四年级下册数学试题-思维训练:三角形等积变形(下)(含答案)全国通用

合集下载

四年级下册数学试题-思维训练:三角形等积变形(下)(含答案)全国通用

四年级下册数学试题-思维训练:三角形等积变形(下)(含答案)全国通用

正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?两个正方形如图排列,面积相差60,求阴影部分梯形面积。

如图所示,已知正方形ABCD的边长为10厘米,EC=2×BE,那么,图中阴影部分的面积是________平方厘米。

例3例2例1三角形等积变形(下)如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。

如图,ABCD为平行四边形,EF平行AC,如果△ADE的面积为4平方厘米。

求三角形CDF的面积。

如图,在四边形ABCD中,对角线AC、BD交于E,且AF=CE,BG=DE,如果四边形ABCD 面积是1,求△EFG的面积?例6例5例4测试题1.如图,长方形ABCD的面积是1,M是AD边的中点,N在AB边上,且2AN BN。

那么,阴影部分的面积是多少?2.如图,梯形ABCD被它的一条对角线BD分成了两部分。

三角形BDC的面积比三角形ABD 的面积大10平方分米。

已知梯形的上底与下底的长度之和是15分米,它们的差是5分米。

求梯形ABCD的面积。

ADB C 3.图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是()平方厘米。

4.正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?HGFEBA5.如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使2AF AC =,求三角形DEF 的面积。

答案1.A M连接BM ,因为M 是中点所以ABM ∆的面积为14又因为2AN BN =,所以ANM ∆的面积为1114312⨯=,又因为BDC ∆面积为12,所以阴影部分的面积为:115112212--= 2.bDCBA如右图,作AB 的平行线DE 。

小学数学《三角形的等积变形》练习题(含答案)

小学数学《三角形的等积变形》练习题(含答案)
于是:三角形ABD的面积=12×高÷2=6×高
三角形ABC的面积=(12+4)×高÷2=8×高
三角形ADC的面积=4×高÷2=2×高
所以,三角形ABC的面积是三角形ABD面积的4/3倍;三角形ABD的面积是三角形ADC面积的3倍。
巩固理解结论:两个三角形等高时,面积的倍数=底的倍数
【例2】如右图,E在AD上,AD垂直BC,AD=12厘米,DE=3厘米。
而四边形CEFH是它们的公共部分,
所以三角形DHF的面积=三角形BCH的面积,
进而可得阴影面积=三角形BDF的面积=三角形BCD的面积= 10×10÷2=50(平方厘米)。
法2:连接CF,那么CF平行BD,
所以,阴影面积=三角形BDF的面积=三角形BCD的面积=50(平方厘米)。
附加题目
【附1】 如右图,四边形ABCD面积为1,且AB=AE,BC=BF,DC=CG,AD=DH.求四边形EFGH的面积.
巩固理解结论:两个三角形等底时,面积的倍数=高的倍数
【例3】用两种不同的方法,把任意一个三角形分成四个面积相等的三角形.
分析:法1:如图(1),将BC边四等分,连接各等分点,则△ABD、△ADE、△AEF、△AFC面积相等。
法2:如图(2),D是BC的二等分点,E、F是AC、AB的中点,从而得到四个等积三角形△ADF、△BDF、△DCE、△ADE.
【例7】图中△AOB的面积为15cm2,线段OB的长度为OD的3倍,求梯形ABCD的面积.
分析:
【例8】(北京市第一届“迎春杯”刊赛)如右图.将三角形ABC的BA边延长1倍到D,CB边延长2倍到E,AC边延长3倍到F.如果三角形ABC的面积等于l,那么三角形DEF的面积是?
分析:连结AE、BF、CD(如右下图).由于三角形AEB与三角ABC的高相等,而底边EB=2BC,所以三角形AEB的面积是2.同理,三角形CBF的面积是3,三角形ACD的面积是1.

小学数学《三角形的等积变形》练习题(含答案)

小学数学《三角形的等积变形》练习题(含答案)
小学数学《三角形的等积变形》练习题(含答案)
内容概述
我们已经知道三角形面积的计算公式:三角形面积=底×高÷2
从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.
如果三角形的底不变,高越大(小),三角形面积也就越大(小);
如果三角形的高不变,底越大(小),三角形面积也就越大(小);
这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1/3,则三角形面积与原来的一样。这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.
于是:三角形ABD的面积=12×高÷2=6×高
三角形ABC的面积=(12+4)×高÷2=8×高
三角形ADC的面积=4×高÷2=2×高
所以,三角形ABC的面积是三角形ABD面积的4/3倍;三角形ABD的面积是三角形ADC面积的3倍。
巩固理解结论:两个三角形等高时,面积的倍数=底的倍数
【例2】如右图,E在AD上,AD垂直BC,AD=12厘米,DE=3厘米。
【例6】如右图所示,在平行四边形ABCD中,E为AB的中点,AF=2CF,三角形AFE(图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?
【例7】图中△AOB的面积为15cm2,线段OB的长度为OD的3倍,求梯形ABCD的面积.
【例8】(北京市第一届“迎春杯”刊赛)如右图.将三角形ABC的BA边延长1倍到D,CB边延长2倍到E,AC边延长3倍到F.如果三角形ABC的面积等于l,那么三角形DEF的面积是?
例题精讲

小学四年级奥数题三角形的等积变形及答案【三篇】

小学四年级奥数题三角形的等积变形及答案【三篇】

小学四年级奥数题三角形的等积变形及答案【三篇】【第一篇】1. 三角形把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.分析分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成一半,得到如下左图所示的图形.分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右图所示的符合条件的图形.2.比较比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.解: A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.【第二篇】如图,四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积为6平方厘米,求三角形CDH的面积.三角形面积答案:通常求三角形的面积,都是先求它的底和高.题目中没有一条线段的长度是已知的,所以我们只能通过创造等积的方法来求.直接找三角形HDC 与三角形AFH 的关系还很难,而且也没有利用"四边形ABCD和四边形DEFG 是正方形"这一条件.我们不妨将它们都补上梯形DEFH 这一块.寻找新得到大三角形CEF 和大直角梯形DEFA 之间的关系.经过验算,可以知道它们的面积是相等的.从而得到三角形 HDC与三角形AFH面积相等,也是6平方厘米.【第三篇】如下图,BE=2AB,BC=CD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平
方厘米?两个正方形如图排列,面积相差60,求阴影部分梯形面积。

如图所示,已知正方形ABCD的边长为10厘米,EC=2×BE,那么,图中阴影部分的面积是________平方厘米。

例3
例2
例1
三角形等积变形(下)
如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。

如图,ABCD为平行四边形,EF平行AC,如果△ADE的面积为4平方厘米。

求三角形CDF
的面积。

例5
例4
如图,在四边形ABCD中,对角线AC、BD交于E,且AF=CE,BG=DE,如果四边形ABCD面积是1,求△EFG的面积?
例6
测试题
1.如图,长方形ABCD的面积是1,M是AD边的中点,N在AB边上,且2AN BN。

那么,阴影部分的面积是多少?
2.如图,梯形ABCD被它的一条对角线BD分成了两部分。

三角形BDC的面积比三角形ABD的面积大10平方分米。

已知梯形的上底与下底的长度之和是15分米,它们的差是5分米。

求梯形ABCD的面积。

A
D
B C 3.图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是()平方厘米。

4.正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?
H
G
F
E
B
A
5.如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使2AF AC =,求三角形DEF 的面积。

答案
1.
A M
连接BM ,因为M 是中点所以ABM ∆的面积为14又因为2AN BN =,所以ANM ∆的面积为
1114312⨯=,又因为BDC ∆面积为12,所以阴影部分的面积为:115112212--=
2.
b
D
C
B
A
如右图,作AB 的平行线DE 。

三角形BDE 的面积与三角形ABD 的面积相等,三角形DEC 的面积就是三角形BDC 与三角形ABD 的面积差(10平方分米)。

从而,可求出梯形高(三角形DEC 的高)是:21054⨯÷=(分米),梯形面积是:154230⨯÷=(平方分米)。

3.4428⨯÷=(平方厘米)
4.
A
B
E
F
(法1)三角形BEF 的面积2BE EF =⨯÷,
梯形EFDC 的面积()22EF CD CE BE EF =+⨯÷=⨯÷=三角形BEF 的面积,
而四边形CEFH 是它们的公共部分,所以三角形DHF 的面积 =三角形BCH 的面积, 进而可得阴影面积 = 三角形BDF 的面积 = 三角形BCD 的面积1010250=⨯÷=(平方厘米)。

(法2)连接CF ,那么CF 平行BD ,
所以,阴影面积 = 三角形BDF 的面积 = 三角形BCD 的面积 50=(平方厘米)。

5.
A
B C
D
E
F
本题是性质的反复使用
(还可以用燕尾定理,但本讲不用这种方法,燕尾定理我们会放到五年级春季再讲)。

连接AE 、CD 、BF 。

1
111ABC ABC DBC DBC S S S S ∆∆∆∆==∴=Q
, 同理可得其它,最后三角形DEF 的面积7=。

相关文档
最新文档