一次函数概念及其性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数
一次函数的实例一次函数(linear function),也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
数学术语
函数的基本概念:在一个变化过程中,有两个变量x和y,并且对于x每一个确定的值,在y中都有唯一确定的值与其对应,那么我们就说y是x的函数,也可以说x是自变量,y是因变量。表示为y=kx+b(k≠0,k、b均为常数),当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况。可表示为y=kx
基本定义
变量:变化的量(可取不同值)
常量:不变的量(固定不变)
自变量k和X的一次函数y有如下关系:
y=kx+b(k为任意不为零常数,b为任意常数)
当x取一个值时,y有且只有一个值与x对应。如果有2个及以上个值与x 对应时,就不是一次函数。
x为自变量,y为应变量,k为常量,y是x的一次函数。
特别的,当b=0时,y是x的正比例函数。即:y=kx(k为常量,但K≠0)正比例函数图像经过原点。
定义域:自变量的取值范围,自变量的取值应使函数有意义;
要与实际相符合
函数性质
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k≠0)(k不等于0,且k,b为常数)
2.当x=0时,b为函数在y轴上的,坐标为(0,b).
3.k为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)形、取、象、交、减。
4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数.
5.当两直线中的k相同,b也相同时,两直线重合
当两直线中的k相同,b不相同时,两直线平行
当两直线中的k不相同,b不相同时,两直线相交
当两直线中的k不相同,b相同时,两直线交于y轴上的同一点(0,b)
图像性质
1.作法与图形:通过如下3个步骤
(1)列表
(2)描点;[一般取两个点,根据“两点确定一条直线”的道理];
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点分别是-k分之b与0,0与b)
2.性质:
(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
4.k,b与函数图像所在象限:
y=kx时(即b等于0,y与x成正比例):
当k>0时,直线必通过第一、三象限,y随x的增大而增大;
当k<0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:
当 k>0,b>0,这时此函数的图象经过第一、二、三象限。
当 k>0,b<0,这时此函数的图象经过第一、三、四象限。
当 k<0,b>0,这时此函数的图象经过第一、二、四象限。
当 k<0,b<0,这时此函数的图象经过第二、三、四象限。
当b>0时,直线必通过第一、二象限;
当b<0时,直线必通过第三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k <0时,直线只通过第二、四象限,不会通过第一、三象限。
4、特殊位置关系
当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等
当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)
表达式
解析式类型
①一般式ax+by+c=0
②斜截式y=kx+b (k为直线斜率,b为直线纵截距;其中正比例函数b=0)
③点斜式y-y1=k(x-x1) (k为直线斜率,(x1,y1)为该直线所过的一个点)
④两点式(y-y1) / (y2-y1)=(x-x1)/(x2-x1) (已知直线上(x1,y1)与(x2,y2)两点)
⑤截距式x/a + y/b=1 (a、b分别为直线在x、y轴上的截距)
解析式表达局限性
①所需条件较多(3个点,因为使用待定系数法需要列一个三元一次方程组)
②、③不能表达没有斜率的直线(即垂直于x轴的直线;注意“没有斜率的直线平行于y轴”表述不准,因为x=0与y轴重合)
④参数较多,计算过于烦琐;
⑤不能表达平行于坐标轴的直线和过原点的直线。
倾斜角的概念
x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。设一直线的倾斜角为α,则该直线的斜率k=tanα。倾斜角的范围为[0,π)。