 或 14.已知集合$A=\{x^3=3k,k\in Z\}$,$B=\{x^6=k,k\in Z\}$,则()A。

$A>B$ B。

$A\subseteq B$ C。

$A\capB=\varnothing$ D。

$A$ 与 $B$ 的关系不确定5.满足 $\{a\}\subseteq M\subseteq \{a,b,c,d\}$ 的集合$M$ 共有()A。

6个 B。

7个 C。

8个 D。

15个6.已知集合 $A=\{x_1<x<2\}$,$B=\{x<x<a\}$,满足$A\cap B\neq \varnothing$,则()A。

$a\geq 2$ B。

$a\leq 1$ C。

$a\geq 1$ D。

$a\leq 2$二、填空题1.集合 $A$ 中有 $m$ 个元素,若在 $A$ 中增加一个元素,则它的子集增加的个数为 $\underline{\qquad}$。

2.设 $A=\{1,3,a\}$,$B=\{1,a^2-a+1\}$,若 $B\subseteqA$,则 $a$ 的取值为 $\underline{\qquad}$。

3.已知集合 $P=\{x|x^2=1\}$,$Q=\{x|ax=1\}$,若$Q\subseteq P$,则 $a$ 的取值 $\underline{\qquad}$。

集合间的基本关系(经典练习及答案详解)

集合间的基本关系(经典练习及答案详解)

集合间的基本关系1.(2020年福建高一期中)现有四个判断:2⊆{1,2};∅∈{0};{ 5 }⊆Q ;∅{0}.其中正确的个数是( )A .2B .1C .4D .3 【答案】B 【解析】元素与集合之间不能用包含关系,故2⊆{1,2}错误;∅与{0}是集合之间的关系,不能用“∈”,故∅∈{0}错误;因为 5 ∉Q ,所以{5}⊆Q 错误;空集是任何非空集合的真子集,故∅{0}正确.故选B .2.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅【答案】B 【解析】因为A ⊇B ,所以⎩⎪⎨⎪⎧ a -1≤3,a +2≥5.所以3≤a ≤4. 3.(2021年北京期末)下列正确表示集合M ={x |x 2-x =0}和N ={-1,0,1}关系的Venn 图是( )A BC D 【答案】D 【解析】由x 2-x =0,解得x =0或1,所以M N .故选D .4.(2020年铜仁高一期中)设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪ 62+x ∈N ,则集合B 的子集个数为( ) A .3B .4C .8D .16【答案】D 【解析】根据题意,集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪ 62+x ∈N ={-1,0,1,4},有4个元素,其子集有24=16个.故选D .5.(2021年昆明期中)下列各式中,正确的个数是( )①{0}∈{0,2,4};②{0,2,4}⊆{4,2,0};③∅⊆{0,2,4};④∅={0};⑤{0,2}={(0,2)};⑥0={0}.A.1 B.2C.3 D.4【答案】B【解析】对于①,是集合与集合的关系,应为{0}{0,2,4};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,2}是含有两个元素0与2的集合,而{(0,2)}是以有序数组(0,2)为元素的单元素集合,所以{0,2}与{(0,2)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③正确.6.用符号“∈”或“⊆”填空:若A={2,4,6},则4______A,{2,6}______A.【答案】∈⊆【解析】因为集合A中有4这个元素,所以4∈A,因为2∈A,6∈A,所以{2,6}⊆A.故答案为∈,⊆.7.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为________.【答案】6【解析】集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.8.已知集合A={x|x<3},集合B={x|x<m},且A⊆B,则实数m满足的条件是________.【答案】m≥3【解析】将数集A在数轴上表示出来,如图所示,要满足A⊆B,表示数m的点必须在表示3的点处或在其右边,故m≥3.9.设集合A={1,3,a},B={1,a2-a+1},且B⊆A,求a的值.解:因为B⊆A,所以a2-a+1=3或a2-a+1=a.当a2-a+1=3时,解得a=-1或a=2.经检验,满足题意.当a2-a+1=a时,解得a=1,此时集合A中的元素1重复,故a=1不合题意.综上所述,a=-1或a=2.B级——能力提升练10.(多选)图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,则()A.A为小说B.B为文学作品C .C 为散文D .D 为叙事散文【答案】AB 【解析】由Venn 图可得A B ,C D B ,A 与D 之间无包含关系,A 与C 之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A 为小说,B 为文学作品,C 为叙事散文,D 为散文.11.已知集合A ={x |x =3k ,k ∈Z },B ={x |x =6k ,k ∈Z },则A 与B 之间的关系是( )A .A ⊆BB .A =BC .A BD .A B【答案】D 【解析】对于x =3k (k ∈Z ),当k =2m (m ∈Z )时,x =6m (m ∈Z );当k =2m -1(m ∈Z )时,x =6m -3(m ∈Z ).由此可知A B .12.(2020年太原高一期中)设集合A ={a ,b },B ={0,a 2,-b 2},若A ⊆B ,则a -b =( )A .-2B .2C .-2或2D .0【答案】C 【解析】因为集合A ={a ,b },B ={0,a 2,-b 2},且A ⊆B ,易知a ≠0且b ≠0.当 ⎩⎪⎨⎪⎧ a =a 2,b =-b 2时,因为a ≠0且b ≠0,所以⎩⎪⎨⎪⎧ a =1,b =-1,此时集合A ={1,-1},集合B ={0,1,-1},符合题意,所以a -b =2;当⎩⎪⎨⎪⎧ a =-b 2,b =a 2时,因为a ≠0且b ≠0,所以⎩⎪⎨⎪⎧a =-1,b =1,此时集合A ={1,-1},集合B ={0,1,-1},符合题意,所以a -b =-2.综上所求,a -b =2或-2.故选C .13.(2020年宁波高一期中)已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |y =12x +3∈Z ,则列举法表示集合A =________,集合A 的真子集有________个.【答案】{0,1,3,9} 15 【解析】因为集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪ y =12x +3∈Z ,所以列举法表示集合A ={0,1,3,9},集合A 的真子集有24-1=15个.故答案为{0,1,3,9},15.14.(2020年安康高一期中)定义集合运算:A ⊗B ={z |z =x +y ,x ∈A ,y ∈B },设A ={0,1},B ={2,3},则集合A ⊗B 的真子集的个数为________.【答案】7 【解析】因为A ⊗B ={z |z =x +y ,x ∈A ,y ∈B },A ={0,1},B ={2,3},所以集合A ⊗B ={2,3,4},所以集合A ⊗B 的真子集的个数为23-1=7.15.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.解:(1)若A B ,由图可知a >2.故a 的取值范围为{a |a >2}.(2)若B ⊆A ,由图可知1≤a ≤2.故a 的取值范围为{a |1≤a ≤2}.C 级——探究创新练16.已知集合P ={x |x 2-3x +b =0},Q ={x |(x +1)(x 2+3x -4)=0}.(1)若b =4,是否存在集合M 使得PM ⊆Q ?若存在,求出所有符合题意的集合M ,若不存在,请说明理由;(2)P 能否成为Q 的一个子集?若能,求出b 的值或取值范围,若不能,请说明理由. 解:(1)因为集合Q ={x |(x +1)(x 2+3x -4)=0}={x |(x +1)(x +4)(x -1)=0}={-1,1,-4}, 当b =4时,集合P =∅,再由 P M ⊆Q 可得,M 是Q 的非空子集,共有 23-1=7 个,分别为{-1},{1},{-4},{-1,1},{-1,4},{1,4},{-1,1,-4}.(2)因为P ⊆Q ,对于方程x 2-3x +b =0,当P =∅,Δ=9-4b <0时,有b >94. 当P ≠∅,Δ=9-4b ≥0时,方程x 2-3x +b =0有实数根,且实数根是-1,1,-4中的数, 若-1是方程x 2-3x +b =0的实数根,则有b =-4,此时P ={-1,4},不满足P ⊆Q ,故舍去;若1是方程x 2-3x +b =0的实数根,则有b =2,此时P ={1,2},不满足P ⊆Q ,故舍去; 若-4是方程x 2-3x +b =0的实数根,则有b =-28,此时P ={-4,7},不满足P ⊆Q ,故舍去.综上可得,实数b 的取值范围为⎩⎨⎧⎭⎬⎫b ⎪⎪b >94.。

集合间的基本关系试题(含答案)

集合间的基本关系试题(含答案)

集合间的基本关系试题(含答案)1.“A⊆B”不成立的含义是A中至少有一个元素不属于B,因此选C。

2.根据xy>0知x与y同号,又x+y<0,因此x与y同为负数,等价于M=P,因此选C。

3.A={-1,1},B={0,1,2,3},A⊆C,B⊆C,因此集合C中必含有A与B的所有元素-1,0,1,2,3,故C中至少有5个元素,因此选C。

4.由于B⊆A,因此x2∈A,又x2≠1,因此x2=3或x2=x,因此x=±3或x=0,因此满足条件的实数x的个数是3,因此选C。

5.由于两集合代表元素不同,因此M与P互不包含,因此选D。

6.由于A⊆B,A⊆C,因此集合A中的元素只能由a或b构成,因此这样的集合共有22=4个,即A=∅,或A={a},或A={b}或A={a,b},因此选C。

7.M={x|x=2k+4,k∈Z},N={x|x=4k+2,k∈Z},因为2k+4=2(k+2)和4k+2=2(2k+1)都是偶数,因此M和N都是偶数的集合,但M和N不相等,因为M中的元素都比N中的元素大2,因此选B。

1b,b∈Z},则A与B的交集为________.答案]空集或∅解析]A的元素形如x=a+6a∈Z,而B的元素形如x=231b,b∈Z,所以A与B的交集为空集或∅.15.集合A={x|2x+1<5},B={x|x2-3x+2≥0},则A∩B=________.答案][1,2)解析]2x+1<5得x<2,x2-3x+2≥0得x≤1或x≥2,故A∩B=[1,2).16.集合A={x|x2-5x+6<0},B={x|2x-1≥0},则A∩B=________.答案][1,2)∪(3,+∞)解析]x2-5x+6<0得x∈(2,3),2x-1≥0得x≥12故A∩B=[1,2)∪(3,+∞).17.集合A={x|2x+1<5},B={x|x2-3x+2≥0},则A∪B=________.答案](-∞,1]∪[2,+∞)解析]2x+1<5得x<2,x2-3x+2≥0得x≤1或x≥2,故A∪B=(-∞,1]∪[2,+∞).18.集合A={x|x<2},B={x|x>1},则A×B=________.答案]{(x,y)|x<2,y>1}解析]A×B={(x,y)|x∈A,y∈B}={(x,y)|x<2,y>1}.16.已知 $A=\{x\in R|x5\}$,$B=\{x\in R|a\leq x<a+4\}$,求 $A,B$ 的关系并求实数 $a$ 的取值范围。

集合间的基本关系试题(含答案)

集合间的基本关系试题(含答案)

一、选择题1.对于集合A ,B ,“A ⊆B ”不成立的含义是( )A .B 是A 的子集B .A 中的元素都不是B 的元素C .A 中至少有一个元素不属于BD .B 中至少有一个元素不属于A[答案] C[解析] “A ⊆B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C.2.集合M ={(x ,y )|x +y <0,xy >0},P ={(x ,y )|x <0,y <0}那么( )A .P MB .M PC .M =PD .M P [答案] C[解析] 由xy >0知x 与y 同号,又x +y <0∴x 与y 同为负数∴⎩⎨⎧ x +y <0xy >0等价于⎩⎪⎨⎪⎧x <0y <0∴M =P . 3.设集合A ={x |x 2=1},B ={x |x 是不大于3的自然数},A ⊆C ,B ⊆C ,则集合C 中元素最少有( )A .2个B .4个C .5个D .6个[答案] C[解析] A ={-1,1},B ={0,1,2,3},∵A ⊆C ,B ⊆C ,∴集合C 中必含有A 与B 的全部元素-1,0,1,2,3,故C 中至少有5个元素.4.若集合A ={1,3,x },B ={x 2,1}且B ⊆A ,则满意条件的实数x 的个数是( )A .1B .2C .3D .4[答案] C[解析]∵B⊆A,∴x2∈A,又x2≠1∴x2=3或x2=x,∴x=±3或x=0.故选C.5.已知集合M={x|y2=2x,y∈R}和集合P={(x,y)|y2=2x,y∈R},则两个集合间的关系是()A.M P B.P MC.M=P D.M、P互不包含[答案] D[解析]由于两集合代表元素不同,因此M与P互不包含,故选D.6.集合B={a,b,c},C={a,b,d};集合A满意A⊆B,A⊆C.则满意条件的集合A的个数是()A.8 B.2C.4 D.1[答案] C[解析]∵A⊆B,A⊆C,∴集合A中的元素只能由a或b构成.∴这样的集合共有22=4个.即:A=∅,或A={a},或A={b}或A={a,b}.7.设集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则()A.M=N B.M NC.M N D.M与N的关系不确定[答案] B[解析]解法1:用列举法,令k=-2,-1,0,1,2…可得M={…-34,-14,14,34,54…},N={…0,14,12,34,1…},∴M N,故选B.解法2:集合M的元素为:x=k2+14=2k+14(k∈Z),集合N的元素为:x=k4+12=k+24(k∈Z),而2k+1为奇数,k+2为整数,∴M N,故选B.[点评]本题解法从分式的结构动身,运用整数的性质便利地获解.留意若k是随意整数,则k+m(m是一个整数)也是随意整数,而2k+1,2k-1均为随意奇数,2k 为随意偶数.8.集合A={x|0≤x<3且x∈N}的真子集的个数是()A.16 B.8C.7 D.4[答案] C[解析]因为0≤x<3,x∈N,∴x=0,1,2,即A={0,1,2},所以A的真子集个数为23-1=7.9.(09·广东文)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()[答案] B[解析]由N={x|x2+x=0}={-1,0}得,N M,选B.10.假如集合A满意{0,2}A⊆{-1,0,1,2},则这样的集合A个数为()A.5 B.4C.3 D.2[答案] C[解析]集合A里必含有元素0和2,且至少含有-1和1中的一个元素,故A={0,2,1},{0,2,-1}或{0,2,1,-1}.二、填空题11.设A={正方形},B={平行四边形},C={四边形},D={矩形},E={多边形},则A 、B 、C 、D 、E 之间的关系是________.[答案] A D B C E[解析] 由各种图形的定义可得.12.集合M ={x |x =1+a 2,a ∈N *},P ={x |x =a 2-4a +5,a ∈N *},则集合M 与集合P 的关系为________.[答案] M P[解析] P ={x |x =a 2-4a +5,a ∈N *}={x |x =(a -2)2+1,a ∈N *}∵a ∈N * ∴a -2≥-1,且a -2∈Z ,即a -2∈{-1,0,1,2,…},而M ={x |x =a 2+1,a ∈N *},∴M P .13.用适当的符号填空.(∈,∉,⊆,⊇,,,=) a ________{b ,a };a ________{(a ,b )};{a ,b ,c }________{a ,b };{2,4}________{2,3,4};∅________{a }.[答案] ∈,∉,,, *14.已知集合A =⎩⎨⎧⎭⎬⎫x |x =a +16,a ∈Z , B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z }.则集合A ,B ,C 满意的关系是________(用⊆,,=,∈,∉,⃘中的符号连接A ,B ,C ).[答案] A B =C[解析] 由b 2-13=c 2+16得b =c +1,∴对随意c ∈Z 有b =c +1∈Z .对随意b ∈Z ,有c =b -1∈Z ,∴B =C ,又当c =2a 时,有c 2+16=a +16,a ∈Z .∴A C .也可以用列举法视察它们之间的关系.15.(09·北京文)设A是整数集的一个非空子集,对于k∈A,假如k-1∉A,那么k 是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的全部集合中,不含“孤立元”的集合共有______个.[答案] 6[解析]由题意,要使k为非“孤立元”,则对k∈A有k-1∈A.∴k最小取2.k-1∈A,k∈A,又A中共有三个元素,要使另一元素非“孤立元”,则其必为k +1.所以这三个元素为相邻的三个数.∴共有6个这样的集合.三、解答题16.已知A={x∈R|x<-1或x>5},B={x∈R|a≤x<a+4},若A B,求实数a的取值范围.[解析]如图∵A B,∴a+4≤-1或者a>5.即a≤-5或a>5.17.已知A={x|x<-1或x>2},B={x|4x+a<0},当B⊆A时,求实数a的取值范围.[解析]∵A={x|x<-1或x>2},B={x|4x+a<0}={x|x<-a 4},∵A⊇B,∴-a4≤-1,即a≥4,所以a的取值范围是a≥4.18.A={2,4,x2-5x+9},B={3,x2+ax+a},C={x2+(a+1)x-3,1},a、x∈R,求:(1)使A={2,3,4}的x的值;(2)使2∈B,B A成立的a、x的值;(3)使B=C成立的a、x的值.[解析](1)∵A={2,3,4} ∴x2-5x+9=3解得x =2或3(2)若2∈B ,则x 2+ax +a =2又B A ,所以x 2-5x +9=3得x =2或3,将x =2或3分别代入x 2+ax +a =2中得a =-23或-74(3)若B =C ,则⎩⎪⎨⎪⎧x 2+ax +a =1①x 2+(a +1)x -3=3② ①-②得:x =a +5 代入①解得a =-2或-6此时x =3或-1.*19.已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集,若各元素都减2后,则变为B 的一个子集,求集合C .[解析] 由题设条件知C ⊆{0,2,4,6,7},C ⊆{3,4,5,7,10},∴C ⊆{4,7},∵C ≠∅,∴C ={4},{7}或{4,7}.。

集合的基本关系练习题(含答案解析)

集合的基本关系练习题(含答案解析)

一、选择题1.下列四个结论中,正确的是( )A.0={0}B.0∈{0}C.0⊆{0}D.0∈{∅}【解析】选B.{0}是含有1个元素0的集合,故0∈{0}.2.如果M={x|x+1>0},则( )A.∅∈MB.∅=MC.{0}∈MD.{0}⊆M【解析】选D.M={x|x+1>0}={x|x>-1},所以{0}⊆M.3.下列四个集合中,是空集的是( )A.{x|x+3=3}B.{(x,y)|y2=-x2,x,y∈R}C.{x|x2≤0}D.{x|x2-x+1=0,x∈R}【解析】选 D.对A,{x|x+3=3}={0};对B,{(x,y)|y2=-x2,x,y∈R}={(0,0)};对C,{x|x2≤0}={0};对D,由于Δ=(-1)2-4=-3<0,即方程x2-x+1=0无解,故{x|x2-x+1=0,x∈R}=∅.4.已知集合A={x|3≤x2≤5,x∈Z},则集合A的真子集个数为( )A.1个B.2个C.3个D.4个【解析】选C.由题意知,x=-2,2,即A={-2,2},故其真子集有3个. 【误区警示】本题易忽视真子集这一条件而误选D.5.已知集合M={x|y2=2x,y∈R}和集合P={(x,y)|y2=2x,y∈R},则两个集合间的关系是( )A.M PB.P MC.M=PD.M,P互不包含【解析】选D.由于两集合代表元素不同,即M表示数集,P表示点集,因此M与P互不包含,故选D.【误区警示】解答本题易忽视集合的属性而误选C.6.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是( )【解析】选B.由N={x|x2+x=0}={-1,0},得N M.7.设集合S={x|x≥2},T={x|x≤5},则S∩T= ( )A.{x|x≤5}B.{x|x≥2}C.{x|2<x<5}D.{x|2≤x≤5}【解析】选D.依题意计算得S∩T=,故选D.8.已知集合A={-2,0,2},B={x|x2-x-2=0},则A∪B= ( )A.∅B.{2}C.{0,-1,2}D.{-2,-1,0,2}【解析】选D.因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∪B= {-2,-1,0,2}.9.设集合A={x∈N|1≤x≤10},B={x∈R︱x2+ x-6=0},则图中阴影表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}【解析】选A.A={1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A∩B={2}.【补偿训练】若集合A={x|-2≤x≤3},B={x|x<-1或x>4},则集合A ∩B等于( )A.{x|x≤3或x>4}B.{x|-1<x≤3}C.{x|3≤x<4}D.{x|-2≤x<-1}【解析】选D.将集合A,B表示在数轴上,由数轴可得A∩B={x|-2≤x<-1},故选D.10.在集合{a,b,c,d}上定义两种运算⊕和⊗如下:那么d⊗(a⊕c)的运算结果为( )A.aB.bC.cD.d【解题指南】先计算(a⊕c)的结果,再计算d⊗(a⊕c)的值.【解析】选A.由上表可知:(a⊕c)=c,故d⊗(a⊕c)=d⊗c=a.11.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1B.3C.4D.8【解题指南】由并集中的元素可知集合B中至少含有一个元素3,由此分类求解.【解析】选C.因为A={1,2},A∪B={1,2,3},所以B={3}或{1,3}或{2,3}或{1,2,3},故选C.12.集合A={2n+1|n∈Z},集合B={4k±1|k∈Z},则A与B间的关系是( )A.A∈BB.A BC.A∉BD.A=B二、填空题1.已知集合A={x|x2-3x+2=0},B={1,2},C={x|x<8,x∈N},用适当符号填空:A B,A C,{2} C,2 C.【解析】A={1,2},B={1,2},C={0,1,2,3,4,5,6,7},所以A=B,A C,{2}C,2∈C.答案:= ∈2.已知集合A={x|-2≤x≤3},B={x|x≥m},若A⊆B,则实数m的取值范围为.【解题指南】根据集合间的关系,借助数轴求解.【解析】将集合A,B表示在数轴上,如图所示,所以m≤-2.答案:m≤-23.设x,y∈R,A={(x,y)|y=x},B=,则A,B的关系是.【解析】因为B=={(x,y)|y=x,且x≠0},故B A.答案:B A【误区警示】解答本题易忽视集合B中x≠0而误认为A=B.4.设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B= .【解题指南】由交集求出a,b,再求并集.【解析】因为A∩B={2},所以2∈A,故a+1=2,a=1,即A={5,2};又2∈B,所以b=2,即B={1,2},所以A∪B={1,2,5}.答案:{1,2,5}三、解答题1.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.【解析】因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)}, {(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.2.若集合A={x|(k+1)x2+x-k=0}有且仅有两个子集,求实数k的值. 【解析】集合A有且仅有两个子集说明A中仅有一个元素,那么对于方程(k+1)x2+x-k=0,若k+1=0,即k=-1,方程即为x+1=0,x=-1,此时A={-1},满足题意;若k+1≠0,则需Δ=0,即12-4(k+1)(-k)=0,解得k=-,此时A={-1},满足题意.所以实数k的值为-1或-.3.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y ∈M},求A∩B和A∪B.【解析】因为A={(1,2),(1,1)},B={(1,1),(2,1)}.所以A∩B={(1,1)},A∪B={(1,1),(1,2),(2,1)}.【误区警示】本题易忽视集合A,B是点集而致错.4.已知A={1,x,-1},B={-1,1-x}.(1)若A∩B={1,-1},求x.(2)若A∪B={1,-1,},求A∩B.(3)若B⊆A,求A∪B.【解析】(1)由条件知1∈B,所以1-x=1,所以x=0.(2)由条件知x=,所以A=,B=,所以A∩B=.(3)因为B⊆A,所以1-x=1或1-x=x,所以x=0或,当x=0时,A∪B={1,0,-1},当x=时,A∪B=.。

高中数学必修一1.2 集合间的基本关系-单选专项练习(28)(人教A版,含解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(28)(人教A版,含解析)

1.2 集合间的基本关系一、单选题1.已知集合{}1,2,3A =,则满足A B A ⋃=的非空集合的个数是( ) A .1B .2C .8D .7答案:D解析:∵A B A ⋃=,∴B A ⊆,∵{}1,2,3A =,∴非空子集B 的个数是3217-=个,故选D.2.若集合{(,)|}M x y y x ==,(,)|1y x y x N ⎧⎫=⎨⎩=⎬⎭,则,M N 的关系为( ) A .M NB .N MC .M ND .M N ⊆答案:B 解析:发现集合N 中0,0x y ≠≠,进而可得集合M 与N 的关系.详解:解:由题意知{(,)|,,}M x y y x x R y R ==∈∈,{(,)|,0,0}N x y y x x y ==≠≠,故N M .故选:B .点睛:本题考查了集合包含关系的判断及应用,属基础题.3.已知全集U =R ,{}{}29,24A x x B x x =<=-<<,则()R A B 等于( )A .{}32x x -<<-B .{}34x x <<C .{}|23x x -<<D .{}32x x -<≤-答案:D 解析:先求出集合A 和集合B 的补集,再求()R A B详解: 解:因为{}{}29,24A x x B x x =<=-<<, 所以{}{33,2U A x x B x x =-<<=≤-或}4x ≥, 所以()R A B ={}32x x -<≤-故选:D点睛:此题考查集合的交集、补集运算,考查了一元二次不等式,属于基础题.4.已知:A =x|x 2=1},B =x|ax =1},C =x|x =a},B ⊆A ,则C 的真子集个数是( )A .3B .6C .7D .8答案:C解析:首先求得A =﹣1,1},之后根据B ⊆A ,求得a 的值,从而得到C =﹣1,0,1},根据含有n 个元素的有限集合真子集的个数,求得结果.详解:由A 中x 2=1,得到x =1或﹣1,即A =﹣1,1},∵B=x|ax =1},B ⊆A ,∴把x =﹣1代入ax =1,得:a =﹣1;把x =1代入ax =1得:a =1,当B φ=时,0a =,满足B ⊆A ,∴C=﹣1,0,1},则C 真子集个数为23﹣1=7.故选:C.点睛:该题考查的是有关集合的问题,涉及到的知识点有根据包含关系求参数的值,含有n 个元素的有限集合真子集的个数公式,属于简单题目.5.设集合{}22(,)|2A x y x y =+=,{}(,)|3x B x y y ==,则A B 的子集的个数是( ) A .4B .3C .2D .1答案:A 解析:由题意画出图形,数形结合得答案.详解:解:{}22(,)|2A x y x y =+=,0x ∃ 222(,)|3x x y A B x y y ⎧⎫⎧+=⎪⎪∴⋂=⎨⎨⎬=⎪⎪⎩⎩⎭, 如图:由图可知,A B 的元素有2个,则A B 的子集有224=个.故选:A .点睛:本题考查交集及其运算,考查数形结合的解题思想方法,属于基础题.6.已知集合{}1|24,03x P x N x Q xx +⎧⎫=∈-<<=≥⎨⎬-⎩⎭,则集合P Q 子集的个数是( ) A .4B .8C .16D .32答案:B解析:首先分别化简集合,P Q ,再求出P Q ,找其子集个数即可.详解:{|24}{0,1,2,3}P x N x =∈-<<=,10{13}3x Q x x x x +⎧⎫=≥=-≤<⎨⎬-⎩⎭. {0,1,2}P Q =,所以集合P Q 子集的个数是328=. 故选:B点睛:本题主要考查集合子集的个数,同时考查了集合的交集运算和分式不等式,属于简单题.7.已知集合()12log 1A x y x ⎧⎪==-⎨⎪⎩,201x B x x -⎧⎫=≤⎨⎬-⎩⎭,则( ) A .A BB .B AC .A B =D .A B =∅答案:C 解析:分别化简集合,A B ,根据集合的关系得出选项.详解: 由()12log 10x -≥得011x <-≤,即(1,2]A =; 由201x x -≤-得12x <≤,即(1,2]B =;所以A B =.故选:C.点睛:本题主要考查集合间的关系,化简集合为最简形式是求解的关键,侧重考查数学运算的核心素养.8.已知集合A=x|x 2–x –2≤0,x∈Z},则集合A 非空子集的个数为A .14B .15C .16D .17答案:B解析:先化简集合A=–1,0,1,2},由于元素有4个,所以集合A 非空子集的个数为:24–1。

高中数学必修一1.2 集合间的基本关系-单选专项练习(50)(人教A版,含答案及解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(50)(人教A版,含答案及解析)

1.2 集合间的基本关系1.集合M=}|1,2n x x n Z ⎧=+∈⎨⎩,N=}1|,2x x m m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M∩N=∅B .M=NC .M ⊆ND .N ⊆M 2.已知集合{2,0,1},{0,1,3}M N =-=,则M N ⋃=( )A .{0,1}B .{2,1,3}-C .{2,0,1}-D .{2,0,1,3}-3.已知集合A ,B ,C 满足:A B ⊆,A C ⊆,{}0,1,2,3B =,{}1,3,8,9C =,则集合A 可以是( ) A .{}1,8B .{}1,3C .{}0D .{}94.集合{|13}P x Z x =∈-<,{}2R |9M x x =∈,则P∩M 等于A .{}1,2B .{}0,1,2C .1,0,1,2D .{|03}x x ≤≤5.设集合{}2|0log 1A x x =<<,{}|B x x a =<,若A B ⊆,则a 的取值范围是( ). A .2a ≥B .2a >C .1a <D .1a ≤6.已知集合{}20A x mx mx m =-+=有两个非空真子集,则实数m 的取值范围为( )A .{}4m m >B .{}04m m m <或>C .{}4m m ≥D .{}04m m m ≤≥或7.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( ) A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆8.对于任意两个正整数,m n ,定义某种运算,法则如下:当,m n 都是正奇数时,mn m n =+ ;当,m n 不全为正奇数时,m n mn =,则在此定义下,集合(){,|M a b a=16,*,*}b a N b N =∈∈的真子集的个数是( )A .721-B .1121-C .1321-D .1421- 9.若集合{|13}A x x =<<,{|}B x x a =<,且A B B ⋃=,则a 的取值范围为( )A .3a ≥B .3a ≤C .1a ≥D .1a ≤10.已知集合A =x|x 2﹣3x+2=0},B =x|0<x <6,x∈N},则满足A ⫋C ⊆B 的集合C 的个数为( ) A .4B .7C .8D .1611.已知a R b R ∈∈,,若集合{}210b a a a b a ⎧⎫=-⎨⎬⎩⎭,,,,,则20212020a b +的值为( )A .2-B .1-C .1D .212.设集合{}210A x x =-=,则( )A .A ∅∈B .A π∈C .1A -∈D .{}11A -∈, 13.设集合A =x|x =2k +1,k ∈Z},若a =5,则有( )A .a ∈AB .-a ∉AC .a}∈AD .a}∉A14.设集合P=立方后等于自身的数},那么集合P 的真子集的个数是( )A .3B .4C .7D .815.集合|,3kA x x k Z ⎧⎫==∈⎨⎬⎩⎭,{}|,B x x k k Z ==∈,1{|,}3C x x k k Z ==+∈,2{|,}3D x x k k Z ==+∈,则下面正确的是( )A .C DB =B .CD A ⋃=C .B C A =D .B C D A =16.若集合|,2M k k Z πααπ⎧⎫==+∈⎨⎬⎩⎭,|,2N k k Z πββπ⎧⎫==-∈⎨⎬⎩⎭,|2,2P k k Z πθθπ⎧⎫==±∈⎨⎬⎩⎭,|2,2Q k k Z πϕϕπ⎧⎫==+∈⎨⎬⎩⎭,则四个集合中与其它三个集合不相等的一个集合是( )A .MB .NC .PD .Q17.已知集合2{|40}A x x =-=,则下列关系式表示正确的是( )A .A ∅∈B .{2}A -=C .2A ∈D .{2,2}- ≠⊂A 18.已知集合{}01A =,,{},,B z z x y x A y A ==+∈∈∣,则B 的子集个数为( ) A .3 B .4C .8D .619.设集合{|,}24k M x x k ππ==+∈Z ,{|,}42k N x x k ππ==+∈Z ,则( ) A .M NB .M N ⊆C .M N ⊇D .M N ⋂=∅ 20.若1,2,3} A ⊆1,2,3,4,5},则集合A 的个数为A .2B .3C .4D .5参考答案1.D 2.D 3.B 4.C 5.A 6.A 7.D 8.C 详解:由题意,当m n , 都是正奇数时,m n m n =+※ ;当m n ,不全为正奇数时,m n mn =※ ; 若a b , 都是正奇数,则由16a b =※ ,可得16a b += ,此时符合条件的数对为(115313151⋯,),(,),(,) 满足条件的共8个;若a b ,不全为正奇数时,m n mn =※ ,由16a b =※ ,可得16ab = ,则符合条件的数对分别为116284482161(,),(,),(,),(,),(,) 共5个;故集合**{|16}M a b a b a N b N ==∈∈(,)※,, 中的元素个数是13, 所以集合**{|16}M a b a b a N b N ==∈∈(,)※,,的真子集的个数是1321-.故选C .点睛:本题考查元素与集合关系的判断,解题的关键是正确理解所给的定义及熟练运用分类讨论的思想进行列举,9.A 10.B 11.B 12.C 13.A 14.C 15.D 16.D 17.C 18.C 19.C详解:集合1,2,3}是集合A 的真子集,同时集合A 又是集合1,2,3,4,5}的子集,所以集合A 只能取集合1,2,3,4},1,2,3,5}和1,2,3,4,5}. 考点:集合间的基本关系.【参考解析】1.解析:根据子集的定义判断. 详解:由题意,对于集合M ,当n 为偶数时,设n=2k (k∈Z),则x=k+1(k∈Z), 当n 为奇数时,设n=2k+1(k∈Z),则x=k+1+12(k∈Z), ∴N ⊆M , 故选:D.2.解析:根据并集的运算求解即可. 详解:因为{2,0,1},{0,1,3}M N =-=,由集合的并集运算,得{2,0,1,3}M N ⋃=-. 故选:D 点睛:本题主要考查了集合的并集运算,属于基础题.3.解析:根据题意,得()A B C ⊆,再利用交集的定义即可得到结论. 详解:由A B ⊆,A C ⊆,知()A B C ⊆, 又{}0,1,2,3B =,{}1,3,8,9C =, ∴{}1,3B C =, ∴集合A 可以为{}1,3. 故选:B. 点睛:本题考查交集的定义,集合与集合的关系,属于基础题.4.解析:先求出集合M 和集合P ,根据交集的定义,即得P M ⋂。

人教A版高中数学必修一1.2 集合间的基本关系专练(含解析)

人教A版高中数学必修一1.2 集合间的基本关系专练(含解析)

1.2 集合间的基本关系一、单选题1.已知集合(){}(){}22,1,,A x y x y B x y y x =+===,则A B 的子集个数为( )A .4B .3C .2D .12.集合{}52,Z M x x k k ==-∈,{}|53,P x x n n Z ==+∈,{}103,Z S x x m m ==+∈之间的关系是 A .S P M B .S P MC .S PMD .PM S3.下列写法:(1)0}∈2,3,4};(2)∅⊆0};(3)-1,0,1 }=0,-1,1};(4)0∈∅,其中错误写法的个数为( ) A .1B .2C .3D .44.设集合{}1,1M =-,{}240N x x =-<,则下列结论正确的是A .N M ⊆B .N M =∅C .M N ⊆D .M N =R5.已知集合{|1}P x R x =∈≥,{}1,2Q =,则下列关系中正确的是( )A .P Q =B .Q P ⊆C .P Q ⊆D .P Q R = 6.已知集合{|12}A x x =-<<,{|01}B x x =<<,则A .B A ⊆ B .A B ⊆C .A B =D .A B =∅ 7.集合{|}A x x a =≤,2{|50}B x x x =-<,若A∩B=B,则a 的取值范围是( ) A .5a ≥ B .4a ≥ C .5a < D .4a < 8.设集合{|14},M x x a π=<<=,则下列关系正确的是( )A .a M ⊆B .a M ∉C .{}a M ∈D .{}a M ⊆9.若集合{}2|1,A y y x x R ==+∈,集合{}|50B x R x =∈+>,则集合A 与B 的关系是( )A .AB ∈ B .A B ⊆C .B A ⊆D .A B =10.已知A =x|x 2﹣3x+2=0},B =x|ax ﹣1=0},若B ⊆A ,则实数a 的值为( ) A .1,2 B .1,12 C .0,1,2 D .0,1,12二、填空题1.已知集合A=x|x ﹣a=0},B=x|ax ﹣1=0},且A∩B=B,则实数a 等于_____.2.符合条件{}{},,a P a b c ≠⊂⊆的集合P 的个数是个_______. 3.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________.4.已知集合{1,2,3}A =,则集合{,}B x yx A y A =-∈∈∣的所有子集的个数是________. 5.集合{}2|340,A x ax x x R =--=∈,若A 只有一个真子集,则实数a 的值为______.三、解答题1.指出下列集合之间的关系:(1){}1,1A =-,{}21B x N x =∈=;(2){}1,1A =-,()()()(){}1,1,1,1,1,1,1,1B =----; (3){}2,P x x n n Z ==∈,(){}21,Q x x n n Z ==-∈; (4){A x x =是等边三角形},{B x x =是三角形}; (5)}{14A x x =-<<,}{50B x x =-<.2.设{}{}2230,10M x x x N x ax =--==-=,若MN N =,求所有满足条件的a 的集合3.写出集合P 的所有子集,其中.4.已知集合{}21A x y x ==+,{}22B y y x a ==+,(1)求集合A ;(2)若A B ⊆,求实数a 的取值范围.5.已知{1,}M t =,2{1}N t t =-+,若M N M ⋃=,求实数t 的取值构成的集合.参考答案一、单选题 1.A解析:解方程组221x y y x ⎧+=⎨=⎩,根据解的个数求出交集,再得出子集个数.详解:解:由221x y y x ⎧+=⎨=⎩得,x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩∴2=(2A B ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭,∴A B 的子集个数为224=, 故选:A . 点睛:本题主要考查集合的交集运算,考查有限集的子集个数,属于基础题. 2. C解析:先算出集合S ,用列举法表示各集合后可得各集合之间的关系. 详解: ∵{|52,},{|53,}M x xkkPx xn n Z Z ,{|103,}Sx xm m Z ,∴{,7,2,3,8,13,18,}M,{,7,2,3,8,13,18,}P, {,7,3,13,23,}S,故S PM ,故选C. 点睛:集合的表示方法有列举法和描述法,当用描述法表示的集合时,如果集合中的元素不太明晰,可用列举法表示集合,从而明确集合中的元素. 3.B解析:由集合与集合的关系判断(1),由空集的性质判断(2)(4);由集合的无序性以及集合相等的定义判断(3). 详解:由集合与集合的关系可知,(1)错误;空集是任何集合的子集,(2)正确;由集合的无序性以及集合相等的定义可知,(3)正确;空集是不含任何元素的集合,(4)错误; 故选:B 4.C 详解:集合{}1,1M =-,{}240{|22}N x x x x =-<=-<<,1,1N -∈,所以M N ⊆.故选C.5.B解析:本题考查的是两个集合之间的关系,题意中集合Q 中的元素较少,可以从集合Q 中的元素进行分析判断,判断集合Q 中的元素是否在P 中,从而得出结果. 详解:解:{|1}P x R x =∈≥1P ∴∈,2P ∈,且P Q ≠Q P ∴⊆故本题正确选项:B 点睛:本题考查了集合之间的运算,求解问题的方法可以用数轴法、列举法等等. 6.A解析:画数轴结合子集的概念即可得到答案. 详解:∵集合{|12}A x x =-<<,{|01}B x x =<<, ∴B A ⊆. 故选A . 点睛:本题考查集合间的基本关系. 7.A解析:因为25005x x x -<⇒<<,又A B B B A ⋂=⇒⊆,则由{|}A x x a =≤,可得;5a ≥时满足条件A B B ⋂=. 8.D解析:由14a <<,即得:,{}a M a M ∈⊆. 详解:因为{|14},M x x a π=<<=,14a <<, 所以,{}a M a M ∈⊆, 故选:D 点睛:本题考查了元素与集合,集合与集合的关系,考查学生的分析能力,属于基础题. 9.B解析:先确定集合,A B 中的元素,然后根据子集定义判断. 详解:由题意{}2|1,{|1}[1,)A y y x x R y y ==+∈=≥=+∞,{}|50{|5}(5,)B x R x x x =∈+>=>-=-+∞,显然集合A 中的元素都属于B , 所以A B ⊆. 故选:B . 点睛:本题考查集合的包含关系,根据子集定义判断. 10.D解析:先计算集合A ,然后根据B ⊆A ,按a=0,a≠0进行讨论并加以计算可得结果. 详解:由题可知:集合A =1,2},对于集合B ,当a=0时,B =∅,满足B 是A 的子集,符合题意; 当a≠0时,B =x|x =1a },B ⊆A , 则1a =1或1a =2,解得a =1或12; 综上可知,a 的值为0或1或12, 故选:D 点睛:本题考查集合的包含关系求参数,考查计算与分析能力,属基础题.二、填空题 1.1或﹣1或0解析:∵A∩B=B,∴B A ⊆,{}{|0}A x x a a =-==。

高中数学必修一人教A版1.2 集合间的基本关系-单选专项练习(14)(含答案及解析)

高中数学必修一人教A版1.2 集合间的基本关系-单选专项练习(14)(含答案及解析)

1.2 集合间的基本关系一、单选题1.已知集合A=2,3},B=x|mx ﹣6=0},若B ⊆A ,则实数m= A .3 B .2C .2或3D .0或2或32.设集合{}1,0A =,集合{}2,3B =,集合{}|(),,M x x b a b a A b B ==+∈∈,则集合的真子集的个数为. A .7个 B .12个 C .16个D .15个3.集合{1,2}的子集个数是( ) A .1 B .2 C .4 D .8 4.已知A B ⊆,A C ⊆,{2,0,1,8}B =,{1,9,3,8}C =,则集合A 可以为 A .{1,8} B .{2,3}C .{0}D .{9}5.准确表达“0是自然数,直线a 在平面α内”的是( )A .0N ∈,a α∈B .0N ∈,a α⊂C .0N ⊂,a α∈D .0N ⊂,a α⊂6.已知集合2{|4}A x y x ==-,集合{|}B x x a =≥,若A B ⊆,则实数a 的取值范围是( ) A .(),2-∞-B .(],2-∞-C .()2+∞,D .[)2+∞,7.集合{}25,M y N y x x N =∈=-+∈的非空真子集个数是A .5B .6C .7D .88.下列各式:①{}10,1,2⊆;②{}()00,1,2∈:③0∈∅:④{}{}2,0,10,1,2=.其中错误的个数是( ) A .4个B .3个C .2个D .1个9.已知全集U =R ,{}{}29,24A x x B x x =<=-<<,则()RAB 等于( )A .{}32x x -<<-B .{}34x x <<C .{}|23x x -<<D .{}32x x -<≤-10.设集合,则满足的集合B 的个数为A .1B .3C .4D .811.若集合{}2|10A x ax ax =-+<为空集,则实数a 的取值范围是( )A .(0,4)B .[0,4)C .(0,4]D .[0,4]12.若集合{}|02A x x =<<,且A B B ⋂=则集合B 可能是A .{}0,2B .{}0,1C .{}0,1,2D .{}113.若,则实数a 的取值范围是A .B .C .D .14.下列六个关系式:⑴(){}{}(){}(){}(){}(){}{,}{,}2,,304005060a b b a a b b a ⊆==∅∈∅∈∅⊆其 中正确的个数为( ) A .6个B .5个C .4个D .少于4个15.若x A ∈,则1A x ∈,就称A 是伙伴关系集合,集合111,0,,,2,323M ⎧⎫=-⎨⎬⎩⎭的所有非空子集中具有伙伴关系的集合的个数是 A .31 B .7 C .3 D .1 16.设集合{|03}A x N x =∈<的真子集个数为( )A .16B .8C .7D .417.若集合A =x|x =2k +1,k∈Z},B =x|x =2k -1,k∈Z},C =x|x =4k -1,k∈Z},则A ,B ,C 的关系是( ) A .C ⊆A =B B .A ⊆C ⊆B C .A =B ⊆C D .B ⊆A ⊆C 18.满足条件∅⫋ M ⫋a ,b ,c}的集合M 共有( )A .3个B .6个C .7个D .8个19.设集合{}2|1P x x ==,则集合P 的非空真子集的个数是( )A .2B .3C .7D .820.集合A =x∈N|-1<x <4}的真子集个数为( )A .7B .8C .15D .16参考答案一、单选题 1.D 详解:试题分析::∵A=2,3},B=x|mx-6=0}=6m}, ∵B ⊆A , ∴2=6m ,或3=6m ,或6m不存在, ∴m=2,或m=3,或m=0考点:集合关系中的参数取值问题2.D 详解:试题分析:由题意可知集合{}6,12,4,9M =,函数有4个元素,所以真子集个数为42115-= 考点:集合子集3.C解析:列举出集合{1,2}的所有子集即可. 详解:解:集合{1,2}的子集有{1},{2},{1,2},∅,共4个. 故选:C. 点睛:本题考查集合子集的个数,也可用公式2n 求解,是基础题. 4.A解析:由A B ⊆,A C ⊆,则A B C ⊆,又{}1,8B C ⋂=,从而可得答案. 详解:由A B ⊆,A C ⊆,则A B C ⊆. 又{}1,8B C ⋂=,所以{}1,8A ⊆所以选项B 、C 、D 不满足,选项A 满足.故选:A 点睛:本题考查集合的子集的运用和交集的运算,属于基础题. 5.B解析:元素与集合的关系是∈和∉;集合与集合的关系是⊂和⊄. 详解:0是自然数是元素与集合的关系,所以0N ∈;直线a 在平面α内是集合与集合的关系, 所以a α⊂. 故选:B 点睛:本题考查元素与集合、集合与集合的关系,是一道容易题. 6.B解析:由题意得,[]2,2A =-,再根据集合间包含关系即可求出答案. 详解:解:∵[]{|2,2A x y ==-,{|}B x x a =≥,A B ⊆, ∴2a ≤-, 故选:B . 点睛:本题主要考查根据集合间的包含关系求参数的取值范围,考查一元二次不等式的解法,属于基础题. 7.B解析:用列举法表示集合M ,最后利用集合真子集的个数公式直接求解即可. 详解:因为{}1,4,5M =,所以非空真子集个数为3226-=. 故选:B 点睛:本题考查了用列举法表示集合,考查了集合真子集的个数公式,属于基础题. 8.B解析:对每一个命题逐一分析判断得解. 详解:①{}10,1,2⊆是错误的,因为元素和集合之间不能用⊆连接; ②{}()00,1,2∈是错误的,因为集合之间不能用∈连接; ③0∈∅是错误的,因为不符合空集的定义;④{}{}2,0,10,1,2=是正确的,因为集合的元素是无序的,元素相同的两个集合相等. 故选:B 点睛:本题主要考查集合之间的关系,考查元素和集合之间的关系,意在考查学生对这些知识的理解掌握水平,属于基础题. 9.D解析:先求出集合A 和集合B 的补集,再求()RA B详解:解:因为{}{}29,24A x x B x x =<=-<<,所以{}{33,2U A x x B x x =-<<=≤-或}4x ≥, 所以()RAB ={}32x x -<≤-故选:D 点睛:此题考查集合的交集、补集运算,考查了一元二次不等式,属于基础题. 10.C 详解:此题考查集合的并集的定义,可知集合B 中一定含有2013这个元素,所以集合B 有以下四种可能{}{}{}{}2013,2013,2011,2013,2012,2013,2011,2012,B B B B ====所以选C11.D解析:题意说明不等式210ax ax -+<无实解,分类讨论0a =和0a ≠两种情况. 详解:由题意不等式210ax ax -+<无实解,0a =时,不等式为10<,不成立,无实解.0a ≠时,240a a a >⎧⎨∆=-≤⎩,解得04a <≤, 综上,[0,4]a ∈. 故选:D.点睛:本题考查不等式恒不成立问题,即不等式无实解.注意要对最高次系数分类讨论. 12.D 详解:试题分析:A B B B A ⋂=⇒⊆,只有{}1{}|02x x ⊆<<,所以选D. 考点:集合包含关系【易错点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A∩B=∅,A ⊆B 等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.13.B解析:由空集为非空集合的真子集,可知当集合不为空集时满足题意,所以1a =,故选B .14.C 详解:根据集合自身是自身的子集,可知①正确;根据集合无序性可知②正确;根据元素与集合只有属于与不属于关系可知③⑤不正确;根据元素与集合之间的关系可知④正确;根据空集是任何集合的子集可知⑥正确,即正确的关系式个数为4个, 故选C.点睛:本题主要考查了:(1)点睛:集合的三要素是:确定性、互异性和无序性,; (2)元素和集合之间是属于关系,子集和集合之间是包含关系; (3)不含任何元素的集合称为空集,空集是任何集合的子集.15.B 详解:集合11102323M ⎧⎫=-⎨⎬⎩⎭,,,,, 的所有非空子集中具有伙伴关系的集合为:{}111111111123121323123323232323,,,,,,,,,,,,,,,,,,,,⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫----⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭故选B .16.C解析:首先判断集合A 的元素个数,再求真子集个数. 详解:{}0,1,2A =,所以集合A 的真子集个数是3217-=.故选:C 17.A解析:由整数的整除性,可得A 、B 都表示奇数集,C 表示除以4余3的整数.将A 、B 、C 尽可能形式表达统一,由此利用集合间的关系求解. 详解:∵A=x|x =2(k +1)-1,k ∈Z},B =x|x =2k -1,k ∈Z},C =x|x =2·2k-1,k ∈Z},A B ∴=,C 集合中2k 只能取偶数,C A B ∴⊆=故选:A. 18.B解析:利用真子集定义、列举法能求出满足条件∅⫋M ⫋a ,b ,c}的集合M 的个数. 详解:解:满足条件∅⫋ M ⫋a ,b ,c}的集合M 有: a},b},c},a ,b},a ,c},b ,c}.共6个, ∴满足条件∅⫋M ⫋a ,b ,c}的集合M 共有6个. 故选:B. 19.A解析:解出集合P ,再写出集合P 的非空真子集即可. 详解:集合{}2|1P x x ==,即{}1,1P =-,集合P 的非空真子集有{}{}1,1-, 共2个. 故选:A . 点睛:本题考查的是集合子集,真子集,是基础题.20.C详解:A=0,1,2,3}中有4个元素,则真子集个数为24-1=15.选C。

高中数学必修一1.2 集合间的基本关系-单选专项练习(20)(人教A版,含解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(20)(人教A版,含解析)

1.2 集合间的基本关系一、单选题1.已知集合{}1,2A =,()(){}|10,B x x x a a R =--=∈.若A B =,则a 的值为( )A .2B .1C .-1D .-2答案:A解析:由题意可知集合{}1,2B =,解出集合B 即可求出a 的值.详解:因为A B =,所以集合B 为双元素集,即()(){}{}{}|10,1,1,2B x x x a a R a =--=∈==所以2a =.故选:A.2.已知集合A=﹣1,1},B=x|ax+2=0},若B ⊆A ,则实数a 的所有可能取值的集合为A .﹣2}B .2}C .﹣2,2}D .﹣2,0,2} 答案:D详解:试题分析:由B ⊆A 可知集合B 可以为{}{}1,1,-∅,所以方程ax+2=0的根可能为-1,1或无解,所以a=-2,0,2实数a 的所有可能取值的集合为﹣2,0,2}考点:集合的子集关系3.设集合{}20A x x x =-=,则集合A 的真子集的个数为( )A .1B .2C .3D .4答案:C解析:可用列举法列出所有真子集即可.详解:由题可解集合{}0,1A =,则集合A 的真子集有∅、{}0、{}1.故选:C.点睛:本题考查集合的真子集,可用列举法或公式计算即可,易错点为列举法容易忽略空集,属于基础题.4.已知集合{}1|0A x x =-<<,{}|B x x a =≤,若A B ⊆,则a 的取值范围为A .()0,+∞B .[)0,+∞C .()1,+∞D .[1,)+∞答案:B解析:根据两个集合的子集关系,直接列式可得答案.详解:因为{}1|0A x x =-<<,{}|B x x a =≤,且A B ⊆,所以0a ≥.故选:B点睛:本题考查了集合的子集关系,属于基础题.5.已知集合{}*220A x N x x =∈-++≥,则满足条件A B A ⋃=的集合B 的个数为( ) A .3B .4C .7D .8答案:B 解析:求出集合A ,确定集合A 的元素个数,由A B A ⋃=可得出B A ⊆,再利用子集个数公式可求得满足条件的集合B 的个数.详解:{}{}{}*2*20121,2A x N x x x N x =∈-++≥=∈-≤≤=, 又A B A =,B A ∴⊆,因此,符合条件的集合B 的个数为224=.故选:B.点睛:本题考查集合子集个数的求解,解答的关键就是求出集合的元素个数,同时也考查了一元二次不等式的求解,考查计算能力,属于基础题.6.已知集合{|13A x x =-<<,}x N ∈,{|}B C C A =⊆,则集合B 中元素的个数为( )A .6B .7C .8D .9答案:C解析:先根据题意解出集合A ,再根据题意分析B 中元素为A 中的子集,可求出. 详解:解:因为集合{|13A x x =-<<,}x N ∈,所以{0A =,1,2},因为{|}B C C A =⊆,所以B 中的元素为A 的子集个数,即B 有328=个,故选:C .点睛:本题考查集合,集合子集个数,属于基础题.7.已知集合{}{}|1,|M x x N x x a =>=>,且M N ⊆,则( )A .1a ≤B .1a <C .1a ≥D .1a >答案:A解析:根据M N ⊆,在数轴上作出,M N ,可得结果.详解:根据M N ⊆,在数轴上作出集合,M N ,如图:可得:1a ≤,故选:A.点睛:本题考查集合间的包含关系,注意利用数轴,是基础题.8.不等式|sin x+tan x|<a 的解集为N,不等式|sin x|+|tan x|<a 的解集为M,则解集M 与N 的关系是( )A .N ⊆MB .M ⊆NC .M=ND .M ⫋N答案:B解析:由题意根据|sinx+tanx|≤|sinx|+|tanx|,可得 M 、N 间的关系.详解:由于不等式|sinx+tanx|<a 的解集为N ,不等式|sinx|+|tanx|<a 的解集为M , |sinx+tanx|≤|sinx|+|tanx|,∴M ⊆N ,故选:B .点睛:本题主要考查绝对值三角不等式的应用,集合间的包含关系,属于基础题,绝对值三角不等式b a b a a b -≤±≤+,注意等号成立的条件..9.设2{|4},{|4}M x x N x x =<=<,则 ( )A .M N ≠⊂B .N M ≠⊂C .R M N ⊆D .R N M ⊆答案:B解析:利用一元二次不等式的解法化简集合N ,由真子集的定义可得结果.详解:因为2{|4}{|22}N x x x x =<=-<<,且{|4},M x x =<所以N M ≠⊂,故选B. 点睛:本题主要考查集合的子集与真子集的定义,意在考查对基础知识的掌握情况,属于基础题.10.已知a ,集合{|2}A x x ≤=,则下列表示正确的是.A .a A ∈B .a ∉ AC .{}a A ∈D .a A ⊆ 答案:A详解:因为{|2}A x x ≤=a A ∈,故选A .11.集合{}{}|11, |121A x x B x a x a =-≤≤=-≤≤-,若B A ⊆,则实数a 的取值范围是( )A .(],1-∞B .(),1-∞C .[]0,1D .()0,1答案:A解析:分0a <和0a ≥两种情况讨论即可.详解:当121a a ->-即0a <时,B =∅,满足B A ⊆当121a a -≤-即0a ≥时,由B A ⊆可得11211a a -≥-⎧⎨-≤⎩,解得01a ≤≤ 综上:实数a 的取值范围是(],1-∞故选:A点睛:本题考查的是集合间的关系,考查了分类讨论的思想,属于基础题.12.集合{}2,n M x x n N ==∈,{}2,N x x n n N ==∈,则集合M 与N 的关系是( ) A .M N ⊆B .N M ⊆C .M N ⋂=∅D .M N ⊄且N M ⊄答案:D解析:利用特殊值法判断可得出结论.详解:因为1M ∈,1N ∉且0N ∈,0M ∉,所以M N ⊄且N M ⊄.故选:D.13.集合{|212}P x N x =∈-<-<的子集的个数是( )A .7B .3C .4D .8答案:D解析:求出集合}{0,1,2P =,再由子集个数为32即可求解.详解:由题意{|13}{0P x N x =∈-<<=,1,2},有三个元素,其子集有8个.故选:D .14.已知集合2{|3100},{|121},A x x x B x m x m =--≤=+≤≤-若,B A ⊆则实数m 的取值范围是A .23m -≤≤B .32m -≤≤C .2m ≥D .3m ≤答案:D解析:先计算集合A ,再根据,B A ⊆讨论B 是否为空集得到答案.详解:2{|3100}{|25}A x x x x x =--≤=-≤≤ {|121}B x m x m =+≤≤-B A ⊆当B =∅时:121,2m m m +>-<当B ≠∅时:121,2m m m +≤-≥且215,3312m m m -≤⎧-≤≤⎨+≥-⎩即23m ≤≤ 综上所述:3m ≤故答案选D点睛:本题考查了根据集合关系求参数范围,忽略空集的情况是容易犯的错误.15.已知集合{}0,2,3A =,{},,B x x a b a b A ==⋅∈,则B 的子集的个数是( )A .10B .12C .14D .16答案:D解析:写出集合B ,确定集合B 中元素个数,利用子集个数公式可求得结果.已知集合{}0,2,3A =,{}{},,0,4,6,9B x x a b a b A ==⋅∈=,因此,B 的子集的个数4216=.故选:D.点睛:本题考查集合子集个数的求解,解题的关键就是确定集合元素的个数,考查计算能力,属于基础题.16.若集合A=x|x=5k-1,k∈Z},B=x|x=5k+4,k∈Z},C=x|x=10k-1,k∈Z}.则A ,B ,C 的关系是( )A .A ⊆C ⊆BB .A=B ⊆C C .B ⊆A ⊆CD .C ⊆A=B答案:D解析:对于集合A :()()()10125110421n k n x k n Z n k n ⎧-=⎪=-=∈⎨+=+⎪⎩,对于集合B :()511,1x k k Z =+-+∈,对于集合C :101,x k k Z =-∈,即可判断选项.详解:对于集合A :()()()10125110421n k n x k n Z n k n ⎧-=⎪=-=∈⎨+=+⎪⎩, 对于集合B :()511,1x k k Z =+-+∈,对于集合C :101,x k k Z =-∈,则C A B ⊆=.故选:D.点睛:本题主要考查了集合的包含关系.属于较易题.17.集合{}0,2,3的真子集共有( )A .5个B .6个C .7个D .8个答案:C解析:列举出集合的真子集即可.详解:解:集合{}0,2,3的真子集有{}0,{}2,{}3,{}0,2,{}0,3,{}2,3,∅,共7个.故选:C.本题考查真子集的概念,是基础题.18.已知集合{}2,4,6M =,则集合M 的真子集个数是( )A .5B .6C .7D .8答案:C解析:可写出集合M 的所有子集,然后判断.详解:集合M 的子集有:,{2},{4},{6},{2,4},{2,6},{4,6},{2,4,6}∅共8个,其中{2,4,6}和集合M 相等,其他的都是M 的真子集,共7个.故选:C .点睛:本题考查子集与真子集的概念,掌握子集与真子集的概念是解题基础.对元素较少的集合可用列举法写出它的所有子集.19.已知集合{}21,A x =,则下列说法正确的是( ) A .1A B .1A ⊆ C .1A -∉ D .1A -∈答案:C解析:利用元素与集合的关系、集合与集合的关系直接判断即可.详解:因为{}21,A x =,所以1A -∉,故1A -∈错误, 而{}1是集合,不是A 中的元素,故1A 错误,1为A 中元素,故1A ⊆是错误. 故选:C.点睛:本题考查元素与集合的关系、集合与集合的关系等基础知识,是基础题,注意元素与集合之间的关系用属于或不属于,集合与集合之间一般用包含或不包含.20.下列有关集合的写法正确的是( )A .{0}{0,1,2}∈B .{0}∅=C .0∈∅D .{}∅∈∅答案:D解析:试题分析:元素和集合是属于或不属于的关系,空集是没有元素的集合,所以D 选项正确.考点:元素和集合的关系.。

集合间的基本关系单元测试

集合间的基本关系单元测试

集合间的基本关系学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{M =菱形},{N =正方形},则有( )A .M N ⊆B .M N ∈C .N M ⊆D .M N2.已知集合{}220A x x x =-=,则下列选项中说法不正确的是( ) A .A ∅⊆ B .2A -∈ C .{}0,2A ⊆ D .{}3A y y ⊆< 3.若集合{}|3,Z A x x k k ==∈,{}|6,Z B x x k k ==∈,则A 与B 之间最适合的关系是( )A .AB ⊆B .A B ⊇C .A BD .B A4.集合(){,|}A x y y x ==,集合(){},0,B x y y x R =>∈,则下列说法正确的是( )A .AB ⊆B .B A ⊆C .A B =∅D .集合A B 、间没有包含关系5.已知集合{P =正奇数}和集合{|}M x x a b a P b P ==⊕∈∈,,,若M P ⊆,则M 中的运算“⊕”是( )A .加法B .除法C .乘法D .减法 6.在数学漫长的发展过程中,数学家发现在数学中存在着神秘的“黑洞”现象.数学黑洞:无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去,就像宇宙中的黑洞一样.目前已经发现的数字黑洞有“123黑洞”、“卡普雷卡尔黑洞”、“自恋性数字黑洞”等.定义:若一个n 位正整数的所有数位上数字的n 次方和等于这个数本身,则称这个数是自恋数.已知所有一位正整数的自恋数组成集合A ,集合{}Z 34B x x =∈-<<,则A B 的真子集个数为( )A .3B .4C .7D .8 7.定义{|1A B Z Z xy *==+,x A ∈,}y B ∈,设集合A ={0,1},集合B ={1,2,3},则A *B 集合的真子集的个数是( )A .14B .15C .16D .17 8.已知集合{},,A a b c =的所有非空真子集的元素之和等于12,则a b c ++的值为( )A .1B .2C .3D .49.已知集合{}{}22,1A xx x B x a x a =-≤=≤≤+∣∣,若B A ⊆,则实数a 的取值集合为( )A .[]0,1B .[]1,0-C .[]1,2-D .[]1,1-二、解答题10.写出集合A ={x |0≤x <3,x ⊕N }的所有真子集.11.(1)写出集合{a ,b ,c ,d }的所有子集;(2)若一个集合有n (n ⊕N )个元素,则它有多少个子集?多少个真子集?12.已知集合2{|12}{|40}A x x B x x ax =≤≤=-+≥,,若A B ⊆,求实数a 的取值范围. 13.已知集合()(){}10A x x a x a =-++≤,{}36B x x x =≤≥或.(1)当4a =时,求A B ;(2)当0a >时,若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围.14.已知集合A ={x |2≤x <4},B ={x |a +2≤x ≤3a }.(1)当a =2时,求A ∩B ;(2)若B ⊆A ,求实数a 的取值范围.三、双空题15.若集合{}1,2,3,,n U n =,2n ≥,*n ∈N ,,n A B U ⊆,且满足集合A 中最大的数大于集合B 中最大的数,则称有序集合对(),A B 为“兄弟集合对”.当3n =时,这样的“兄弟集合对”有_________对;当3n ≥时,这样的“兄弟集合对”有___________对(用含有n 的表达式作答).四、填空题16.已知集合{}{}21,3,0,3,A B m =-=,若B A ⊆,则实数m 的值为__________.参考答案:1.C 【分析】由于正方形是特殊的菱形,从而可判断两集合的关系.【详解】因为正方形是特殊的菱形,集合{M =菱形},{N =正方形},所以N M ⊆,故选:C2.B 【分析】根据元素与集合的关系判断选项B ,根据集合与集合的关系判断选项A 、C 、D.【详解】由题意得,集合{}0,2A =.所以2A -∉,B 错误;由于空集是任何集合的子集,所以A 正确;因为{}0,2A =,所以C 、D 中说法正确.故选:B .3.D 【分析】根据,A B 的元素判断两者间的包含关系.【详解】依题意,集合A 的元素是3的倍数,集合B 的元素是6的倍数,所以集合B 是集合A 的真子集.故选:D4.D 【分析】根据子集的定义即可求解.【详解】解:(){,|0,,A x y y x R =≥∈且}y x =,()0,0A ∴∈,而()0,0B ∉,又()0,1B ∈,而()0,1A ∉,()()1,1A B ∈,∴集合A B 、间没有包含关系.故选:D .5.C 【分析】用特殊值,根据四则运算检验.【详解】若3,1a b ==,则4a b +=P ∉,2a b P -=∉,13b P a =∉,因此排除ABD . 故选:C .6.C 【解析】根据自恋数的定义,求出A ;用列举法表示出B ,求出交集后,由交集中元素个数,即可求出真子集个数.【详解】解:依题意,{}1,2,3,4,5,6,7,8,9A =,{}2,1,0,1,2,3B =--故{}1,2,3A B =,故A B 的真子集个数为7故选:C.【点睛】本题考查了集合的运算,考查了真子集的涵义.若集合中元素个数有n 个,则其子集有2n 个,真子集有21n - 个,非空子集有21n -个,非空真子集有22n -个.7.B 【分析】先求出集合A *B ={1,2,3,4},由公式21n -求出集合A *B 的真子集的个数【详解】⊕A ={0,1},B ={1,2,3},⊕A *B ={Z |Z =xy +1,x ⊕A ,y ⊕B }={1,2,3,4},则A *B 集合的真子集的个数是24﹣1=15个,故选:B8.D 【分析】根据真子集的定义进行求解即可.【详解】因为集合{},,A a b c =的所有非空真子集为:{}{}{}{}{}{},,,,,,,,a b c a b a c b c , 所以有123()124a b c a b a c b c a b c a b c ++++++++=⇒++=⇒++=,故选:D9.D 【分析】根据二次不等式的求解,结合集合关系的区间端点大小关系求解即可【详解】{}()(){}[]222101,2A x x x x x x =-≤=-+≤=-∣∣,因为B A ⊆,故112a a ≥-⎧⎨+≤⎩,解得11a -≤≤故选:D10.∅,{0},{1},{2},{0,1},{0,2},{1,2}【分析】先求得A ,然后求得A 的所有真子集.【详解】依题意A ={0,1,2},其真子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2}.11.(1)见解析;(2)有2n 个子集,21n -个真子集.【解析】(1)由题意结合子集的概念,按照子集元素个数从少到多逐步写出即可得解;(2)由题意结合集合元素个数与子集个数的关系即可得解.【详解】(1)集合{},,,a b c d 的所有子集有:∅、{}a 、{}b 、{}c 、{}d 、{},a b 、{},a c 、{},a d 、{},b c 、{},b d 、{},c d 、{},,a b c 、{},,a b d 、{},,a c d 、{},,b c d 、{},,,a b c d ; (2)若一个集合有n (n ⊕N )个元素,则它有2n 个子集,21n -个真子集.【点睛】本题考查了集合子集的求解及集合元素个数与子集个数关系的应用,属于基础题.12.(]4a ∞∈-,【分析】根据集合的包含关系得不等关系,注意分类讨论不等式的解的情况.【详解】集合{|12}A x x =≤≤,2{|40}B x x ax =-+≥,若A B ⊆,B 一定非空,若2160a =-≤,得44a -≤≤,R B =,A B ⊆成立,若0>,即4a >或者4a,设()24f x x ax =-+,(1)()11450f a a =-+=-≥,即5a ≤,对称轴02a <,所以4a ,(2)()2820f a =-≥,即4a ≤,对称轴22a ≥,不成立, 综上,(]4a ∞∈-,. 13.(1){}53x x -≤≤(2)(]0,3【分析】(1)将5a =代入得{}5|3A x x =-≤≤,求出A B 即可.(2)化简A ,将已知条件转化为A B ⊆,列出不等式求解,写出范围. (1)当4a =时,由不等式()()450-+≤x x ,得54x -≤≤,故{}|54A x x =-≤≤,又{}|36B x x x =≤≥或所以{}|53A B x x ⋂=-≤≤.(2)若“x A ∈”是“x B ∈”的充分条件,等价于A B ⊆,因为0a >,由不等式()()10x a x a -++≤,得{}|1A x a x a =--≤≤ , 又{}|36B x x x =≤≥或要使A B ⊆,则3a ≤或16a --≥,又因为0a >综上可得实数a 的取值范围为(]03,. 14.(1)A ∩B =∅(2)(﹣∞,43) 【分析】(1)利用交集及其运算求解即可.(2)利用集合间的关系列出不等式组,求解即可. (1)当a =2时,B ={x |a +2≤x ≤3a }={x |4≤x ≤6}, ⊕A ={x |2≤x <4},⊕A ∩B =∅.(2)若B ⊆A ,⊕当B =∅时,则a +2>3a ,⊕a <1,⊕当B ≠∅时,则232234a a a a +≤⎧⎪+≥⎨⎪<⎩,⊕1≤a 43<, 综上,实数a 的取值范围为(﹣∞,43). 15. 14 4223n n +-【分析】当3n =时,分别对集合A 中最大数为1,2和3进行讨论即可;当3n ≥时,先找出集合A 中最大数为m 时,集合A 和B 的个数,再结合等比数列求和公式即可求解.【详解】由题意可知,3n =时,{}1,2,3n U =. 当集合A 中最大数为1,即{}1A =时,无满足题意的集合B ; 当集合A 中最大数为2,即{}2A =或{}1,2A =时,只有一种满足题意的集合{}1B =,此时“兄弟集合对”有212⨯=种;当集合A 中最大数为3,即{}3A =,{}1,3A =,{}2,3A =或{}1,2,3A =时,满足题意的集合B 有{}1,{}2和{}1,2三种可能,此时“兄弟集合对”有4312⨯=种;故当3n =时,这样的“兄弟集合对”有21214+=种. 若集合A 中最大数为m 时,集合A 的个数为{}1,2,3,,1m -的子集个数,即12m -个, 此时集合B 的个数为{}1,2,3,,1m -的真子集个数,即121m --个, 因此这样的“兄弟集合对”有()11221m m ---种,故当3n ≥时,这样的“兄弟集合对”有:()()()001111221221221n n --⨯-+⨯-++- ()()()01101111411242444222214123n n n n n n--⨯-⨯-+=+++-+++=-=---种.故答案为:14;4223n n +-.16.0【分析】解方程20m =即得解.【详解】解:因为B A ⊆,所以21m =-(舍去)或20m =, 所以0m =.故答案为:0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合间的基本关系
姓名:____________
一、
选择题
1.集合}{
Z
x x x A ∈<≤=且30的真子集
的个数为 ( )
A.5
B.6
C.7
D.8 2.已知集合}{{
x B x x A =<<-=,21
}1
0<<x ,则 ( )
A.B A >
B. B A ⊆
C. A
B D. B
A
3.已知}13,2,1{2
--=a a M ,}3,1{=N ,若a M N M 则且,3⊄∈的取值为 ( ) A.1 B.4 C.-1或-3 D.-4或1
4.已知集合⎭
⎬⎫∈⎩⎨⎧==Z k k
x x A ,3,
=
B ⎭

⎫∈⎩⎨⎧=Z k k
x x ,6,则
( )
A. A B
B. B A
C.B A =
D. A 与B 关系不确定
5.满足M
a ⊆}{的集合},,,{d c
b a M 共有
( )
A.6个
B.7个
C.8个
D.15个
6.已知集
{}}{
a x x B x x A <=<<=,21,满足
A B ,则 ( )
A.2≥a
B. 1≤a
C.1≥a
D. 2≤a
二、 填空题
1.集合A 中有m 个元素,若在A 中增加一个元素,则它的子集增加的个数为____
2.设
}1,1{},,3,1{2+-==a a B a A 若
B
A ,则a 的取值为____________
. 3.已知集合{
}12==x x P ,集合{
x Q = }1=ax ,若P Q ⊆,则a 的取值______. 4

{}===∈B x y y x A R y x ,),(,,⎭
⎬⎫
=⎩

⎧1),(x y
y x ,则B A 间的关系为____ 5.




}{
{x
B x x x A =>-<=,51或}4+<≤a x a ,若B
A ,则实数a 的
取值范围是____________
三、 解答题
1.

集合
}{{
ax x x B x x A -==-=2,01}
02=-,若B A ⊆,求a 的值.
2.若集合{
}==-+=N x x x M ,062
}{0))(2(=--a x x x ,且N M ⊆,求实数
a 的值.
3.设集合}{
22+<<-=a x a x A ,=B }{
32<<-x x .
(1.)若A B ,求实数a 的取值范围.
(2).是否存在数a 使A B ⊆?
4.已知集合}{
41>-<=x x x A 或,=B }{32+≤≤a x a x ,若A B ⊆,求实数a 的取值范围.
5.
已知集合
{}=≤≤=B x x A ,21}{1,1≥≤≤a a x x
(1)若A B ,求实数a 的取值范围;
(2)若A B ⊆,求实数a 的取值范围.
5.已知{
}95,4,2,,2
+-=∈x x A R x a ,
{
}a
ax x B ++=2
,3,{+=2x C
}1,3)1(-+x a .求:
(1).使,2B ∈B A 的x a ,的值;
(2).使的值的x a C B ,=.。

相关文档
最新文档