常用气动回路.

合集下载

基本气动回路

基本气动回路

1.1 换向回路单作用气缸控制回路气缸活塞杆运动的一个方向靠压缩空气驱动,另一个方向则靠其他外力,如重力、弹簧力等驱动。

回路简单,可选用简单结构的二位三通阀来控制常断二位三通电磁阀控制回路通电时活塞杆伸出,断电时靠弹簧力返回常通二位三通电磁阀控制回路断电时活塞杆缩回,通电时靠弹簧力返回三位三通电磁阀控制回路控制气缸的换向阀带有全封闭型中间位置,可使气缸活塞停止在任意位置,但定位精度不高两个二位二通电磁阀代替一个二位三通阀的控制回路两个二位二通电磁阀同时通电换向,可使活塞杆伸出。

断电后,靠外力返回双作用气缸控制回气缸活塞杆伸出或缩回两个方向的运动都靠压缩空气驱动,通常选用二位五通阀来控制采用单电控二位五通阀的控制回路双电控阀控制回路采用双电控电中间封闭型三位五通阀控制回路中间排气型三位五通阀控制回路路通电时活塞杆伸出,断电时活塞杆返回磁阀,换向信号可以为短脉冲信号,因此电磁铁发热少,并具有断电保持功能左侧电磁铁通电时,活塞杆伸出。

右侧电磁铁通电时,活塞杆缩回。

左、右两侧电磁铁同时断电时,活塞可停止在任意位置,但定位精度不高当电磁阀处于中间位置时活塞杆处于自由状态,可由其他机构驱动中间加压型三位阀控制回路电磁远程控制回路采用二位五通气控阀作为主控阀,其先导控制压力用一个二位三通电磁阀进行远程控制。

该回路可以应用于有防爆等要求的特殊场合双气控阀控制回路主控阀为双气控二位五通阀,用两个二位三通阀作为主控阀的先导阀,可进行遥控操作当左、右两侧电磁铁同时断电时,活塞可停止在任何位置,但定位精度不高。

采用一个压力控制阀,调节无杆腔的压力,使得在活塞双向加压时,保持力的平衡采用带有双活塞杆的气缸,使活塞两端受压面积相等,当双向加压时,也可保持力的平衡双作用气缸控制回路采用两个二位三通阀的控制回路采用一个二位三通阀的差动回路带有自保回路的气动控制回路两个二位二通阀分别控制气缸运动的二位四(五)通阀和二位二通阀串接的控制回路两个二位三通阀中,一个为常通阀,另一个为常断阀,两个电磁阀同时动作可实现气缸换向气缸右腔始终充满压缩空气,接通电磁阀后,左腔进气,靠压差推动活塞杆伸出,动作比较平稳,断电后,活塞自动复位两个方向。

气动基本回路最全的

气动基本回路最全的
过载保护回路
过载保护回路 正常工作时,阀1 得电, 使阀2 换向,气缸活塞 杆外伸。如果活塞杆受 压的方向发生过载,则 顺序阀动作,阀3 切换, 阀2 的控制气体排出, 在弹簧力作用下换至图 示位置,使活塞杆缩回。
力控制回路
气动系统一般压力较低,所以往往是通过改变执 行元件的受力面积来增加输出力。
▪ 单作用气缸快速返回回路活塞返回时,气缸下腔▪ 串联调速回路 通过两个单向节流阀, 利用液压油不可压缩 的特点,实现两个方 向的无级调速,油杯 为补充漏油而设。
▪ 气液缸串联变速回路 当活塞杆右行到撞块A 碰到机动换向阀后开始 作慢速运动。改变撞块 的安装位置,即可改变 开始变速的位置。
换向回路
▪ 单作用气缸换向回路 用三位五通换向阀可控制单 作用气缸伸、缩、任意位置停止。
换向回路
▪ 双作用气缸换向回路 用三位五通换向阀除控制 双作用缸伸、缩换向外,还可实现任意位置停止。
速度控制回路
▪ 气阀调速回路 ▪ 单作用气缸调速回路 用两个单向节流阀分别控制活塞杆的
升降速度。
速度控制回路
气液联动速度控制回路
▪ 气液缸并联且有中间位 置停止的变速回路 气 缸活塞杆端滑块空套在 液压阻尼缸活塞杆上, 当气缸运动到调节螺母 6 处时,气缸由快进转 为慢进。液压阻尼缸流 量由单向节流阀2 控制, 蓄能器能调节阻尼缸中 油量的变化。
位置控制回路
▪ 串联气缸定位
气缸由多个不 同行程的气缸串 联而成。换向阀 1、2、3依次得 电和同时失电, 可得到四个定位 位置。
位置控制回路
▪ 任意位置停止 回路 当气缸负载较 小时,可选择 图a 所示回路, 当气缸负载较 大时,应选择 图b 所示回路。
常用基本回路

气动基本和常用回路A

气动基本和常用回路A

华中科技大学
位置控制回路
采用串联气缸定位 气缸由多个不同 行程的气缸串联而 换向阀1、 、 成。换向阀 、2、 3依次得电和同时失 依次得电和同时失 电,可得到四个定 位位置。 位位置。 任意位置停止回路 当气缸负载较小时, 当气缸负载较小时,可选 择图a 所示回路, 择图 所示回路,当气缸负 载较大时,应选择图b 载较大时,应选择图 所示 回路。 回路。当停止位置要求精确 时,可选择前面所讲的气液 阻尼缸任意位置停止回路。 阻尼缸任意位置停止回路。
华中科技大学
由气阀组成的二进制记数回路
假定初始状态为图示状态, 假定初始状态为图示状态,第一 次按下手动阀1,高压气体经阀2、 次按下手动阀 ,高压气体经阀 、 到达阀4 右侧,使阀4 阀3 到达阀 右侧,使阀 切换至 右位, 输出, 位输出为1。 右位,s1 输出,第20 位输出为 。 与此同时, 也被切换至右位, 与此同时,阀3 也被切换至右位, 但此时阀3、 但此时阀 、4 的右侧都处于加压 状态,因此阀4 仍维持s 状态,因此阀 仍维持 1 输出状 当松开阀1, 态。当松开阀 ,或经过一段时间 单向节流阀7 后,单向节流阀 后的压力升到一 定值使阀2 换向,单向阀5、 定值使阀 换向,单向阀 、6 将 随之开启,使阀3、 随之开启,使阀 、4 的左右两侧 的空气经阀2(或阀1)排出。 的空气经阀 (或阀 )排出。 第二次按下阀1,因阀 已被切换至右位,高压气体进入阀3、 第二次按下阀 ,因阀3 已被切换至右位,高压气体进入阀 、4 的左侧,切换阀4 输出, 无输出, 位变为0 的左侧,切换阀 使s0 输出,s1 无输出,使20位变为 。阀4 的输出经 到达阀11 右侧,使阀 右侧,使阀11 切换至右位,使s3 输出,第21 位为 。 切换至右位, 输出, 位为1。 阀9、10 到达阀 、 华中科技大学 第三次按下阀1 位也变为1。 第三次按下阀 时,20 位也变为 。

常用气动回路实验报告

常用气动回路实验报告

一、实验目的1. 理解和掌握常用气动回路的组成和原理。

2. 学会气动回路的搭建和调试方法。

3. 熟悉气动元件的性能和作用。

4. 提高对气动系统故障分析和排除的能力。

二、实验原理气动回路是指利用压缩空气作为动力源,通过各种气动元件和管道组成的系统,实现对工作机构的控制。

常用气动回路主要包括方向控制回路、压力控制回路、速度控制回路和其它控制回路。

三、实验仪器与设备1. 气动回路实验台2. 气源处理装置3. 气动元件:单向阀、双作用气缸、三位五通换向阀、节流阀、压力表等4. 管道及连接件四、实验内容1. 方向控制回路(1)搭建单作用气缸换向回路,使用三位五通换向阀控制气缸的伸缩运动。

(2)搭建双作用气缸换向回路,使用三位五通换向阀控制气缸的伸出和缩回。

2. 压力控制回路(1)搭建压力控制回路,使用压力继电器和压力调节阀控制气缸的压力。

(2)搭建压力保压回路,使用蓄能器和压力调节阀保持气缸的压力稳定。

3. 速度控制回路(1)搭建速度控制回路,使用节流阀控制气缸的伸出和缩回速度。

(2)搭建气液联动速度控制回路,利用压缩空气和液压油控制气缸的速度。

4. 其它控制回路(1)搭建缓冲回路,保护气缸在运动过程中避免冲击。

(2)搭建同步动作回路,使多个气缸同时动作。

五、实验步骤1. 根据实验要求,选择合适的气动元件和管道。

2. 按照实验原理图,将元件和管道连接成完整的气动回路。

3. 检查回路连接是否正确,确保没有漏气现象。

4. 打开气源,启动实验台。

5. 观察实验现象,分析回路工作原理。

6. 调整元件参数,观察回路性能变化。

7. 记录实验数据,进行分析和总结。

六、实验结果与分析1. 方向控制回路(1)单作用气缸换向回路:当三位五通换向阀处于中位时,气缸不动;当换向阀处于左位时,气缸伸出;当换向阀处于右位时,气缸缩回。

(2)双作用气缸换向回路:当三位五通换向阀处于中位时,气缸不动;当换向阀处于左位时,气缸伸出;当换向阀处于右位时,气缸缩回。

气动基本回路 气动常用回路

气动基本回路 气动常用回路

气动基本回路气动常用回路气动基本回路是指通过气动元件和管路构成的气动系统中的基本回路。

气动常用回路是指在工业自动化控制系统中经常使用的一些气动回路。

本文将介绍气动基本回路和气动常用回路的一些概念和应用。

气动基本回路主要包括气源回路、执行回路和控制回路。

气源回路是指气动系统中提供压缩空气的部分,通常包括压缩空气发生器、气源处理装置和储气设备。

执行回路是指通过气动执行元件来实现机械运动的部分,通常包括气缸和气动执行阀等。

控制回路是指用来控制执行元件的控制系统,通常包括开关、传感器和控制阀等。

气动常用回路包括单向气缸回路、双向气缸回路、速度控制回路、位置控制回路、压力控制回路等。

单向气缸回路是指通过一个气缸来实现单个工作机构的运动控制,常用于一些简单的工作场合。

双向气缸回路是指通过两个气缸来实现工作机构的正反转运动控制,常用于一些需要双向运动的工作场合。

速度控制回路是通过调节气缸的进气量来实现对气缸运动速度的控制,常用于一些对速度要求较高的工作场合。

位置控制回路是通过使用位置传感器来检测工作机构的位置,并通过控制阀来调节气缸的进气量,从而实现对工作机构位置的控制。

压力控制回路是通过使用压力传感器来检测气缸的压力,并通过控制阀来调节气缸的进气量,从而实现对气缸压力的控制。

气动基本回路和气动常用回路在工业自动化控制系统中具有广泛的应用。

其优点包括响应速度快、动力强、结构简单、成本低廉等。

因此,在许多工业领域中,气动系统被广泛应用于各种自动化生产线、机械设备和工艺控制系统中。

气动基本回路和气动常用回路是工业自动化控制系统中常用的回路类型。

通过对气源回路、执行回路和控制回路的合理设计和配置,可以实现对工作机构的运动控制、速度控制、位置控制和压力控制等功能。

气动系统具有快速响应、动力强大、结构简单、成本低廉等优点,因此在工业领域中具有广泛的应用前景。

气动基本回路压力控制回路(“回路”相关文档)共7张

气动基本回路压力控制回路(“回路”相关文档)共7张
注意,供给逻辑元件的压缩空气不要加入润滑油
节能,但对电机控制要求高,不能启停频繁。 节能,但对电机控制要求高,不能启停频繁。 节能,但对电机控制要求高,不能启停频繁。 结构简单,工作可靠,但由于在一定压力下溢流,浪费能量 节能,但对电机控制要求高,不能启停频繁。 结构简单,工作可靠,但由于在一定压力下溢流,浪费能量 用于使储气罐送出的气体压力不超过规定压力 结构简单,工作可靠,但由于在一定压力下溢流,浪费能量 节能,但对电机控制要求高,不能启停频繁。 节能,但对电机控制要求高,不能启停频繁。 结构简单,工作可靠,但由于在一定压力下溢流,浪费能量 结构简单,工作可靠,但由于在一定压力下溢流,浪费能量 节能,但对电机控制要求高,不能启停频繁。 节能,但对电机控制要求高,不能启停频繁。 用于使储气罐送出的气体压力不超过规定压力 结构简单,工作可靠,但由于在一定压力下溢流,浪费能量
四、差压控制回路
六、过载保护回路
一、一次压力控制回路
单向阀 气罐
空压机
安全阀
电接触压力表
结构简单,工作可靠,但 由于在一定压力下溢流, 浪费能量
用于使储气罐送出的气 体压力不超过规定压力
节能,但对电机控制要求高, 不能启停频繁。

二、二次压力控制回路
用结于构使 简储单气,罐工送作出可的靠气,体但压由力于不在超一过定规压定力压下力溢流,浪费能量 结构简单,工作可靠,但由于在一定压力下溢流,浪费能量 结用构于简 使单储,气工罐作送可出靠的,气但体由压于力在不一超定过压规力定下压溢力流,浪费能量 用节于能使 ,储但气对罐电送机出控的制气要体求压高力,不超能过启规停定频压繁力。 结节构能简 ,单但,对工电作机可控靠制,要但求由高于,在不一能定启压停力频下繁溢。流,浪费能量 节能,但对电机控制要求高,不能启停频繁。 结构简单,工作可靠,但由于在一定压力下溢流,浪费能量 节用能于, 使但储对气电罐机送控出制的要气求体高压,力不能超启过停规频定繁压。力 注节意能,供但给对逻电辑机元控件制的要压求缩高空,气不不能要启加停入频润繁滑。油 节能,但对电机控制要求高,不能启停频繁。 节能,但对电机控制要求高,不能启停频繁。 注用节意于能, 使供储但给气对逻罐电辑送机元出控件的制的气要压体求缩压高空力,气不不超能要过启加规停入定频润压繁滑力。油 注结意构, 简供单给,逻工辑作元可件靠的,压但缩由空于气在不一要定加压入力润下滑溢油流,浪费能量 节能,但对电机控制要求高,不能启停频繁。 注意,供给逻辑元件的压缩空气不要加入润滑油

第十一章气动基本回路与常用回路

第十一章气动基本回路与常用回路

2021/3/11
36
计数回路(counting circuit)
❖ 在图a中,阀4的换向位置,取决于阀 2的位置,而阀2的换位又取决于阀3 和阀5。如图所示,若按下阀1,气信 号经阀2至阀4的左端使阀4换至左位, 同时使阀5切断气路,此时气缸活塞 杆伸出;当阀1复位后,原通人阀4左 控制端的气信号经阀1排空,阀5复位, 于是气缸无杆腔的气体经阀5至阀2左 端,使阀2换至左位等待阀1的下一次 信号输入。当阀1第二次按下后,气 信号经阀2的左位至阀4右端使阀4换 至右位,气缸活塞杆退回,同时阀3 将气路切断。待阀1复位后,阀4右端 信号经阀2、阀1排空,阀3复位并将 气流导至阀2左端使其换至右位,又 等待阀1下一次信号输入。这样,第1, 3,5…次(奇数)按下阀1,则气缸活塞 杆伸出;第2,4,6…次(偶数)按下阀 1,则气缸活塞杆退回。
❖ 双作用气缸控制; 带行程检测的压力控制;
❖ 利用梭阀的控制; 利用延时阀的单往复控制;

利用双压阀控制; 带行程检测的时间控制;
从不同地点控制的单往复回路。
单作用气缸间接控制;
2021/3/11
17
3、利用梭阀的控制
如图12-10所示, 回路中的梭阀相当 于实现“或”门逻 辑功能的阀。在气 动控制系统中,有 时需要在不同地点 操作单作用缸或实 施手动/自动并用操 作回路。
2021/3/11
2
2.二次压力控制回路
❖ 作用:对气动系统气源压力的控制
❖ 图a是由气动三联件组成的主要由 溢流减压阀来实现压力控制;图b 是由减压阀和换向阀构成的,对同 一系统实现输出高、低压力p1、p2 的控制;图c是由减压阀来实现对 不同系统输出不同压力P1、P2的 控制。
2021/3/11

气动系统基本回路讲解及举例

气动系统基本回路讲解及举例

东莞市塘厦领航者自动化设备厂公司官网:/气动系统基本回路讲解及举例1、换向控制回路采用二位五通阀的换向控制回路,使用双电控阀具有记忆功能,电磁阀失电时,气缸仍能保持在原有的工作状态问:单电控失电会怎样?采用三位五通阀的换向控制回路三种三位机能东莞市塘厦领航者自动化设备厂公司官网:/中位封闭式中位加压式中位排气式东莞市塘厦领航者自动化设备厂公司官网:/2、压力(力)控制回路气源压力控制主要是指使空压机的输出压力保持在储气罐所允许的额定压力以下为保持稳定的性能,应提供给系统一种稳定的工作压力,该压力设定是通过三联件(F.R.L)来实现的东莞市塘厦领航者自动化设备厂公司官网:/双压驱动回路:在气动系统中,有时需要提供两种不同的压力,来驱动双作用气缸在不同方向上的运动,采用减压阀的双压驱动回路电磁铁得电,气缸以高压伸出东莞市塘厦领航者自动化设备厂公司官网:/电磁铁失电,由减压阀控制气缸以较低压力返回多级压力控制回路在一些场合,需要根据工件重量的不同,设定低、中、高三种平衡压力利用电气比例阀进行压力无级控制,电气比例阀的入口应该安装微雾分离器东莞市塘厦领航者自动化设备厂公司官网:/3、位置控制回路利用双位气缸,可以实现多达三个定位点的位置控制东莞市塘厦领航者自动化设备厂公司官网:/利用带锁气缸,可以实现中间定位控制二位三通电磁阀SD3失电,带锁气缸锁紧制动;得电,制动解除4、速度控制回路利用快速排气阀,减少排气背压,实现高速驱动东莞市塘厦领航者自动化设备厂公司官网:/5、同步控制回路东莞市塘厦领航者自动化设备厂公司官网:/•利用节流阀使流入和流出执行机构的流量保持一致•气缸的活塞杆通过齿轮齿条机构连接起来,实现同步动作•气缸的活塞杆通过气液转换缸实现同步动作东莞市塘厦领航者自动化设备厂公司官网:/6、安全控制回路防止起动飞出回路•在气缸起动前使其排气侧产生背压•采用入口节流调速东莞市塘厦领航者自动化设备厂公司官网:/终端瞬时加压回路•采用SSC阀来实现•同样可以实现防止活塞杆高速伸出东莞市塘厦领航者自动化设备厂公司官网:/落下防止回路•采用制动气缸东莞市塘厦领航者自动化设备厂公司官网:/•采用先导式单向阀。

气动基本回路与常用回路课件

气动基本回路与常用回路课件

气动三位置控制回路
总结词
通过使用单作用气缸和三位四通阀,实现对执行机构三 个位置的控制。
详细描述
三位置控制回路通常用于对执行机构进行精确的位置控 制。通过使用单作用气缸和三位四通阀,可以实现对执 行机构的三个位置的控制。其中,单作用气缸只有一个 工作腔,通过充气和排气来驱动执行机构进行运动。三 位四通阀具有三个工作位置,通过切换工作位置来实现 执行机构的三个不同位置的控制。
04
气动回路设计方法与技巧
明确设计要求与参数
了解客户需求
在开始设计之前,要与客户进行充分沟通, 明确了解设计要求和参数,包括工作压力、 工作流量、工作速度、负载类型等。
制定设计方案
根据客户需求,制定详细的设计方案,包括 气动系统的组成、元件的选择、回路的设计 等。
选择合适的元件与组合方式
选择合适的元件
压力控制阀的种类包括减压阀、安全 阀、顺序阀等,其工作原理是根据系 统压力的变化自动调节阀门开口大小 ,以保持系统压力稳定。
速度控制回路
速度控制回路是指利用流量控制阀对压缩空气的流量进行 控制的回路,常用于控制气缸的运动速度。
流量控制阀的种类包括节流阀、调速阀等,其工作原理是 通过改变阀门开口大小来控制压缩空气的流量,以实现气 缸运动速度的控制。
换向阀的种类包括手动换向阀、电磁换向阀、液动换向阀等,其工作原理是当压 缩空气从进气口进入时,推动阀芯移动,使气流从进气口通过阀芯上的通道流向 排气口,同时关闭原排气口,使原进气口成为排气口,从而实现气缸的往复运动 。
压力控制回路
压力控制回路是指利用压力控制阀对 压缩空气的压力进行控制的回路,常 用于保证气动执行机构在规定压力下 正常工作。
详细描述
顺序动作回路可以实现自动化控制, 例如在机械手或自动化生产线中,根 据预设的程序,使多个气动元件协同 工作,实现复杂的机械运动。

气动常用回路

气动常用回路

4
13.1.1 气动回路的符号表示法 工程上,气动系统回路图是以气动元件职能符号组合而成
的,故读者对前述所有气动元件的功能、符号与特性均应熟悉 和了解。
以气动符号所绘制的回路图可分为定位和不定位两种表示 法。
定位回路图是以系统中元件实际的安装位置绘制的,如图 13-1所示。这种方法使工程技术人员容易看出阀的安装位置, 便于维修和保养。
15
图13-5 起始位置表示 (a)正常位置;(b)起始位置
16
图13-6 单向滚轮杠杆阀表示
17
13.1.4 管路的表示 在气动回路中,元件和元件之间的配管符号是有规定的。
通常工作管路用实线表示,控制管路用虚线表示。而在复杂的 气动回路中,为保持图面清晰,控制管路也可以用实线表示。 管路尽可能画成直线以避免交叉。图13-7所示为管路表示方 法。
24
图13-10 利用梭阀的控制回路
25
图13-11 利用双压阀的控制回路
26
图13-12 双手操作回路
27
5)单作用气缸的速度控制回路 图13-13所示为利用单向节流阀控制单作用气缸活塞速度 的回路。单作用气缸前进速度的控制只能用入口节流方式,如 图13-13(a)所示。单作用气缸后退速度的控制只能用出口节流 方式,如图13-13(b)所示。如果单作用气缸前进及后退速度都 需要控制,则可以同时采用两个节流阀控制,回路如图13- 13(c)所示,活塞前进时由节流阀1V1控制速度,活塞后退时由节 流阀1V2控制速度。
2
从控制信号来说,气动程序控制回路有气控回路和电控回 路两种。设计方法以气控回路为例说明,同样也适用于目前工 厂中仍广泛使用的继电器电控回路的设计。
3
13.1 气动基本回路

气动换向回路

气动换向回路

一、基本换向回路
1.单作用气缸控制回路
气缸活塞杆运动的一个方向靠压缩空气驱动,另一个方向靠外力(重力、弹簧力等)驱动。

回路简单,常用二位三通阀控制。

(1)二位三通阀
(2)二位二通阀
2.双作用气缸控制回路
气缸活塞杆伸出和缩回两个方向均靠压缩空气驱动,常用二位五通阀(或三位五通阀)控制。

(1)单控
(2)双控
换向电信号可为短脉冲信号,电磁铁发热少,具有断电保持功能。

(3)三位五通阀换向
(a )中间封闭 (b )中间排气
(a )中间封闭:活塞可在任意位置停留,但定位精度不高。

(b )中间排气:中间位置时,活塞处于自由状态,可由其他机构驱动。

(c )中间加压(单活塞杆) (d )中间加压(双活塞杆)
(c )中间加压(单活塞缸):采用一个减压阀调节无杆腔的压力,使得在活塞双向加压时,保持力平衡。

(d )中间加压(双活塞杆):活塞两端受力面积相等,故无需压力控制阀即可保持力的平衡。

补充:如果没有合适的三位阀,想让气缸在任意位置停留,用以下方法试试。

Y3
(4)电磁远程控制
可用于有防爆等要求的特殊场合。

Y1
(5)双气控阀控制
主控阀为双气控二位五通阀,用两个二位三通阀作为先导阀,可进行远程控制。

(6)带有自保回路的气动控制回路
手动1手动2
两个手动二位二通阀分别控制气缸运动的两个方向,如果将手动阀1按下,则二位五通阀上腔进气切换,气缸左腔进气,右腔排气,同时自保持回路abc也从阀的上腔进气,以防止中途手动阀1失灵,造成误动作。

手动阀1复位,手动阀2按下,主控阀复位,气缸缩回,开始下一循环。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

互锁回路
该回路能防止各气缸的活塞同时动作,而保证只有一个活塞动作
双手操作回路
双手按下: 2上→5上 3上→4上、6上
→A进气、B排气→1上→缸右移
单手按下3: 3上→6上、4上 →B排气 2下→5下、无气源 →A排气
1中 缸停
单手按下2:
3下→6下、4下 →A排气 1中
2上→5上
→B排气 缸停
4
常用气动回路
ห้องสมุดไป่ตู้液速度控制回路
气液转换器1、2
气液速度控制回路
气—液阻尼缸
慢进一快退
快进一慢进一快退
气液增压回路
气液增压缸1
延时回路
气动延时输出回路
气动延时退回路
单往复动作回路
行程控制
压力控制
时间控制
连续往复动作回路
过载保护回路
当活塞杆在伸出途中遇到故障或其它原因使气缸过载时,活塞能自动返回的回路
5
6
顺序动作回路一
顺序动作回路二
顺序动作回路三
相关文档
最新文档