小学数学小升初平面图形专项训练

合集下载

小升初专项复习:平面图形(试题)-六年级下册数学通用版

小升初专项复习:平面图形(试题)-六年级下册数学通用版

通用版小升初专项复习:平面图形一、填空题1.已知一个等腰三角形的一边是3cm ,一边是7cm ,这个三角形的周长是 cm 。

2.若a 和b 都是非0自然数,并且满足 a 3+b 7=1621,那么以a+b= 。

3.下图是由5个完全相同小长方形合成的大长方形,大长方形的周长是44厘米,这个大长方形的面积是 平方厘米。

4.要画一个周长是18.84厘米的圆,圆规两脚间的距离应为 厘米,这个圆的面积是 平方厘米。

5.如图,把圆分成若干等份,剪拼成了一个近似的长方形,周长比原来增加了6厘米,这个圆的面积是 平方厘米。

6.圆的 除以 的商是一个固定的数,我们把它叫作 ,用字母 表示,它是一个 小数,通常取 进行计算。

7.井盖做成圆的主要是为了 。

8.45 吨的 12 是 吨,合 千克。

9.在一个长是8厘米,宽是6厘米的长方形里剪一个最大的圆,这个圆的半径是 厘米,周长是 厘米,面积是 平方厘米。

10.一个圆锥的底面周长是18.84cm ,高是5cm ,从顶点沿高把它切成相等的两半,这两半的表面积之和比原来圆锥的表面积增加了 cm 2。

11.已知∠1、∠2是直角三角形中的两个锐角.(1)∠1=38°∠2= °(2)∠2=46°∠1= °12.一块梯形广告牌的下底是8米,上底是5米,高是下底的一半,它的面积是 平方米。

13.一个长方形花坛的面积是56平方米,扩建时长不变,宽由7米增加到12米,扩建后花坛的面积是平方米。

14.如果把一个圆的半径扩大到原来的3倍,那么直径扩大到原来的倍,周长扩大到原来的倍,面积扩大到原来的倍。

15.一个棋盒里有黑子和白子若干枚,若取出一枚黑子,则余下的黑子数与白子数之比为9:7;若放回黑子,再取出一枚白子,则余下的黑子数与白子数之比为7:5。

那么棋盒里原有的黑子比白子多枚。

二、单选题16.周长是80米的正方形,面积是()。

A.20平方米B.80平方米C.400平方米D.6400平方米17.如图,大圆内有一个最大的正方形,正方形内有一个最大的圆,那么大圆面积和小圆面积的比是()。

小升初专项复习《平面图形》(一)练习及答案

小升初专项复习《平面图形》(一)练习及答案

小升初专项复习《平面图形》一、填空题1.若等腰三角形的两边长分别为2和6,则它的周长为。

2.一个等腰三角形的两边长分别是 米和 米,这个三角形的周长是米。

3.长方形的面积是24平方厘米,长和面积的比是1:4,则长方形的宽是厘米。

4.用一根10.28米长的铁丝围成一个半圆,这个半圆的面积是平方米。

5.如图,把圆分成若干等份,剪拼成一个近似的长方形,已知长方形的宽为5cm,则长是cm,长方形的面积是cm2。

6.同一个圆中圆的与的比值叫做圆周率。

7.圆的位置与有关系,圆大小的与有关系。

8.晶晶画了一个平行四边形,它的高是 dm,底是高的 。

这个平行四边形的面积是dm2。

9.如图,零件厂要加工一批环形铁片,每个铁片的面积是平方厘米。

10.一个平行四边形的底是8厘米,面积是48.8平方厘米,高是厘米,与它等底等高的三角形的面积是平方厘米。

11.等腰三角形的一个底角是40°,它的顶角是°,这是一个角三角形。

12.一个梯形的上底是5厘米,下底是10厘米,高是5厘米(如图)。

这个梯形的一个钝角是°,这个梯形的面积是平方厘米。

13.一个长方形的长:宽=7:5,长比宽多6厘米,这个长方形的周长是,面积是。

14.在一个长8cm,宽3cm的长方形中剪出一个最大的半圆,这个半圆的周长是cm,面积是cm2。

15.如图,平行四边形的面积是20平方厘米,图中甲乙丙三个三角形的面积比是。

二、单选题16.两个正方形的边长的比是5:3,它们的面积的比是()A.3:5B.1:3C.5:1D.25:917.在一个长1.25米,宽0.8米的长方形里,最多能剪()个半径为20厘米的圆。

A.5B.7C.6D.2418.自行车的前轮半径为30厘米,后轮半径为20厘米。

如下图,当前轮向前行驶了5圈回到E点的位置时,后轮F点的位置是下图中的()。

A.B.C.D.19.如图,把正方形桌子面的四边撑起,就成了一张圆面桌子,经过测量圆面桌子的面积为π平方米,那么这张桌子的正方形桌面的面积为()平方米。

小升初重点专题平面图形的周长与面积(易错专项)-小学数学六年级下册

小升初重点专题平面图形的周长与面积(易错专项)-小学数学六年级下册

小升初重点专题:平面图形的周长与面积(专项训练)-小学数学六年级下册苏教版一、单选题1.一个长方形的面积是x平方厘米,它的宽是20厘米,周长是()厘米。

A.2(x÷20+20)B.2(x÷20+x)C.2(20÷x+5)D.2(20÷x+20)2.如图两个完全相同的长方形中,阴影部分的面积相比,甲()乙。

A.大于B.小于C.等于D.无法确定3.如图是少先队中队旗。

下面四个选项是计算中队旗面积的不同方法。

其中图()的方法的算式是“80×60﹣60×20÷2”。

A.B.C.D.4.半径为1厘米的小圆在半径为5厘米的固定的大圆外滚动一周,小圆滚了()圈。

A.4B.5C.6D.75.圆的半径由4厘米减少到3厘米,圆的面积减少了()平方厘米。

A.3.14B.12.56C.21.98D.31.46.如果把个平行四边形的底和高都除以2,它的面积就()。

A.缩小了2倍B.扩大2倍C.扩大4倍D.缩小4倍二、判断题7.如果两个梯形可以拼成一个平行四边形,那这两个梯形的高一定相等。

()8.一个三角形的底和高都扩大到原来的3倍,它的面积就扩大到原来的6倍。

()9.三角形的面积是等底等高平行四边形面积的一半。

()10.梯形的高不变,上底减少1.2cm,下底增加1.2cm,梯形的面积不变。

()11.用圆规画圆时两脚之间的距离是2cm,画出的圆的直径是2cm。

()三、填空题12.一个梯形的面积是54平方厘米,下底是4.6厘米,高是18厘米,上底是厘米。

13.如果一个等边三角形的周长是21米,那么以一边为底,高是6米的三角形的面积是平方米。

14.如图,把一个平行四边形剪成一个三角形和一个梯形,如果平行四边形的高是0.6分米,那么三角形的面积是平方分米,梯形的面积是平方分米。

15.一个挂钟,钟面上的时针长5厘米,经过-昼夜时针的针尖走过厘米。

16.转化是重要的数学思想,如在推导圆的面积公式时,把直径10厘米的圆平均分成32份,拼成的图形近似于长方形(如图)。

2023小学数学六年级下册小升初平面图形的周长和面积专题特训及答案

2023小学数学六年级下册小升初平面图形的周长和面积专题特训及答案

2023小学数学六年级下册小升初平面图形的周长和面积专题特训一、选择题1.周长相等的正方形、长方形和圆形,()的面积最大。

A.正方形B.长方形C.圆D.不确定2.车轮滚动一周所行的路程是求车轮的()。

A.周长B.半径C.直径D.面积3.一个三角形和一个平行四边形面积相等,底也相等。

平行四边形的高是8cm,三角形的高是()。

A.4cm B.8cm C.10cm D.16cm4.把一个周长是31.4cm的圆片,剪成两个相同的半圆,这个半圆的周长是()cm。

A.15.7 B.25.7 C.31.4 D.20.75.实验小学校园是一个长600米,宽360米的长方形,把它的平面图画在比例尺是1∶12000的图纸上,图纸上操场的面积是()平方厘米。

A.15 B.120 C.150 D.126.在下图中,平行线之间的三个图形的面积相比,正确的是()。

A.平行四边形的面积最大B.三角形的面积最大C.梯形的面积最大D.三个图形的面积都相等二、填空题7.画一个圆,圆规两脚间的距离是3cm,这个圆的周长是( )cm,面积是( )cm2。

8.一个直角三角形,三条边分别是5cm,4cm,3cm,它的面积是( )cm2。

9.用一根长12.56m的绳子围成一个圆,这个圆的直径是( )m,面积是( )m2。

10.如图,点O是三角形ABC内一点,且到三边的垂线段的长都为2,三角形ABC的面积是10,则三角形ABC的周长为( )。

11.把一个圆沿半径平均分成若干等份,拼成一个近似的长方形,拼成图形的周长比原来圆的周长增加了6cm,原来圆的面积是( )cm2,圆的周长是( )cm。

12.一个长方形和一个圆的周长相等。

已知长方形的长10米,宽5.7米。

长方形的面积是( )平方米,圆的面积是( )平方米。

13.一块正方形草地,边长8米,用一根长3.5米的绳拴住一只羊到草地上吃草,羊最多能吃到( )π=)平方米的草。

( 3.1414.一个三角形与一个长是12分米,宽是6分米的长方形面积相等,三角形底边长18分米,它的高是( )分米。

人教版六年级下册数学小升初专题训练:平面图形(含答案)

人教版六年级下册数学小升初专题训练:平面图形(含答案)

人教版六年级下册数学小升初专题训练:平面图形一、单选题1.用一块长12米、宽8米的长方形铁皮剪成半径是1.5米的小圆(不能剪拼),至多能做( )个。

A.11B.8C.10D.132.如果要搭成一个从正面、左面、上面看到的图形都是如图的几何体,需要( )个小正方体。

A.3B.4C.5D.63.下图是由一个圆分成若干等分后,拼成的一个近似长方形,这个圆的周长与长方形的周长相差约4厘米,这个圆的周长约是( )厘米。

A.6.28B.9.42C.12.56D.无法计算4.从12时到13时,钟的时针与分针可成直角的机会有( )A.1次B.2次C.3次D.4次5.下列时刻中,钟表中时针与分针不成直角的是( )。

A.3:00B.21:00C.9:00D.12:206.一个半径是5cm的半圆,它的周长是( )cm。

A.31.4B.15.7C.25.7D.20.7二、填空题7.已知一个等腰三角形的两条边分别是5厘米、10厘米,那么它的周长是 厘米。

8.一个花坛的直径是6m,花坛周围有一条宽1m的环形小路,小路的面积是 m2。

9.一个挂钟的时针长5厘米,一昼夜这根时针的尖端走了 厘米,针尖扫的面积是 平方厘米。

10.把一个长、宽分别是15厘米和10厘米的长方形,拉成一个一条高为12厘米的平行四边形,它的面积是 平方厘米。

11.李大伯用5π米长的篱笆靠墙围了一个半圆形养鸡场,养鸡场的面积是 平方米。

12.如图。

∠1=30°,∠2= ,∠3= ,∠4= 。

13.从9:00到9:15,分针旋转了 度,若分针长6厘米,这根分针针尖走过的长度是 厘米,扫过的面积是 平方厘米。

14.一个三角形内角度数的比是2:3:5,其中最大的内角是 度,这是个 角三角形。

15.如图中正方形的面积是40cm2,那么涂色部分的面积是 cm2。

16.一辆自行车车轮直径是0.5米,脚踏板齿轮有48个齿,后齿轮有16个齿,脚踏一圈,自行车前进 米.17.把两个正方形拼成一个长方形,拼成的长方形周长是30厘米,这个长方形的面积是 平方厘米。

六年级下册数学-小升初平面图形组合专项试题-s-人教版

六年级下册数学-小升初平面图形组合专项试题-s-人教版

-小升初平面图形组合专项试题-人教版一、解答题(题型注释)其中最小的地砖边长是1,求这个房间的地面面积.2.用一个长8厘米,宽4厘米的长方形形纸改一个正方形。

最大的正方形的周长是多少厘米?3.如图是一个长方形,请你画一条直线把它分成两部分,沿画的线剪开后,这两部分既能拼成一个三角形,也能拼成一个平行四边形,或梯形.请你用虚线画出分线和拼的示意图.4.用若干块面积都是18平方厘米的长方形拼成一个大正方形(如图),那么阴影部分的面积是多少?5.请你用下图中的任意三角形创作一个密铺平面.6.如图,长方形中,,,三角形的面积为平方厘米,求长方形的面积.ABCD:2:3BE EC=:1:2DF FC=DFG2ABCDAB CDEFG7.两个完全相同的长方体,每个长方体长5分米,宽4分米,高6分米,把它们拼成一个表面积最小的长方体后,表面积比原来两个长方体表面积之和减少了多少平方分米?8.在一个长是12厘米,宽10厘米的长方形中画一个最大的圆,这个圆的面积是()平方厘米。

9.动手操作:画一个半径是2厘米的圆,并求出它的周长和面积.10.一块长方形花圃的宽7米,面积248平方米,扩建后长不变,宽增加到21米,求扩建后的面积是多少平方米?参数答案1.解:如下图所示,黑色部分正方形边长为1,其他正方形边长未知.所以我们可以设AB的长度为x,那么1号正方形边长为x+1,2号正方形边长为x+2,3号正方形边长为x+3,4号正方形边长为x+4,5号正方形边长为4号正方形边长与AB的差,也就是x+4﹣x=4,6号正方形边长为x+8,7号正方形边长为2x+3,8号正方形边长为x+12.根据长方形的宽相等可以列方程(x+3)+(x+2)+(2x+3)=(x+8)+(x+12)解得x=6所以长方形的长为(2x+3)+(x+12)=33宽为(x+8)+(x+12)=32面积为33×32=1056.答:这个房间的地面面积是1056【解析】1.黑色部分正方形边长为1,其他正方形边长未知.所以我们可以设AB的长度为x,那么1号正方形边长为x+1,2号正方形边长为x+2,3号正方形边长为x+3,4号正方形边长为x+4,5号正方形边长为4号正方形边长与AB的差,也就是x+4﹣x=4,6号正方形边长为x+8,7号正方形边长为2x+3,8号正方形边长为x+12.根据长方形的宽相等可以列方程求解即可.2.解:4×4=16﹙厘米﹚答:最大的正方形的周长是16厘米。

2024年西师大版六年级下册数学小升初分班考必刷专题:平面图形

2024年西师大版六年级下册数学小升初分班考必刷专题:平面图形

2024年西师大版六年级下册数学小升初分班考必刷专题:平面图形一、单选题1.圆形花坛的半径是2米,绕花坛走一周,长度是()。

A.25.12米B.12.56米C.12.56平方米D.25.12平方米2.已知一个三角形两边的长度分别是9厘米、12厘米,那么,这个三角形的周长可能是()厘米。

A.24B.30C.42D.453.如图,在边长相等的两个正方形内剪圆片,比较剩下的材料,()A.甲、乙剩下一样多B.甲剩下多C.乙剩下多D.无法确定4.一个等腰三角形的两条边分别是2厘米和5厘米,则这个等腰三角形的周长是()A.7厘米B.9厘米C.12厘米D.9厘米或12厘米5.用三根同样长的铁丝分别围成平行四边形、正方形、长方形三个不同的图形,三个图形的面积相比,()A.平行四边形面积最大B.正方形面积最大C.长方形面积最大D.三个图形的面积相等6.如图,大圆直径2cm,小圆贴着大圆的内侧从P点开始按箭头所指方向滚动,小圆至少需要滚动()周才能回到P点。

A.2B.3C.4D.5二、填空题7.已知一个三角形的两个内角分别为30°和40°,这是一个角三角形。

8.一个等腰三角形中两个内角的比是1:4,这个等腰三角形的顶角可能是度。

9.一个等腰三角形的两条边分别是7cm和3cm。

它的周长是cm。

10.一个三角形面积是18cm2,与它等底等高的平行四边形面积是cm2。

11.如图:若圆的半径是1dm,则涂色部分面积是。

12.下图(1)中,长方形的周长是24厘米,空白部分是半圆。

阴影部分的面积是平方厘米,周长是厘米。

13.如图,把一个圆沿半径分成若干等份后,拼成一个近似的长方形,近似长方形的周长比圆的周长增加了20厘米,这个圆的半径是厘米。

14.大小两个圆的半径比是4:3,它们的直径比是,面积比是。

15.图中有条对称轴;如果圆的直径是dcm,那么长方形的面积是cm2。

16.靠墙用篱笆围一个半径是5米的半圆形鸡舍(靠墙一面不围),需要篱笆米。

小升初——平面图形易错专项(试题)-六年级下册数学人教版

小升初——平面图形易错专项(试题)-六年级下册数学人教版

人教版数学六年级下册小升初——平面图形易错专项一、填空题(共15分,每题3分)1.将一张长方形纸按右图所示的方法折叠,∠1是()°。

2.在周长为16 cm的正方形内作一个最大的圆,这个圆的周长是()cm,面积是()cm2。

3.一个梯形,上下底之和是12 cm,是高的3倍,它的面积是()cm2。

4.一个圆柱的侧面展开是一个正方形。

如果圆柱的高增加2cm,侧面积就增加12.56cm2。

原来这个圆柱的表面积是()平方厘米。

5.钟面上,3时整时,时针和分针成()角;6时整时,时针和分针成()角。

二、几何题(共35分,每题7分)1.为方便销售,售货员把啤酒瓶捆成如下图(从瓶底方向看)的形状,如果每组分别捆5圈绳子(接头处不计),每组至少需要多长的绳子?你发现了什么?2.如图,中间是边长为2cm的正方形,与这个正方形每一条边相连的都是圆心角为90的扇形,整个图形的面积是多少?3.下图中,AB=20厘米,阴影甲的面积比乙的面积大57平方厘米,求BC长。

4.菲菲同学在学完了圆的知识后,想到了苏州的小桥流水,创作了下面一幅画。

这幅画由5个完全相同的半圆组合而成。

如果菲菲从桥上的A点走到B点,走过了多少路? 单位 (cm)5.请用直尺和圆规画一个与如图一模一样的图形。

(保留作图痕迹,不用涂改),并计算这个图形的周长。

三、解决问题(共50分,每题10分)1.一个圆形牛栏的半径是15 m,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计。

)如果每隔2 m打一根木桩,大约要打多少根木桩?2.正方形ABCD的边AB、AD分别在三角形AFE的AF、AE边上,点C在EF边上,FC=10cm,CE=8cm,求两个阴影三角形的面积和。

3.一个正方形羊圈,边长是6m(如图)。

羊的主人准备了两根6m长的绳子,分别将两根绳子一端系在A或B处,一端系在羊身上。

(1)请在图中画出这两只可以吃到的草的公共区域,并用阴影表示出来。

小升初平面图形复习题

小升初平面图形复习题

小升初平面图形复习题平面图形是数学中的基础概念,对于小升初的学生来说,掌握平面图形的相关知识是非常重要的。

以下是一些针对小升初平面图形的复习题,帮助学生巩固和提高对平面图形的理解和应用能力。

# 一、选择题1. 一个正方形的边长为4厘米,其周长是多少厘米?A. 8厘米B. 12厘米C. 16厘米D. 20厘米2. 下列哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 长方形3. 一个圆的半径为5厘米,其面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π4. 下列哪个不是平面图形?A. 三角形B. 圆形C. 立方体D. 长方形5. 如果一个平行四边形的底边长为6厘米,高为4厘米,其面积是多少平方厘米?A. 12B. 24C. 36D. 48# 二、填空题6. 一个三角形的三个内角之和为______度。

7. 如果一个圆的直径是14厘米,那么它的半径是______厘米。

8. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。

9. 平行四边形的对边是______的,并且对角线______。

10. 一个正五边形的每个内角是______度。

# 三、简答题11. 解释什么是平面图形,并给出至少三个例子。

12. 描述如何计算一个圆的周长和面积。

13. 解释什么是轴对称图形,并给出一个例子。

14. 说明什么是圆周角,并解释它与圆心角的关系。

15. 描述如何计算一个三角形的面积,如果已知其底边和高。

# 四、应用题16. 一个长方形的长是宽的两倍,如果长为20厘米,求这个长方形的面积。

17. 一个圆的周长是31.4厘米,求这个圆的半径。

18. 一个平行四边形的面积是40平方厘米,如果底边长为10厘米,求其高。

19. 如果一个三角形的底边长为8厘米,高为6厘米,求这个三角形的面积。

20. 一个正六边形的边长为3厘米,求这个正六边形的周长和面积。

# 五、综合题21. 一个正方形的边长增加2厘米后,它的面积增加了多少平方厘米?22. 一个圆的半径增加1厘米,它的面积增加了多少平方厘米?23. 如果一个等腰三角形的底边长为6厘米,两腰相等,且底角为60度,求这个三角形的面积。

小升初数学《平面图形》综合试题及答案

小升初数学《平面图形》综合试题及答案

小升初数学《平面图形》综合试题一、填空题1.同一平面内的两条直线的位置关系有两种情况:________和________.2.下面各组直线中,哪两条直线互相垂直?在下面的括号里画“√”。

( ) ( ) ( )3.在两点之间的所有连线中,(____)最短.4.用一个能放大3倍的放大镜看一个15°的角,这个角的度数是(____)。

按度数从小到大,可以把角分为(____)、(____)、(____)、(____)和(____)。

5.一个平行四边形的面积是32m2,与它等底等高的三角形的面积是(____)m2。

6.一个三角形最小的角是60°,那么这个三角形按边分是(_____)三角形。

7.一个等腰梯形的上底是6cm,下底是8cm,一条腰长是7cm,围成这个等腰梯形至少需要(____)cm长的铁丝.8.两个完全一样的三角形可以拼成一个(_____)形。

如果拼成的图形的面积是126cm2,那么一个三角形的面积是(____)cm2。

如果每个三角形的面积是15dm2,那么拼成的图形的面积是(____)dm29.照图操作画出的圆的周长是(____)cm,圆的面积是(____)cm2.10.画圆时,圆规两脚间的距离是2.5cm,则半径是(____)cm,直径是(____)cm。

11.一个边长是20cm的正方形,里面有一个最大的圆,这个圆的半径是(____)cm,面积是(____)cm2。

12.如图,一个平行四边形被分成了甲、乙、丙三部分,已知甲的面积比丙的面积大6cm2,那么丙的面积是(____)cm2。

13.如图,已知大正方形的边长是5cm,小正方形的边长是3cm,那么阴影部分的面积是(____)cm2。

14.一个三角形,其中两个角分别是35°和45°,那么另一个角是(____)°。

按角来分,这是一个(____)三角形。

15.一个直角三角形三条边的长度分别是6cm、8cm、10cm,斜边上的高是(____)cm。

苏教版数学小升初总复习平面图形专项训练含答案

苏教版数学小升初总复习平面图形专项训练含答案

苏教版数学小升初总复习平面图形专项训练一、认真填空。

(每空3 分,共36 分)1.下面图形中有( )条线段,( )条射线。

2.从一个边长为8 厘米的正方形硬纸板中剪一个最大的圆,这个圆的半径是( )厘米,周长是( )厘米,面积是( )平方厘米。

3.用6 个面积是1 平方厘米的小正方形拼成一个长方形,这个长方形的周长可能是( )厘米,也可能是( )厘米。

4.德老师有一本数学教师用书,书的后面有一个配套光盘,形状是一个圆环,德老师测量出它的内圆直径是2厘米,外圆直径是12 厘米,光盘的面积是( )平方厘米。

5.甲圆的半径等于乙圆的直径。

甲、乙两圆周长的最简整数比是( ),面积的最简整数比是( )。

6.把一张直径为4 分米的圆形纸片平均分成若干份,拼成一个近似的长方形。

这个长方形的周长是( )分米,面积是( )平方分米。

二、慎重选择。

(每小题3 分,共18 分)1.【无锡市新吴区】在正六边形的内部画两条对角线,可以得到不同的图形。

下列图形中,有2 条对称轴的图形是( )。

2.一个三角形的底比高长5 厘米,如果将这个三角形的底减少2 厘米,高增加2厘米,那么这个三角形的面积会( )。

A.减少B.增加C.不变D.无法判断3.下面各图形的空白部分与阴影部分相比较,周长和面积都相等的是( );周长相等,面积不相等的是( );周长不相等,面积相等的是( )。

4.典典运用三角形的内角和的知识研究六边形的内角和,他画出了如图的思考图。

根据图示,下面( )算式能正确计算出六边形的内角和。

A.180°×6 B.180°×6-360°C.180°×6-180°D.180°×6-720°5.【新考法】我国古代数学家刘徽利用出入相补原理来计算平面图形的面积。

出入相补原理就是把一个图形分割、移补,而面积保持不变。

把图中的三角形先沿虚线剪开,再将两部分重新拼成一个新图形(两部分不重叠),不可能拼成的图形是( )。

小升初数学平面图形与立体图形综合练习

小升初数学平面图形与立体图形综合练习

小升初数学平面图形与立体图形综合练习1、时针和分针一昼夜的路程分别为360°和720°,因为圆的周长为2πr,所以时针和分针一昼夜的路程分别为2π×0.3×360/360°=1.884π厘米和2π×0.4×720/360°=3.768π厘米。

2、根据半圆周长公式C=πr,可得半圆的半径为2.46米,面积为πr²/2=3.783平方米。

3、根据半圆弧长公式L=πr,可得这个半圆的半径为15.7厘米,与之半径相等的圆的面积为πr²=776.7平方厘米。

4、根据半圆周长公式C=πr,可得这个半圆的半径为8.2厘米,与之半径相等的圆的面积为πr²=211.1平方厘米。

5、正方形的面积为31.4²=985.96平方厘米,每个圆的面积为π×5²=78.54平方厘米,所以可以容纳985.96/78.54=12个圆。

6、正方形的面积为12²=144平方厘米,4个圆的总面积为4×π×(12/4)²=36π平方厘米,每个圆的面积为9π平方厘米。

7、前轮每分钟滚动的路程为2×π×7.5×5=235.62厘米,每分钟前进的距离为235.62×2=471.24厘米,每分钟压路面积为2×1×471.24=942.48平方厘米。

8、养鱼池的周长为100.48米,减去圆形小岛的周长2πr=12π米,得到养鱼池的周长为88.48米,根据周长公式C=2πr,可得养鱼池的半径为14.06米,面积为πr²=623.16平方米。

9、大圆的周长是小圆周长的2倍,面积比是4:1.10、围成正方形的绳长为31.4米,所以每条边长为7.85米,正方形的面积为7.85²=61.5225平方米,围成圆形的周长为31.4米,所以半径为5厘米,圆形的面积为π×5²=78.54平方厘米,两者面积相差17.0175平方米。

2024年北师大版六年级下册数学小升初分班考专题:平面图形(含答案)

2024年北师大版六年级下册数学小升初分班考专题:平面图形(含答案)

2024年北师大版六年级下册数学小升初分班考专题:平面图形一、单选题1.一个等腰三角形的顶角是120°,它的一个底角是( )度.A.6B.30C.4D.452.一个三角形三个内角的度数比是4:6:11,按角分,这是一个( )三角形.A.锐角B.直角C.钝角D.无法确定3.小圆的半径等于大圆半径的1,则小圆面积与大圆面积的比是( )。

3A.1:3B.3:1C.1:9D.9:14.下图中,甲的周长( )乙的周长。

A.大于B.等于C.小于D.以上都不对5.将一个平行四边形沿高剪拼成一个长方形(如图),剪拼成的长方形和原来的平行四边形相比,( )A.周长不变,面积也不变B.周长不变,面积变了C.周长变了,面积不变D.周长变了,面积也变了6.已知半圆形所在圆的直径是6厘米,那么,这个半圆形的周长是( )厘米。

A.15.42B.9.42C.18.84D.14.13二、填空题7.一只挂钟的时针长5厘米,分针长8厘米,从上午8时到下午2时,分针尖端“走了” 厘米,时针“扫过”的面积是 平方厘米。

8.小正方形和大正方形边长的比是4:5小正方形和大正方形面积的比是 。

9.小梅想在一个长8cm、宽4cm的长方形纸上画一个最大的圆。

圆规两脚间的距离应是 cm,这个圆的周长是 cm。

10.一个直角三角形,两条直角边长度的和是35厘米,比是3;4。

这两条直角边长度分别是 和 厘米,这个三角形的面积是 平方厘米。

11.图中有 条对称轴;如果圆的直径是dcm,那么长方形的面积是 cm2。

12.把一个半径为10cm的圆形贴纸剪成大小相同的若干片,已经用掉了3片(如下图),剩下贴纸的面积为 cm²,周长为 cm。

13.如图:一个圆剪拼成一个近似梯形,得到的近似梯形的周长约为21.42厘米,则该圆的半径约是 厘米。

(π取3.14)14.将两个同样的长方形摆放如图,这个图形的周长是 。

15.一个三角形与一个长是12分米,宽是6分米的长方形面积相等,三角形底边长18分米,它的高是 分米。

小升初数学几何图形专题训练含参考答案(精选5篇)

小升初数学几何图形专题训练含参考答案(精选5篇)

小升初数学几何图形专题知识训练含答案一、单选题1.甲数和乙数的比是4∶7,甲数是乙数的()A.47B.74C.342.甲数的14和乙数的34相等,那么甲数()乙数。

A.大于B.小于C.等于D.不能比较3.在一张长8厘米,宽6厘米的长方形纸上,剪下一个最大的正方形,这个正方形的面积是()。

A.36平方厘米B.48平方厘米C.64平方厘米4.下面图形都是由3个边长1厘米的小正方形组成的,其中周长最长的是()。

A.B.C.5.旋转能得到()A.圆柱B.圆锥C.一个空心的球6.如图,图中的物体从()看到的形状是相同的.A.正面和上面B.正面和右面C.上面和右面7.下面运用“转化”思想方法的是()。

A.①和②B.①和③C.②和③8.下列叙述正确的是()A.两个数的最小公倍数是它们最大公因数的倍数。

B.三角形的底和高扩大2倍,它的面积也扩大2倍。

C.相邻两个非0的自然数,其中一定有一个是合数。

9.两个完全相同的长方形(如图),将图①和图②阴影部分的面积相比,()A.图①大B.图②大C.图①和图②相等10.下列说法中正确的有()。

①2厘米长的线段向上平移10厘米,线段的长还是2厘米。

②8080008000这个数只读出一个“零”。

③万级包括亿万、千万、百万、十万、万五个数位。

④三位数乘两位数,积不可能是六位数。

A.2个B.3个C.4个二、填空题11.在一个宽为6厘米的长方形里恰好能画两个同样尽量大的圆(如图).圆的直径为厘米,半径为厘米;一个圆的周长为厘米,面积为平方厘米;长方形的面积是平方厘米,阴影部分的面积是平方厘米.12.一个梯形的上底是5.8厘米,下底是6.2厘米,高是2.5厘米,它的面积是平方厘米。

13.是由几个拼成的。

;;。

14.在横线上填上“平移”或“旋转”。

汽车行驶中车轮的运动是现象;推拉门被推开是现象。

15.把一个棱长为6 cm的正方体木块削成一个最大的圆柱,圆柱的体积是,再把这个圆柱削成一个最大的圆锥,这个圆锥的体积是。

2024年人教版六年级下册数学小升初专题训练:平面图形(含答案)

2024年人教版六年级下册数学小升初专题训练:平面图形(含答案)

2024年人教版六年级下册数学小升初专题训练:平面图形一、单选题1.一个圆形草坪,按1:100缩小后画在图纸上,周长是18cm。

花坛实际占地面积是( )m2。

(π取近似值3)A.3B.6C.9D.272.已知一个三角形两边的长度分别是9厘米、12厘米,那么,这个三角形的周长可能是( )厘米。

A.24B.30C.42D.453.用三根同样长的铁丝分别围成平行四边形、正方形、长方形三个不同的图形,三个图形的面积相比,( )A.平行四边形面积最大B.正方形面积最大C.长方形面积最大D.三个图形的面积相等4.时针围绕钟面中心顺时针方向旋转()才能从1:00走到4:00。

A.30°B.60°C.90°D.120°5.用三根小棒围成三角形(小棒长度取整厘米数),其中两根小棒分别长5cm和7cm。

要使围成的三角形周长最长,第三根小棒应该为( )cm。

A.10B.11C.12D.13二、填空题6.已知等腰三角形的一个内角是95°,它的另外两个内角分别是 度。

7.一个直角三角形,三条边分别为3cm、4cm、5cm,这个三角形的面积为 cm2。

8.从9:00到9:15,分针旋转了 度,若分针长6厘米,这根分针针尖走过的长度是 厘米,扫过的面积是 平方厘米。

9.一个三角形内角度数的比是2:3:5,其中最大的内角是 度,这是个 角三角形。

10.如图中正方形的面积是40cm2,那么涂色部分的面积是 cm2。

11.一辆自行车车轮直径是0.5米,脚踏板齿轮有48个齿,后齿轮有16个齿,脚踏一圈,自行车前进 米.12.一个等腰三角形的顶角是60度,它的一个底角是 度,这样的三角形有 条对称轴。

13.如图,直角三角形的面积是4平方厘米,圆的面积是 平方厘米。

14.找规律,如图(单位:cm),30个等腰梯形拼出的图形是 ,周长是 厘米。

15.小明用圆规在纸上画一个周长是12.56厘米的圆。

人教版六年级下册数学 小升初分班考专题:平面图形(含答案)

人教版六年级下册数学 小升初分班考专题:平面图形(含答案)

人教版六年级下册数学小升初分班考专题:平面图形一、单选题1.一个正方形的边长为2a米,这个正方形的面积是()平方米。

A.4a B.4a2C.8a2D.2a22.在一个梯形纸片上剪一刀,不会得到()。

A.两个三角形B.两个平行四边形C.一个三角形和一个平行四边形D.梯形3.一个三角形的两条边长分别是5 cm 和9 cm,它的周长可能是()cm。

A.9B.21C.28D.304.下图中每个小方格的面积均为1个面积单位,阴影部分的面积是()。

A.2个面积单位B.3个面积单位C.4个面积单位D.5个面积单位5.把一个长方形拉成平行四边形(边长不变),这个平行四边形和原来长方形相比()。

A.周长不变,面积变了B.周长变了,面积不变C.周长和面积都变了D.周长和面积都不变6.笑笑家到公路有三条笔直的小路,长度分别是480米、420米、350米。

其中有一条小路与公路是垂直的,这条小路的长度是()A.350米B.420米C.480米D.无法确定二、填空题7.一个等腰三角形,如果一个底角是80°,它的顶角是°;如果顶角是80°,它的一个底角是°。

8.把一个等边三角形对折,再沿折痕剪开,得到两个相同的直角三角形,其中一个直角三角形的两个锐角的度数分别是°和°。

9.一个三角形指示牌既是钝角三角形。

又是等腰三角形,它的一个内角是40°,其余两个内角分别是°和°10.一个长方形池塘的长是8米,宽是5米。

这个池塘的周长是米。

11.一个梯形的面积是42平方厘米,上底5厘米,高6厘米,下底是厘米。

12.一个长方形广场,长250米,宽150米,王叔叔每天沿着广场跑5周。

王叔叔每天跑米,合千米。

13.一个三角形,底是8米,高是60分米,面积是平方米,与它等底等高的平行四边形的面积是平方米。

14.下图是两个相同的长方形,把它们拼成一个大长方形有两种拼法。

小升初奥数—平面图形计算练习题

小升初奥数—平面图形计算练习题

小升初奥数—平面图形计算(一)一、 填空题1. 如下图,把三角形ABC 的一条边AB 延长1倍到D ,把它的另一边AC 延长2倍到E ,得到一个较大的三角形ADE ,三角形ADE 的面积是三角形ABC 面积的______倍.2. 如下图,在三角形ABC 中, BC =8厘米, AD =6厘米,E 、F 分别为AB 和AC 的中点.那么三角形EBF 的面积是______平方厘米.3. 如下图,,41,31AC CD BC BE ==那么,三角形AED 的面积是三角形ABC 面积的______.4. 下图中,三角形ABC 的面积是30平方厘米,D 是BC 的中点,AE 的长是ED 的长的2倍,那么三角形CDE 的面积是______平方厘米.5. 现有一个5×5的方格表(如下图)每个小方格的边长都是1,那么图中阴影部分的面积总和等于______.6. 下图正方形ABCD 边长是10厘米,长方形EFGH 的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是______平方厘米.7. 如图所示,一个矩形被分成A 、B 、C 、D 四个矩形.现知A 的面积是2cm 2,B 的面积是4cm 2,C 的面积是6cm 2.那么原矩形的面积是______平方厘米.8.有一个等腰梯形,底角为450,上底为8厘米,下底为12厘米,这个梯形的面积应是______平方厘米.9.已知三角形ABC的面积为56平方厘米、是平行四边形DEFC的2倍,那么阴影部分的面积是______平方厘米.10.下图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是______.二、解答题11.已知正方形的面积是50平方厘米,三角形ABC两条直角边中,长边是短边的2.5倍,求三角形ABC的面积.12.如图,长方形ABCD中, AB=24cm,BC=26cm,E是BC的中点,F、G分别是AB、CD的四等分点, H为AD上任意一点,求阴影部分面积.13.有两张正方形纸,它们的边长都是整厘米数,大的一张的面积比小的一张多44平方厘米.大、小正方形纸的边长分别是多少?14.用面积为1,2,3,4的四张长方形纸片拼成如图所示的一个长方形.问:图中阴影部分面积是多少?平面图形计算(一)习题答案1. 6.如下图,连接BE ,因为AC CE 2=,所以,ABC BCE S S ∆∆=2,即ABC ABE S S ∆∆=3.又因为BD AB =,所以,BDE ABE S S ∆∆=,这样以来,ABC ADE S S ∆∆=6.2. 6.已知E 、F 分别是AB 和AC 的中点,因此ABF ∆的面积是ABC ∆的面积 的21,EBF ∆的面积又是ABF ∆的面积的21.又因为24682121=⨯⨯=⨯=∆AD BC S ABC (平方厘米), 所以6242121=⨯⨯=∆EBF S (平方厘米). 3. 21.由,41,31AC CD BC BE ==可知AC AD BC EC 4,332==.因为ABC ∆与AEC ∆是同一个顶点,底边在同一条线段,所以这两个三角形等高,则三角形面积与底边成正比例关系,因此ABCAEC SS ∆∆=32.同理可知AEC AED S S ∆∆=43.这样以来,AED ∆的面积是ABC ∆的32的43,即是ABC ∆的面积的21. 所以,AED ∆的面积是ABC ∆的21. 4. 5.因为D 是BC 的中点,所以三角形ADC 和三角形ABD 面积相等(等底、等高的三角形等积),从而三角形A DC 的面积等于三角形ABC 面积的一半,即30÷2=15(平方厘米).在CDE ∆与ADC ∆中,DA DE 31=,高相等,所以CDE ∆的面积是ADC ∆面积的31.即CDE ∆的面积是51531=⨯(平方厘米)5. 10三个阴影三角形的高分别为3,2,2,底依次为2,4,3,所以阴影部分面积总和等于10322142212321=⨯⨯+⨯⨯+⨯⨯. 6. 60设正方形ABCD 的面积为a ,长方形EFGH 的面积为b ,重叠部分EFNM 的面积为c ,则阴影部分的面积差是:b a c b c a -=---)()(.即阴影部分的面积差与重叠部分的面积大小无关,应等于正方形ABCD 的面积与长方形EFGH 的面积之差.所求答案:10×10-8×5=60(平方厘米).7. 24图中的四个矩形是大矩形被两条直线分割后得到的,矩形的面积等于一组邻边的乘积.从横的方向看,两个相邻矩形的倍比关系是一致的,B 是A 的2倍,那么D 也应是C 的2倍,所以D 的面积是2×6=122cm ,从而原矩形的面积是2+4+6+12=242cm .8. 20如下图,从上底的两个端点分别作底边的垂线,则BCFE 是矩形, 22)812(=÷-==CD AB (厘米).因为045=∠A ,所以ABE ∆是等腰直角三角形,则2==AB BE (厘米).根据梯形的 求积公式得:()2022128=⨯+=梯形S (平方厘米).9. 14由已知条件,平行四边形DEFC 的面积是:56÷2=28(平方厘米)如下图,连接EC ,EC 为平行四行形DEFC 的对角线,由平行四边形的性质如,S S DEC 21=∆DEFC2821⨯=14=(平方厘米).在AED ∆与CED ∆中,ED 为公共底边,DE 平行于AC ,从而ED 边上的高相等,所以,CED S S∆=14=(平方厘米).重叠部分的面积等于长方形未被这两个三角形盖住部分的面积和,即97133549=++=影阴S.11. 画两条辅助线如下图,根据条件可知,正方形面积是长方形ABCD 面积的2.5倍.从而 ABCD 的面积是50÷2.5=20(平方厘米).所以ABC ∆的面积是20÷2=10(平方厘米).12. 连结BH ,BEH ∆的面积为)(21624)236(212cm =⨯÷⨯.把BHF ∆和DHG ∆结合起来考虑,这两个三角形的底BF 、DG 相等,且都等于长方形宽的41,它们的高AH 与DH 之和正好是长方形的长,所以这两个三角形的面积之和是:)(212112DH AH BF DH DG AH BF +⨯⨯=⨯⨯+⨯⨯)(10836244121212cm AD BF =⨯⨯⨯=⨯⨯=.于是,图中阴影部分的面积为216+108=324)(2cm . 13. 把两张正方形纸重叠在一起,且把右边多出的一块拼到上面,成为一个长方形,如图:这个长方形的面积是44平方厘米,它的长正好是两个正方形的边长的和,它的宽正好是两个正方形的边长的差.因为两个整数的和与它们的差是同奇或同偶,而44又只能分解成下面的三种形式: 44=1×44=2×22=4×11.所以,两个正方形的边长的厘米数的和与差只能是22与2.于是,两个正方形的边长是(22+2)÷2=12(厘米),12-2=10(厘米).14. 如图大长方形面积为1+2+3+4=10.延长RA 交底边于Q ,延长SB 交底边于P .矩形ABPR 面 积是上部阴影三角形面积的2倍.矩形ABSQ 是下部阴影三角形面积的2倍.所以矩形RQSP 的面积是阴影部分面积的两倍.知CD CA 31=, CD CB 73=CD CD CD CA CB AB 2123173=-=-=∴因此矩形RQSP 的面积是大矩形面积的212,阴影部分面积是大矩形面积的211.阴影部分面积=211×10=2110.小升初奥数—平面图形计算(二)一、填空题1. 下图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是______厘米.2. 第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.那么7,2,1三个数字所占的面积之和是______.3. 下图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是______平方厘米.4. 下图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是______平方厘米.5. 在ABC ∆中,DC BD 2=,BE AE =,已知ABC ∆的面积是18平方厘米,则四边形AEDC 的面积等于______平方厘米.6. 下图是边长为4厘米的正方形,AE =5厘米、OB 是______厘米.7. 如图正方形ABCD 的边长是4厘米,CG 是3厘米,长方形DEFG 的长DG 是5厘米,那么它的宽DE 是______厘米.8. 如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是______.9. 如下图,正方形ABCD 的边长为12, P 是边AB 上的任意一点,M 、N 、I 、H 分别是边BC 、AD 上的三等分点,E 、F 、G 是边CD 上的四等分点,图中阴影部分的面积是______.10. 下图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD 的面积是______平方厘米.二、解答题11. 图中正六边形ABCDEF 的面积是54.PF AP 2=,BQ CQ 2=,求阴影四边形CEPQ 的面积.12. 如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.13. 一个周长是56厘米的大长方形,按下图中(1)与(2)所示意那样,划分为四个小长方形.在(1)中小长方形面积的比是: 2:1:=B A ,2:1:=C B .而在(2)中相应的比例是3:1:=''B A ,3:1:=''C B .又知,长方形D '的宽减去D 的宽所得到的差,与D '的长减去在D 的长所得到的差之比为1:3.求大长方形的面积.14. 如图,已知5=CD ,7=DE ,15=EF ,6=FG .直线AB 将图形分成两部分,左边部分面积是38,右边部分面积是65.那么三角形ADG 面积是______.平面图形计算(二)习题答案1. 170.每个小正方形的面积为400÷16=25平方厘米,所以每个小正方形的边长为5cm,因此它的周长是34×5=170厘米.2. 25. 7,2,1所占面积分别为7.5,10和7.5 .3. 6.5.直接计算粗线围成的面积是困难的,我们通过扣除周围的正方形和直角三角形来计算.周围有正方形3个,面积为1的三角形5个,面积为1.5的三角形一个,因此围成面积是4×4-3-5-1.5=6.5(平方厘米).4. 24仿上题,大、小两个正方形面积之和减去两只空白三角形的面积和,所得的差就是阴影部分的面积.]2)84(4288[8422+⨯+⨯-+=16+64-(32+24)=80-56=24(平方厘米)5. 12如下图,连接AD ,因为DC BD 2=,所以ADC ABD S S ∆∆=2;又18==+∆∆∆ABC ADC ABD S S S ,所以12=∆ABD S .因为BE AE =,所以621===∆∆∆A B DAD E B D E S S S ;因此12618=-=-=∆∆BDEABCAEDCSSS(平方厘米).6. 3.2如下图,连接BE ,则8442121=⨯⨯==∆正方形S S ABE (平方厘米).从另一角度看,OB S ABE ⨯⨯=∆521,于是8521=⨯⨯OB .528÷⨯=∴OB =3.2(厘米) 7. 3.2如下图,连接AG ,则AGD ∆的面积是正方形ABCD 面积的21,也是长方形DEFG 的面积的21,于是长方形DEFG 的面积等于正方形ABCD 的面积4×4=16(平方厘米).2.3516=÷=∴DE (厘米).8. 243我们用A ,,,分别表示待计算的小矩形面积上、下两个矩形,长是相同的.因此它们的面积之比,就是宽之比,反之,宽之比,就是面积之比.这样就有:20:16=A :36,45163620=⨯=A ;20:16=25:B ,20202516=⨯=B ;20:16=30:C ,24203016=⨯=C ; 20:16=D :12, 15161220=⨯=D .因此,大矩形的面积是:45+36+25+20+20+16+30+24+15+12=2439. 60 如下图,连接PD ,则阴影部分就是由四个三角形: PDH ∆,PGD ∆,PEF ∆和PMN ∆组成.PGD ∆和PEF ∆的底都有3,高为12,所以1812321=⨯⨯==∆∆PEF PGD S S .PDH ∆和PMN ∆的底都是4,两条高分别为PA 和PB 则:PB PA S S PMN PDH ⨯⨯+⨯⨯=+∆∆421421=2(PA +PB )=2×12=24所以,阴影部分的面积是: ++∆∆PEF PGD S S PMN PDH S S ∆∆+=18+18+24=60 10. 4长方形EFGH 的面积是6×4=24(平方厘米)1221==+∴∆∆EFGH AHG AEF S S S (平方厘米)阴影总面积S S S S S AHG AEF ADH EBA -+=+∴∆∆∆∆=12-10=2(平方厘米)又6244141=⨯==∆EFGH ECH S S (平方厘米)所以,四边形ABCD 的面积等于:11. 如图,将正六边形ABCDEF 等分为54个小正三角形.根据平行四边形对角线平分平行四边形面积.采用数小三角形的办法来计算面积.PEF ∆面积=3;CDE ∆面积=9;四边形ABQP 面积=11.上述三块面积之和为3+9+11=23,因此,阴影四边形CEPQ 面积为54-23=31.12. 如图,涂阴影部分小正六角星形可分成12个与三角形OPN 全等(能完全重叠地放在一起)的小三角形.三形OPN 的面积是341216=平方厘米.正三角形OPM 面积是由三个与三角形OPN 全等的三角形组成.所以正三角形OPM 的面积等于4334=⨯(平方厘米). 由于大正方六角星形由12个与正三角形OPM 全等的三角形组成,所以大正六角星形的面积是4×12=48(平方厘米)13. 设大长方形的宽为x ,则长为28-x .因为,x D 32=宽,x D 43='宽, 所以,12xD D =-'宽宽. ()x D -=2854长,()x D -='28109长,()x D D -=-'28101长长.由题设可知, 12x :11028=-x:3 或41028x x =-,于是2071028x=, 8=x .大长方形的长=28-8=20,从而大长方形的面积为8×20=160平方厘米.14. 三角形AEG 面积是三角形AED 面积的(15+6)÷7=3(倍),三角形BEF 面积是三角形BEC 面积的 15÷(5+7)=45(倍).所以65-38×45等于三角形AEG 面积与三角形AED 面积的45之差,因此三角形AED 的面积是(65-38×45)÷(3-45)=10.三角形ADG 面积是10×(3+1)=40.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学平面图形专项训练试题基础题一、选择题1.在一个长10厘米、宽5厘米的长方形中画一个最大的圆,它的半径是()A.10厘米B.5厘米C.2.5厘米D.1.5厘米【答案】C【解析】试题分析:在长方形中最大的圆是以宽为直径的圆,由此即可解决问题.解:在一个长10厘米、宽5厘米的长方形中最大的圆是以宽为直径的圆,所以它的半径是:5÷2=2.5(厘米);故选:C.【点评】抓住长方形内最大圆的特点,即可解决此类问题.2.下列说法正确的是()A.1除以任何数所得的商就是这个数的倒数B.分母中只含有质因数2和5的分数才能化成有限小数C.的大小与圆的大小无关D.扇形是圆的一部分,所以扇形的面积小于圆的面积【答案】C【解析】试题分析:分别根据倒数、能化成有限小数的分数的特征及圆的认识与圆周率对各选项进行逐一分析即可.解:A、1除以任何非0数所得的商就是这个数的倒数,故本选项错误;B、最简分数的分母中只含有质因数2和5的分数才能化成有限小数,故本选项错误;C、是一个定值,它的大小与圆的大小无关,故本选项正确;D、由于扇形与圆的半径不确定,所以扇形的面积与圆的面积无法比较,故本选项错误.故选:C.3.()决定圆的大小,()决定圆的位置.A.直径B.圆心C.半径D.周长【答案】C,B【解析】试题分析:当一条线段绕着它的一个端点,它的另一个端点在平面内旋转一周所形成的图形叫做圆,这条线段即半径,围绕的端点即圆心,圆通常用圆规来画.所以圆的半径决点圆的大小,圆心决定圆的位置.解:根据圆的定义及作法可知,圆的半径决点圆的大小,圆心决定圆的位置.故选:C,B.4.下图中线段BC是()。

A.直径B.半径C.圆周率D.圆心【解析】解:有圆的定义我们可以知道BC为圆的直径。

5.图中大圆的直径是()毫米.A.12B.10C.44D.22【答案】C【解析】试题分析:根据图和直径的意义得出大圆的半径,再乘2求出大圆的直径.解:(12+10)×2=44(毫米),所以图中大圆的直径是44毫米;故选:C.6.下列说法正确的是()A.1除以任何数所得的商就是这个数的倒数B.分母中只含有质因数2和5的分数才能化成有限小数C.的大小与圆的大小无关D.扇形是圆的一部分,所以扇形的面积小于圆的面积【答案】C【解析】试题分析:分别根据倒数、能化成有限小数的分数的特征及圆的认识与圆周率对各选项进行逐一分析即可.解:A、1除以任何非0数所得的商就是这个数的倒数,故本选项错误;B、最简分数的分母中只含有质因数2和5的分数才能化成有限小数,故本选项错误;C、是一个定值,它的大小与圆的大小无关,故本选项正确;D、由于扇形与圆的半径不确定,所以扇形的面积与圆的面积无法比较,故本选项错误.故选:C.7.贝贝家圆桌直径为1m,现在要给它铺上台布,尺寸为()的台布比较合适.A.100cm×80cmB.120cm×80cmC.80cm×80cmD.120cm×120cm【答案】D【解析】试题分析:求给圆桌铺上台布,尺寸为多少的台布比较合适,就是比较它的边长,只要桌布的两条边都比圆桌的直径大即可,圆桌直径1米,说明台布的边长至少要1米×1米,才能刚好遮住.解:贝贝家圆桌直径为1m,现在要给它铺上台布,尺寸为120cm×120cm的台布比较合;故选:D.8.钟面上,6点15分时分针和时针所夹的角是()A.直角B.锐角C.钝角D.平角【答案】C【解析】试题分析:当时针指到六点整的时候,时针和分针所夹的角是180°,当分针指到15分时,分针在3上,如时针在6上,则为直角,时针在6和7之间,夹角大于90°且小于180°,可知此角的类别.解:钟面上,6点15分时分针和时针所夹的角,大于90°且小于180°,则此夹角是钝角.9.把一个长方形框架拉成一个平行四边形,这个平行四边形的周长比原长方形的周长()。

A.长 B.短C.一样长D.无法比较【答案】C【解析】试题分析:把一个长方形的框架拉成一个平行四边形后,四条边的长度没变,也就是它们的和没有发生变化,即它的周长不变。

解:因为把一个长方形的框架拉成一个平行四边形后,四条边的长度没变,则四条边的长度和不变,即它的周长不变。

10.下列对于线的描述,说法正确的是()。

A.不相交的两条直线是平行线B.两条直线相交成直角时,这两条直线互相垂直C.过直线外一点,能画无数条平行线D.有一条直线长6分米【答案】B【解析】解:A.不相交的两条直线是平行线,说法错误,前提是:在同一平面内;B、根据互相垂直的含义:两条直线相交成直角时,这两条直线互相垂直,说法正确;C、过直线外一点,能画无数条平行线,说法错误,应为一条平行线;D、因为直线无限长,所以有一条直线长6分米,说法错误;故选:B。

11.关于长方形和平行四边形的共同特点,有如下一些说法:①对边平行;②对边相等;③四个角的和是360°;④都是轴对称图形.以上说法正确的是()。

A.①②和③B.①②和④C.①③和④D.②③和④【答案】A【解析】解:长方形、平行四边形都是由四条线段围成的图形,所以都是四边形,任意一个四边形的内角和都是360°,所以它们四个内角的和都是360°;两组对边分别平行并且相等的四边形叫做平行四边形,长方形是四个角为直角的平行四边形,所以长方形和平行四边形的对边平行并且相等。

①、②、③都对,故选:A。

12.在一个边长为2厘米的正方形内,画一个最大的圆,这个圆的直径是()厘米.A.1 B.2 C.4【答案】B【解析】试题分析:抓住“最大的圆就是直径等于正方形边长2厘米的圆”,即可解决问题.解:由分析可知:在边长2cm的正方形里画一个最大的圆,所画的这个圆的直径是2厘米;故选:B.【点评】此题关键是根据正方形内最大的圆的特点得出:圆的直径等于正方形的边长.13.一个半圆形,半径为r,它的周长为()A.B.πr C.πr+2r D.π+r【答案】C【解析】试题分析:半圆形的周长=整圆的周长÷2+直径=2π×半径÷2+2×半径,当半径用r表示时,列式计算即可得解.解:半圆形的周长:C=2π×r÷2+2×r,=πr+2r,故选:C.【点评】此题考查用字母表示计算公式,解决此题关键是明确半圆的周长是圆周长的一半再加上一条直径的长度.14.一个正方形的周长与一个圆的周长相等,它们的面积大小是()A.相等B.圆的面积大C.正方形的面积大D.无法比较【答案】B【解析】试题分析:周长相等的正方形和圆,圆的面积比正方形的面积大.可以通过举例证明,设周长是C,则正方形的边长是C÷4,圆的半径是C÷2π;根据它们的面积公式求出它们的面积,进行比较.解:设周长是c,则正方形的边长是:C÷4=,圆的半径是:C÷2π=,则圆的面积为:π×()2=,正方形的面积为:×=,因为>,所以圆的面积大;故选:B.【点评】此题主要考查周长相等的正方形和圆,圆的面积比正方形的面积大.15.一个圆,半径扩大2倍,那么周长()A.不变B.也扩大2倍C.扩大4倍【答案】B【解析】试题分析:根据圆的周长与半径成正比例,可知圆周长扩大的倍数与圆的半径扩大的倍数相同.解:因为一个圆的半径扩大2倍,所以周长扩大2倍.故选:B.【点评】考查了圆的周长与半径之间的关系,是基础题型,熟悉圆的周长与半径成正比例是解题的关键.16.一条线段的是2cm,这条线段的长是()A.4cm B.2cm C.6cm【答案】A试题分析:把这条线段的总长看作单位“1”,它的对应的具体的数量是2cm,用2除以对应分率,即为这条线段的总长.解:2=4(cm).答:这条线段的长是4cm.【点评】明确已知一个数的几分之几是多少,求这个数,用除法计算.17.两组对边不平行的有()A.正方形B.长方形C.梯形D.平行四边形【答案】C【解析】试题分析:平行四边形是指两组对边分别平行的四边形,而正方形和长方形都是特殊的平行四边形,所以正方形、长方形和平行四边形都是两组对边分别平行的四边形;梯形是指只有一组对边平行的四边形,所以两组对边不平行的是梯形.解:根据各种图形的特征,可知两组对边不平行的是梯形,因为梯形是只有一组对边平行的四边形.故选:C.18.将一个平行四边形沿高剪开,不可能得到()A.一个三角形和一个梯形B.一个平行四边形和一个梯形C.两个三角形D.两个梯形【答案】B【解析】试题分析:沿平行四边形钝角所在的一个顶点,向对边做垂线,这样的高有两条,沿这两条高剪开,都能得到一个三角形和一个梯形;如图2这样剪开,得到两个梯形,且是直角梯形;如果平行四边形的高的两个端点刚好是平行四边形的两个顶点,如下图所示,则将一个平行四边形沿高剪开,可能得到两个三角形.解:由以上图形可以看出,将一个平行四边形沿高剪开,可能得到一个三角形和一个梯形或者两个梯形;也可能得到两个三角形;故答案为:B.19.一个长方形花园长是30米,宽是10米,沿着花园走两圈,共走了()A.45米B.90米 C.160米D.200米【答案】C【解析】依据题意走两圈就是周长的2倍。

20.一个正方形剪成2个长方形后,两个长方形的周长和()原来正方形的周长。

A.相等B.大于 C.小于【答案】B【解析】依据题意可知正方形剪成两个长方形以后,会多出两条边来,所以周长会变大。

21.两个半径不同的圆,它们的周长()。

A.一定相等B.一定不相等C.有可能相等【解析】两个半径不同的圆,它们的周长一定不相等.22.圆内最长的线段是()A、半径B、直径C、周长【答案】B【解析】圆内最长的线段是直径23.圆的直径是一条()A.直线B.射线C.线段D.垂线【答案】C【解析】圆的直径是一条线段24.圆的直径有()。

A.1条B.2条C.无数条【答案】C【解析】圆的直径有无数条25.圆中两端都在圆上的线段()。

A.一定是圆的半径B.一定是圆的直径C.无法确定【答案】C【解析】圆中两端都在圆上的线段无法确定是否是圆的直径.26.圆是平面上的()图形。

A.直线B.曲线C.无法确定【答案】B【解析】圆是平面上的曲线图形27.圆的半径与其周长()。

A. 成正比例B. 成反比例C. 不成比例【答案】A【解析】本题考查正比例的意义。

正比例:①两种相关联的量。

②一种量增加,另一种量也相应增加;一种量减少,另一种量也相应减少。

③两种量的比值一定。

本题可以根据圆的周长公式“C=2πr”得C:r=2π,故圆的半径与其周长成正比例。

相关文档
最新文档