2018年龙岩市初中质检数学试题(无答案)
龙岩市初级中学20182019学年八年级上第三次阶段数学试题
数学试卷龙岩初级中学2018-2019学年第一学期第三次阶段考试八年级数学试题(总分100分答卷时间100分钟)题号一二三总结分23~2425~262728分人19~2021~22得分一、选择题:本大题共8小题,每题2分,共16分.在每题给出得分评卷人的四个选项中,恰有一项是切合题目要求的,请将正确选项的代号填入....题前括号内.【】1.计算(a2)3的结果是5682A.a B.a C.a D.3a【】2.若正比率函数的图像经过点(-1,2),则这个图像必经过点A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)【】3.以下图形是轴对称图形的是A.B.C.D.A A 【】4.如图,△ACB≌△A’CB’,∠BCB’=30°,则∠ACA’的度数为BA.20°B.30°C.35°D.40°B C【】5.一次函数y=2x-2的图象不经过的象限是(第4题)...A.第一象限B.第二象限C.第三象限D.第四象限【】6.从实数2,1,0,,4中,精选出的两个数都是无理数的为132,4D.千米A.,0B.,4C.2,s/33】7.若a0且a x2,a y3,则a xy的值为【2231A.-1B.1O610C.D.分32t/【】8.明显骑自行车去上学时,经过一段先上坡后下坡的路,在这段(第8题)数学试卷路上所走的行程s(单位:千米)与时间t(单位:分)之间的函数关系如下图.下学后假如按原路返回,且来回过程中,上坡速度同样,下坡速度同样,那么他回来时,走这段路所用的时间为A.12分B.10分C.16分D.14分得分评卷人二、填空题:本大题共10小题,第9~14题,每题2分,第15~18题,每题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上.9.计算:2x31x2=.810.一次函数y(2k4)x5中,y随x增大而减小,则k的取值范是.11.分解因式:m2n mn2=.A12.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直均分线,D交AC于点D,交BC于点E.已知∠BAE=16°,则∠C的度数为.B E C(第12题)13.计算:(1)2009-(-3)0+4=.14.当s t 122st t2.y 时,代数式s的值为215.若x25(y16)20,则x+y=.BO x16.如图,直线y kx b经过点A(1,2)和点B(2,0),直线y2xA(第16题)过点A,则不等式2x kx b0的解集为.17.如图,小量角器的零度线在大批角器的零度线上,且小量角器的中心在大批角器的外缘边上.假如它们外缘边上的公共点P在小量角器上对应的度数为66°,那么在大批角器上对应的度数为__________°(只需写出0°~90°的角度).(第17题)18.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出个.三、解答题:本大题共10小题,共60分.解答时应写出文字说明、证明过程或演算步骤.得分评卷人19~20题,第19题6分,第20题5分,共11分)19.(1)化简:(a2b)(a 2b)1b(a8b).(2)分解因式:x32x2x.220.如图,一块三角形模具的暗影部分已损坏.ABC的形状和大小完整同样(1)假如不带残留的模具片到商铺加工一块与本来的模具△的模具△ABC,需要从残留的模具片中胸怀出哪些边、角?请简要说明原因.2)作出模具△ABC的图形(要求:尺规作图,保存作图印迹,不写作法和证明).AB C(第20题)得分评卷人(第21题5分,第22题5分,共10分)21.已知x25x14,求x12x12x11的值.22.如图,直线l1:y x1与直线l2:y mxn订交于点P(1,b).(1)求b的值;xy10(2)不解对于x,y的方程组请你直接写出它的解.mx y n0yl1b PO1x l2(第22题)得分评卷人(第23题5分,第24题6分,共11分)23.如图,在平面直角坐标系xoy中,A(1,5),B(1,0),C(4,3).1)在图中画出△ABC对于y轴的对称图形△A1B1C1;2)写出点A1,B1,C1的坐标.yA64C2-5BO5x-2(第23题)24.如图,四边形ABCD的对角线AC与BD订交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.BA 13C 2O4D(第24题)得分评卷人(第25题6分,第26题6分,共12分)25.只利用一把有刻度的直尺,用胸怀的方法,按以下要求绘图:...(1)在图1顶用下边的方法画等腰三角形ABC的对称轴.①量出底边BC的长度,将线段BC二均分,即画出BC的中点D;②画直线AD,即画出等腰三角形ABC的对称轴.2)在图2中画∠AOB的对称轴,并写出绘图的方法.画法】BAB C O A图1图226.已知线段AC与BD订交于点O,连接AB、DC,E为OB的中点,F为OC的中点,连接EF(如下图).1)增添条件∠A=∠D,∠OEF=∠OFE,求证:AB=DC.2)分别将“∠A=∠D”记为①,“∠OEF=∠OFE”记为②,“AB=DC”记为③,若增添条件②、③,以①为结论组成另一个命题,则该命题是_________命题(选择“真”或“假”填入空格,不用证明).DAOE FB C(第26题)得分评卷人(第27题8分)27.如图,在平面直角坐标系xOy中,已知直线AC的分析式为y1x2,直线AC交x2轴于点C,交y轴于点A.(1)若一个等腰直角三角形OBD的极点D与点C重合,直角极点B在第一象限内,请直接写出点B的坐标;(2)过点B作x轴的垂线l,在l上能否存在一P,使得△AOP的周长最小?若存在,点恳求出点P的坐标;若不存在,请说明原因;(3)试在直线AC上求出到两坐标轴距离相等的全部点的坐标.yBAO C(D)x(第27题)数学试卷得分 评卷人 (第28题8分)28. 元旦时期,甲、乙两个家庭到 300km 外的景色区“自驾游”,乙家庭因为要携带一些旅行用品,比甲家庭迟出发0.5h (从甲家庭出发时开始计时),甲家庭开始出发时以60km/h 的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的行程y (甲km )、y 乙(km )与时间x (h )之间的函数关系对应图象,请依据图象所供给的信息解决以下问题:(1)因为汽车发生故障,甲家庭在途中逗留了 h ; 2)甲家庭抵达景色区共花了多少时间;3)为了能相互照料,甲、乙两个家庭在第一次相遇后商定两车的距离不超出 请经过计算说明,按图所表示的走法能否切合商定.y/km 300 CA BO 0.512 5(第28题)15km ,D E6.5 x/h数学试卷参照答案24一、(本共 8小;每小 2分,共16分) 25 1.B 2.D 3.A 4.B 5.B 6.D7.C 8.D 26 二、填空(本大共 10小,第 9~14,每小 2分,第15~18,每小 27 分.)9.1x 5 10.k<-211.mn(m -n)12.37°13.0415.916.-2<x<-117.48°18.7三、解答(本大共10 小,共60分.)19.解:(1)(a2b)(a2b)1b(a8b)2a 24b21 ab 4b 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2a21ab ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2(2)x 32x 2x分,共114.4分分= x(x 2x 1)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分= x(x1)2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5分20.(1)只需胸怀残留的三角形模具片的∠B ,∠C 的度数和BC 的,因两角及其相等的两个三角形全等.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3分(2)按尺作的要求,正确作出ABC 的形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分21.解:x12x1x1 21= 2x2x 2x1(x 2 2x 1) 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分=2x 2 x 2x1 x 22x 11⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=x 2 5x1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分当x 25x 14,原式=(x 25x) 114 1 15 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:(1)∵(1,b)在直yx 1上,∴当x1,b 112.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分x1, 5分(2)解是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯y2.23.(1)画正确; ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2分数学试卷(2)A1(1,5),B1(1,0),C1(4,3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分24.明:(1)在△ABC和△ADC中2ACAC34∴△ABC≌△ADC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分2)∵△ABC≌△ADC∴AB=A D⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分又∵∠1=∠2∴BO=DO⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分25.(1)画正确⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)①利用有刻度的直尺,在∠AOB的OA、OB上分截取OC、OD,使OC=OD;②接CD,量出CD的,画出段CD的中点E;③画直OE,直OE即∠AOB的称.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(作正确2分,作法正确2分)26.(1)∵∠OEF=∠OFE∴OE=OF⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∵EOB的中点,FOC的中点,∴OB=OC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又∵∠A=∠D,∠AOB=∠DOC,△AOB≌△DOC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴AB=DC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)假⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分27.(1)B(2,2);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)∵等腰三角形OBD是称形,称是l,∴点O与点C对于直l称,∴直AC与直l的交点即所求的点P.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分把x=2代入y1x2,得y=1,2∴点P的坐(2,1)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(3)足条件的点Q的坐(m,1m2),由意,得21 m21m2m或m⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分224或m4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分解得m34,4)或(∴点Q的坐(4,4)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分33(漏解一个扣2分)28.(1)1;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分(2)易得y乙=50x-25⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分当x=5,y=225,即得点C(5,225).数学试卷由意可知点B (2,60),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3分BD 所在直的分析式y=kx+b ,∴5kb 225,解得k55,2kb 60. b50.∴BD 所在直的分析式 y=55x -50.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 当y=300,x=70.11答:甲家庭抵达景区共花了706分h .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11(3)切合定.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分由象可知:甲、乙两家庭第一次相遇后在B 和D 相距最.在点B 有y 乙-y=-5x+25=-5×2+25=15≤15;在点D 有y —y 乙=5x -25=75≤15.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分11。
福建省龙岩市上杭县2018-2019学年第二学期期末学段水平测试八年级数学试卷%28图片版无答案%29
重合,折痕为 DE,则 CD 的长为
E
A.1.8
B.2.5
C.3
D.3.75
C
D
B
9.已知△ABC 中,AB=15,AC=13,高 AD=12,则△ABC 的周长是
A.42
B.32
C.42 或 32
D.37 或 42
10. 如图,在长方形纸片 ABCD 中,AB=4,AD=6.点 E 是 AB 的中点,点 F 是 AD 边
试计算这 300 名学生平均 天在校体育活动的时间.
22.(本小题满分 10 分)
D
C
如图,□ABCD 中,E、F 两点在对角线 BD 上,
F
且 BE=DF. 求证:AF∥CE.
E
A
B
八(下)期末学段水平测试数学试题 第 3 页 (共 4 页)
23.(本小题满分 10 分) 在平面直角坐标系 xOy 中,直线 l1:y=mx+n(m<0 且 n>0)与 x 轴交于点 A,过点 C(1,0)作直线 l2⊥x 轴,且与 l1 交于点 B. (1)当 m=-2,n=1 时,求 BC 的长; (2)若 BC=1-m,D(4,3+m),且 BD∥x 轴,判断四边形 OBDA 的形状,并说 明理由.
4.下列各曲线中,表示 y 是 x 的函数的是
A.
B.
C.
D.
5.面试时,某人的基本知识、表达能力、工作态度的得分分别是 80 分,70 分,85 分,
若依次按 30%,30%,40%的比例确定成绩,则这个人的面试成绩是
A.78.3
B.79
C.235
D.无法确定
6. 如图,平行四边形 ABCD 中,AC⊥AB,点 E 为 BC 边中点,AD=6,则 AE 的长为
福建龙岩-解析版
福建省龙岩市2018年初中毕业、升学考试数学试题解析一、选择题(本大题共l0题.每题4分.共40分) 1.(2018福建龙岩,1,4分)5的相反数是A .15 B. 5 C. 5- D. 15- 【解题思路】直接求解5的相反数是 —5。
【答案】C【点评】本题考查了相反数的概念,互为相反数的两个数绝对值相等,符号相反。
所以5的相反数是 —5。
难度较小 2.(2018福建龙岩,2,4分)下列运算正确的是 A .2222a a a +=B .339()a a =C .248a a a ⋅=D .632a a a ÷=【解题思路】分别运用不同的运算法则,求解:A :22(22)4a a a a +=+=; B :33339()a a a ⨯==;C :24246a a a a +⋅==;D :63633a a a a -÷==,所以正确答案为C 。
【答案】C【点评】本题考查整式的运算包括整式的加法,同底数幂的乘、除、乘方运算,要理解、熟记相关运算法则。
难度中等 3.(2018福建龙岩,3,4分)下列图形中是中心对称图形的是【解题思路】中心对称图形:一个图形绕着某一点旋转180°后能与自身重合。
A 、B 、C 、D 中A 需120°;B 、C 是轴对称图形,只有D 绕着中心旋转180°后能与自身重合,所以选D 。
【答案】D【点评】考查中心对称图形的概念,要抓住旋转180°与自身重合这些要素,以保障与其它特征图形区分开来。
难度较小 4.(2018福建龙岩,4,4分)(1)(23)x x -+的计算结果是 A .223x x +-B .223x x --C .223x x -+D .223x x --【解题思路】原式22232323x x x x x =+--=+-【答案】A【点评】运算整式的乘法法则是:(a +b )(m +n )=am +an +bm +bn ,再合并同类项。
龙岩市初中质检数学答案排2018.5.4
2018年龙岩市九年级学业(升学)质量检查数学试题参照答案一、(本大共10,每 4分,共40 分)号 1 2 3 4 567 8 9 10 答案AD CCBACADC二、填空(本大共 6,每4分,共24 分.注:答案不正确、不完好均不分)11.x212.3.36 10613.14.15.4316.93三、解答(本大共9 ,共86分)17.(8分)解:原式x 3 (x 1)21⋯⋯⋯⋯⋯⋯2分1)(x 1)x 3(xx 1 x 1⋯⋯⋯⋯⋯⋯4分x1x 12⋯⋯⋯⋯⋯⋯6分x12 2当x2 1,原式分2 1 12⋯⋯⋯⋯⋯⋯8218.(8分)明:∵四形ABCD 是平行四形∴AB,CD//AB ⋯⋯⋯⋯⋯⋯2分CD又∵CD//AB∴DCF BAE ⋯⋯⋯⋯⋯⋯4分又∵AECF∴DCF ≌BAE(SAS) ⋯⋯⋯⋯⋯⋯6分∴DFBE⋯⋯⋯⋯⋯⋯8分19.(8分)解:(Ⅰ)取段AC 的中点格点D ,有DCADBD ,BDAC ⋯⋯⋯⋯⋯⋯2分原因:由可知BC 5,AB ,AB5∴BC AB ⋯⋯⋯⋯⋯⋯3分又CD AD九年数学答案第1(共6)∴BD AC ⋯⋯⋯⋯⋯⋯4分 (Ⅱ)由易得 BC 5, ⋯⋯⋯⋯⋯⋯5分 AC 2242 20 25 ⋯⋯⋯⋯⋯⋯6分 BC 32 42 5 ⋯⋯⋯⋯⋯⋯7分∴ABC 的周=5 5 25 10 25⋯⋯⋯⋯⋯⋯8分 20.(8分)解:(Ⅰ)本容量 16万⋯⋯⋯⋯⋯⋯1分2017年前三季度居民人均消可支配收入均匀数17735115%20395.2520395(元)因此2017年前三季度居民人均消可支配收入均匀数20395元. ⋯⋯⋯⋯3分(Ⅱ)8.3%36029.8830因此用于医保健所占心角度数30.⋯⋯⋯⋯⋯⋯5分(Ⅲ)18.3%2.6%29.2%6.8% 6.2% 13.6%11.2%0.221 ⋯⋯⋯⋯7分∴0.22111423 2524(元)因此用于居住的金 2524元. ⋯⋯⋯⋯8分21.(8分)解:甲、乙两种笔各了x,y 支,依意得⋯⋯⋯⋯⋯⋯⋯⋯1分7x 3y 78⋯⋯⋯⋯⋯⋯⋯⋯4分y 2x x 6解得⋯⋯⋯⋯⋯⋯⋯⋯7分y12答:甲、乙两种笔各了 6支、12支.⋯⋯⋯⋯⋯⋯⋯⋯8分22.(10分)解:(Ⅰ)1⋯⋯⋯⋯2分(Ⅱ)(i )A 作ADBC ,垂足点DBDx,CD ax ,由勾股定理得AB 2 BD 2 AC 2 CD 2 ⋯⋯⋯⋯4分∴c 2 x 2b 2 (ax)2∴b 2a 2 c 2 2ax在Rtx ccosBABD 中,cosB即x∴b 2 a 2 c 2c2accosB ⋯⋯⋯⋯7分3222232cosB ⋯⋯⋯⋯分( )当 a 3,b7,c 2 ,( 7)2 ii 8∴cosB 1⋯⋯⋯⋯9分2九年数学答案 第2(共6)∴ B 60⋯⋯⋯⋯10分23.(10分) 解:(Ⅰ)明:∵ ABAC, BAC90∴ C45⋯⋯⋯⋯1分又∵AD BC,ABAC∴11BAC 45,BDCD, ADC 90⋯⋯⋯⋯2分2又∵ BAC 90,BD CDADCD ⋯⋯⋯⋯3分 又∵EAF90 E,F 是eO 直径 EDF90⋯⋯⋯⋯4分 2490又∵3 490∴23 又∵1C ⋯⋯⋯⋯5分ADE ≌CDF(ASA).⋯⋯⋯⋯6分(Ⅱ)当BC 与eO 相切,AD 是直径⋯⋯⋯⋯7分在RtADC 中,C 45,AC2⋯⋯⋯⋯8分∴sinADCAC∴AD1⋯⋯⋯⋯9分∴eO 的半径 122∴eO 的面⋯⋯⋯⋯10 分424.(12分)解:在正方形ABCD 中,可得DAB 90 .在RtBAE 中,tanABEAE 23 3 AB6,3ABE30⋯⋯⋯⋯1分(Ⅰ)分三种状况:①当点T 在AB 的上方,ATB 90,1然此点T 和点P 重合,即ATAPAB 3. ⋯⋯⋯⋯2分2法1:②当点T 在AB 的下方,ATB 90,如24-①所示.九年数学答案第3(共6)在RtAPB中,由AFBF,可得:AFBFPF3,BPF FBP30,BFT60.在Rt ATB中,TF BF AF3,FTB是等三角形,TB3,AT AB2BT233.⋯⋯⋯⋯4分法2:当点T在AB的下方,ATB90,如24-①所示.在RtAPB中,由AF BF,可得:AF BF PF3,以F心AB直径作,交射PF于点T,可知ATB90∵AB,PT是直径,PAT APB ATB90∴四形APBT是矩形AT BP在Rt APB中,ABE30,BP ABcos306333,2AT33.③当ABT90,如24-②所示.在Rt FBT中,BFT60,BF3,BT BF tan6033在RtABT中:AT AB2BT237.上所述:当ABT直角三角形,AT的3或33或37.⋯⋯⋯⋯6分(Ⅱ)法1:如24-③所示,在正方形ABCD中,可得AB AD BC,AD//BC,DAB9034⋯⋯⋯⋯7分在Rt EAB中,AP BE,易知1290,329013,134tanPB3AB 1,tanAE AP在RtAPB和RtEAB中可得,PB AB,AE AF,AB BC⋯⋯⋯⋯9分AP AEPB BCAP AF41PBC∽PAF⋯⋯⋯⋯11分5667180,57180,即CPF90CP FP.⋯⋯⋯⋯12分九年数学答案第4(共6)法2:如24-④所示,点P 作PK BC,BH PC ,交于点O ,接CO 并延交AB 于点M . 可知CMBP , AP BE ,AP//MC .在正方形ABCD 中,可得ABCB,ABCDA B90,PK//AB四形PAMO 是平行四形,POAM . 易知1290,3290,13BAE ≌CBMAE BM , AE AF , AF BM , AM BF PO BF ,四形PFBO 是平行四形,PF//BHBHPC ,CPFP25.(14分)b 1b 22∴⋯⋯⋯2分解:(Ⅰ)由已知得b 2c14c4∴抛物的分析式yx 22x 1⋯⋯⋯3分(Ⅱ)当b2,y x 2 2x c称直x2 1⋯⋯⋯⋯⋯⋯4分2由取抛物上点Q ,使Q 与N 对于称x 1称,由N(2,y 2)得Q(4,y 2)⋯⋯⋯⋯⋯⋯6分 又∵M(m,y 1)在抛物象上的点, 且y 1 y 2,由函数增减性得 m 4或m 2⋯⋯⋯⋯⋯⋯8分(Ⅲ)三种状况:①当 b <-1,即b >2 ,函数y 随x 的增大而增大,依意有21 b c1b 31 b c 4 bc⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分3②当1 b 1 ,即2 b 2 ,xb y 取最小,2,函数b2(ⅰ)若1,即 2 b 0 ,依意有2b 2b 2c 1b 1 426b 2 42642c 111 2 6或(舍去)1 b c 4 bc 2 1126九年数学答案 第5(共6)(ⅱ)若1 b 0,即0 b2,依意有2 b 2b 2c 1 b 2 242 (舍去)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分c3 1 b c4 b③当 b ,函数y 随x 的增大而减小,>1,即b <-221 b c 4 b b 1(舍去)1 b c 1c1上所述,b 3 b 4 2 6c 3或.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14分c11 26九年数学答案 第6(共6)。
2018年福建九地市数学质检试卷及答案9份
2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.计算-1+2,结果正确的是A. 1B. -1C. -2 D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A. x =-1aB. x =-2aC. x =1a D . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是 A. ∠A B. ∠B C. ∠DCB D .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A.到学校图书馆调查学生借阅量B.对全校学生暑假课外阅读量进行调查图1ED C BAC.对初三年学生的课外阅读量进行调查D.在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A. p -1B. p -85C. p -967D. 8584 p6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A. 2.4 B. 3.0 C. 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A. B 是线段AC 的中点 B. B 是线段AD 的中点 C. C 是线段BD 的中点 D. C 是线段AD 的中点8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学,可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 B. 每人分7本,则剩余9本C .每人分9本,则剩余7本 D. 其中一个人分7本,则其他同学每人可分9本9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A. 因为a >b +c ,所以a >b ,c <0B. 因为a >b +c ,c <0,所以a >bC. 因为a >b ,a >b +c ,所以c <0 D . 因为a >b ,c <0,所以a >b +c10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3):图2ABC(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式: PQ =d ·l a 2-a 1+l .则上述公式中,d 表示的是A.QA 的长B. AC 的长C.MN 的长D.QC 的长二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式: m 2-2m = .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的 概率是 .13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°,AC =1,则AB 的长为 .14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时搬运x kg 化工原料,根据题意,可列方程__________________________. 15.已知a +1=20002+20012,计算:2a +1= .16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D处,图4B图3泊水平线设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不与点C 重合,则∠BAC 的度数应满足的条件是 .三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程:2(x -1)+1=x .18.(本题满分8分)如图5,直线EF 分别与AB ,CD 交于点A ,C ,若AB ∥CD ,CB 平分∠ACD ,∠EAB =72°,求∠ABC 的度数.19.(本题满分8分)如图6,平面直角坐标系中,直线l 经过第一、二、四象限, 点A (0,m )在l 上. (1)在图中标出点A ;(2)若m =2,且l 过点(-3,4),求直线l 的表达式.20.(本题满分8分)如图7,在□ABCD 中,E 是BC 延长线上的一点, 且DE =AB ,连接AE ,BD ,证明AE =BD .l图6图7EABCD图5FEA BC D21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m 的值.22.(本题满分10分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求BC的长;图8OAB CDE(2)∠DBC =30°,CE =CD ,∠DCE <90°,若OE =22BD , 求∠DCE 的度数.23.(本题满分11分)已知点A ,B 在反比例函数y =6x(x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m 错误!链接无效。
2018年福建省龙岩市中考数学二模试卷与答案
2018年福建省龙岩市中考数学二模试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题的四个选项中,只有一项符合题目要求)1.(4分)计算﹣1﹣1的结果是()A.0B.1C.2D.﹣22.(4分)下列计算正确的是()A.=±2B.2x(3x﹣1)=6x2﹣1C.a2+a3=a5D.a2•a3=a53.(4分)掷两枚质地相同的硬币,正面都朝上的概率是()A.1B.C.D.04.(4分)如图是一个由4个相同的正方体组成的立体图形,它的俯视图是()A.B.C.D.5.(4分)我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是()A.3x﹣2=2x+9B.3(x﹣2)=2x+9C.D.3(x﹣2)=2(x+9)6.(4分)如图,下列四个条件中,能判断DE∥AC的是()A.∠3=∠4B.∠1=∠2C.∠EDC=∠EFC D.∠ACD=∠AFE 7.(4分)实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a 8.(4分)在同一坐标系中,函数y=和y=kx+1的图象大致是()A.B.C.D.9.(4分)已知k=,则满足k为整数的所有整数x的和是()A.﹣1B.0C.1D.210.(4分)如图,∠ACB=90°,AC=BC,∠DCE=45°,如果AD=3,BE=4,则BC 的长是()A.5B.C.D.7二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)若代数式有意义,则x的取值范围是.12.(4分)2018年春节假期,某市接待游客超3 360 000人次,用科学记数法表示3 360 000,其结果是.13.(4分)若甲组数据1,2,3,4,5的方差是s甲2,乙组数据6,7,8,9,10的方差是s乙2,则s甲2s乙2(填“>”、“<”或“=”).14.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=2,将△ABC绕着点C逆时针旋转到△DEC位置时,点B恰好落在DE边上,则在旋转过程中,点B运动到点E 的路径长为.15.(4分)如图,四边形ABCD和CEFG都是菱形,连接AG,GE,AE,若∠F=60°,EF=4,则△AEG的面积为.16.(4分)非负数a,b,c满足a+b=9,c﹣a=3,设y=a+b+c的最大值为m,最小值为n,则m﹣n=.三、解答题(本大题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤。
2018年5月福建省龙岩市初中毕业班质量检测数学试题含精品解析
18. (8 分)如图,在□ABCD 中, E , F 是对角线上的两点,且 AE CF ,求证: DF BE .
19. (8 分)如图,在每个小正方形的边长为 1 的网格中, A, B, C 均为格点. (1)仅用不带刻度的直尺作 BD AC ,垂足为 D ,并简 要说明道理; (2)连接 AB ,求 ABC 的周长.
7, c 2 ,求 B 的度数.
23. (10 分)如图,在 ABC 中, BAC 90, AB AC
2 , AD BC ,垂足为 D ,过
A, D 的⊙O 分别与 AB, AC 交于点 E , F ,连接 EF , DE , DF . (1)求证: ADE ≌ CDF ; (2)当 BC 与⊙O 相切时,求⊙O 的面积.
20. (8 分) “不忘初心,牢记使命. ”全面建设小康社会到了攻坚克难阶段.
为了解 2017 年全国居民
收支数据,国家统计局组织实施了住户收支与生活状况调查,按季度发布.调查采用分层、多阶 段、与人口规模大小成比例的概率抽样方法,在全国 31 个省(区、市)的 1650 个县(市、区) 随机抽选 16 万个居民家庭作为调查户.已知 2017 年前三季度居民人均消费可支配收入平均数是 2016 年前三季度居民人均消费可支配收入平均数的 115 0 0 ,人均消费支出为 11423 元,根据下列 两个统计图回答问题:(以下计算最终结果均保留整数)
2018 年龙岩市初中学业(升学)质检数学试题
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分) 1.计算 1 1 的结果等于( ). A.-2 B.0 C.1 2.下列计算正确的是( ). D.2
2
A. 4= 2 B. 2 x(3 x 1) 6 x 1 C. a 2 +a 3 =a 5 3.掷两枚质地相同的硬币,正面都朝上的概率是( ). A.1 D.0 4.右图是一个由 4 个相同的正方体组成的立体图形,它的俯视图是(
福建省龙岩市五县、区2018-2019学年八年级下学期期末考试数学试题(有答案)
第4题图/岁2018~2019年五县市区八年级第二学期期末质量检查数学试题(满分:150分考试时间:120分钟)注意:请把所有答案填涂或书写到答题卡上!请不要错位、越界答题!在本试题上答题无效.一、选择题:本大题共10小题,每小题4分,共40分.每小题的四个选项中,只有一项符合题目要求.-=A.±2B. 22.下列四个数中,大于1而又小于2的无理数是A. 3 23.下列计算错误的是=-3B. =213===-4.某校男子足球队年龄分布条形图如图所示,该球队年龄的众数和中位数分别是A. ,88B. ,1515C. ,1516 D. ,15145.--3x y互为相反数,则+x y=A. 27B. 12C. 9D. 312第9题图O DCA6.下列命题中是正确的命题为A. 有两边相等的平行四边形是菱形B. 有一个角是直角的四边形是矩形C. 四个角相等的菱形是正方形D. 两条对角线互相垂直且相等的四边形是平行四边形7.小明在画函数6y =x(x >0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是12366543.532.521.510.5…………y xA. (,)16B. (,)23C. (,)32D. (,)418. 如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是9. 如图, □ ABCD 的对角线AC 与BD 相交于点O ,⊥AB AC ,,46AB =AC =,则BD =A. 8B. 9C. 10D. 1110.定义min(,)a b ,当≥a b 时,min(,)=a b b ,当a <b 时,min(,)=a b a ; 已知函数min(,)=---3221y x x ,则该函数的最大值是 A. -15 B. -9 C. -6 D. 6 二、填空题:本大题共6小题,每小题4分,共24分.311.如图,在平面直角坐标系内所示的两条直线,其中函数y 随x 增大而减小的函数解析式是 ;12.直线=9y x +沿y 轴平行的方向向下平移3个单位,所得直线的函数解析式是 ;13.数据1,-1,-1,1,1,-1的方差=2S;14.在Rt ∆ABC 中,若,,∠︒∠︒=90302C =A =AB ,则BC = ; 15. 如图,在∆ABC 中,∠∠ABC =BAC ,,D E 分别是,AB AC 的中点,且2DE =,延长DE 到点F ,使=EF BC ,连接,CF BE ,若四边形BEFC 是菱形,则AB =______; 16.如图,直线AB 与坐标轴相交于点,A B ,将∆AOB 沿直线AB 翻折到∆ACB 的位置,当点C的坐标为(3C 时,直线AB 的函数解析式是 .三、解答题:本大题共9小题,共86分. 解答应写出文字说明、证明过程或演算步骤. 17. (本题满分8分)计算:(-÷18. (本题满分8分)先化简,再求值:()--÷+232112x x x x +x +x,其中-1x =.4min19. (本题满分8分)已知--12b x =a,-22b +x =a,若,,===-322a b c ,试求+12x x 的值. 20. (本题满分8分)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y 表示张强离家的距离. 根据图象解答下列问题:(1)体育场离张强家多远?张强从家到体育场用了多少时间?(2)体育场离文具店多远? (3)张强在文具店停留了多少时间?(4)求张强从文具店回家过程中y 与x 的函数解析式.21. (本题满分8分)如图1,AD 是∆ABC 的边BC 上的中线.(1)①用尺规完成作图:延长AD 到点E ,使=DE AD ,连接CE ; ② 若,64AB =AC =,求AD 的取值范围;(2)如图2,当∠︒90BAC =时,求证:12AD =BC .22. (本题满分10分)某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体参加校外实践活动,为确保安全,每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.5HF G EOD CBA2804003045租金/(元/辆)载客量/(人/辆)乙种客车甲种客车(1)根据题干所提供的信息,确定共需租用多少辆汽车? (2)请你给学校选择一种最节省费用的租车方案. 23. (本题满分10分)某景区的水上乐园有一批4人座的自划船,每艘可供1至4位游客乘坐游湖,因景区加大宣传,预计今年游客将会增加.水上乐园的工作人员在去年6月27日一天出租的150艘次4人自划船中随机抽取了100艘,对其中抽取的每艘船的乘坐人数进行统计,并制成如下统计图.(1)求扇形统计图中,“乘坐1人”所对应的圆心角度数; (2)估计去年6月27日这天出租的150艘次4人自划船平均每艘船的乘坐人数;(3)据旅游局预报今年6月27日这天该景区可能将增加游客300人,请你为景区预计这天需安排多少艘4人座的自划船才能满足需求. 24.(本题满分12)如图,边长为2的正方形ABCD 中,对角线AC,BD 相交于点O ,点E 是BC 中点,AE 交BD于点F ,⊥BH AE 于点G ,交AC 于点H . (1)求证:∆AOF ≌∆BOH ; (2)求线段BG 的长. 25.(本题满分14)在平面直角坐标系中,已知点(,)03A,(,)40B ,(,)-+322C m m ,点D 与A 关于x 轴对称.(1)写出点C 所在直线的函数解析式;(2)连接,,AB BC AC ,若线段,,AB BC AC 能构成三角形,求m 的取值范围;1人(3)若直线CD把四边形ACBD的面积分成相等的两部分,试求m的值.672018~2019年五县市区八年级第二学期期末质量检查数学评分标准与参考答案一、CBABA CDDCB二、11. .-051y =x +;12. =6y x +;13. 1;14. 1;15. ;16.y =+三、解答题:本大题共9小题,共86分. 解答应写出文字说明、证明过程或演算步骤. 17. (本题满分8分) 解:原式=(-÷4分=(÷…………………………………………………………………6分=-7分=-2……………………………………………………………………………8分 18. (本题满分8分)解:原式=()()--÷22211x x x x +x + ………………………………………………………3分 =()()-⨯-22112x x x +x +x ………………………………………………………4分=()1x x + ………………………………………………………………………6分当-1x =时,原式=)--+111……………………………………………………7分=-3……………………………………………………………………8分8min19. (本题满分8分)解:原式=---2b b +a…………………………………2分=-ba…………………………………………………………………………6分 =-23…………………………………………………………………………8分 20. (本题满分8分) 解:(1)体育场离张强家.km 25,张强从家到体育场用了min 15…………………………2分 (2)体育场离文具店1km …………………………………………………………………3分 (3)张强在文具店停留了min 20…………………………………………………………4分 (4)设张强从文具店回家过程中y 与x 的函数解析式为y =kx +b ,………………5分 将点(,.)6515,(,)1000代入y =kx +b 得.⎧+=⎨⎩65151000k b k +b =, 解得⎧=-⎪⎪⎨⎪⎪⎩370307k b =, ……………………………………………………………………6分 ∴-330707y =x +(≤≤65100x )……………………………………………8分 (没有写出自变量取值范围扣1分)921. (本题满分8分)(1)①用尺规完成作图:延长AD 到点E ,使=DE AD ,连接CE ;……2分②∵=BD DC ,=DE AD ,∠=∠ADB EDC ∴∆ADB ≌∆EDC∴=EC AB ………………………………………………………………………3分 ∴6-4<AE <6+4,即2<AE <10……………………………………………4分 又∵2AE =AD∴1<AD <5……………………………………………………………………5分 (2)延长延长=BD DC AD 到点E ,使=DE AD ,连接,CE BE∵=BD DC∴四边形ABEC 是平行四边形………………………………………………………6分 ∵∠︒90BAC =∴四边形ABEC 是矩形………………………………………………………………7分 ∴=AE BC∴1122AD =AE =BC .…………………………………………………………8分 22. (本题满分10分)解:(1)由使234名学生和6名教师都有座位,租用汽车辆数必需不小于+=234616453辆;每辆汽车上至少要有1名教师,租用汽车辆数必需不大于6辆.所以,根据题干所提供的信息,确定共需租用6辆汽车.…………………………2分 (2)设租用甲种客车x 辆,共需费用y 元,则租用乙种客车()-6x 辆.…………3分6辆汽车载客人数为()⎡⎤-⎣⎦45306x +x 人………………………………………4分()-4002806y =x +x10=1201680x + …………………………………………………………5分∴ ()⎧-≥⎨≤⎩4530624012016802300x +x x + ……………………………………………………6分解得≤≤3146x …………………………………………………………7分 ∴4x =,或5x = ……………………………………………………8分 当4x =时,甲种客车4辆,乙种客车2辆,2160y =当5x =时,甲种客车5辆,乙种客车1辆,2300y =……………………………9分 ∴最节省费用的租车方案是租用甲种客车4辆,乙种客车2辆.……………………10分 23. (本题满分10分)解:(1)“乘坐1人”所对应的圆心角度数是:()︒⨯---=︒0360145203018………………………………………3分(2)估计去年6月27日这天出租的150艘次4人自划船平均每艘船的乘坐人数是:⨯+⨯+⨯+⨯=453304202513100人 …………………………………6分(3)+=3001502503艘4人座的自划船才能满足需求.……………………10分 24.(本题满分12)(1)证明:∵四边形ABCD 是正方形∴OA =OB ,∠︒90AOB =………………………………………2分 ∵⊥BH AE∴∠∠︒90AOB =BOH =………………………………………3分11又∵︒∠∠∠∠90FAO +AHG =OBH +AHG =………………4分∴∠∠FAO =OBH ………………………………………5分∴∆AOF ≌∆BOH ; ………………………………………6分(2)解:∵在Rt ∆ABE 中,,21AB =BE =,……………………………………7分∴==AE =9分 又∵⨯⨯1122AB BE =AG BG ……………………………………10分∴⨯==25AB BE BG =AG ……………………………………12分 25.(本题满分14)在平面直角坐标系中,已知点(,)03A,(,)40B ,(,)-+322C m m ,点D 与A 关于x 轴对称.解:(1)-322y =x +…………………………………………………………………3分(2)设AB 所在直线的函数解析式为y =kx +b ,将点(,)03A,(,)40B 代入y =kx +b 得 ⎧⎨⎩340b =k +b =,解得⎧⎪⎨-⎪⎩334b =k =,∴-334y =x + 当点(,)-+322C m m 在直线AB 上时,线段,,AB BC AC 不能构成三角形………………5分将(,)-+322C m m 代入-334y =x +,得--332234m +=m + 解得769m =,12∴≠769m 时,线段,,AB BC AC 能构成三角形;………………………………7分 (3)(,)-03D ,设AB 的中点为E ,过E 作⊥EM x 轴于M ,⊥EN y 轴于N , 根据三角形中位线性质可知(,)322E ,…………………………………………8分 由三角形中线性质可知,当点(,)-+322C m m 在直线DE 上时,DC 把四边形ACBD 的面积分成相等的两部分,…………………………………………………………………10分设直线DE 的函数解析式为y =kx +b ,将(,)-03D ,(,)322E 代入y =kx +b , 得⎧-⎪⎨⎪⎩3302b =k +b =,解得⎧-⎨⎩32b =k =,∴-23y =x ,…………………………………11分将(,)-+322C m m 代入-23y =x ,得--32223m +=m ,解得5m =,……………………………………………………13分 ∴当5m =时,DC 把四边形ACBD 的面积分成相等的两部分.………………………14分。
2018年福建省龙岩市初三质检数学试题及答案
2018年龙岩市九年级学业(升学)质量检查数 学 试 题(满分:150分 考试时间:120分钟)注意:请把所有答案填涂或书写到答题卡上!请不要错位、越界答题! 在本试题上答题无效.一、选择题(本大题共10小题,每小题4分,共40分.每小题的四个选项中,只有一项符合题目要求) 1.计算11--的结果等于 A .-2B .0C .1D .22.下列计算正确的是 A .4=2± B .22(31)61x x x -=-C .235+=a a aD .235=a a a ⋅3.掷两枚质地相同的硬币,正面都朝上的概率是 A .1B .21 C .41 D .04.右图是一个由4个相同的正方体组成的立体图形,它的俯视图是A B C D5.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 A .3229x x -=+ B .3(2)29x x -=+ C .2932x x +=- D .3(2)2(9)x x -=+6.如图,下列四个条件中,能判断DE //AC 的是从正面看EF D1BA 3 4 2 CA .43∠=∠B .21∠=∠C .EFC EDC ∠=∠D .AFE ACD ∠=∠7.实数,a b 在数轴上的对应点位置如图所示,把,0a b --,按照从小到大的顺序排列,正确的是A .0a b -<<-B .0a b <-<-C .0b a -<<-D .0b a <-<-8.在同一直角坐标系中,函数ky =和1+=kx y 的大致图象可能是9.已知1234-+=x x k ,则满足k 为整数的所有整数x 的和是 A .-1B .0C .1D .210.如图,︒=∠90ACB ,BC AC =,︒=∠45DCE ,如果4,3==BE AD ,则BC 的长是 A .5B .25C .26D .7二、填空题(本大题共6小题,每小题4分,共24分) 11.使代数式2-x 有意义的x 的取值范围是__________.12.2018年春节假期,某市接待游客超3360000人次,用科学记数法表示3360000,其结果是________________________.13.若甲组数据1,2,3,4,5的方差是2甲s ,乙组数据6,7,8,9,10的方差是2乙s ,则2甲s _____2乙s .(填“>”、“<”或“=”) 14.如图,在ABC ∆中,90,30ACB A ∠=︒∠=︒,2AB =,将ABC ∆绕着点C 逆时针旋转到DEC ∆位置时,点B 恰好落在DE 边上,则在旋转过程中,点B 运动到点E 的路径长为____________.15.如图,四边形ABCD 和CEFG 都是菱形,连接AG ,,GE AE ,若60,4F EF ∠=︒=,则AEG ∆的面积为________.16.非负数,,a b c 满足39=-=+a c b a ,,设c b a y ++=的最大值为m ,最小值为n ,则(第7题图)(第10题图)BACDEA B C D(第14题图)CDBA(第15题图)GFEDCBAm n -=________.三、解答题(本大题共9小题,共86分. 解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分8分)先化简,后求值:22321113x x x x x -++⋅---,其中21x =+.18.(本小题满分8分)如图,在ABCD 中,,E F 是对角线上的两点,且AE CF =,求证:DF BE =.19.(本小题满分8分)如图,在每个小正方形的边长为1的网格中,,,A B C 均为格点.(Ⅰ)仅用不带刻度的直尺作AC BD ⊥,垂足为D ,并简要说明道理;(Ⅱ)连接AB ,求ABC ∆的周长.20.(本小题满分8分)“不忘初心,牢记使命.”全面建设小康社会到了攻坚克难阶段. 为了解2017年全国居民收支数据,国家统计局组织实施了住户收支与生活状况调查,按季度发布.调查采用分层、多阶段、与人口规模大小成比例的概率抽样方法,在全国31个省(区、市)的1650个县(市、区)随机抽选16万个居民家庭作为调查户.已知2017年前三季度居民人均消费可支配收入平均数是2016年前三季度居民人均消费可支配收入平均数的00115,人均消费支出为11423元,根据下列两个统计图回答问题:(以下计算最终结果均保留整数)(第19题图)(第18题图)BACD E F 图1 2016年和2017年前三季度居民人均可支配收入平均数 图2 2017年前三季度居民人均消费支出及构成(Ⅰ)求年度调查的样本容量及2017年前三季度居民人均消费可支配收入平均数(元); (Ⅱ)求在2017年前三季度居民人均消费支出中用于医疗保健所占圆心角度数; (Ⅲ)求在2017年前三季度居民人均消费支出中用于居住的金额.21.(本小题满分8分)甲、乙两种笔的单价分别为7元、3元,某学校用78元钱买这两种笔作为数学竞赛一、二等奖奖品,钱恰好用完.若买下的乙种笔是甲种笔的两倍,请问两种笔各买了几支?22.(本小题满分10分)(Ⅰ)知识延伸:如图1,在ABC ∆中,=90C ∠︒,,,AB c BC a AC b ===,根据三角函数的定义得:22sin cos A A += ;(Ⅱ)拓展运用:如图2,在锐角三角形ABC 中,,,AB c BC a AC b ===.(i )求证:2222cos b a c ac B =+-⋅; (ii)已知:3,2a b c ===,求B ∠的度数.23.(本小题满分10分)如图,在ABC ∆中,90,BAC ∠=︒AB AC ==AD BC ⊥,垂足为D ,过,A D 的O 分别与,AB AC 交 于点,E F ,连接,,EF DE DF .(Ⅰ)求证:ADE ∆≌CDF ∆; (Ⅱ)当BC 与O 相切时,求O 的面积.图1图2(第22题图)AC BABC(第23题图)BPFED C ABPF ED CA(图①) (图②) 25.(本题满分14分)已知抛物线c bx x y ++=2.(Ⅰ)当顶点坐标为),(01时,求抛物线的解析式; (Ⅱ)当2=b 时,),(1y m M ,),2(2y N 是抛物线图象上的两点,且21y y >,求实数m 的取值范围;(Ⅲ)若抛物线上的点(,)P s t ,满足11≤≤-s 时,b t +≤≤41.求,b c 的值.2018年龙岩市九年级学业(升学)质量检查数学试题参考答案11.2x ≥ 12.63.3610⨯ 13.= 14.3π15. 16.9 三、解答题(本大题共9题,共86分)17.(8分)解:原式23(1)1(1)(1)3x x x x x -+=⋅-+-- ………………2分 1111x x x x +-=--- ………………4分 21x =- ………………6分当1x =时,原式=== ………………8分 18.(8分)证明:∵四边形ABCD 是平行四边形∴,//CD AB CD AB = ………………2分 又∵//CD AB∴DCF BAE ∠=∠ ………………4分 又∵AE CF =∴DCF ∆≌()BAE SAS ∆ ………………6分 ∴DF BE = ………………8分19. (8分)解:(Ⅰ)取线段AC 的中点为格点D ,则有DC AD =连BD ,则BD AC ⊥………………2分 理由:由图可知5BC =,连AB ,则5AB = ∴BC AB =………………3分 又CD AD =∴BD AC ⊥………………4分 (Ⅱ)由图易得5,BC = ………………5分22242025AC =+== ………………6分22345BC =+= ………………7分∴ABC ∆的周长=55251025++=+………………8分20.(8分)解:(Ⅰ)样本容量16万………………1分2017年前三季度居民人均消费可支配收入平均数17735115%20395.2520395=⨯=≈(元)所以2017年前三季度居民人均消费可支配收入平均数为20395元. …………3分 (Ⅱ)8.3%36029.8830⨯︒=︒≈︒所以用于医疗保健所占圆心角度数为30︒. ………………5分(Ⅲ)18.3% 2.6%29.2% 6.8% 6.2%13.6%11.2%0.221-------= …………7分∴0.22111423⨯2524≈(元)所以用于居住的金额为2524元. …………8分21.(8分)解:设甲、乙两种笔各买了,x y 支,依题意得……………………1分73782x y y x+=⎧⎨=⎩……………………4分 解得612x y =⎧⎨=⎩……………………7分答:甲、乙两种笔各买了6支、12支. ……………………8分 22.(10分)解:(Ⅰ)1 …………2分(Ⅱ)(i )过A 作AD BC ⊥,垂足为点D设,BD x CD a x ==-,则由勾股定理得2222AB BD AC CD -=- …………4分∴2222()c x b a x -=--∴2222b a c ax =+- 在Rt ABD ∆中,cos xB c=即cos x c B = ∴2222cos b a c ac B =+- …………7分(ii )当3,7,2a b c ===时,222(7)32232cos B =+-⨯⨯…………8分∴1cos 2B =…………9分∴60B ∠=︒…………10分23.(10分)解:(Ⅰ)证明:∵,90AB AC BAC =∠=︒∴45C ∠=︒ …………1分 又∵,AD BC AB AC ⊥=∴1145,,902BAC BD CD ADC ∠=∠=︒=∠=︒…………2分 又∵90,BAC BD CD ∠=︒=∴AD CD =…………3分 又∵90EAF ∠=︒ ∴,E F 是O 直径∴90EDF ∠=︒…………4分 ∴2490∠+∠=︒又∵3490∠+∠=︒ ∴23∠=∠ 又∵1C ∠=∠…………5分∴ADE ∆≌()CDF ASA ∆. …………6分(Ⅱ)当BC 与O 相切时,AD 是直径…………7分在Rt ADC ∆中,45,2C AC ∠=︒=…………8分∴sin ADC AC∠=∴1AD =…………9分∴O 的半径为12∴O 的面积为24π…………10分24.(12分)解:在正方形ABCD 中,可得︒=∠90DAB .在BAE Rt ∆中,233tan 63AE ABE AB ∠===, 30ABE ∴∠=︒ …………1分(Ⅰ)分三种情况:①当点T 在AB 的上方,︒=∠90ATB , 显然此时点T 和点P 重合,即13.2AT AP AB === …………2分 法1:②当点T 在AB 的下方,︒=∠90ATB ,如图24-①所示.在APB Rt ∆中,由BF AF =,可得:3===PF BF AF ,30BPF FBP ∴∠=∠=︒,︒=∠∴60BFT . 在ATB Rt ∆中,3===AF BF TF ,FTB ∆∴是等边三角形,3=∴TB ,3322=-=BT AB AT . …………4分 法2:当点T 在AB 的下方,︒=∠90ATB ,如图24-①所示.在APB Rt ∆中,由BF AF =,可得:3===PF BF AF ,以F 为圆心AB 长为直径作圆,交射线PF 于点T ,可知︒=∠90ATB ∵,AB PT 是直径, 90PAT APB ATB ∴∠=∠=∠=︒∴四边形APBT 是矩形 AT BP ∴=在APB Rt ∆中,,30︒=∠ABE 3323630cos =⨯=︒⋅=AB BP , 33=∴AT .③当︒=∠90ABT 时,如图24-②所示.在FBT Rt ∆中,︒=∠60BFT ,3=BF ,tan 6033BT BF =⋅︒= 在ABT Rt ∆中:7322=+=BT AB AT .综上所述:当ABT ∆为直角三角形时,AT 的长为3或33或73. …………6分 (Ⅱ)法1:如图24-③所示,在正方形ABCD 中,可得︒=∠==90//,DAB BC AD BC AD AB ,43∠=∠∴ …………7分在EAB Rt ∆中,BE AP ⊥,易知︒=∠+∠︒=∠+∠9023,902131∠=∠∴,431∠=∠=∠∴AP PB =∠1tan ,AEAB=∠3tan 在Rt APB ∆和Rt EAB ∆中可得, AE AB AP PB =∴,BC AB AF AE ==, …………9分 AF BC AP PB =∴ 14∠=∠PBC ∴∆∽PAF ∆ …………11分 65∠=∠∴︒=∠+∠18076 ,︒=∠︒=∠+∠∴90,18075CPF 即 CP FP ∴⊥. …………12分法2:如图24-④所示,过点P 作PC BH BC PK ⊥⊥,,交于点O ,连接CO 并延长交AB 于点M . 可知BP CM ⊥,BE AP ⊥ ,MC AP //∴.在正方形ABCD 中,可得︒=∠=∠=90,DAB ABC CB AB ,AB PK //∴∴四边形PAMO 是平行四边形,AM PO =∴.易知︒=∠+∠︒=∠+∠9023,9021,31∠=∠∴BAE ∴∆≌CBM ∆BM AE =∴,AF AE = ,BM AF =∴,BF AM =∴ BF PO =∴,∴四边形PFBO 是平行四边形,BH PF // PC BH ⊥ ,CP FP ∴⊥25.(14分)解:(Ⅰ)由已知得212404bc b ⎧-=⎪⎪⎨-⎪=⎪⎩ ∴21b c =-⎧⎨=⎩ ………2分 ∴抛物线的解析式为221y x x =-+ ………3分(Ⅱ)当2b =时,22y x x c =++对称轴直线212x =-=-………………4分 由图取抛物线上点Q ,使Q 与N 关于对称轴1x =-对称, 由2(2,)N y 得2(4,)Q y -………………6分又∵1(,)M m y 在抛物线图象上的点,且12y y >,由函数增减性得4m <-或2m >………………8分 (Ⅲ)三种情况:①当2b-<-1,即b >2时,函数值y 随x 的增大而增大,依题意有 ⎩⎨⎧==⇒⎩⎨⎧+=++=+-334111c b b c b c b …………………………………………………10分 ②当121≤-≤-b ,即22≤≤-b 时,2bx -=时,函数值y 取最小值,(ⅰ)若012b≤-≤,即20b -≤≤时,依题意有2211426142112614b b b c c b c b ⎧⎧=--+=⎪⎪⇒⎨⎨=-⎪⎪⎩-+=+⎩或22461126b c ⎧=+⎪⎨=+⎪⎩九年级数学试题 第11页 (共11页) (ⅱ)若102b -≤-≤,即02b ≤≤时,依题意有22142314b b c b c b c b ⎧⎧-+==±⎪⎪⇒⎨⎨=⎪⎩⎪++=+⎩(舍去)……………………………………12分 ③当2b ->1,即b <-2时,函数值y 随x 的增大而减小, 141111bc b b b c c -+=+=-⎧⎧⇒⎨⎨++==⎩⎩(舍去) 综上所述,⎩⎨⎧==33c b或411b c ⎧=-⎪⎨=-⎪⎩.…………………。
2018年福建省龙岩市永定县金丰片中考二模试卷数学
1 2
+4=2;
(2)原式=
x yx y
x 2y
=x-y.
18.如图,已知 AB∥CD,若∠A=20°,∠E=35°,求∠C 的度数.
解析:根据三角形的外角等于和它不相邻的两个内角的和以及平行线的性质进行求解. 答案:∵∠A=20°,∠E=35°, ∴∠EFB=∠A+∠E=55°, ∵AB∥CD, ∴∠C=∠EFB=55°. 19.《九章算术》中有一道阐述“盈不足术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为: 现有一些人共同买一个物品,每人出 8 元,还盈余 3 元;每人出 7 元,则还差 4 元,问共有 多少人?这个物品的价格是多少? 请解答上述问题. 解析:根据这个物品的价格不变,列出一元一次方程进行求解即可. 答案:设共有 x 人,可列方程为:8x-3=7x+4.解得 x=7,∴8x-3=53(元), 答:共有 7 人,这个物品的价格是 53 元. 20.小莉和哥哥玩扑克牌游戏,小莉有数字为 1,2,3,5 的四张牌,哥哥有数字为 4,6,7, 8 的四张牌,按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽 出的两张扑克牌数字相加,如果和为偶数,则小莉胜;如果和为奇数,则哥哥胜. (1)请用数形图或列表法分别求出小莉胜和哥哥胜的概率; (2)这个游戏公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则. 解析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果是偶数的情况, 再利用概率公式即可求得答案; (2)根据(1)求得哥哥去的概率,比较概率的大小,即可知游戏规则是否公平. 答案:(1)画树状图得:
A.
5 5 2 5 5
2018年福建省龙岩市中考数学试题及解析
2018年福建省龙岩市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分,每小题的四个选项中,只有一项符合题目要求)1.(4分)(2018•龙岩)﹣1的倒数是()A.﹣1B.0C.1D.±12.(4分)(2018•龙岩)下列运算正确的是()A.x2•x3=x6B.(x2)3=x6C.x3+x2=x5D.x+x2=x33.(4分)(2018•龙岩)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(4分)(2018•龙岩)下列事件中,属于随机事件的是()A.的值比8大B.购买一张彩票,中奖C.地球自转的同时也在绕日公转D.袋中只有5个黄球,摸出一个球是白球5.(4分)(2018•龙岩)如图所示几何体的主视图是()A.B.C.D.6.(4分)(2018•龙岩)若甲、乙、丙、丁四位同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,则成绩最稳定的同学是()A.甲B.乙C.丙D.丁7.(4分)(2018•龙岩)下列统计图能够显示数据变化趋势的是()A.条形图B.扇形图C.折线图D.直方图8.(4分)(2018•龙岩)如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.B.C.D.19.(4分)(2018•龙岩)已知点P(a,b)是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则+=()A.2B.1C.D.10.(4分)(2018•龙岩)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()A.4B.4C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2018•龙岩)2018年6月14日是第12个“世界献血者日”,据国家相关部委公布,2014年全国献血人数达到约130000000人次,将数据130000000用科学记数法表示为.12.(3分)(2018•龙岩)分解因式:a2+2a=.13.(3分)(2018•龙岩)若4a﹣2b=2π,则2a﹣b+π=.14.(3分)(2018•龙岩)圆锥的底面半径是1,母线长是4,则它的侧面展开图的圆心角是°.15.(3分)(2018•龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.16.(3分)(2018•龙岩)我们把平面内与四边形各边端点构成的三角形都是等腰三角形的点叫做这个四边形的腰点(如矩形的对角线交点是矩形的一个腰点),则正方形的腰点共有个.三、解答题(本大题共9小题,共92分)17.(6分)(2018•龙岩)计算:|﹣|+20180﹣2sin30°+﹣9×.18.(6分)(2018•龙岩)先化简,再求值:(x+1)(x﹣1)+x(2﹣x)+(x﹣1)2,其中x=2.19.(8分)(2018•龙岩)解方程:1+=.20.(10分)(2018•龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.21.(11分)(2018•龙岩)某商场经理对某一品牌旅游鞋近一个月的销售情况进行统计后,绘制了如下统计表与条形图:尺码(码)数量(双)百分比(%)36603037301538a b39402040c541105(1)写出表中a,b,c的值;(2)补全条形图;(3)商场经理准备购进同一品牌的旅游鞋1500双,请根据市场实际情况估计他应该购进38码的鞋多少双?22.(12分)(2018•龙岩)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.23.(12分)(2018•龙岩)某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)4530租金(元/辆)400280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x45x400xB5﹣x(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.24.(13分)(2018•龙岩)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.25.(14分)(2018•龙岩)如图,已知点D在双曲线y=(x>0)的图象上,以D为圆心的⊙D与y轴相切于点C(0,4),与x轴交于A,B两点,抛物线y=ax2+bx+c经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q.(1)写出点D的坐标并求出抛物线的解析式;(2)证明∠ACO=∠OBC;(3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.2018年福建省龙岩市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,每小题的四个选项中,只有一项符合题目要求)1.(4分)(2018•龙岩)﹣1的倒数是()A.﹣1B.0C.1D.±1考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:﹣1的倒数是﹣1,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(4分)(2018•龙岩)下列运算正确的是()A.x2•x3=x6B.(x2)3=x6C.x3+x2=x5D.x+x2=x3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同底数幂的乘法、同类项和幂的乘方判定即可.解答:解:A、x2•x3=x5,错误;B、(x2)3=x6,正确;C、x3与x2不是同类项,不能合并,错误;D、x与x2不是同类项,不能合并,错误;故选B点评:此题考查同底数幂的乘法、同类项和幂的乘方,关键是根据法则进行计算.3.(4分)(2018•龙岩)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(4分)(2018•龙岩)下列事件中,属于随机事件的是()A.的值比8大B.购买一张彩票,中奖C.地球自转的同时也在绕日公转D.袋中只有5个黄球,摸出一个球是白球考点:随机事件.分析:随机事件就是可能发生,也可能不发生的事件,根据定义即可判断.解答:解:A、的值比8大属于不可能事件,此选项错误;B、购买一张彩票,可能中奖,也可能不中奖,属于随机事件,此选项正确;C、地球自转的同时也在绕日公转属于确定事件,此选项错误;D、袋中只有5个黄球,摸出一个球是白球属于不可能事件,此选项错误.故选:B.点评:本题主要考查的是对随机事件概念的理解,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,比较简单.5.(4分)(2018•龙岩)如图所示几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.专题:计算题.分析:从正面看几何体即可确定出主视图.解答:解:几何体的主视图为.故选C点评:此题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图.6.(4分)(2018•龙岩)若甲、乙、丙、丁四位同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,则成绩最稳定的同学是()A.甲B.乙C.丙D.丁考点:方差.分析:首先比较出S甲2,S乙2,S丙2,S丁2的大小关系,然后根据方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,判断出成绩最稳定的同学是谁即可.解答:解:∵S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,∴S丁2<S甲2<S乙2<S丙2,∴成绩最稳定的同学是丁.故选:D.点评:此题主要考查了方差的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.(4分)(2018•龙岩)下列统计图能够显示数据变化趋势的是()A.条形图B.扇形图C.折线图D.直方图考点:统计图的选择.分析:根据统计图的特点,要显示数据的变化趋势,选择折线统计图.解答:解:易于显示数据的变化趋势和变化规律的统计图是折线统计图.故选C.点评:考查了统计图的选择,扇形统计图表示的是部分在总体中所占的百分比;折线统计图表示的是事物的变化情况;而条形统计图和直方图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.8.(4分)(2018•龙岩)如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.B.C.D.1考点:角平分线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理.分析:根据△ABC为等边三角形,BP平分∠ABC,得到∠PBC=30°,利用PC⊥BC,所以∠PCB=90°,在Rt△PCB中,=1,即可解答.解答:解:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC==30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,=1,∴点P到边AB所在直线的距离为1,故选:D.点评:本题考查了等边三角形的性质、角平分线的性质、利用三角函数求值,解决本题的关键是等边三角形的性质.9.(4分)(2018•龙岩)已知点P(a,b)是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则+=()A.2B.1C.D.考点:反比例函数图象上点的坐标特征;分式的化简求值.分析:利用反比例函数图象上点的坐标性质得出ab=1,再利用分式的混合运算法则求出即可.解答:解:∵点P(a,b)是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,∴ab=1,∴+=+===1.故选:B.点评:此题主要考查了反比例函数图象上点的坐标性质以及分式的混合运算,正确化简分式是解题关键.10.(4分)(2018•龙岩)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()A.4B.4C.2D.2考点:菱形的性质.分析:连接AC交BD于点E,则∠BAE=60°,根据菱形的周长求出AB的长度,在RT△ABE 中,求出BE,继而可得出BD的长.解答:解:在菱形ABCD中,∵∠ABC=120°,∴∠BAE=60°,AC⊥BD,∵菱形ABCD的周长为16,∴AB=4,在RT△ABE中,AE=ABsin∠BAE=4×=2,故可得AC=2AE=4.故选A.点评:此题考查了菱形的性质,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2018•龙岩)2018年6月14日是第12个“世界献血者日”,据国家相关部委公布,2014年全国献血人数达到约130000000人次,将数据130000000用科学记数法表示为 1.3×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将130000000用科学记数法表示为1.3×108.故答案为:1.3×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2018•龙岩)分解因式:a2+2a=a(a+2).考点:因式分解-提公因式法.分析:直接提公因式法:观察原式a2+2a,找到公因式a,提出即可得出答案.解答:解:a2+2a=a(a+2).点评:考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.13.(3分)(2018•龙岩)若4a﹣2b=2π,则2a﹣b+π=2π.考点:代数式求值.分析:根据整体代入法解答即可.解答:解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.点评:此题考查代数式求值,关键是根据整体代入法计算.14.(3分)(2018•龙岩)圆锥的底面半径是1,母线长是4,则它的侧面展开图的圆心角是90°.考点:圆锥的计算.分析:根据圆锥的底面周长等于圆锥的侧面展开图的弧长可得圆锥侧面展开图的圆心角,把相关数值代入即可.解答:解:设圆锥侧面展开图的圆心角为n.根据题意得2π×1=解得n=90°.故答案为:90°点评:此题主要考查了圆锥的计算;关键是掌握计算公式:圆锥的底面周长=圆锥的侧面展开图的弧长.15.(3分)(2018•龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2x2﹣4x﹣3.考点:二次函数图象与几何变换.分析:根据旋转的性质,可得a的绝对值不变,根据中心对称,可得答案.解答:解:将y=2x2﹣4x+3化为顶点式,得y=2(x﹣1)2+1,抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2(x+1)2﹣1,化为一般式,得y=﹣2x2﹣4x﹣3,故答案为:y=﹣2x2﹣4x﹣3.点评:本题考查了二次函数图象与几何变换,利用了中心对称的性质.16.(3分)(2018•龙岩)我们把平面内与四边形各边端点构成的三角形都是等腰三角形的点叫做这个四边形的腰点(如矩形的对角线交点是矩形的一个腰点),则正方形的腰点共有9个.考点:正方形的性质;等腰三角形的判定.专题:新定义.分析:根据把平面内与四边形各边端点构成的三角形都是等腰三角形的点叫做这个四边形的腰点,可得正方形一共有9个腰点,除了正方形的中心外,两条与边平行的对称轴上各有四点,据此解答即可.解答:解:如图,,正方形一共有9个腰点,除了正方形的中心外,两条与边平行的对称轴上各有四个腰点.故答案为:9.点评:(1)此题主要考查了正方形的性质和应用,要熟练掌握,解答此题的关键是要明确:①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.(2)此题还考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.三、解答题(本大题共9小题,共92分)17.(6分)(2018•龙岩)计算:|﹣|+20180﹣2sin30°+﹣9×.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,第四项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.解答:解:原式=+1﹣2×+2﹣3=0.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2018•龙岩)先化简,再求值:(x+1)(x﹣1)+x(2﹣x)+(x﹣1)2,其中x=2.考点:整式的混合运算—化简求值.分析:先化简,再代入求值即可.解答:解:(x+1)(x﹣1)+x(2﹣x)+(x﹣1)2=x2﹣1+2x﹣x2+x2﹣2x+1,=x2,把x=2代入原式=(2)2=12.点评:本题主要考查了整式的混合运算,解题的关键是正确的化简.19.(8分)(2018•龙岩)解方程:1+=.考点:解分式方程.分析:根据解分式方程的步骤进行解答,注意进行检验.解答:解:方程两边同乘以(x﹣2)得,(x﹣2)+3x=6,解得;x=2,检验:当x=2时,x﹣2=0,∴x=2不是原分式方程的解,∴原分式方程无解.点评:本题考查了解分式方程,解决本题的关键是熟记解分式方程的步骤,一定要进行检验.20.(10分)(2018•龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.考点:矩形的性质;全等三角形的判定与性质;勾股定理.分析:(1)根据矩形的性质和已知条件可证明△AEF≌△DCE,可证得AE=DC;(2)由(1)可知AE=DC,在Rt△ABE中由勾股定理可求得BE的长.解答:(1)证明:在矩形ABCD中,∠A=∠D=90°,∴∠1+∠2=90°,∵EF⊥EC,∴∠FEC=90°,∴∠2+∠3=90°,∴∠1=∠3,在△AEF和△DCE中,,∴△AEF≌△DCE(AAS),∴AE=DC;(2)解:由(1)得AE=DC,∴AE=DC=,在矩形ABCD中,AB=CD=,在R△ABE中,AB2+AE2=BE2,即()2+()2=BE2,∴BE=2.点评:本题主要考查矩形的性质和全等三角形的判定和性质,在(1)中证得三角形全等是解题的关键,在(2)中注意勾股定理的应用.21.(11分)(2018•龙岩)某商场经理对某一品牌旅游鞋近一个月的销售情况进行统计后,绘制了如下统计表与条形图:尺码(码)数量(双)百分比(%)36603037301538a b39402040c541105(1)写出表中a,b,c的值;(2)补全条形图;(3)商场经理准备购进同一品牌的旅游鞋1500双,请根据市场实际情况估计他应该购进38码的鞋多少双?考点:条形统计图;用样本估计总体;统计表.专题:计算题.分析:(1)根据36码鞋的双数除以占的百分比求出总双数,进而求出c的值,得出a的值,即可求出b的值;(2)补全条形统计图,如图所示;(3)根据(1)中的结果得出38码鞋占的百分比,乘以1500即可得到结果.解答:解:(1)根据题意得:60÷30%=200,c=200×5%=10,a=200﹣60﹣30﹣40﹣10﹣10=50;×100%=25%,即b=25;(2)补全条形统计图,如图所示:(3)由(1)可得38码的旅游鞋大约占25%,故购进1500双旅游鞋中应购进38码鞋375双.点评:此题考查了条形统计图,统计表,以及用样本估计总体,弄清题中的数据是解本题的关键.22.(12分)(2018•龙岩)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.考点:图形的剪拼.分析:(1)利用剪拼前后图形的面积相等,得出拼成的正方形的边长;(2)利用平移拼出正方形;(3)在六边形图形上剪拼成的正方形即可.解答:解:(1)根据剪拼前后图形的面积相等,得出拼成的正方形的边长==4,(2)如图,②③都属于平移,(3)如图乙:点评:本题主要考查了图形的剪拼,解题的关键是理解旋转、平移和轴对称的图形变换.23.(12分)(2018•龙岩)某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)4530租金(元/辆)400280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x45x400xB5﹣x30(5﹣x)280(5﹣x)(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.考点:一元一次不等式的应用.分析:(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.解答:解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);故填:30(5﹣x);280(5﹣x).(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.点评:此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.24.(13分)(2018•龙岩)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.考点:相似形综合题.分析:(1)利用三角形中位线证明即可;(2)分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN扫过区域的面积就是▱AFGE的面积求解即可;(3)分三种情况:①当MD=MN=3时,②当MD=DN,③当DN=MN时,分别求解△DMN为等腰三角形即可.解答:解:(1)∵在△ADC中,M是AD的中点,N是DC的中点,∴MN∥AC;(2)如图1,分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN扫过区域的面积就是▱AFGE的面积,∵AC=6,BC=8,∴AE=3,GC=4,∵∠ACB=90°,∴S四边形AFGE =AE•GC=3×4=12,∴线段MN所扫过区域的面积为12.(3)据题意可知:MD=AD,DN=DC,MN=AC=3,①当MD=MN=3时,△DMN为等腰三角形,此时AD=AC=6,∴t=6,②当MD=DN时,AD=DC,如图2,过点D作DH⊥AC交AC于H,则AH=AC=3,∵cosA==,∴=,解得AD=5,∴AD=t=5.③如图3,当DN=MN=3时,AC=DC,连接MC,则CM⊥AD,∵cosA==,即=,∴AM=,∴AD=t=2AM=,综上所述,当t=5或6或时,△DMN为等腰三角形.点评:本题主要考查了相似形综合题,涉及等腰三角形的性质,平行四边形的面积及中位线,解题的关键是分三种情况讨论△DMN是等腰三角形.25.(14分)(2018•龙岩)如图,已知点D在双曲线y=(x>0)的图象上,以D为圆心的⊙D与y轴相切于点C(0,4),与x轴交于A,B两点,抛物线y=ax2+bx+c经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q.(1)写出点D的坐标并求出抛物线的解析式;(2)证明∠ACO=∠OBC;(3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据切线的性质得到点D的纵坐标是4,所以由反比例函数图象上点的坐标特征可以求得点D的坐标;过点D作DE⊥x轴,垂足为E,连接AD,BD,易得出A,B的坐标,即可求出抛物线的解析式;(2)连接AC,tan∠ACO==,tan∠CBO==,即可得出∠ACO=∠CBO.(3)分别过点Q,P作QF⊥x轴,PG⊥x轴,垂足分别为F,G,设P(t,t2﹣t+4),分三种情况①AQ:AP=1:4,②AQ:AP=2:4,③AQ:AP=3:4,分别求解即可.解答:解:(1)∵以D为圆心的⊙D与y轴相切于点C(0,4),∴点D的纵坐标是4,又∵点D在双曲线y=(x>0)的图象上,∴4=,解得x=5,故点D的坐标是(5,4).如图1,过点D作DE⊥x轴,垂足为E,连接AD,BD,在RT△DAE中,DA=5,DE=4,∴AE==3,∴OA=OE﹣AE=2,OB=OA+2AE=8,∴A(2,0),B(8,0),设抛物线的解析式为y=a(x﹣2)(x﹣8),由于它过点C(0,4),∴a(0﹣2)(0﹣8)=4,解得a=,∴抛物线的解析式为y=x2﹣x+4.(2)如图2,连接AC,在RT△AOC中,OA=2,CO=4,∴tan∠ACO==,在RT△BOC中,OB=8,CO=4,∴tan∠CBO==,∴∠ACO=∠CBO.(3)∵B(8,0),C(0,4),∴直线BC的解析式为y=﹣x+4,如图3,分别过点Q,P作QF⊥x轴,PG⊥x轴,垂足分别为F,G,设P(t,t2﹣t+4),①AQ:AP=1:4,则易得Q(,),∵点Q在直线y=﹣x+4上,∴﹣+4=,整理得t2﹣8t﹣36=0,解得t1=4+2,t2=4﹣2,∴P1(4+2,11﹣),P2(4﹣2,11+),②AQ:AP=2:4,则易得Q(,),∵点Q在直线y=﹣x+4上,∴﹣•+4=,整理得t2﹣8t﹣12=0,解得P3=4+2,P4=4﹣2,∴P3(4+2,5﹣),P4(4﹣2,5+);③AQ:AP=3:4,则易得Q(,),∵点Q在直线y=﹣x+4上,∴﹣•+4=,整理得t2﹣8t﹣4=0,解得t5=4+2,t6=4﹣2,∴P5(4+2,3﹣),P6(4﹣2,3+),综上所述,抛物线上存在六个点P,使Q为线段AP的三等分点,其坐标分别为P1(4+2,11﹣),P2(4﹣2,11+),P3(4+2,5﹣),P4(4﹣2,5+);P5(4+2,3﹣),P6(4﹣2,3+).点评:本题主要考查了二次函数的综合题,涉及双曲线,一次函数,三角函数及二次函数的知识,解题的关键是分三种情况讨论求解.。
福建省九地市2018年中考数学质检试题分类汇编 数与式
数与式模块一、选择题:1.(2018 厦门质检第 1 题)计算-1+2,结果正确的是A. 1B. -1C. -2 D . -3 答案:A2.(2018 龙岩质检第 1 题)计算-1-1的结果等于A.-2 B.0 C.1 D.2答案:A3.(2018 南平质检第1 题)下列各数中,比-2 小3 的数是( ).(A)1 (B) -1 (C)- 5 (D)- 6答案:C4.(2018 福州质检第 1 题)- 3 的绝对值是A.13答案:D B.-13C. - 3D.35.(2018 泉州质检第1 题)化简|-3|的结果是().(A)3 (B)-3 (C)±3(D)13答案:A6.(2018 宁德质检第 1 题)-2018 的值是A.12018 B.2018 C.-12018D.-2018答案:B7.(2018 莆田质检第 1 题) 2018 的相反数为(A) 2018 (B) 答案:C1(C)2018- 2018(D) -120188.(2018 三明质检第 1 题)-1的值为(▲)9A.1B.-1C.9 D.-9 9 9答案: A9.(2018 福州质检第 4 题)如图,数轴上 M,N,P,Q 四点中,能表示A.M B.N C.P D.Q答案:C的点是().110.(2018 漳州质检第 1 题)如图,数轴上点 M 所表示的数的绝对值是().A .3B . - 3C .±3D . -1 3答案:A11.(2018 漳州质检第 1 题)“中国天眼”FAST 射电望远镜的反射面总面积约 250 000m 2,数据 250 000 用科学记数法表示为().A .25×104B .2.5×105C .2.5×106D .0.25×106答案: B12.(2018 三明质检第 2 题)港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道, 全长约 55000 米,把 55000 用科学记数法表示为(▲)A .55×103B .5.5×104C .5.5×105D .0.55×105答案:B13.(2018 泉州质检第 3 题)从泉州市电子商务中心获悉,近年来电子商务产业蓬勃发展截止到 2018 年 3 月,我市电商从业人员已达 873 000 人,数字 873 000 可用科学记数法表示 为 ( ).(A)8.73×103 (B)87.3×104 (C)8.73×105 (D)0.873×106答案:C14.(2018 南平质检第 2 题)我国南海总面积有 3 500 000 平方千米,数据 3 500 000 用科学记数法表示为(). (A)3.5×106 (B)3.5×107(C)35×105(D)0.35×108答案:A15.(2018 福州质检第 3 题)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为 4 400 000 000 人,将 4 400 000 000 科学记数法表示,其结果是( ).A .44×108B .4.4×109C .4.4×108D .4.4×1010答案:B16.(2018 漳州质检第 4 题)下列计算,结果等于 x 5的是A .x 2+x 3B .x 2•x3 C .x 10 ÷x2 D .(x 2)3答案:B17.(2018 泉州质检第 4 题)下列各式的计算结果为 a 5 的是( ) (A)a 7-a 2(B)a 10÷a2(C)(a 2)3 (D)( -a )2·a 3答案:D18.(2018 三明质检第 4 题)下列运算中, 正确的是(▲)A .(ab 2)2=a 2b 4B .a 2+a 2=2a4C . a 2 ⋅ a 4= a 8 答案: A19.(2018 莆田质检第 2 题)下列式子运算结果为 2a 的是D .a 6÷a 3=a 2(A) 答案: Ca ⋅ a (B) 2 +a(C) a + a(D)a 3 ÷ a20.(2018 福州质检第 5 题)下列计算正确的是(). A . 8a - a =8 B . (-a )4 =a 4C . a 3 ⋅ a 2=a 6D . (a - b )2 = a2 - b 2答案: B21.(2018 龙岩质检第 2 题)下列计算正确的是A . 4= ± 2B . 2x (3x -1) = 6x2-1C. a 2 +a 3=a 5答案: DD. a 2 ⋅ a 3 =a 522.(2018 厦门质检第 5)若 967×85=p ,则 967×84 的值可表示为A. p -1B. p -85C. p -967D.8584 p答案: C23.(2018 龙岩质检第 9 题)已知k =4x + 3,则满足k 为整数的所有整数 x 的和是 2x -1 A .-1 B .0C .1D .2答案: D 二、填空题:1.(2018 福州质检第 11 题) 2-1=.1答案: 22.(2018 莆田质检第 11 题) 计算:答案: 2= .3. (2018 泉州质检第 11 题)已知 a 1-1ab (填“>”,“<”或“=”) .答案:>=( )°,b=2 2,则4.(2018 厦门质检第 11 题)分解因式: m 2-2m =.答案:m(m-2)5.(2018 三明质检第11 题)分解因式:a3 -a =▲.答案:a(a +1)(a -1)46.(2018 宁德质检第11 题)因式分解:2a2 - 2 = .答案:2(a +1)(a -1)7.(2018 漳州质检第11 题)因式分解:ax2 -a = .答案:a(x+1)(x-1);8.(2018 宁德质检第 11 题)2017 年10 月18 日,中国共产党第十九次全国代表大会在北京隆重召开.从全国近 89 400 000 党员中产生的 2 300 名代表参加了此次盛会.将数据 89 400000 用科学记数法表示为.答案:8.94 ⨯1079.(2018 莆田质检第 12 题)我国五年来(2013 年—2018 年)经济实力跃上新台阶,国内生产总值增加到827000 亿元.数据827000 亿元用科学记数法表示为亿元. 答案: 8.27 ⨯10510.(2018 龙岩质检第12 题)2018 年春节假期,某市接待游客超3360000 人次,用科学记数法表示3360000,其结果是.答案:3.36⨯10611.(2018 龙岩质检第 11 题)使代数式答案:x ≥ 2有意义的x 的取值范围是.12.(2018 漳州质检第 15)“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组数a,b,c 的值依次为.答案:14.答案不唯一.13.(2018 厦门质检第15)已知a+1=20002+20012,计算:2a+答案:4001.14.(2018 莆田质检第 16 题)2010 年8 月19 日第26 届国际数学家大会在印度的海德拉巴市举行,并首次颁出陈省身奖,该奖项是首个以中国人名字命名的国际主要科学奖.根据蔡勒公式可以得出2010 年8 月19 日是星期.(注:蔡勒(德国数学家)公式:W =⎡c ⎤- 2c +y +⎡y ⎤+⎡26(m +1) ⎤+d -1 ⎢⎣4⎥⎦⎢⎣4 ⎥⎦⎢⎣10 ⎥⎦其中:W——所求的日期的星期数(如大于 7,就需减去 7 的整数倍),c——所求年份的前两位,y——所求年份的后两位,m——月份数(若是 1 月或2 月,应视为上一年的 13 月或14 月,即3 ≤m ≤14 ),d——日期数,[a]——表示取数a 的整数部分.) 答案:四三、解答题:1.(2018 宁德质检第 17 题)(本题满分 8 分)计算: 4cos30︒ + 2-1 -12 . 解:原式= 4 ⨯ 3 + 1 -2 2 2················· 6 分 = 1 ··························· 8 分 2 2.(2018 漳州质检第 17 题)(本小题满分 8 分)计算:3-1 + π 0-.解:原式= 1 +1- 1 3 3 ……………………………………………………………………6 分=1. ........................................................................ 8 分 3.(2018 南平质检第 17 题)(8 分)先化简,再求值:(a + 2b )2- 4a (b - a ),其中 a =2,b=,解:原式= a 2 + 4ab + 4b 2 - 4ab + 4a 2 ...................... 2 分= 5a 2 + 4b 2 , ................................... 4 分当a = 2,b =时,原式= 5⨯ 22 + 4⨯( 3)2 .............................. 6 分= 20 +12 = 32 . ................................. 8 分4.(2018 三明质检第 17 题) (本题满分 8 分)先化简,再求值: x (x + 2y ) -(x +1)2 + 2x ,其中 x = +1, y = ...................................................... -1 . 解: 原式=x 2+2xy - (x 2+2x +1)+2x ................................. 2 分= x 2+2xy -x 2-2x -1+2x ...................... 4 分 =2xy -1..................................... 5 分当 x = 3+1,y =-1时,原式=2( 3+1)(-1)-1 ................... 6 分=2(3-1)-1 .......................... 7 分 =3. .................................... 8 分5.(2018 福州质检第 17 题)( 8 分)先化简,再求值:(1 -2) ÷x 2 - 2x + 1,其中 x =+1x +1 2(xx +171 x + 1 解:原式= ( x +1 - x +) ÷ x +1·················· 2 分a ⎪ ⎝ ⎭= x +1 - 2 ⋅ x +1 x + 1 (x -1)2= x -1 ⋅ x + 1x + 1 (x -1)2··················· 4 分= 1 , ······················· 6 分 x - 1 当 x = +1时,原式= 1 2 + 1 -1············· 7 分= 12= 2 . ················· 8 分 26.(2018 龙岩质检第 17 题)(本小题满分 8 分)先化简,后求值:x -3 x2-1x 2 + 2x+1⋅-1,其中 x =x - 32 +1.x - 3(x +1)2解:原式= ⋅ -1………………2 分(x +1)(x -1) x - 3= x +1 -x -1………………4 分x -1 =2 x -1 x -1………………6 分 当 x = 2 +1时,原式= 2 = 2 =………………8 分⎛ 2 7.(2018 泉州质检第 18 题)(8 分)先化简,再求值: -9 ⎫ a 2 + 3a ÷,其中 a = .a - 3 a - 3 ⎪ a 3 28.(2018 莆田质检第 17 题)(本小题满分 8 分)先化简,再求值: a ÷ (1-1) ,其中 a = -1.解:原式= = a (a +1)2 a(a +1)2a 2 + 2a +1 ÷a +1-1a +1 ⨯ a +1 a a +1┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 分┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 分=∵a = 1 a +1-1.┄ ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 分∴原式=1= 1 =3 . ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 分39.(2018 宁德质检第 22 题)(本题满分 10 分)若正整数 a ,b ,c 满足 1 + 1 = 1,则称正整数a b ca ,b ,c 为一组和谐整数.(1) 判断 2,3,6 是否是一组和谐整数,并说明理由;(2) 已知 x ,y ,z (其中 x <y ≤z )是一组和谐整数,且 x = m +1 , y = m + 3 ,用含 m 的代数式表示 z ,并求当 z = 24 时 m 的值.解:(1)是 1 分理由如下:∵ 1 + 1 = 1 ,满足和谐整数的定义, 3 6 2∴2,3,6 是和谐整数. ···················· 4 分 (2) 解:∵ x <y ≤z ,依题意,得 1 + 1 = 1 .y z x∵ x = m +1 , y = m + 3 ,∴ 1 = 1 - 1 = 1 - 1 = 2 . z x y m +1 m + 3 (m +1)(m + 3)∴ z = (m +1)(m + 3) . ··················· 7 分2 ∵ z = 24 ,∴ (m +1)(m + 3) = 24 .2解得 m = 5,m = -9 . ··················· 9 分 ∵x 是正整数,∴ m = 5 . ·························· 10 分。
〖中考零距离-新课标〗2018年福建省初中毕业生学业质量测查数学试题及答案解析
2018年福建省初中学业质量测查(第二次)数 学 试 题(试卷满分:150分;考试时间:120分钟)友情提示:请认真作答,把答案准确地填写在答题卡上学校 姓名 考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.化简4的结果是( )A .2B .2C .-2D .±22.下列计算错误..的是( ) A .6a + 2a =8a B .a – (a – 3) =3 C .a 2÷a 2 = 0D .a –1·a 2 = a3. 下列四个平面图形中,三棱锥的表面展开图的是( )A .B .C .D . 4.学校团委组织“阳光助残”捐款活动,九年级一班学生捐款情况如下表:捐款金额(元)5102050人数(人) 10 13 12 15 则该班学生捐款金额的中位数是( )A .13B .12C .10D .20 5.下列事件发生属于不可能事件的是( ) A .射击运动员只射击1次,就命中靶心B .画一个三角形,使其三边的长分别为8cm ,6cm ,2cmC .任取一个实数x ,都有|x |≥0D .抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 6.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( ) A .8 B. 6 C. 4 D. 27.已知Rt △ABC 中,∠C =90°,AC =3,BC =4,AD 平分∠BAC ,则点B 到AD 的距离是( ) A .23 B .2 C .5 D .13136E B D O CA (第6题图) (第7题图)二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若70A ︒∠=,则A ∠的余角是 度.9.我国第一艘航母“辽宁舰”的最大排水量为68000吨,用科学记数法表示这个数据是 吨. 10.计算:2-x x +x-22= . 11.分解因式:xy 2 – 9x = .12.如图,点O 是正五边形ABCDE 的中心,则∠BAO 的度数为 .13. 如图,在△ABC 中,两条中线BE ,CD 相交于点O ,则S △DOE :S △DCE = . 14.若关于x 的方程x 2+(k -2)x -k2=0的两根互为相反数,则k = .15.如果圆锥的底面周长....为2πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是 cm 2.(结果保留π)16.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连结DE .若DE :AC =3:5,则ABAD的值为 . 17.如图,在平面直角坐标系xoy 中,直线:l 3y kx k =-(0k <)与x 、y 轴的正半轴分别交于点A 、B ,动点D (异于点A 、B ) 在线段AB 上,DC ⊥x 轴于C .(1)不论k 取任何负数,直线l 总经过一个定点,写出该定点的坐标为 ;(2)当点C 的横坐标为2时,在x 轴上存在点P ,使得PB ⊥PD ,则k 的取值范围为 . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:232(2)2sin 60---+-(2π-1)0.19.(9分)先化简,再求值:2x (x +1)+(x ﹣1)2,其中x =23.(第17题图)20.(9分)如图,已知四边形ABCD 是菱形,DE ⊥AB 于E ,DF ⊥BC 于F .求证:△ADE ≌△CDF .21.(9分)某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.(1)此次有 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是 度.请你把条形统计图补充完整.(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费? 22.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片的背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y ). (1)用树状图或列表法表示(x ,y )所有可能出现的结果;(2)求使分式y x yyx xy x -+--2223有意义的(x ,y )出现的概率;(第20题图)23.(9分)如图,在平面直角坐标系xoy 中,抛物线12-+=bx ax y 经过点A (2,﹣1),它的对称轴与x 轴相交于点B . (1)求点B 的坐标; (2)如果直线y =x +1与抛物线的对称轴交于点C , 与抛物线在对称轴右侧交于点D ,且∠BDC =∠ACB ,求此抛物线的表达式.24.(9分)某公司采购某商品60箱销往甲乙两地,已知某商品在甲地销售平均每箱的利润1y (百元)与销售数量x (箱)的关系为⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 在乙地销售平均每箱的利2y (百元)与销售数量t (箱)的关系为⎪⎩⎪⎨⎧<≤+-≤<=)6030(8151),300(62t t t y(1)将y 2转换为以x 为自变量的函数,则y 2= ;(2)设某商品获得总利润W (百元),当在甲地销售量x (箱)的范围是0<x ≤20时,求W 与x的关系式;(总利润=在甲地销售利润+在乙地销售利润)(3)经测算,在20<x ≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x的值.25.(12分)如图,在平面直角坐标xoy 内,函数y =xm(x >0,m 是常数)的图象经过A (1,4),B (a ,b ),其中a >1.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)求m 的值;(2)求证:DC ∥AB ;(3)当AD =BC 时,求直线AB 的函数表达式.(第23题图).26.(14分)如图,矩形ABCD的边AB=3,AD=4,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连结EF、CF,过点E作EG⊥EF,EG 与圆O相交于点G,连结CG.(1)求证:四边形EFCG是矩形;(2)求tan∠CEG的值;(3)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,求四边形EFCG面积的取值范围;(第26题图)数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1.B2.C3.B4.D5.B6.A7.C 二、填空题(每小题4分,共40分)8. 20; 9. 46.810⨯; 10. 1; 11. (3)(y 3)x y +-; 12. 54°; 13. 1:3;14. 2; 15. 3π; 16. 12; 17.(1)(3,0); (2)303k -≤<. 三、解答题(共89分) 18.(本小题9分)解:原式23431=--+- ……………………(8分) 3=- ……………………(9分)19.(本小题9分)解:原式=2x 2+2x +x 2﹣2x +1,……………………(6分)=3x 2+1……………………(7分)当x =2时,原式=3×(2)2+1………………(8分)=37.……………………(9分)20.(本小题9分)解:∵四边形ABCD 是菱形, ∴AD =CD ;∠A =∠C ,……………………(6分) 又∵DE ⊥AB 于E ,DF ⊥BC 于F,∴∠AED =∠CFD =90°; ……………………(8分) 在△ADE 和△CDF 中,∠A =∠C ,∠AED =∠CFD , AD =CD ; ∴△ADE ≌△CDF .……………………(9分) 21.(本小题9分) 解:(1)200,36.……………………(4分) 画图如图:……………………(6分)(2)根据题意得:296×10+80×12+200×15+224×12=9608(元)答:开展本次活动共需9608元经费. ……………………(9分)22.(本小题9分) 解:(1)列表如下:-2 -1 1 -2 (-2,-2) (-2,-1) (-2,1) -1 (-1,-2) (-1,-1) (-1,1) 1 (1,-2) (1,-1) (1,1)……………………(5分)(2)由上表可知,所有等可能的情况共有9种,……………………(6分)∵使分式yx yy x xy x -+--2223有意义,∴x ≠y 且x ≠-y;……………………(7分) ∴满足条件的点有4种,…………………(8分) 则P=49.………………(9分) (树状图略)23.(本小题9分)解:(1)∵抛物线经过点A (2,-1),∴ 4a +2b -1=-1,即 b =-2a ,………………(1分)∵ -2b a =-22a a-=1,………………(2分) ∴点B 的坐标是(1,0). ………………(3分)(2)(解法1)如图2所示.由(1)得,抛物线的对称轴是x =1,可得直线y =x +1与x 轴的交点为E (-1,0), 与抛物线的对称轴的交点C (1,2),∴BE =BC =2, ∴△EBC 是等腰直角三角形;…………(4分) 连结AB ,则∠ABC =∠BCD =135 º,且AB =2; 又∵∠BDC =∠ACB ,∴△ABC ∽△BCD .∴AB BCBC CD=,∴2BCAB CD =∙;………………(5分) 过D 作DH ⊥BC 于H ,则CH =HD ,设点D 的坐标为(m ,m +1), 在Rt △CHD 中,∵m >1, CH =HD =m -1,∴CD =2HD =21(m )-∴22=2×21(m )- , 解得m =3,………………(5分) ∴点D (3,4),………………(7分)把D (3,4)坐标代入抛物线y =ax 2-2ax -1得9a -6a -1=4,解得a =53.………………(8分) ∴此抛物线的表达式为y =53x 2-103x -1.………………(9分)(解法2)如图3所示.由(1)得,抛物线的对称轴是x =1,(图2)可得直线y =x +1与x 轴、y 轴的交点为E (-1,0), F (0,1),与抛物线的对称轴的交点C (1,2), ∴BE =BC ,BE ⊥BC ,∴△EBC 是等腰直角三角形.………………(4分) 连结BF ,则BF ⊥EC ,且BF =2;过A 作AG ⊥BC 于G ,则∠DFB =∠CGA =90º, 又∵∠BDF =∠ACG ,∴△BDF ∽△ACG . ∴BD BFAC AG = ∴2213BD +=21 ∴BD =25.………………(5分)过D 作DH ⊥BC 于H ,设点D 的坐标为(m ,m +1),在Rt △BDH 中,BH 2+HD 2=BD 2, ∴(m +1)2+(m -1)2=20,解得m =±3(负数不合题意,舍去),∴点D (3,4)………………(7分) 把D (3,4)坐标代入抛物线y =ax 2-2ax -1得9a -6a -1=4, 解得a =53.………………(8分) ∴此抛物线的表达式为y =53x 2-103x -1.………………(9分)24.(本小题9分)解:(1)⎪⎩⎪⎨⎧<≤≤<+=)6030(6),300(41512x x x y ……………………(2分)(2)综合⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 和(1)中 y 2,当对应的x 范围是0<x ≤20 时,W 1=(110x +5)x +(115x +4)(60-x )……………………(4分) =130x 2+5x +240;……………………(6分) (3)当20<x ≤30 时,W 2=(-140x +75)x +(115x +4)(60-x )……………………(7分) =-11120x 2+75x +240……………………8分 (图3)∵x =-2b a =45011>30,∴W 在20<x ≤30随x 增大而增大 ∴当x =30时,W 2取得最大值为832.5(百元).……………………………(9分) 25.(本小题12分) 解:(1)∵函数xmy =(x >0,m 是常数)图象经过)4,1(A ∴4=m ……………………(2分)(2)(解法1) 设AC BD ,交于点E ,则在Rt △AEB 中,tan ∠EAB =1;444BE a aAE a-==- 在Rt △CED 中,tan ∠ECD =1;44DE aCE a==……………………(5分)∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(解法2)设AC BD ,交于点E ,根据题意,可得B 点的坐标为)4,(aa ,D 点的坐标为)4,0(a ,E 点的坐标为)4,1(a ……………………(3分),a AE 44-=,4;CE a =1,1;EB a ED =-=……………………(4分)∴441;4AE a a CEa-==-∴1-==a ED EB CE AE ……………………(5分) 又∵;AEB CED ∠=∠ ∴△AEB ∽△CED ∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(3)(解法1)∵AB DC // ∴当BC AD =时,有两种情况:①当BC AD //时,由中心对称的性质得:BE =DE ,则11=-a ,得2=a . ∴点B 的坐标是(2,2).……………………(8分)设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=b k b k 22,4 解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数表达式是.62+-=x y ……………………(9分) ②当AD 与BC 所在直线不平行时,由轴对称的性质得: AC BD =, ∴4=a ,∴点B 的坐标是(4,1).……………………(10分) 设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分) (解法2)当BC AD =时,AD 2=BC 2.在Rt △AED 中,222DE AE AD += ; 在Rt △BEC 中,222CE BE BC +=∴222244(4)1(1)(),a aa-+=-+……………………(8分)整理得:32216320,a a a ---= ∴ (2)(4)(4)0a a a -+-= ∴244a a a ==-=或或,∴24a a ==或……………………(9分)① 当2=a 时,点B 的坐标是(2,2).设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=b k b k 22,4 解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数解析式是62+-=x y .……………………(10分) ②当4=a 时,点B 的坐标是(4,1).设直线AB 的函数解析式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分)26.(本小题14分)解:(1)证明:∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.……………………(1分)∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.……………………(2分)∴四边形EFCG是矩形.……………………(3分)(2)由(1)知四边形EFCG是矩形.∴CF∥EG,∴∠CEG=∠ECF,∵∠ECF=∠EDF,∴∠CEG=∠EDF,……………………(4分)在Rt△ABD中,AB=3,AD=4,∴tan34ABBDAAD∠==,……………………(5分)∴tan∠CEG= 34;……………………(6分)(3)∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∴tan∠FCE=tan∠CEG=3 4∵∠CFE=90°,∴EF=34CF, ……………………(7分)∴S矩形EFCG=234CF;……………………(8分)连结OD,如图2①,∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°……………………(9分)(Ⅰ)当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′)处,如图2①所示.此时,CF=CB=4.……………(10分)(Ⅱ)当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.……………(11分)(Ⅲ)当CF⊥BD时,CF最小,如图2③所示.S△BCD=12BC×CD=12BD×CF,∴4×3=5×CF∴CF=125.……………(12分)∴125≤CF≤4.……………(13分)∵S矩形EFCG=234CF,∴34×(125)2≤S矩形EFCG≤34×42.∴10825≤S矩形EFCG≤12.……………(14分)。
龙岩市五县(市、区)2018-2019学年第一学期九年级期末质量抽测数学试卷 含答案.doc
2018~2019学年第一学期期末龙岩市五县(市、区)质量抽查九年级数学试题(考试时间:120分钟;满分150分命题单位:长汀县审题单位:武平县)一、、选择题(每小题4分,共40分)1.下列图形中,既是中心对称图形,又是轴对称图形的是2.下列关于事件发生可能性的表述,正确的是A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件;B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖;C.掷两枚硬币,朝上的一面是一正面一反面的概率为31; D.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品. 3.抛物线y=3(x-2)2+5的顶点坐标是A.(-2,5)B.(-2,-5)C.(2,5)D.(2,-5) 4.关于x 的一元二次方程x 2+4x +k =0有两个实数根,则k 的取值范围是 A.k ≤4 B.k <-4 C. k ≤-4 D.k <4 5.以2和4为根的一元二次方程是A.x 2+6x +8=0B. x 2-6x +8=0C. x 2+6x -8=0D. x 2-6x -8=0 6.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,若∠ACD =25°,则∠BOD 的度数为 A. 100° B.120° C.130° D.150°7.有n 支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是 A.n (n -1)=15 B. n (n +1)=15 C. n (n -1)=30 D. n (n +1)=30 8.如图,P A 、PB 、CD 分别切于A 、B 、E ,CD 交P A 、PB 于 C 、D 两点,若∠P =40° 则∠P AE +∠PBE 的度数为A. 50°B.62°C.66°D.70°第6题图第8题图9.如图,在面积为12的□ABCD 中,对角线BD 绕着它的中点O 按 顺时针方向旋转一定角度后,其所在直线分别交AB 、CD 于点E 、 F ,若AE =2EB ,则图中阴影部分的面积等于 A. 2 B. 1 C.34 D.32 10.如图,边长为2的正△ABC 的边BC 在直线l 上,两条距离为1的平行直线a 和b 垂直于直线l .a 和b 同时向右移动(a 的起始位置在B 点),速度均为每秒1个单位,运动时间为t (秒),直到b 到达C 点停止,在a 和b 向右移动的过程中,记△ABC 夹在a 和b 之间的部分的面积为S ,则S 关于t 的函数图象大致为二、填空(本大题共6题,每题4分,共24分)11.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是_______. 12.已知扇形所在圆半径为4,弧长为6 ,则扇形面积为_______.13.已知点A (1,3),O 是坐标原点,将线段OA 绕点O 逆时针旋转90°,点A 旋转后的对应点是 A 1,则点A 1的坐标是_______.14.把抛物线y =2x 2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是_______. 15.《九章算术》“勾股”章有一题:“今有户高多于广六尺,两隅相去适一丈,问户高、广各几何?”大意是说:已知矩形门的高比宽多6尺,门的对角线长1丈,那么门的高和宽各是多少?(1丈=10尺),如果设门的宽为x 尺,那么这个门的高为(x +6)尺,根据题意得方程_______. 16.已知函数y 1=(a 2+1)x 2+bx+c ,y 2=-x +2,若方程(a 2+1)x 2+(b +1)x+c -2=0的两根分别为x 1=-2,x 2=8,则使y 1> y 2,成立的x 的取值范围是_______. 三、解答题(本大题共9小题,共86分) 17.(8分)解方程:x 2+2x =1第8题图t t t B A C D18.(8分)在如图所示的直角坐标系中,解答下列问题: (1)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1;(2)将△ABC 绕点A 顺时针旋转90°后,求出点B 旋转到B 1 所经过的路径长19.(8分)先化简,再求值:(x x 12+-1)÷xx 12-,其中x =2+120.(8分)一个不透明的口袋里装有分别标有汉字“美”“丽”、“龙”、“岩”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅均匀再摸球. (1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)若从中任取一个球,不放回,再从中任取一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“美丽”或“龙岩”的概率.21.(8分)如图,⊙O 为锐角△ABC 的外接圆,半径为5.(1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧BC 的交点E . (保留作图痕迹,不写作法)(2)若(1)中的点E到弦BC 的距离为3,求弦CE 的长.22.(10分)某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示. (1)已知6月份这种蔬菜的成本最低,此时出售每干克的收益是多少元?(收益=售价-成本) (2)分别求出y 1、y 2与x 之间的函数关系式;(3)哪个月出售这种蔬菜,每千克的收益最大?说明理由.23.(10分)如图,在△ABC中,∠C=90°,点O在AC上,以AO为半径的⊙O交AB于D. BD的垂直平分线交BD于F,交BD于E,连接DE.(1)求证:DE是⊙O的切线;(2)若∠B=30,BC=43,且AD:DF=1:3,求⊙O的直径.24.(12分)数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为5的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.图1图225.(14分)在平面直角坐标系xOy 中,已知抛物线y=ax 2+bx +3(a ≠0)经过点A (-2,3). (1)若点B (1,0)也在此抛物线上. ①求该抛物线的解析式;②若点P 是该抛物线位于线段AB 上方部分的一个动点,当△P AB 的面积最大值时,求点P 的坐标;(2)若抛物线y=ax 2+bx +3与线段AB 有两个不同的交点,求a 的取值范围.2018-2019学年第一学期期末龙岩市五县(市、区)九年级数学参考答案及评分标准二、填空题(本大题共6题,每题4分,共24分)11.12.; 13.(﹣3,1) ;14. y =2(x +2)2﹣1; 15. x 2+6x ﹣32=0; 16. x <-2或x >8三、解答题(本大题共9小题,共86分)17. 解方程:解:……………2分………………4分……………8分18解:(1)如图,△AB 1C 1即为所求 ……………4分 (2)∵5……6分∴ 180901B B L ×π×5 =25π……8分=1-x ………………………5分 当x =12+时, 原式=221121=-+………………………8分 20.解:(1)解:(1)∵有汉字“美”、“丽”、“龙”、“岩”的四个小球,任取一球,共有4种不同结果,∴球上汉字是“美”的概率为P =14; ……………………3分 (2)列举如下:画树状图如图………………………6分所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“美丽”或“龙岩”的情况有4种,则P 1=41123=. …………………8分 21.解:(1)如图所示,射线AE 就是所求作的角平分线;……………3分 (2)连接OE 交BC 于点F ,连接OC 、CE ,……………4分∵AE 平分∠BAC ,∴∴OE ⊥BC ,EF=3,∴OF=5-3=2,………………….6分在Rt △OFC 中,由勾股定理可得FC==,在Rt △EFC 中,由勾股定理可得CE==.…………………8分22.(1)证明:连OD .∵OD =OA ,∴∠OAD =∠ODA∵EF 垂直平分DB ,∴ED =EB , ∴∠EDB =∠EBD 又∵∠A +∠B =90°,∴∠ODA +∠EDB =90°………………………2分 ∴∠ODE =90°,即OD ⊥DE ∵点D 在⊙O 上,∴DE 是⊙O 的切线.………………………..4分 (2)解:∵∠B =30°,∴∠ A =60°,∴△OAD 是等边三角形 ……………………….5分 在Rt △ABC 中:设AC =x ,则AB =2x ,由勾股定理,得222(2)x x +=解得,x =4,∴AC =4,AB =8………………………..8分 设AD =m ,则DF =BF =3m由AB =AD +2DF =m +6m =8,得m =78∴⊙O 的直径=2AD =716. ………………………10分 23.解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2, …∴6月份出售这种蔬菜每千克的收益是2元.………………………2分(图1)H(2)设n mx y +=1, 1)6(22+-=x a y . ……………………….4分将(3,5)、(6,3)代入n mx y +=1,解得:⎪⎩⎪⎨⎧=-=732n m∴y 1=﹣x 32+7;……………………….4分 将(3,4)代入y 2=a (x ﹣6)2+1, 4=a (3﹣6)2+1,解得:a=31, ∴y 2=31(x ﹣6)2+1 =31x 2﹣4x+13.……………………6分 (3)5月份出售这种蔬菜,每千克的收益最大,理由: ∵y 1﹣y 2=﹣32x+7﹣(31x 2﹣4x+13) =﹣31x 2+310x ﹣6 =﹣31()25-x +37………8分 ∴当x=5时,y 1﹣y 2取最大值,最大值为37, 即5月份出售这种蔬菜,每千克的收益最大.……………10分 24、(1)四边形ABCD 与四边形AEFG 是正方形∴AD=AB,∠DAG=∠BAE=90°,AG=AE ∴△ADG ≌△ABE∴∠AGD=∠AEB ………………2分 如图1,延长EB 交DG 于点H △ADG 中 ∠AGD+∠ADG=90° ∴∠AEB+∠ADG=90°△DEH 中, ∠AEB+∠ADG+∠DHE=180° ∴∠DHE =90°∴DG BE ⊥………………5分 (2)四边形ABCD 与四边形AEFG 是正方形AD=AB, BD ∴AM=BD=1 在Rt △AMG 中,∵222AM GM AG += ∴GM=2∵DG=DM+GM=1+2=3∴BE=DG=3………………………12分25解:(1)由题知:⎩⎨⎧=+-=++332403b a b a解得:⎩⎨⎧-=-=21b a∴所求抛物线解析式为:y=322+--x x ;………………3分(2)过点P 作x 轴的垂线与线段BC 交于点D , 设直线BC 的解析式为:y=kx+b,则⎩⎨⎧=+-=+320b k b k解得⎩⎨⎧=-=11b k∴直线BC 的解析式为y=﹣x+1………………………5分设p(m ,322+--m m ),D(m ,1+-m ) ∴PD=(322+--m m )-(1+-m )=22+--m mM(图2)∴S=21(22+--m m ))(A B x x - = 323232+--m m (-2<m <1) ∴当m =-21时,△PBC 的面积最大值∴ ∴p(-21,415) ……………8分 (3)∵抛物线23(0)y ax bx a =++≠经过点(2,3)A - ∴b=2a ∴∴对称轴为直线x=-1由图象可知(I )I 当a <0时,由⎩⎨⎧+-=++=1322x y ax ax y 得02)12(2=+++x a ax0)1)(2(=++ax x∴21-=x a x 12-= ∴当110≤-≤a时,满足条件 ∴a≤﹣1;……………11分 (II )当a >0时,由⎩⎨⎧+-=++=1322x y ax ax y 得02)12(2=+++x a ax ∴△=2)12(-a >0,∴a≠21……………13分综上所述,满足条件的a 的值为a≤﹣1或a >0且a≠21……………14分。
龙岩市永定区2018~2019学年度第一学期期中质量抽测七年级数学试题
龙岩市永定区2018~2019学年度第一学期期中质量抽测七年级数学试题(考试时间:120分钟 满分:150分)注意:请把所有答案书写到答题卡上!不要错位、越界答题! 在本试题上答题无效.第I 卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一 项是符合题目要求的. 1.|2|-的相反数是()A .2-B .2C .21-D .212.若0<+b a ,0>ab,则下列成立的是()A .0>a ,0>bB .0>a ,0<bC .0<a ,0<b D .0<a ,0>b 3.下列算式中,积为负数的是() A .)5(0-⨯B .)10()5.0(4-⨯-⨯C .)2()5.1(-⨯-D .⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯-3251)2(4.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( ) A .0.1(精确到0.1)B .0.05(精确到千分位)C .0.05(精确到百分位)D .0.0502(精确到0.0001)5.下列各组中,不是同类项的是() A .32b a 与23b a -B .ab -与baC .b a 22.0与b a 251-D .25与526.实数a ,b 在数轴上的位置如图所示,以下说法正确的是()A .0=+b aB .a b <C .0>abD .||||a b <7.若a a -=-3|3|,则a 的取值范围是() A .3≤aB .3≥aC .3<aD .3>a8.若当1=x 时,6323=+-bx ax ,则当1-=x 时,代数式323+-bx ax 的值是() A .6B .0C .6-D .3-9.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个 四分之一圆组成,则能射进阳光部分的面积是() A .222b a π-B .2222b a π-C .22b ab π-D .222b ab π-10.下面每个表格中的四个数都是按相同规律填写的,根据此规律可确定x 的值为()…… ……A .252B .209C .170D .135第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.11.单项式522xy -的系数是,次数是.12.已知多项式10)2(||--+x m x m 是二次三项式,m 为常数,则m 的值为. 13.太阳的半径约为696000千米,把这个数据用科学记数法表示为千米. 14.若10<<a ,则a ,2a ,a1的大小关系是. 15.用符号)(b a ,表示a 、b 两数中较小的一个数,用符号][b a ,表示a 、b 两数中较大的一个数,计算:=--⎥⎦⎤⎢⎣⎡--)02(211,,.16.请观察下列等式的规律:第1个 第2个第3个 第4个 ……七年级数学试题 第1页(共4页)⎪⎭⎫ ⎝⎛-=⨯31121311,⎪⎭⎫ ⎝⎛-=⨯513121531,⎪⎭⎫ ⎝⎛-=⨯715121751,⎪⎭⎫ ⎝⎛-=⨯917121971,…… 则=⨯++⨯+⨯+⨯101991751531311 .三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.计算:(本题共4小题,每小题4分,共16分)(1)⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛-+75253472525;(2)32123316143⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛+--;(3)⎥⎦⎤⎢⎣⎡-÷-+⎪⎭⎫⎝⎛-⨯-⨯-)2()4(323232;(4)[]⎪⎭⎫⎝⎛-⨯+--÷-21314)10(2)2(.18.(本题8分)先化简,再求值:⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛+--224231325x xy xy x .其中2-=x ,21=y .19.(本题8分)把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来:0,5.3+,3-,211-,)5(--.20.(本题10分)邮递员骑车从邮局O 出发,先向西骑行2 km 到达A 村,继续向西骑行3 km 到达B 村,然后向东骑行8 km 到达C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1 cm 表示1 km ,画出数轴,并在该数轴 上表示出A ,B ,C 三个村庄的位置; (2)C 村距离A 村有多远? (3)邮递员共骑行了多少千米?21.(本题8分)某种T 型零件尺寸如图所示(左右宽度相同),求:(1)阴影部分的周长(用含x ,y 的代数式表示); (2)阴影部分的面积(用含x ,y 的代数式表示);(3)当025|2|2=⎪⎭⎫ ⎝⎛-+-y x 时,计算阴影部分的面积.22.(本题8分)规定“⊗”是一种运算符号,且a b b a b a -=⊗,如198323223-=-=-=⊗. 计算:(1)24⊗; (2))23(4⊗⊗.23.(本题8分)已知5||=a ,7||=b . (1)若0<ab ,求||b a -的值; (2)若)(||b a b a --=-,求ab 的值.24.(本题10分)小明家去年买了一辆小车,他连续10天记录了他家小车每天行驶的路程, 以40 km 为标准,超过或不足部分分别用正数、负数表示,得到的数据分别如下(单位: km ):4+,1+,3-,8+,5-,4-,5.2+,6-,8-,5.3-.(1)请你运用所学知识估算小明家的小车一个月(按30天算)行驶的路程;(2)若该小车每行驶100 km 耗用汽油6.5L ,且汽油的价格为6.25元/升,试估计小明家 的小车一年(按12个月算)的汽油费用. 25.(本题10分)探索规律:观察下面算式,解答问题.2231=+;23531=++; 247531=+++; 2597531=++++……(1)请猜想:=++++++1997531 ;(2)请猜想:=++++-++++++)32()12()12(97531n n n ; (3)试计算:199197105103101+++++ .七年级数学试题 第2页(共4页)龙岩市永定区2018~2019学年度第一学期期中质量抽测七年级数学参考答案一、选择题:本题共10小题,每小题4分,共40分.二、填空题:本题共6小题,每小题4分,共24分.11.52-,3.12.2-.13.51096.6⨯.14.21a a a >>. 15.23.16.10150.三、解答题:本题共9小题,共86分.17.计算:(本题共4小题,每小题4分,共16分)(1)⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛-+75253472525;解:原式⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-++=752725345257)3(10=-+=(2)32123316143⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛+--;解:原式⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛+--=8123316143144181238346823831861843)8(23316143-=+-=-++-=⨯-⨯+⨯+⨯-=-⨯⎪⎭⎫⎝⎛+--= (3)⎥⎦⎤⎢⎣⎡-÷-+⎪⎭⎫⎝⎛-⨯-⨯-)2()4(323232; 解:原式12823)26(23232923-=⨯-=+⨯-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯-⨯-=(4)[]⎪⎭⎫⎝⎛-⨯+--÷-21314)10(2)2(.解:原式⎪⎭⎫⎝⎛-⨯+÷-=61412)2(656461-=--= 18.(本题8分)解:原式()224625x xy xy x +---=66245462522222+-=++--=-++-=xy x xy xy x x x xy xy x 当2-=x ,21=y 时原式11614621)2()2(2=++=+⨯---= 七年级数学参考答案 第1页(共4页)19.(本题8分) 解:)5(5.302113--<+<<-<-20.(本题10分) 解:(1)画图如图所示:(2)385832=+-=+--,523)2(3=+=--答:C 村距离A 村5 km ;(3)163832|3||8||3||2|=+++=-+++-+- 答:邮递员共骑行了16千米?21.(本题8分)某种T 型零件尺寸如图所示(左右宽度相同), 解:(1)y x y y x x x 85)3(2)5.0(2+=++++ 答:阴影部分的周长为y x 85+;(2)xy xy xy y x y x x x 45.15.235.0)5.0(=+=∙+++ 答:阴影部分的面积xy 4;(3)当025|2|2=⎪⎭⎫ ⎝⎛-+-y x 时,0|2|=-x ,0252=⎪⎭⎫ ⎝⎛-y ,得2=x ,25=y ,此时 2025244=⨯⨯=xy 答:当025|2|2=⎪⎭⎫ ⎝⎛-+-y x 时,阴影部分的面积为20.22.(本题8分)解:(1)01616242442=-=-=⊗;(2)3141414)23(4)23(44132=-=-=⊗=-⊗=⊗⊗ 23.(本题8分)解:∵5||=a ,7||=b ,∴5±=a ,7±=b .(1)当0<ab 时,a 、b 异号,⎩⎨⎧-==75b a 或⎩⎨⎧=-=75b a , ①当5=a ,7-=b 时,12|12||75||)7(5|||==+=--=-b a ;②当5-=a ,7=b 时,12|12||75|||=-=--=-b a ;答:若0<ab ,||b a -的值为12;(2)当)(||b a b a --=-时,0<-b a 即b a <,⎩⎨⎧==75b a 或⎩⎨⎧=-=75b a , ①当5=a ,7=b 时, 3575=⨯=ab ;②当5-=a ,7=b 时,357)5(-=⨯-=ab ;答:若)(||b a b a --=-,ab 的值为35或35-. 24.(本题10分)解:(1)5.3865.2458314---+--+-++1414110065315.35.28844-=-+-+=---+-+-+-+= 115833861030)141040(=⨯=⨯-⨯(km )答:小明家的小车一个月(按30天算)行驶的路程约为1158km ; (2)25.564525.65.6100121158=⨯⨯⨯(元) 答:小明家的小车一年(按12个月算)的汽油费用约为5645.25元. 25.(本题10分) (1)210; (2)2)2(+n ;(3)解:原式=)9997531()199197531(+++++-+++++11- 5.3+ 3-)5(--B CA七年级数学参考答案 第3页(共4页)75002500100005010022=-=-=七年级数学参考答案第4页(共4页)。
龙岩市五县(市区)2018-2019学年九(上)数学卷及答案 - 副本
2018~2019学年第一学期期末龙岩市五县(市、区)质量抽查九年级数学试题(考试时间:120分钟;满分150分命题单位:长汀县审题单位:武平县)一、、选择题(每小题4分,共40分)1.下列图形中,既是中心对称图形,又是轴对称图形的是2.下列关于事件发生可能性的表述,正确的是A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件;B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖;C.掷两枚硬币,朝上的一面是一正面一反面的概率为31; D.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品.3.抛物线y=3(x-2)2+5的顶点坐标是A.(-2,5)B.(-2,-5)C.(2,5)D.(2,-5) 4.关于x 的一元二次方程x 2+4x +k =0有两个实数根,则k 的取值范围是 A.k ≤4 B.k <-4 C. k ≤-4 D.k <4 5.以2和4为根的一元二次方程是A.x 2+6x +8=0B. x 2-6x +8=0C. x 2+6x -8=0D. x 2-6x -8=0 6.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,若∠ACD =25°,则∠BOD 的度数为 A. 100° B.120° C.130° D.150°7.有n 支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是 A.n (n -1)=15 B. n (n +1)=15 C. n (n -1)=30 D. n (n +1)=30 8.如图,P A 、PB 、CD 分别切于A 、B 、E ,CD 交P A 、PB 于 C 、D 两点,若∠P =40° 则∠P AE +∠PBE 的度数为A. 50°B.62°C.66°D.70°第6题图第8题图9.如图,在面积为12的□ABCD 中,对角线BD 绕着它的中点O 按 顺时针方向旋转一定角度后,其所在直线分别交AB 、CD 于点E 、 F ,若AE =2EB ,则图中阴影部分的面积等于 A. 2 B. 1 C.34 D.32 10.如图,边长为2的正△ABC 的边BC 在直线l 上,两条距离为1的平行直线a 和b 垂直于直线l .a 和b 同时向右移动(a 的起始位置在B 点),速度均为每秒1个单位,运动时间为t (秒),直到b 到达C 点停止,在a 和b 向右移动的过程中,记△ABC 夹在a 和b 之间的部分的面积二、填空(本大题共6题,每题4分,共24分)11.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是_______. 12.已知扇形所在圆半径为4,弧长为6 ,则扇形面积为_______.13.已知点A (1,3),O 是坐标原点,将线段OA 绕点O 逆时针旋转90°,点A 旋转后的对应点是A 1,则点A 1的坐标是_______.14.把抛物线y =2x 2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是_______.15.《九章算术》“勾股”章有一题:“今有户高多于广六尺,两隅相去适一丈,问户高、广各几何?”大意是说:已知矩形门的高比宽多6尺,门的对角线长1丈,那么门的高和宽各是多少?(1丈=10尺),如果设门的宽为x 尺,那么这个门的高为(x +6)尺,根据题意得方程_______. 16.已知函数y 1=(a 2+1)x 2+bx+c ,y 2=-x +2,若方程(a 2+1)x 2+(b +1)x+c -2=0的两根分别为x 1=-2,x 2=8,则使y 1> y 2,成立的x 的取值范围是_______. 三、解答题(本大题共9小题,共86分) 17.(8分)解方程:x 2+2x =1第8题图t t tB C D18.(8分)在如图所示的直角坐标系中,解答下列问题: (1)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1;(2)将△ABC 绕点A 顺时针旋转90°后,求出点B 旋转到B 1 所经过的路径长19.(8分)先化简,再求值:(xx 12+-1)÷x x 12-,其中x =2+120.(8分)一个不透明的口袋里装有分别标有汉字“美”“丽”、“龙”、“岩”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅均匀再摸球. (1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)若从中任取一个球,不放回,再从中任取一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“美丽”或“龙岩”的概率.21.(8分)如图,⊙O 为锐角△ABC 的外接圆,半径为5.(1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧BC 的交点E . (保留作图痕迹,不写作法)(2)若(1)中的点E 到弦BC 的距离为3,求弦CE 的长.22.(10分)某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示. (1)已知6月份这种蔬菜的成本最低,此时出售每干克的收益是多少元?(收益=售价-成本) (2)分别求出y 1、y 2与x 之间的函数关系式;(3)哪个月出售这种蔬菜,每千克的收益最大?说明理由.23.(10分)如图,在△ABC 中,∠C =90°,点O 在AC 上,以AO 为半径的⊙O 交AB 于D . BD 的垂直平分线交BD 于F ,交BD 于E ,连接DE .(1)求证:DE 是⊙O 的切线;(2)若∠B =30,BC =43,且AD :DF =1:3,求⊙O 的直径.24.(12分)数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为5的正方形AEFG 按图1位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.(1)小明发现DG ⊥BE ,请你帮他说明理由.(2)如图2,小明将正方形ABCD 绕点A 逆时针旋转,当点B 恰好落在线段DG 上时,请你帮他求出此时BE 的长.25.(14分)在平面直角坐标系xOy 中,已知抛物线y=ax 2+bx +3(a ≠0)经过点A (-2,3). (1)若点B (1,0)也在此抛物线上.图1图2①求该抛物线的解析式;②若点P 是该抛物线位于线段AB 上方部分的一个动点,当△P AB 的面积最大值时,求点P 的坐标;(2)若抛物线y=ax 2+bx +3与线段AB 有两个不同的交点,求a 的取值范围.2018-2019学年第一学期期末龙岩市五县(市、区)九年级数学参考答案及评分标准二、填空题(本大题共6题,每题4分,共24分)11.12.错误!未找到引用源。
2018年福建省龙岩市永定县金丰片中考数学二模试卷.doc
2018年福建省龙岩市永定县金丰片中考数学二模试卷一、选择题(共10小题,每题4分,满分40分)1.(4分)计算:﹣2+3=()A.1 B.﹣1 C.5 D.﹣52.(4分)下列四个几何体中,三视图都是相同图形的是()A.B.C.D.3.(4分)下列计算正确的是()A.a+a=a2B.a•a=a2C.(a3)2=a5D.a2•a3=a64.(4分)在函数y=中,自变量x的取值范围是()A.x≠2 B.x>2 C.x≥2 D.x≠05.(4分)“明天下雨的概率为80%”这句话指的是()A.明天一定下雨B.明天80%的地区下雨,20%的地区不下雨C.明天下雨的可能性是80%D.明天80%的时间下雨,20%的时间不下雨6.(4分)正方形网格中,∠AOB如图放置,则sin∠AOB=()A.B.C.D.27.(4分)不等式组的解集是()A.﹣1<x<2 B.x>﹣1 C.x<2 D.x<﹣1或x>28.(4分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B. C.D.9.(4分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.510.(4分)对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,﹣b).如f(1,2)=(1,﹣2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,﹣9))=()A.(5,﹣9)B.(﹣9,﹣5)C.(5,9) D.(9,5)二、填空题(共6小题,每题4分,满分24分)11.(4分)的相反数是.12.(4分)“节约光荣,浪费可耻”,据统计我国每年浪费粮食约8000000吨,这个数据用科学记数法可表示为吨.13.(4分)抛物线y=(x﹣1)2+2的顶点坐标是.14.(4分)数据27,30,28,29,30,29,30的中位数是.15.(4分)如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ 的最小值为.16.(4分)如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是.三、解答题(共8小题,满分86分)17.(12分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化简:.18.(7分)如图,已知AB∥CD,若∠A=20°,∠E=35°,求∠C的度数.19.(10分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.20.(10分)小莉和哥哥玩扑克牌游戏,小莉有数字为1,2,3,5的四张牌,哥哥有数字为4,6,7,8的四张牌,按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉胜;如果和为奇数,则哥哥胜.(1)请用数形图或列表法分别求出小莉胜和哥哥胜的概率;(2)这个游戏公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.21.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D;(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.22.(10分)如图,在Rt△ABC中,∠C=90°,AC=,tanB=,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.(1)求证:AB为⊙C的切线.(2)求图中阴影部分的面积.23.(13分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?24.(14分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2018年福建省龙岩市永定县金丰片中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每题4分,满分40分)1.(4分)计算:﹣2+3=()A.1 B.﹣1 C.5 D.﹣5【分析】根据异号两数相加,取绝对值较大的加数的符号,再用较大的绝对值减去较小的绝对值,可得答案.【解答】解:﹣2+3=+(3﹣2)=1.故选:A.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.2.(4分)下列四个几何体中,三视图都是相同图形的是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、长方体的三视图分别为长方形,长方形,正方形,不符合题意;B、圆柱的三视图分别为长方形,长方形,圆,不符合题意;C、球的三视图均为圆,正确;D、正三棱柱的主视图为两个长方形的组合体,左视图为长方形,俯视图为三角形,错误,故选:C.【点评】本题考查了几何体的三视图,从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.3.(4分)下列计算正确的是()A.a+a=a2B.a•a=a2C.(a3)2=a5D.a2•a3=a6【分析】根据合并同类项法则,幂的乘方,同底数幂的乘法分别求出每个式子的值,再判断即可.【解答】解:A、结果是2a,故本选项错误;B、结果是a2,故本选项正确;C、结果是a6,故本选项错误;D、结果是a5,故本选项错误;故选:B.【点评】本题考查了合并同类项法则,幂的乘方,同底数幂的乘法的应用,能正确运用法则进行计算是解此题的关键,题目比较好,难度不是很大.4.(4分)在函数y=中,自变量x的取值范围是()A.x≠2 B.x>2 C.x≥2 D.x≠0【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.(4分)“明天下雨的概率为80%”这句话指的是()A.明天一定下雨B.明天80%的地区下雨,20%的地区不下雨C.明天下雨的可能性是80%D.明天80%的时间下雨,20%的时间不下雨【分析】根据概率的意义找到正确选项即可.【解答】解:“明天下雨的概率为80%”说明明天下雨的可能性是80%,即P(A)=80%.故选:C.【点评】关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.6.(4分)正方形网格中,∠AOB如图放置,则sin∠AOB=()A.B.C.D.2【分析】找出以∠AOB为内角的直角三角形,根据正弦函数的定义,即直角三角形中∠AOB的对边与斜边的比,就可以求出.【解答】解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=,∴sin∠AOB===.故选:B.【点评】通过构造直角三角形来求解,利用了锐角三角函数的定义.7.(4分)不等式组的解集是()A.﹣1<x<2 B.x>﹣1 C.x<2 D.x<﹣1或x>2【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:由①得x>﹣1;由②得x<2;∴不等式组的解集是﹣1<x<2,故选:A.【点评】本题考查了解一元一次不等式组,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(4分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B. C.D.【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项.【解答】解:当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选:D.【点评】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.9.(4分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.(4分)对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,﹣b).如f(1,2)=(1,﹣2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,﹣9))=()A.(5,﹣9)B.(﹣9,﹣5)C.(5,9) D.(9,5)【分析】根据两种变换的规则,先计算f(5,﹣9)=(5,9),再计算g(5,9)即可.【解答】解:g(f(5,﹣9))=g(5,9)=(9,5).故选:D.【点评】本题考查了点的坐标,理解新定义的变化规则是解题的关键.二、填空题(共6小题,每题4分,满分24分)11.(4分)的相反数是.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数是,故答案为:.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.(4分)“节约光荣,浪费可耻”,据统计我国每年浪费粮食约8000000吨,这个数据用科学记数法可表示为8×106吨.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将8000000用科学记数法表示为:8×106.故答案为:8×106.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)抛物线y=(x﹣1)2+2的顶点坐标是(1,2).【分析】直接利用顶点式的特点可求顶点坐标.【解答】解:因为y=(x﹣1)2+2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,2).【点评】主要考查了求抛物线的对称轴和顶点坐标的方法.14.(4分)数据27,30,28,29,30,29,30的中位数是29.【分析】将数据按照从小到大重新排列,再根据中位数的定义求解可得.【解答】解:将原数据按照从小到大重新排列为27、28、29、29、30、30、30,所以中位数为29,故答案为:29.【点评】本题主要考查了中位数的知识,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.15.(4分)如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ 的最小值为5.【分析】要求DQ+PQ的最小值,DQ,PQ不能直接求,可考虑通过作辅助线转化DQ,PQ的值,从而找出其最小值求解.【解答】解:如图,连接BP,∵点B和点D关于直线AC对称,∴QB=QD,则BP就是DQ+PQ的最小值,∵正方形ABCD的边长是4,DP=1,∴CP=3,∴BP==5,∴DQ+PQ的最小值是5.故答案为:5.【点评】此题考查了正方形的性质和轴对称及勾股定理等知识的综合应用,得出DQ+PQ的最小值时Q点位置是解题关键.16.(4分)如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是(0,1.5).【分析】利用三角形全等性质.【解答】解:由题意得:A(﹣3,0),B(0,4);∴OA=3,OB=4.那么可得AB=5.易得△ABC≌△ADC,∴AD=AB=5,∴OD=AD﹣OA=2.设OC为x.那么BC=CD=4﹣x.那么x2+22=(4﹣x)2,解得x=1.5,∴C(0,1.5).【点评】本题用到的知识点为:翻折前后的三角形全等.三、解答题(共8小题,满分86分)17.(12分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化简:.【分析】(1)原式利用绝对值的代数意义,算术平方根定义,特殊角的三角函数值,以及负整数指数幂法则计算即可求出值;(2)原式括号中利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x﹣y.【点评】此题考查了分式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(7分)如图,已知AB∥CD,若∠A=20°,∠E=35°,求∠C的度数.【分析】根据三角形的外角等于和它不相邻的两个内角的和以及平行线的性质进行求解.【解答】解:∵∠A=20°,∠E=35°,∴∠EFB=∠A+∠E=55°,∵AB∥CD,∴∠C=∠EFB=55°.【点评】此题考查了三角形的外角的性质以及平行线的性质.三角形的外角等于和它不相邻的两个内角的和;两条直线平行,则同位角相等.19.(10分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53(元),答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.20.(10分)小莉和哥哥玩扑克牌游戏,小莉有数字为1,2,3,5的四张牌,哥哥有数字为4,6,7,8的四张牌,按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉胜;如果和为奇数,则哥哥胜.(1)请用数形图或列表法分别求出小莉胜和哥哥胜的概率;(2)这个游戏公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果是偶数的情况,再利用概率公式即可求得答案;(2)根据(1)求得哥哥去的概率,比较概率的大小,即可知游戏规则是否公平.【解答】解:(1)画树状图得:一共有16种等可能结果,其中和为偶数的有6种,和为奇数的有10种,所以小莉获胜的概率为=、哥哥获胜的概率为=;(2)由(1)列表的结果可知:小莉获胜的概率为,哥哥去的概率为,所以游戏不公平,对哥哥有利.游戏规则改为:若和为偶数则小莉得(5分),若和为奇数则哥哥得(3分),则游戏是公平的.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D;(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.【点评】本题主要考查了基本作图以及含30度角的直角三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.22.(10分)如图,在Rt△ABC中,∠C=90°,AC=,tanB=,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.(1)求证:AB为⊙C的切线.(2)求图中阴影部分的面积.【分析】(1)解直角三角形求出BC ,根据勾股定理求出AB ,根据三角形面积公式求出CF ,根据切线的判定得出即可;(2)分别求出△ACB 的面积和扇形DCE 的面积,即可得出答案.【解答】(1)证明:过C 作CF ⊥AB 于F ,∵在Rt △ABC 中,∠C=90°,AC=,tanB==,∴BC=2, 由勾股定理得:AB==5,∵△ACB 的面积S==,∴CF==2, ∴CF 为⊙C 的半径,∵CF ⊥AB ,∴AB 为⊙C 的切线;(2)解:图中阴影部分的面积=S △ACB ﹣S 扇形DCE =××2﹣=5﹣π.【点评】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF 的长是解此题的关键.23.(13分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC 不动,将△DEF 沿线段AB 向右平移.(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?【分析】(1)根据平移的性质得到DF∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点位置时四边形CDBF为正方形.当D移至AB的中点时,四边形CDBF是菱形.根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE.所以AD=CD=BD=CF,又由BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.【解答】解(1)如图(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.∵∠ACB=∠DFE=90°,D是AB的中点∴CD=AB,BF=DE,∴CD=BD=BF=BE,∵CF=BD,∴CD=BD=BF=CF,∴四边形CDBF是菱形;∵AC=BC,D是AB的中点.∴CD⊥AB即∠CDB=90°∵四边形CDBF为菱形,∴四边形CDBF是正方形.【点评】本题是四边形的综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.24.(14分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N 为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页
2019年龙岩市九年级学业(升学)质量检查
数 学 试 题
(满分:150分 考试时间:120分钟)
注意:
请把所有答案填涂或书写到答题卡上!请不要错位、越界答题! 在本试题上答题无效.
一、选择题(本大题共10小题,每小题4分,共40分.每小题的四个选项中,只有一项符合题目要求) 1.计算11--的结果等于 A .-2
B .0
C .1
D .2
2
.下列计算正确的是 A .4=2±
B .2
2(31)61x x x -=-
C .2
3
5
+=a a a D .235=a a a ⋅ 3.掷两枚质地相同的硬币,正面都朝上的概率是 A .1
B .
2
1 C .
4
1 D .0
4.右图是一个由4个相同的正方体组成的立体图形,它的俯视图是
A B C D
5.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 A .3229x x -=+ B .3(2)29x x -=+ C .
2932
x x
+=- D .3(2)2(9)x x -=+
6.如图,下列四个条件中,能判断DE //AC 的是 A .43∠=∠ B .21∠=∠ C .EFC EDC ∠=∠ D .AFE ACD ∠=∠ 7.实数,a b 在数轴上的对应点位置如图所示,把,0a b --,按照从小到大的顺序排列,正确的是 A .0a b -<<-
B .0a b <-<-
C .0b a -<<-
D .0b a <-<-
8.在同一直角坐标系中,函数x
k y =
和1+=kx y 的大致图象可能是 9.已知1
234-+=x x k ,则满足k 为整数的所有整数x 的和是 A .-1 B .0 C .1 D .2
10.如图,︒=∠90ACB ,BC AC =,︒=∠45DCE ,
如果4,3==BE AD ,则BC 的长是
A .5
B .25
C .26
D .7
二、填空题(本大题共6小题,每小题4分,共24分)
b
a 0
2 1
(第7题图)
(第10题图)
B
A
C
D E A B C D
x O y x O y x
y O O x y 从正面看
(第6题图)
E
F
D
1
B A 3 4
2
C
第 2 页
11.使代数式2-x 有意义的x 的取值范围是__________.
12.2019年春节假期,某市接待游客超3360000人次,用科学记数法表示3360000,其结果是
________________________.
13.若甲组数据1,2,3,4,5的方差是2甲s ,乙组数据6,7,8,9,10的方差是2
乙s ,则2甲s _____2
乙s .(填“>”
、“<”或“=”) 14.如图,在ABC ∆中,90,30ACB A ∠=︒∠=︒,2AB =,将ABC ∆绕着点C 逆
时针旋转到DEC ∆位置时,点B 恰好落在DE 边上,则在旋转过程中,点B 运动到点E 的路径长为____________.
15.如图,四边形ABCD 和CEFG 都是菱形,连接AG ,,GE AE ,
若60,4F EF ∠=︒=,则AEG ∆的面积为________.
16.非负数,,a b c 满足39=-=+a c b a ,,设c b a y ++=的最大
值为m ,最小值为n ,则m n -=________.
三、解答题(本大题共9小题,共86分. 解答应写出文字说明、证明过程或演算步骤.)
17.(本小题满分8分) 先化简,后求值:
2
2
321
113
x x x x x -++⋅---,其中21x =+. 18.(本小题满分8分)
如图,在ABCD Y
中,,E F 是对角线上的两点,且AE CF =,求证DF BE =.
19.(本小题满分8分)
如图,在每个小正方形的边长为1的网格中,,,A B C 均为格点.
(Ⅰ)仅用不带刻度的直尺作AC BD ⊥,垂足为D ,并简要说明道理;
(Ⅱ)连接AB ,求ABC ∆的周长.
20.(本小题满分8分)
“不忘初心,牢记使命.”全面建设小康社会到了攻坚克难阶段. 为了解2019年全国居民收支数据,国家××局组织实施了住户收支与生活状况调查,按季度发布.调查采用分层、多阶段、与人口规模大小成比例的概率抽样方法,在全国31个省(区、市)的1650个县(市、区)随机抽选16万个居民家庭作为调查户.已知2019年前三季度居民人均消费可支配收入平均数是2019年前三季度居民人均消费可支配收入平均数的00115,人均消费支出为11423元,根据下列两个统计图回答问题:(以下计算最终结果均保留整数)
(Ⅰ)求年度调查的样本容量及2019年前三季度居民人均消费可支配收入平均数(元); (Ⅱ)求在2019年前三季度居民人均消费支出中用于医疗保健所占圆心角度数; (Ⅲ)求在2019年前三季度居民人均消费支出中用于居住的金额. 21.(本小题满分8分)
甲、乙两种笔的单价分别为7元、3元,某学校用78元钱买这两种笔作为数学竞赛一、二等奖奖品,钱恰好用完.若买下的乙种笔是甲种笔的两倍,请问两种笔各买了几支? 22.(本小题满分10分) (Ⅰ)知识延伸:如图1,在ABC ∆中,=90C ∠︒, ,,AB c BC a AC b ===,根据三角函数的定义得:
(Ⅱ)拓展运用:如图2,在锐角三角形ABC 中, (i )求证:2
2
2
2cos b a c ac B =+-⋅; (ii )已知:3,7,2a b c ===,求B ∠的度数.
23.(本小题满分10分)
如图,在ABC ∆中,90,BAC ∠=︒2AB AC ==,AD BC ⊥,垂足为D ,过,A D 的O e 分别与,AB AC 交
于点,E F ,连接,,EF DE DF . (Ⅰ)求证:ADE ∆≌CDF ∆;
(第19题图) (第18题图) B A C
D E
F 图1
图2
(第22题图)
A
C
B
A B
C
图1 2019年和2019年前三季度居民人均可支配收入平均数 图2 2019年前三季度居民人均消费支出及构成 (第14题图)
C E D
B
A
(第15题图)
G F
E
D
C
B A
第 3 页
25.(本题满分14分)
已知抛物线c bx x y ++=2
.
(Ⅰ)当顶点坐标为)
,(01时,求抛物线的解析式; (Ⅱ)当2=b 时,),(1y m M ,),2(2y N 是抛物线图象上的两点,且21y y >,求实数m 的取值范围; (Ⅲ)若抛物线上的点(,)P s t ,满足11≤≤-s 时,b t +≤≤41.求,b c 的值.。