理论力学平面力系综合问题
理论力学 平面任意力系例题
60
l
l
F
B
F
D
60
l
l D M
M
B
3l
G
F1
l MA
G FAy
x A FAx
17
A
q
例题
平面任意力系
2. 按图示坐标,列写平衡方程。
F
60
例 题 5
y l l D M
F F
x
0,
B
FAx F1 F sin 60 0
y
0,
FAy G F cos 60 0
M作用,梁的跨度为l,求固定端的约束力。
F
45
q
A l
M
B
14
例题
平面任意力系
q
A y
例 题 4
2. 列平衡方程
M
45
F
解: 1. 取梁为研究对象,受力分析如图
B
l
Fx 0,
Fy 0,
FAx F cos 45 0
FAy ql F sin 45 0
q FAx
力系对O点的主矩为
MO
O
主矢FR在第四象限内,与x轴的夹角为 –70.84o。M
O
M F
O
FRx
70.84
A
F1 3 m G1 1.5 m G2 3.9 m 2 355 kN m
FRy
FR
7
例题
平面任意力系
2. 求合力与基线OA的交点到O点的距离 x。 合力FR的大小和方向与主矢FR相同。 合力作用线位置由合力矩定理求得。
工程力学平面力系的平衡问题
——平面力系平衡方程
工程力学
• 应用举例
解:取汽车及起重机为研究
对象,受力分析如图。
FA
FB
列平衡方程如下:
F 0 M B F 0
FA FB P P1 P2 P3 0 P1 2 P(2.5 3 ) P2 2.5 FA (1.8 2 ) 0
FA
1 3.8
2P1
3.根据受力类型列写平衡方程。平面一般力系只有三 个独立平衡方程。为计算简捷,应选取适当的坐标系和 矩心,以使方程中未知量最少。
4.求解。校核和讨论计算结果。
11
工程力学
——平面力系平衡方程 • 应用举例
• 例1:一种车载式起重机,车重P1= 26 kN,起重机伸 臂重P2 = 4.5 kN,起重机的旋转与固定部分共重P3 = 31 kN。尺寸如图所示。设伸臂在起重机对称面内,且放在 图示位置,试求车子不致翻倒的最大起吊重量Pmax。
Fx 0 Fy 0
M C 0
FAx FCx 0
FAy FCy P 0
FAx
a
FAy
a
27
——刚体系统的平衡
求解方法二
FCy′ FCx′
工程力学
(1)选取研究对象:右刚架, 受力分析如图所示。
FBx
列平衡方程:
Fx 0 Fy 0
M C 0
FBx FCx Q 0
19
工程力学
——刚体系统的平衡
注意! 对于系统整体画受力图,图上展示的仅是外力;当取
系统中的某一部分为研究对象时,此时,该部分与系统 其他部分之间的作用力(本来是内力)也变成了作用在 该部分上的外力。因此,对不同的研究对象而言,外力、 内力是相对的。
20
理论力学重难点及相应题解
运动学部分:一、点的运动学重点难点分析1.重点:点的运动的基本概念(速度与加速度,切向加速度和法向加速度的物理意义等);选择坐标系,建立运动方程,求速度、加速度。
求点的运动轨迹。
2.难点:运动方程的建立。
解题指导:1.第一类问题(求导):建立运动方程然后求导。
若已知点的运动轨迹,且方程易于写出时,一般用自然法,否则用直角坐标法。
根据点的运动性质选取相应的坐标系,对于自然法要确定坐标原点和正向。
不管用哪种方法,注意将点置于一般位置,而不能置于特殊位置。
根据运动条件和几何关系把点的坐标表示为与时间有关的几何参数的函数,即可得点的运动方程。
2.第二类问题(积分):由加速度和初始条件求运动方程,即积分并确定积分常数。
二、刚体的简单运动重点难点分析:1.重点:刚体平移、定轴转动基本概念;刚体运动方程,刚体上任一点的速度和加速度。
2.难点:曲线平移。
解题指导:首先正确判断刚体运动的性质。
其后的分析与点的运动分析一样分两类问题进行。
建立刚体运动方程时,应将刚体置于一般位置。
三、点的合成运动(重要)重点难点分析:1.重点:动点和动系的选择;三种运动的分析。
速度合成与加速度合成定理的运用。
2.难点:动点和动系的选择。
解题指导:1.动点的选择、动系的确定和三种运动的分析常常是同时进行的,不可能按顺序完全分开。
2.常见的运动学问题中动点和动系的选择大致可分以下五类:(1)两个(或多个)不坟大小的物体独立运动,(如飞机、海上的船舶等)对该类问题,可根据情况任选一个物体为动点,而将动系建立在另一个物体上。
由于不考虑物体的大小,因此动系(刚体)与物体(点)只在一个点上连接,可视为铰接,建立的是平移动坐标系。
(2)一个小物体(点)相对一个大物体(刚体)运动,此时选小物体为动点,动系建立在大物体上。
(3)两个物体通过接触而产生运动关系。
其中一个物体的接触只发生在一个点上,而另一个物体的接触只发生在一条线上。
选动点为前一物体的接触点,动系则建立在后一物体上。
理论力学习题集
理论力学习题集第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。
1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。
1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。
(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。
2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。
2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。
各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。
2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。
2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。
2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。
图2-6 图2-72-7 求图示多跨静定梁的支座反力。
2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。
图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。
理论力学课后习题及答案解析
理论力学课后习题及答案解析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A 点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力RB和一个力偶M B,且:如图所示;将RB向下平移一段距离d,使满足:最后简化为一个力R,大小等于RB。
其几何意义是:R 的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力RA和一个力偶M A,且:如图所示;将RA向右平移一段距离d,使满足:最后简化为一个力R,大小等于RA。
其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
理论力学5平面任意力系
P
1m
q
C
2m
A
2m
B
43
P
1m
q
C
XA
2m
A
YA
2m
XB
B
YB
解: ( 1 ) 取整体为研究对象,画受力图.
44
P
1m
q
C
XA
2m
A
2m
XB
B
YA
MA( F ) = 0
YB
- 4 × 3 × 1.5 - 20 × 3 + 4 YB = 0
YB = 19.5 kN
45
P
1m
q
C
XA
2m
2m
A
FR 0, M O (F ) 0
(一)基本平衡方程
Fx = 0 Fy = 0 Mo ( F ) = 0
(一力矩式)
能解 3 个未知量
16
(二)平面任意力系平衡方程旳其他形式
(1) 二力矩式
MA ( Fi ) = 0 MB ( Fi ) = 0 Fx = 0
投影轴 x 不能与矩心 A 和 B 旳连线垂直.
a
G3 A
C
e G1 L G2
B
NA
b
NB
1、满载时,当重物距离右轨最远时,易右翻。 当起重机平衡 m B( F ) = 0 - G1 ·e - G2 ·L - NA ·b+ G3 ·(a+ b) = 0
NA = [ - G1 ·e - G2 ·L + G3 ·( a+ b)] / b
33
a
G3 A
XA = 14.14 kN
Fy = 0
YA
理论力学第2章平面任意力系
空载时轨道A 、 B的约束反力,并问此起重机在使用过程中有无翻
倒的危险。
解:
(1)起重机受力图如图
(2)列平衡方程 :
MA 0:
Q
Q(6 2) RB 4 W 2 P(12 2) 0
MB 0:
Q(6 2) W 2 P(12 2) RA 4 0
6m
解方程得:
W
P
12m
RA 170 2.5P
FR' Fi Fxi Fy j
MO MO (Fi )
3. 平面任意力系的简化结果
(1)FR´= 0,Mo ≠ 0, (2)FR´ ≠ 0,Mo = 0, (3)FR´≠ 0,Mo ≠ 0, (4)FR´= 0,Mo = 0,
合力偶,合力偶矩,MO MO (Fi )
合力,合力作用线通过简化中心O。
3
F2
j
F3
x
(437.6)2 (161.6)2
F1
1 1
100
Oi
1 2
466.5N
200
MO 21.44N m
y
合力及其与原点O的距离如图(c) 。 MO
x
y
d
x
O
FR FR′ 466.5N FR´
FR
O
d MO 45.96mm
(b)
(c)
FR
10
例11 水平梁AB受按三角形分布的载荷作用,如图示。载荷的
M
l
l
30
B
D
° F
3l
P
q
A
21
解:T字形刚架ABD的受力如图所示。
M
l
l
Fx 0
30
B
FAx 1 • q • 3a Fcos30 0
理论力学02平面力系的简化和平衡
第二章
平面力系的简化和平衡
2.1力的合成与分解: 1.平行四边形法则: 作用于物体上同一点的两个力可合成 一个合力,此合力也作用于该点,合力的 大小和方向由以原两力矢为邻边所构成的 平行四边形的对角线来表示。
④ R ≠0, MO ≠0,为最一般的情况。此种情况还可以继续简 化为一个合力 R 。
合力R 的大小等于原力系的主矢 合力R 的作用线到简化中心的距离
MO d R
结论:
平面任意力系的简化结果 :①合力偶MO ; ②合力 合力矩定理:由于主矩 而合力对O点的矩
R
M O mO ( Fi )
主矩:
M O M O ( F ) 3F1 1.5P 1 3.9P 2 2355kN m
(2)求合力及其作用线位置:
d x 3.514m 0 0 cos 90 70.84
(3)求合力作用线方程:
MO MO
' ' FR x FRy y FRx x FRy y FRx
二、汇交力系的合成 由几何法知合力等于各分力的矢量和,即
R F Fn F i 1 F 2 F 3
又 由于
Fi X ii Yi j Zi k Fxii Fyi j Fzi k
代入上式得 R
F i F
xi
yi
j Fzi k
根据合矢量投影定理得合力在坐标轴的投影
理论力学三大类问题的基本求解方法
理论⼒学三⼤类问题的基本求解⽅法理论⼒学三⼤类问题的基本求解⽅法2009-121 求解静⼒平衡问题的基本⽅法(平⾯问题为重点)(1)选取研究对象,进⾏受⼒分析,并画受⼒图。
⼀般针对所求,先对整体进⾏初步的受⼒分析,若所求未知量⼩于或等于独⽴平衡⽅程的个数,则只研究整体即可;反之,若所求未知量个数⼤于独⽴平衡⽅程的个数,则必须取分离体进⾏受⼒分析。
可以采取整体+分离体的解决⽅案,也可采取分离体+分离体的解决⽅案;另外,若所求的未知量有系统内⼒,也必须取分离体研究,以暴露出所要求的内⼒;画受⼒图注意将各⼒画在原始的作⽤点处,分布⼒原样画出,待列⽅程计算时,再作简化处理。
再有,注意⼆⼒杆的判别,及摩擦⼒⽅向的判定。
(2)列平衡⽅程求解。
⾸先根据受⼒图,判断是何种⼒系的平衡问题。
再针对所求⽤尽可能少的平衡⽅程得出所求。
(3)结果校核——利⽤多余的平衡⽅程校核所得的结果。
对⽤符号表⽰的结果,可采⽤量纲分析的⽅法进⾏校核。
2 求解运动学问题的基本⽅法(以平⾯运动为重点)⾸先正确判断问题类型,尤其注意正确区分点的合成运动问题与刚体平⾯运动问题。
判断的依据是,点的合成运动的问题中,运动机构的不同构件之间有相对滑动。
⽽刚体平⾯运动理论⽤来分析同⼀平⾯运动刚体上两个不同点间的速度和加速度的关系。
此时,运动机构的不同构件之间有相对转动,却⽆相对滑动。
另外,注意点的合成运动与刚体平⾯运动的综合问题。
2.1 点的运动学问题——注意在⼀般位置建⽴点的运动⽅程;2.2 点的合成运动问题(1)⾸先是机构中各构件的运动分析;(2)再针对所求,正确选择动点、动系和定系。
注意动点相对于动系和定系都要有相对运动,即动点、动系、定系要分属于不同的构件。
同时,尽可能使动点的相对轨迹清楚易判断;求解加速度时,尽量将动系固连在平动的物体上,避免求科⽒加速度;(3)分析三种运动及其相应的三种速度和加速度,正确画出速度⽮量图或加速度⽮量图。
注意速度合成的平⾏四边形关系;(4)利⽤速度或加速度合成定理进⾏求解。
理论力学—平面力系(习题课)
l 2
P
l 3
FEy
l 2
0
FEx P 方向向左
D
C FCx
FEx
E
FEy
FB B
类似地, 以DC为研究对象, 求FDy, 再以ACD为研究对象求解。
方法2: 分别以ACD和AC为研究对象。
MD(F) 0 :
FAxl
FEx
l 2
FEy
l 2
P
2l 3
0
MC (F) 0 :
F2 F3 45° x
C
F1 FD
q(2a b)2
F3
2a
F2
q(2a 2a
b)2
q
AE
F
B
a
23
D1
C
b
a
a
习题课2: 两根铅直杆AB、CD与水平杆BC铰接,
B、C、D均为光滑铰链, A为固定端, 各杆的长
度均为l=2 m, 受力情况如图所示。已知水平力
F=6 kN, M=4 kN·m, q=3 kN/m。求固定端A及
MA
FAx
FAy P F FE cos 45 0
FAy 2F
M A(F) 0 :
MA q6a3a P(4.5a r) FE 6 2a F 6a 0
M A 5aF 18qa2
习题课6 : 三无重杆AC、BD、CD如
P 2l/3
图铰接, B处为光滑接触, ABCD为正方形, 在CD杆距C三分之一处作用一垂直力P, D
1)取CD、DE带滑轮分析:
MC (F) 0 :
理论力学第三章平面力系
即
M M O(F ) Fd
目录
第三章 平面力系\力的平移定理
根据力的平移定理,也可以将同一平面内的一个力和一个力偶 合成为一个力,合成的过程就是上述的逆过程
力的平移定理不仅是力系向一点 简化的理论依据,也是分析力对物体 作用效应的一个重要方法。例如图示 厂房柱子受偏心荷载F的作用,为分 析力F的作用效应,可将力F平移至
返回
第三章 平面力系\平面汇交力系的合成与平衡
3.1 平面汇交力系的合成与平衡
所谓平面汇交力系,就是各力的作用线位于同一平面内且汇交 于一点的力系。
如图(a)所示用起重机吊装钢筋混凝土大梁,吊点C受到绳索拉力 FT1、FT2和吊钩拉力FT的作用,这三个力的作用线都在同一铅垂平 面内且汇交于一点[图(b)],组成一个平面汇交力系。
计算结果FAB和FAC都是正值,说明图中所示方向为力的实际方向。 滑轮A作用于杆上和钢索上的力F'AC和F'AB分别与图中所示的力FAC 和FAB等值、反向,故杆AC受压力,钢索AB受拉力。
目录
第三章 平面力系\平面力偶系的合成与平衡
3.2 平面力偶系的合成与平衡
作用面都位于同一平面内的若干个力偶,称为平面力偶系。例 如,齿轮箱的两个外伸轴上各作用一力偶(如图),为保持平衡, 螺栓A、B在铅垂方向的两个作用力也组成一力偶,这样齿轮箱受到 三个在同一平面内的力偶的作用,这三个力偶组成一平面力偶系。
F1
目录
第三章 平面力系\平面汇交力系的合成与平衡
2 .平面汇交力系合力的计算
(1) 力在坐标轴上的投影
在力F作用的平面内建立直角坐标系Oxy。
由力F的起点A和终点B分别向坐标轴作 y
垂线,设垂足分别为a1、b1和a2、b2, b2
理论力学试题库参考资料
2014级理论力学期末考试试题题库理论力学试题第一章物系受力分析画图题1、2、3、4、5、第二章平面汇交力系计算题1、2、3、4、5、6、7、第三章平面任意力系计算题2、4、5、7、8、第四章空间力系计算题1、2、3、4、5、6、第五章静力学综合填空题1、作用在刚体上某点的力,可以沿着其作用线移动到刚体上任意一点,并不改变它对刚体的作用效果。
2、光滑面约束反力方向沿接触面公法线指向被约束物体。
3、光滑铰链、中间铰链有1个方向无法确定的约束反力,通常简化为方向确定的 2 个反力。
4、只受两个力作用而处于平衡的刚体,叫二力构件,反力方向沿二力作用点连线。
5、约束力的方向与该约束所能阻碍的位移方向相反 .6、柔软绳索约束反力方向沿绳索 ,指向背离被约束物体.7、在平面只要保持力偶矩和转动方向不变,可以同时改变力偶中力的大小和力臂的长短,则力偶对刚体的作用效果不变。
8、力偶的两个力在任一坐标轴上投影的代数和等于零,它对平面的任一点的矩等于力偶矩,力偶矩与矩心的位置无关。
9、同一平面的两个力偶,只要力偶矩相等,则两力偶彼此等效.10、平面汇交力系可简化为一合力 ,其大小和方向等于各个力的矢量和,作用线通过汇交点.11、平面汇交力系是指力作用线在同一平面 ,且汇交与一点的力系.12、空间平行力系共有 3 个独立的平衡方程.13、空间力偶对刚体的作用效果决定于力偶矩大小、力偶作用面方位、力偶的转向三个因素。
14、空间任意力系有 6 个独立的平衡方程.15、空间汇交力系的合力等于各分力的矢量和,合力的作用线通过汇交点 . 第五章静力学综合摩擦填空题1、当作用在物体上的全部主动力的合力作用线与接触面法线间的夹角小于摩擦角时,不论该合力大小如何,物体总是处于平衡状态,这种现象称为自锁现象.2、答案:50N3、答案:φm/24、静摩擦力Fs的方向与接触面间相对滑动趋势的方向相反,其值满足__0<=F S<=F MAX摩擦现象分为滑动摩擦和__滚动摩阻__两类。
理论力学平面力系综合问题
理论力学平面力系综合问题1.桁架的内力分析:图示平面桁架,已知:P = 5000 N,试求支座反力和各杆的内力。
2.图示构架,已知M = 250 Nm、重力P = 10 KN、均布载荷q = 3 KN/m,a = 2 m。
构架尺寸如图。
试求各支座的约束反力。
3.图示组合结构,尺寸及荷载如图所示,F = 10 KN,q= 6 KN/m,M = 188 KN.m,梁及各杆重不计。
求固定端C的约束反力和个杆的内力。
4.图示组合结构,尺寸和载荷如图,试求支座A、B、G、H的约束反力和杆件DB、DE、DC的内力。
5、滑块A、C用两根不计重量的杆AB和BC连接,滑块A的重量为20kg,滑块C的重量为10kg。
滑块A、C与壁面的摩擦系数为0.25。
求平衡时力F的范围。
6. 图示结构,尺寸和受力如图。
试求铰链C、销钉E和支座A的受力。
7. 图示结构,试求支座A、B的约束反力和杆件OC、OD的内力。
8. 图示结构,试求支座A、D、E和杆件CD、CB的受力。
9. 均质圆柱的重量P1=400N,放在倾角为300的光滑斜面上,并用一绕过定滑轮A的绳索与重量P2=200N的重物B相连。
定滑轮A的位置可调整,求系统平衡时的a角。
10. 杆系的支座和载荷如图5-5所示,已知∠ABC=60O,∠BAC=30O AB=12r,EC=CD=2r,滑轮D和E的半径均为r,滑轮H的直径为r,物体重为P,如不计滑轮和杆的重量,求A和B处的约束反力。
11. 图示结构由三个构件AB、BD和DE构成,A端为固定端约束,B及D处用光滑圆柱铰链连接,BD杆的中间支承C及E湍均可动铰链支座,已知集中力P=10KN,均布载荷的集度q=5KN/m,力偶矩的大小m=30KN·m,梁的尺寸如图所示,单位为m,各构件自重不计,试求A、C及E处的约束反力。
12. 构架ABC由三杆AB,AC和DH所组成。
如图所示。
DH上的销子E可在杆AC的槽内滑动。
求在水平杆DH的一端作用铅垂力F时,结构上各铰链A,B,C,D及销子E所受的力。
3 理论力学 第三章 平面一般力系
限制条件为:N B 0 解得 Q 350 kN
因此保证空、满载均不倒Q应满足如下关系:
75 kNQ350 kN
21
⑵求当Q=180kN,满载W=200kN时,NA ,NB为多少 由平面平行力系的平衡方程可得:
mA(F )0
Fi 0,
Q(62) P2W (12 2) N B 40 QPW N A NB 0
时 平面任意力系:Y 0 mO (Fi )0
平衡方程数目≥未知数数目时,是静定问题(可求解)
平衡方程数目<未知数数目时,是静不定问题(超静定问31 题)
[例]
静定(未知数三个) 静不定(未知数四个) 静不定问题在强度力学(材力,结力,弹力)中用位 移谐调条件来求解。
32
二、物体系统的平衡问题 物体系统(物系):由若干个物体通过约束所组成
关系、字母的标注、方程的写法。
40
解题须知:
5、对于跨过两个物体的分布载荷,不要先简化后拆开, 力偶不要 搬家。
6、定滑轮一般不要单独研究,而应连同支撑的杆件一起 考虑。
7、建立适当的坐标轴,应使坐标轴与尽可能多的力的作 用线平行或垂直,以免投影复杂;
联立求解即可。
请同学们研究整体ABC, 与上述结果比较.
38
例:图示构架,P=1kN,AE=BE=CE=DE=1m,求A处的
反力及BC的内力。
B
解:先整体求A处反力:
X 0 Y 0
XA 0 YA P
mA 0 M A P 1 1
拆开CD:
SCB
P
C
一矩式
二矩式
二矩式的限制条件:
A、B连线不能与各力平行。
实质上是各力在x 轴上的投影恒等于零,即 X 0 恒成立,
清华大学 李俊峰教授 理论力学 第三章平面力系_
;定滑轮半径为 ,动滑轮半径为 ,且
,
。
求
、E 支座的约束力及
BD 杆 所 受 的 力 。
解:取整体为研究对象,受力如图(a)。由平衡方程
解得
,
,
为方便求解二力杆 BD 的受力,取图(b)所示系统为研究对象。有
得 再取 DE 杆为研究对象,受力如图(c),由平衡方程
解得 2. 静定与静不定概念
(杆 BD 受拉)
解得
m §3-4 平面力系的平衡条件和平衡方程 1. 平面力系的平衡条件 平面力系平衡的必要和充分条件是:力系的主矢和主矩都等于零
2. 平面力系的平衡方程
(3-7)
(3-8) 即力系中各力在坐标轴上投影的代数和分别等于零,各力对任意点之矩的代数和等于零。
三个独立的平衡方程,可解三个未知量。 3. 平衡方程的其它形式 主矢和主矩分别等于零的条件还可用其它形式的平衡方程表示。
(1)二矩式(图 3-11)
式中 A ,B 连线不能与 x 轴垂直。 ③三矩式(图 3-12)
(3-9)
(3-10) 式中 A 、B 、C 三点不能共线。 4. 平面平行力系的平衡方程 由式(3-8)、式(3-9)和式(3-10)可推出各种特殊的平面力系的平衡方程。平面平行力系 的平衡方程为
式中 轴与各力平行,A 为平面上任一点。另一组形式是
每种力系的独立平衡方程数 是一定的,因而能求解未知量的个数 也是一定的。静定与
静不定问题或超静定问题可如下表所述:
本章将讨论平面任意力系(简称平面力系)的简化和平衡问题,介绍简单桁架的内力计算。 §3-1 力的平移定理 定理:作用在刚体上某点 A 的力 F 可平行移到任一点 B ,平移时需附加一个力偶,附加 力 偶 的 力 偶 矩 等 于 力 F 对 平 移 点 B 的 力 矩 。 如 图 3-3 所 示 。
理论力学4 平面一般力系
力F ′+ 力偶( F , F ′′)
3
说明: 说明 力线平移定理揭示了力与力偶的关系: ①力线平移定理揭示了力与力偶的关系:力 (例断丝锥) 例断丝锥)
力+力偶 力偶
有关, ②力平移的条件是附加一个力偶m,且m与d有关,m=F•d 力平移的条件是附加一个力偶 , 与 有关 ③力线平移定理是力系简化的理论基础。 力线平移定理是力系简化的理论基础。
Fx = 0, FAx − FT cos 30 0 = 0 ∑
Fy = 0, FAy + FT sin300 − P −Q = 0 ∑
1 ∑ M A = 0, FT 2 ⋅ 6a − P ⋅ 3a − Q ⋅ 4a = 0 F T = 17 . 33 kN 解得: F Ax = 15 . 01 kN 解得: F 22 Ay = 5 . 33 kN
a a 两力作用线过x1 = 和x2 = 3 2
17
§3-4
平面一般力系的平衡条件与平衡方程
一 平面任意力系的平衡方程 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零
r ′ 即 FR = 0
Mo = 0
FR′ = (∑ Fx )2 + (∑ Fy )2
MO = ∑MO (Fi )
∑ F = 0, F = 0 ∑ Fy = 0, FAy + FBy − P − q ⋅ 2a = 0
9
固定端(插入端) 固定端(插入端)约束 说明 ① 认为Fi这群力在同一平面内; 雨搭 ② 将Fi向A点简化得一力和一力偶; ③ FA方向不定可用正交分力FAX, FAY 表示; ④ FAX, FAY, MA为固定端约束反力;
FR FYA FXA
平面一般力系平衡问题求解
平面一般力系平衡问题求解杨建宏德宏州中等职业学校()关键词:平面一般平衡力系单个刚体物体系平衡求解摘要:平面一般力系平衡问题求解是工程运用中非常常见的力学问题,它即是后续学习材料力学的基础,同时也是学生在学习工程力学过程中遇到的一个难点问题,从解题过程来看,平面一般力系平衡问题求解可分为单体受力和物系受力两大类。
平面一般力系平衡问题求解是工程运用中非常常见的力学问题,它既是后续学习材料力学的基础,同时也是学生在学习工程力学过程中遇到的一个难点问题,很多学生在看到此类问题时常有老鼠拉乌龟——无从下手的感觉。
笔者从事工程力学教学多年,现将教学过程中的一些体会提出,以求各同行指正。
从平面一般力系平衡问题解题过程来看,平面一般力系平衡问题求解可分为单体受力和物系受力两大类,从解题方法来说,这两类问题求解过程并无本质上的区别,单个刚体平衡问题是物系平衡问题的基础。
一、单个刚体的平衡问题求解单个刚体平衡问题的过程及关键主要是以下几点:1.受力分析,正确画出受力图画受力图的关键是正确判断约束性质,如其方向(转向)或指向仅凭约束性质尚不能确定,还可根据:(1)约束反力构成力偶与主动力偶平衡;(2)三力平衡汇交定理;来进一步确定。
2.平衡方程的选用根据作用于物体上力系的情况,选择不同形式的平衡方程。
一般常用基本式和二力矩式。
对投影平衡方程,要选择合适的坐标轴,使各力的投影便于计算或使某些力的投影为零;对力矩式的平衡方程,要选择合适的点为矩心从而使某些未知力的矩为零。
这样能使平衡方程中包含的未知量最少,简化计算过程。
当然最好能做到一个方程只有一个未知量以避免解联立方程。
3.对物体不致翻倒的问题,要注意从物体翻倒的受力特点进行受力分析,离地点的约束反力为零,不翻倒的条件是该点约束反力大于、等于零。
例:悬臂式简易起重机如图,AB是吊车梁,BC是钢索,设电动葫芦和重物共重P=10KN,梁自重Q=5KN,α=300。
求钢索BC和铰链A的约束反力,以及钢索受力的最大值。
理论力学平面力系
理论力学平面力系第二章平面力系一、是非题1.一个力在任意轴上投影的大小一定小于或等于该力的模,而沿该轴的分力的大小则可能大于该力的模。
()2.力矩与力偶矩的单位相同,常用的单位为牛·米,千牛·米等。
() 3.只要两个力大小相等、方向相反,该两力就组成一力偶。
() 4.同一个平面内的两个力偶,只要它们的力偶矩相等,这两个力偶就一定等效。
() 5.只要平面力偶的力偶矩保持不变,可将力偶的力和臂作相应的改变,而不影响其对刚体的效应。
()6.作用在刚体上的一个力,可以从原来的作用位置平行移动到该刚体内任意指定点,但必须附加一个力偶,附加力偶的矩等于原力对指定点的矩。
() 7.某一平面力系,如其力多边形不封闭,则该力系一定有合力,合力作用线与简化中心的位置无关。
()8.平面任意力系,只要主矢R≠0,最后必可简化为一合力。
() 9.平面力系向某点简化之主矢为零,主矩不为零。
则此力系可合成为一个合力偶,且此力系向任一点简化之主矩与简化中心的位置无关。
()10.若平面力系对一点的主矩为零,则此力系不可能合成为一个合力。
()11.当平面力系的主矢为零时,其主矩一定与简化中心的位置无关。
() 12.在平面任意力系中,若其力多边形自行闭合,则力系平衡。
()二、选择题1.将大小为100N的力F沿x、y方向分解,若F在x轴上的投影为86.6N,而沿x方向的分力的大小为115.47N,则F在y轴上的投影为。
① 0;② 50N;③ 70.7N;④ 86.6N;⑤ 100N。
2.已知力F的大小为F=100N,若将F沿图示x、y方向分解,则x向分力的大小为 N,y向分力的大小为 N。
① 86.6;② 70.0;③ 136.6;④ 25.9;⑤ 96.6;3.已知杆AB长2m,C是其中点。
分别受图示四个力系作用,则和是等效力系。
①图(a)所示的力系;②图(b)所示的力系;③图(c)所示的力系;④图(d)所示的力系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论力学平面力系综合问题
1.桁架的内力分析:图示平面桁架,已知:P = 5000 N,试求支座反力和各杆的内力。
2.图示构架,已知M = 250 Nm、重力P = 10 KN、均布载荷q = 3 KN/m,a = 2 m。
构架尺寸如图。
试求各支座的约束反力。
3.图示组合结构,尺寸及荷载如图所示,F = 10 KN,q= 6 KN/m,M = 188 KN.m,梁及各杆重不计。
求固定端C的约束反力和个杆的内力。
4.图示组合结构,尺寸和载荷如图,试求支座A、B、G、H的约束反力和杆件DB、DE、DC的内力。
5、滑块A、C用两根不计重量的杆AB和BC连接,滑块A的重量为20kg,滑块C的重量为10kg。
滑块A、C与壁面的摩擦系数为0.25。
求平衡时力F的范围。
6. 图示结构,尺寸和受力如图。
试求铰链C、销钉E和支座A的受力。
7. 图示结构,试求支座A、B的约束反力和杆件OC、OD的内力。
8. 图示结构,试求支座A、D、E和杆件CD、CB的受力。
9. 均质圆柱的重量P1=400N,放在倾角为300的光滑斜面上,并用一绕过定滑轮A的绳索与重量P2=200N的重物B相连。
定滑轮A的位置可调整,求系统平衡时的a角。
10. 杆系的支座和载荷如图5-5所示,已知∠ABC=60O,∠BAC=30O AB=12r,EC=CD=2r,滑轮D和E的半径均为r,滑轮H的直径为r,物体重为P,如不计滑轮和杆的重量,求A和B处的约束反力。
11. 图示结构由三个构件AB、BD和DE构成,A端为固定端约束,B及D处用光滑圆柱铰链连接,
BD杆的中间支承C及E湍均可动铰链支座,已知集中力P=10KN,均布载荷的集度q=5KN/m,
力偶矩的大小m=30KN·m,梁的尺寸如图所示,单位为m,各构件自重不计,
试求A、C及E处的约束反力。
12. 构架ABC由三杆AB,AC和DH所组成。
如图所示。
DH上的销子E可在杆AC的槽内滑动。
求在水平杆DH的一端作用铅垂力F时,结构上各铰链A,B,C,D及销子E所受的力。
13. 已扇形摇椅的底腿半径1m,顶角为60°,重量100N。
重心C距顶点O的距离为0.6m。
今在O点作用一水平力F,如图所示。
当力F逐渐增大时,摇椅是先翻到还是先滑动?分别就摇椅与地面的摩擦因数为0.15和0.30两种情况考虑。
如果先滑动,此时OC与铅垂线成何角度?如先翻到,此时摩擦力多大?
第12题图第13题图。