第二章物理系统的数学模型及传递函数

合集下载

《机械控制工程基础》-2物理系统的数学模型及传递函数解析

《机械控制工程基础》-2物理系统的数学模型及传递函数解析

称为叠加性或叠加原理。
控制工程基础

2.1.3 非线性系统的线性化
(2)非线性系统 如果系统的数学模型是非线性的,这种 系统称为非线性系统。 工程上常见的非线性特性如下: 饱和非线性 死区非线性 间隙非线性 摩擦非线性……

控制工程基础

2.1.3 非线性系统的线性化
(3)举例 下列微分方程描述的系统为线性系统:
零初始条件: 输入及其各阶导数在t =0-时刻均为0; 输出及其各阶导数在t =0-时刻均为0。 形式上记为:
Y (s) b0 s m b1s m1 bm1s bm G( s ) X (s) a0 s n a1s n1 an1s an
控制工程基础
2.2.2 传递函数的求法
(1)解析法(根据定义求取) 设线性定常系统输入为x(t) ,输出为y(t) ,描 述系统的微分方程的一般形式为 :
dny d n1 y d n2 y dy an n an1 n 1 an 2 n2 a1 a0 y dt dt dt dt
Xi ( s) Ts Xo ( s)
传递函数: G( s)
式中T为微分时间常数。
特点: (1)一般不能单独存在 (2)反映输入的变化趋势 (3)增强系统的阻尼 (4)强化噪声
4.积分环节
1 微分方程: xo (t ) T xi (t )dt
传递函数:
X ( s) 1 G( s) o X i (s) Ts
2 2
下列微分方程描述的系统为非线性系统:
控制工程基础

2.1.3 非线性系统的线性化
(4)系统运动微分方程的建立
电气系统
电阻、电感和电容器是电路中的三个基本元件。通常利用基尔霍夫 定律来建立电气系统的数学模型。 基尔霍夫电流定律:

传递函数模型和传递函数

传递函数模型和传递函数

传递函数模型和传递函数传递函数是控制系统中一个重要的概念,它描述了输入信号经过系统后的输出信号与输入信号之间的关系。

传递函数模型是用来描述连续时间系统的,而传递函数是传递函数模型的具体表达式。

传递函数模型可以简化对系统行为的分析和设计。

通过将系统抽象为一个传递函数,可以忽略系统的具体细节,只关注输入输出之间的关系。

这样一来,我们可以用数学方法来分析系统的稳定性、性能等特性。

传递函数模型通常用拉普拉斯变换来表示。

拉普拉斯变换是一种数学变换,用于将连续时间域中的函数转换为复频域中的函数。

通过拉普拉斯变换,可以将微分方程转化为代数方程,从而简化对系统的分析。

传递函数通常表示为H(s),其中s是复变量,表示频域中的频率。

传递函数的形式可以是分数形式,如H(s)=N(s)/D(s),其中N(s)和D(s)分别是多项式。

传递函数的分子多项式N(s)描述了输入信号对系统的影响,而分母多项式D(s)描述了系统的特性。

传递函数的分母多项式D(s)的根决定了系统的稳定性。

如果分母多项式的根都是负实数或者有负实部的复数,那么系统是稳定的。

反之,如果分母多项式的根有正实数或者纯虚数,那么系统是不稳定的。

传递函数还可以用来描述系统的频率响应。

频率响应描述了系统对不同频率输入信号的响应程度。

通过传递函数,可以计算出系统在不同频率下的增益和相位差。

传递函数模型和传递函数在控制系统的分析和设计中起着重要的作用。

通过传递函数模型,可以对系统进行数学建模和分析。

而通过传递函数,可以计算系统的稳定性、频率响应等特性。

掌握传递函数模型和传递函数的使用方法,对于控制系统的工程师来说是非常重要的。

总之,传递函数模型和传递函数是控制系统分析和设计中常用的工具。

通过传递函数模型,可以对系统进行简化和抽象,忽略系统的具体细节。

而通过传递函数,可以计算系统的稳定性、频率响应等特性。

掌握传递函数模型和传递函数的使用方法,可以帮助我们更好地了解和设计控制系统。

第2章(3) 系统传递函数

第2章(3) 系统传递函数

c1s c2 s ( 1)( 1) k1 k2 G( s ) c1s c2 s c1s ( 1)( 1) k1 k2 k2 1 对比:R1 c1 R2 c2 C1 k1
1 C2 k2
三、传递函数的表达形式
1.多项式分式形式 X o ( s ) bm s m b1s b0 G( s) X i ( s ) an s n a1s a0 2.零极点增益形式 分子、分母首一化,再分解因式
0
特点: (1)一般不能单独存 在; (2)反映输入的变化 趋势; (3)增加系统阻尼; (4)强化噪声。
iC du i (t ) dt
du i (t ) uo (t ) Ri RC dt U o ( s) G( s) RCs U i ( s)
4.惯性环节 微分方程: Tx o (t ) xo (t ) xi (t )
2
特征量——
时间常数: T
固有振荡频率: n 1T
阻尼比:
0 1 : 欠阻尼(振荡) 1: 临界阻尼 1 : 过阻尼
时间响应:
单位阶跃响应 欠阻尼 1 过阻尼 临界阻尼 t 0
例10:
特点: (1)0<ξ<1,输出存在 振荡,ξ越小,振荡越 剧烈 ; (2)ξ>1,输出无振荡, 由两一阶惯性环节组成。
例:求传递函数
k2 c1 k1
c2
xi
xo
k2
A
c2 c1
B
xi
xo
x2
k1
二、相似性原理 相似系统: 能用形式相同的数学模型来描述的两个系统; 相似量: 在微分方程或在传递函数中占有相同 位置的物理量。

第二章 传递函数

第二章 传递函数

5. 振荡环节
nt
第二章 传递函数
常见振荡环节的实例: (1) 机械位移系统 Y(s) 1 G(s)= F(s) = ms2+fs+k (2) 他激直流电动机 1/Ce N(s) G(s)= U(s) = T T s2+T s+1 a m m (3) RLC电路 Uc(s) 1 G(s)= U (s) = LCs2+RCs+1 r
Δ
0
1 R(s)= S
t C(s)= TS ·1 S G(s) =RC s
第二章 传递函数
液位系统 d[h0+h(t)] =[qi0+qi(t)]-[qo0+qo(t)] A dt qi—流入箱体 平衡时:qi0=qo0 其中: 流量增量 qi0 +qi 故 qi0—流入箱体 dh(t)流出箱体 qo =q (t)-q A dt — 的流量 o(t) i 流量增量 qoh—液面高度 (t)的流量公式 h0+h o0—流出箱体 的流量 增量 qo(t)=a h(t) qo0+qo A—dh(t) 箱体面积 h0—液面高度 +a h(t) 得: A 根据物料平衡关系=qi(t) dt
实例
水位控制系统
V1
θo
控制阀
浮球
RPB Q1 UB H 水箱 V2 Q2用水量
RPA
K1
变速箱
θm
伺服电动机
UA 控 制 器 放 大 器
△U
Ua
SM
第二章 传递函数
1 c(t)=1- e Sin(ω 2 单位阶跃响应: 微分方程: 2 dt+β) 2 ωn T 1-ζ G(s) = 2 d2c(t) ζ ζ 1 dc(t) = S2+2ζ ω n S+ω n2 2 2 S + 单位阶跃响应曲线 = r(t) S+ T +2T T 2 + c (t) 2 T dt dt 1 r(t) —无阻尼自然振荡频率 ωn = c(t) ζ — 阻尼比 T — 时间常数 T c(t) 1 振荡环节方框图 传递函数: r(t) R(S) C(s) ωn2 1 C(S) = 2 22 G(s) = R(s)+2ξω S+ω + 2T ζ S+ 1 2 TS n n 0 S t

数学模型-传递函数

数学模型-传递函数

1 1 , j ,Ti zj pi ( pi )
( z j )
m
(3) 二项式表示法:
如 p1 . p2为一对共轭复数,则有
1 1 2 ( s p1 )( s p2 ) s 2 n s n 2
1 1 2 2 或 (T1 s 1)(T2 s 1) T s 2Ts 1
当初始条件为零时有:
3
第二章 数学模型
传 递 函 数(续)
C ( s ) b0 s m b1 s m 1 bm 1 s bm 则G ( s ) R( s ) a 0 s n a 1 s n 1 a n 1 s a n
s j 为复数, G (s ) 是复变量s 的函数, 故称为复放大系数。
i 1
m
(s z )
当s
z j时,G(s) = 0. z j 为传函的零点。
10
当 s pi 时,G(s) = , pi 为传函的极点。
第二章 数学模型
而 K g b0 ——传递系数。(根轨迹中叫根轨迹增益)
a0
(2)时间常数表示法:
bm d m s m d m 1 s m 1 d 1 s 1 G( s ) a n c n s n c n 1 s n 1 c 1 s 1
其传递函数为
6. 齿轮系
m
Z1
Z2
c
第二章 数学模型
§2-2 传 递 函 数
用拉氏变换求解微分方程,虽思路清晰,简单实用,但 如果系统参数改变,特征方程及其解都会随之改变。 要了解参数变化对系统动态响应的影响,就必须多次 计算,方程阶次愈高,计算工作量越大,故引入另一 种数模—传递函数。它是控制理论中的重要概念和工具, 也是经典理论中两大分支—根轨迹和频率响应的 基础。利用传递函数不必求解微方就可研究初始条件 为零的系统在输入信号作用下的动态过程。

第二章(3)传递函数

第二章(3)传递函数
特点:改善系统的动态性能; 增加系统的阻尼,提高系统的稳定性 常被作为校正装置
例 如图所示永磁式直流测速机, 已知 u (t) k di (t) 0 dt U 0 (s ) G ( s ) ks 进行拉氏变换后得 i (s ) d i 则
U 0 (s) k dt (t )
U0(t)
式中,T—振荡环节的时间常数 ζ—阻尼比,对于振荡环节,0<ζ<1 K—比例系数
特点:在一定条件下,具有振荡可能,取决于系统本身的固有特性, 这是因为有两个储能元件,有能量交换,这种能量交换在一定条件下 以振荡方式存在。
只有当|Ts|<<1时,才近似为微分环节。
(4)积分环节
如果输出变量正比于输入变量的积分,即 进行拉氏变换得 X 0 (s) k
x 0 ( t ) k x i ( t )dt
G (s) X 0 (s ) k X i (s ) s


X i (s) s
特点:系统的输出和输入之间没有唯一对应的关系, 有记忆功能,能提高系统的稳态精度, 系统中的积分环节不能大于2个,否则系统不稳定。

如图所示弹簧-阻尼系统。
Xi(t)
kx i (t ) x 0 (t ) D
dx0 (t ) dt
Xo(t)
kX i (s) X o (s) DsXo (s)
D s 1X o (s) X i (s) k
X (s) 1 G (s) 0 X i (s) D s 1 k
i (t)
对于相同量纲的理想微分环节物理上是难以实现的, 电路中常遇到下述的近似微分环节。
i (t ) ——输入转角; 其中, u0(t) ——输出电压。

第二章 2-2传递函数

第二章 2-2传递函数
6
3
为了方便,常把传递函数分解为一次因式的乘积,
式(2-51)中的K常称为传递函数的增益或传递系 数(放大系数)。
4
二、传递函数的零、极点
式(2-52)中zj (j=1.2……m)为分子多项式的根,称为传 递函数的零点。 Pi(1.2……n)为分母多项式的根,称为传递函数的极点。 传递函数的零、极点可以是实数或零,也可以是复数,由 于传递函数分子、分母多项式的系数都是实数,故若有复数 零极点时,它们必是成对共轭的。 传递函数的分母多项式就是相应微分方程式 (2-49)的特 征多项式,令该分母多项式等于零,就可得到相应微分方程 的特征方程。 在特征方程中,s最高阶次等于输出量最高阶导数的阶次, 如果s的最高阶次等于n,这种系统就称为n阶系统。
1
一、传递函数的定义:线性定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比,称为该系 统的传递函数。
若线性定常系统的微分方程为:
在初始条件为零时,对(2-49)进行拉氏变换,得
2
根据传递函数的定义,描述该线性定常 系统的传递函数为:
可见,传递函数是由系统微分方程经拉氏变换而引出的。 系统输入、输出及传递函数之间的相互关系可用下图表示, 输出是由输入经过G(s)的传递而得到的,因此称G(s)为传递 函数。因为传递函数是在零初始条件下定义的,故在初始条 件为零时,它才能完全表征系统的动态性能。
§2-2传递函数
控制系统的微分方程,是时域中描述系统动态性能的数 学模型,求解微分方程可以得到在给定外界作用及初始条 件下系统的输出响应,并可通过响应曲线直观地反映出系 统的动态过程。 但系统的参数或结构形式有变化,微分方程及其解都会 同时变化,不便于对系统进行分析与研究。 根据求解微分方程的拉氏变换法,可以得到系统的另一 种数学模型 ——传递函数。 它不仅可以表征系统的动态特性,而且可以方便地研究 系统的参数或结构的变化对系统性能所产生的影响。 在经典控制理论中广泛应用的根轨迹法和频率法,就是 在传递函数基础上建立起来的。

机械控制工程基础第二章物理系统的数学模型及传递函数

机械控制工程基础第二章物理系统的数学模型及传递函数
数; 因为系统每增加一个独立储能元件,其内部 就多一层能量(信息)的交换。
系统的动态特性是系统的固有特性,仅 取决于系统的结构及其参数,与系统的输 入无关。
线性系统与非线性系统 线性系统 可以用线性微分方程描述的系统。如果方程的 系数为常数,则为线性定常系统;如果方程的
系数是时间t的函数,则为线性时变系统;
其中:
K1
f x1
,
x1 x10 x2 x20
K f 2
x2
x1 x10 x2 x20
滑动线性化——切线法
线性化增量方程
y=f(x)
为:
y y' =xtg
y0
A
切线法是泰勒级
x
数法的特例。
y y’
0
x0
x
非线性关系线性化
系统线性化微分方程的建立
步骤 确定系统各组成元件在平衡态的工作点; 列出各组成元件在工作点附近的增量方程; 消除中间变量,得到以增量表示的线性化微
y
f
(x0 )
df (x) dx
x
(x x0
x0 )
或:y
-
y0
=
y
=
Kx,
其中:K
df (x) dx
x
x0
上式即为非线性系统的线性化模型,称为增
量方程。y0 = f (x0)称为系统的静态方程;
由于反馈系统不允许出现大的偏差,因此,
这种线性化方法对于闭环控制系统具有实际
意义。
增量方程的数学含义就是将参考坐标的原 点移到系统或元件的平衡工作点上,对于实际 系统就是以正常工作状态为研究系统运动的起 始点,这时,系统所有的初始条件均为零。
i(t)
R

4-传递函数

4-传递函数
第二章 系统的数学模型
2-1 2-2 2-3 2-4 2-5 2-6 模型总论 微分方程的建立 传递函数模型 框图模型 信号流图模型 模型总结
第四讲:系统的数学模型
2-3 传递函数模型 2-4 框图模型
2-3 传递函数模型
一 定义与性质 设一般线性定常系统的微分方程为
dn d n−1 d a0 n y(t) + a1 n−1 y(t) +L+ an−1 y(t) + an y(t) dt dt dt dm d m−1 d = b0 m r(t) + b1 m−1 r(t) +L+ bm−1 r(t) + bmr(t) dt dt dt
环路分辨
G3 H3
G3 H3 H3
总之,框图简化的一般方法是: 移动引出点或比较点; 进行方框运算; 将串联、并联、反馈连接的框图合并;
三 框图三种典型形式
串 联 G1 G2 并 联 G1 G2 反 馈 G H
G1 G2
G1 G2
G 1+ G H
(1)串联
X(s) G (s) 1 X1(s) Y(s) G2(s)

X(s)
G(s)
Y(s)
Y(s) G(s) = = G (s) ⋅ G2 (s) 1 X (s) X1(s) Y(s) Q = G (s), = G2 (s) 1 X (s) X1(s) Y(s) ∴ = G (s)G2 (s) 1 X (s)
(2)并联
X(s) G1(s) G2(s) Y1(s)
Y(S)
±
Y2(s)

X(s)
Y(s) G(s)
G(s) = G1(s) ± G2 (s) Y(s) = Y1(s) ±Y2 (s) = X (s)G1(s) ± X (s)G2 (s) = X (s)[G1(s) ± G2 (s)] = X (s)G(s) ∴G(s) = G1(s) ± G2 (s)

机械控制工程基础(第二章)ppt课件

机械控制工程基础(第二章)ppt课件
dt
a0x0t
bm
dmxi t
dtm
bm1
dm1xi t
d tm1
b1
d xi t
dt
b0xi
t
在初始条件为零时,对上式进行拉氏变换
ansnan 1sn 1 a 1sa0X 0s b m smb m 1sm 1 b 1sb 0X i s
故得系统(或环节)的传递函数为
G sX X 0 is sb a m n s sm n a b n m 精 1 1 选s sn Pm P 1 T1 课 件 a b 1 1 s s a b 0 0
x0(t)Txi(t)
精选PPT课件
16
例 下图是简化了的直流发电机组。激磁电压 v恒i 定,磁通不变。
此时电枢电压 与转v速0 成正比•。若 为输入,输出是电压 ,
试v求0此系统的传递函数。
R

解:v 0 T
vi i
LM
式中 T——常数
v0 VsT s s 0
GsV 0ssTs
即直流发电机作为测速发电机时,可认为是微分环节。
2
x0
0
精选PPT课件
xi
3
x• 0
0
精选PPT课件
xi
4பைடு நூலகம்
F
0
x?
F
0
x?
精选PPT课件
5
线性化方法:
利用台劳公式 f(x)k n 1 0f(k k )!(a)(xa)kR n(x)
f(a)k n 1 1f(k k )!(a)(x a)kR n(x)
f( x ) f( x 0 ) f( x 0 )x ( x 0 )
物理系统的数学模型
及传递函数

第一节物理系统的数学模型及传递函数

第一节物理系统的数学模型及传递函数

[例2] 液面系统线性化
Back
常数!
4. 单变量函数泰勒级数法 函数y=f(x)在其平衡点(x0,y0)附近的泰勒级数展开式为:
略去含有高于一次的增量∆x=x-x0的项,则:
注: ① 非线性系统的线性化模
型,称为增量方程。 ② y=f(x0) 称 为 系 统 的 静
态方程
非线性环节微分方程的线性化
放大器在大信号输入时输出出现饱和; 磁化曲线有饱和和磁滞回环; 齿轮传动中有间隙。
为了便于研究,对非线性程度不严重的 系统,总是尽可能地将非线性数学模型 转换成近似的线性模型。
1. 常见非线性情况
饱和非线性
Back
死区非线性
间隙非线性
继电器非线性
2. 单摆(非线性)
是未知函数 的非线性函数,
非线性方程 局部线性增量方程
2. 增量方程 增量方程的数学含义
将参考坐标的原点移到系统或元件的平衡工作点上, 对于实际系统就是以正常工作状态为研究系统运动的起 始点,这时,系统所有的初始条件均为零。
注:导数根据其定义是一线性映射,满足叠加原理。
3. 多变量函数泰勒级数法
增量方程 静态方程
[例1] 单摆模型(线性化)
所谓环节,是指可以组成独立的运动方程式的某 一部分。环节可以是一个元件,也可能是一个元 件的一部分或者由几个元件组成。
建立系统数学模型的一般步骤(1)
分析系统的工作原理和系统中各变量间的关 系,确定待研究系统的输入量和输出量。
将系统划分为单向环节,并确定各个环节的
输入量和输出量。(所谓单向环节是指其后 面的环节无负载效应,即后面环节存在与否 对当前环节的动态特性没有影响)
宇宙飞船控制系统就是时变控制的一个例子(宇宙飞船的 质量随着燃料的消耗而变化)。

朱玉华自动控制原理第2章 数学模型2-3

朱玉华自动控制原理第2章 数学模型2-3

G(s) C(s) ……① R(s)
若已知线性定常系统的微分方程为
a0
d nc(t) dt n
a1
d n1c(t) dt n1
an1
dc(t) dt
anc(t)
b0
d mr(t) dt m
b1
d m1r(t) dt m1
bm1
dr(t) dt
bmr(t)
式中,c(t)为输出量,r(t)为输入量。
§2.3 传 递 函 数
一、传递函数的基本概念
指导思想:在零初始条件下,通过拉氏变换,将微分 方程变为s域(复数域)内的代数方程,在s 域内研究系统 的运动规律。必要时,通过拉氏反变换转化为时域形式。
s域(复数域)内的代数方程(即数学模型),称为 传递函数。
1、传递函数的定义
在初始条件为零时,线性定常系统输出量的拉氏变换与 输入量的拉氏变换之比,定义为该系统的传递函数。
RC
du0 (t) dt
u0 (t)
RC
dui (t) dt
G(s) RCs Td s RCs 1 Td s 1
只有当Td<<1时,才有G(s)≈Tds,实际的微分环节趋 于理想微分环节
再如:RL网络,其电路方程为
du0 (t) dt
R L
u0 (t)
dui (t) dt
G(s) Ls Td s Ls 1 Td s 1

G(s)
C(s) R(s)
b1s a0s2
b2 a1s
a2
S的代数方程:
(a0s2 a1s a2 )C(s) (b1s b2 )R(s)
用 d 置换s后得相应的微分方程 dt
a0
d 2c(t) dt 2

自动控制原理(杨叔子)第2章(3) 系统传递函数

自动控制原理(杨叔子)第2章(3) 系统传递函数

(n m) 零点: s=-zi(i=1,2,…m)
极点: s=-zj(j=1,2,…n)7
j1
3.典型环节形式
分子、分母“末1化”,再分解因式
G(s)

s(T1s
K (1s 1) 1)(T 2s2 2Ts
1)
4.传递函数相互转换的MATLAB命令
(1)多项式形式的表达
num=[bm bm-1 … b1 b0];
0.632 0T
4T 0.98 3T
4T t
0
误差 T
4T t
(2)在阶跃输入 下,输出不能立 即达到稳态值。
例3:C
i
ui
R
例4:
uo
u
i
(t)

1 C

idt

iR
uo (t) iR
G(s) U o (s) RCs Ts U i (s) 1 RCs Ts 1
12
2.零极点增益形式
分子、分母首一化,再分解因式
系统增益 K bm / an
零极点增益形式:
G(s) K N (s) K (s z1)(s z2 )(s zm )
D(s)
(s p1)(s p2 )(s pn )
m
(s zi )

K
i1 n
(s pj)
四、典型环节
典型环节的微分方程、传递函数
1.比例环节
微分方程: xo (t) Kxi (tቤተ መጻሕፍቲ ባይዱ ;
传递函数:G(s) K Xi ( s) K
时 间 响 应 : K >1
K >1
K
1 0

第2章 系统的数学模型及传递函数

第2章  系统的数学模型及传递函数

u(t)
R-L-C无源电路网络
L
R
di(t) d 2q(t) u(t) L dt L dt2
ui(t)
i(t) C
uo(t)
R-L-C无源电路网络
20
ui
(t)
Ri (t )
L
d dt
i(t)
1 C
i(t)dt
uo
(t)
1 C
i(t)dt
ui(t)
L
R
i(t) C uo(t)
R-L-C无源电路网络
6
• 实际的系统通常是非线性的,线性只在一定的工 作范围内成立。
• 判别系统的数学模型微分方程是否是非线性的, 可视其中的函数及其各阶导数,如出现高于一次 的项,或者导数项的系数是输出变量的函数,则 此微分方程是非线性的。(P11)
• 非线性微分方程的求解很困难。在一定条件下, 可以近似地转化为线性微分方程,可以使系统的 动态特性的分析大为简化。实践证明,这样做能 够圆满地解决许多工程问题,有很大的实际意义。
5. 系统传递函数只表示系统输入量与输出量的数学关系(描述系统 的外部特性),而没有表示系统中间变量之间的关系(描述系统的内 部特性)。在现代控制理论中,可采用状态空间描述法来对系统的动 态特性进行描述。
34
y(t) k c m f(t)
••

m y(t) c y(t) ky(t) f (t)
输出 b
输出
输出
0
输入
0
输入
0
输入
a 饱和(放大器)
死区(电机)
间隙(齿轮)
A.饱和:如运算放大器当输入大于一定值时,输出被限制在 ±15V,达到饱和。
B.传动间隙:齿轮及丝杠螺母副组成的机床进给传动系统, 有传动间隙,在输入与输出间有滞环关系。P11图2-1

第二章 典型环节的数学模型(2-1)

第二章   典型环节的数学模型(2-1)
18
电机运动方程
1) T(t)=Ki(t) 2) e (t) K d (t)
b b
dt
T(t)——转矩 K——力矩系数 eb(t)——反电势 Kb——反电势常数 ea(t)——电枢两端的电压
i a (t )
R
3) L di(t) Ri(t) e (t) e (t) b a
dt
4)
2
传递函数:
R(s)
1 T 2 s 2 2 Ts 1
C ( s)
式中:——阻尼比, T——振荡环节的时间常数。 频率特性: C ( j ) 1
G ( j ) R ( j ) (1 T 2 2 ) j 2 T
16
R
L
+
i (t )
+
例:RLC电路
r(t)
_
C
传递函数:
I(s) s 1 (R=1 U(s)
RC= )
频率特性:
G jω 1 jω
一阶微分环节可看成一个微分环节与一个比例环节 的并联,其传递函数和频率特性是惯性环节的倒数。
24
7、二阶微分环节
特点:输出量与输入量及输入量的一阶、二阶导数都有关 运动方程: 2
d r(t ) dr(t ) c(t ) T 2ζ T r(t ) 2 dt dt
+ _
D
J
B
19
消去中间变量Eb(s)、T(s)和I(s)
θ (s) K E a (s) s[LJs2 (LB RJ)s (RB KK b )]
如果输入量Ea(s),输出量转速(s),则又可得到:
(s) K E a (s) LJs 2 (LB RJ)s (RB KK b )

第二章物理系统的数学模型及传递函数

第二章物理系统的数学模型及传递函数

依据电学定律列写方程式 。
(1)
(2)
第二章 线性系统的数学模型
例 弹簧阻尼系统
Fs ky
ky
y
f dy dt
y
Ff fv
m
o
F
m
o
F
ma F F Fs Ff f — 粘滞摩擦系数
d 2 y dy m dt2 f dt ky F
k— 弹簧系数 v— 物体相对的移动速度
例1 编写如图1所示RLC电路的微分方程式
例1 编写如图1所示RLC电路的微分方程式
图 1 RLC串联网络
解: (1) 定输入输出量: u ----输入量 uc ----输出量
(2) 列写微分方程 di
L dt Ri uc u
式中
i dq dt
q Cuc
(3)消去中间变量,可得电路微分方程式
LC
d2 dt 2
uc
RC
d dt
uc
第二章 物理系统的数学 模型及传递函数
主要内容:
系统数学模型 线性系统微分方程的建立; 拉氏变换 运用拉氏变换法求解线性微分方程; 传递函数的概念和性质; 结构图的绘制及其等效变换; 结构图和信号流图的关系; 梅逊公式。
本章重点:
通过本章学习,应着重了解控制系统数学模型 的基本知识,熟练掌握线性定常系统微分方程 的建立、传递函数的概念和应用知识、控制系 统方框图的构成和等效变换方法、典型闭环控 制系统的传递函数的基本概念。
xa和xb作为网络的结点。在每一 个节点上,力的和等于零。
xa
xb
f fK K (xa xb )
K
M
fK fM fB MD2xb BDxb
综合两个方程可以得到:

控制工程基础4-第2章 (数学模型-2:传递函数)

控制工程基础4-第2章 (数学模型-2:传递函数)
第三节 传递函数
拉氏变换可以简化线性微分方 程的求解。还可将线性定常微分方 程转换为复数S域内的数学模型— 传递函数。
一、传递函数的概念
二、典型环节的传递函数
一、 传递函数概念
输入
输入拉氏 变换
设一控制系统 r(t) c(t) 系统 G(S)
R(S)
输出 输出拉氏 变换
C(S)
传递函数的定义:
零初始条件下,系统输出量拉氏变换与系 统输入量拉氏变换之比。
R(s)
G1(s)+G2(s)
C(s)
+ G2(s) C2(s)
n C1(s)=R(s)G1(s) C2(s)=R(s)G2(s) G (s)=Σ Gi (s) n个环节的并联 i=1 C(s)=C1(s)+C2(s) =R(s)G1(s)+R(s)G2(s) C(s) =G (s)+G (s) G(s)= R(s) 1 等效 2
2) 传递函数取决于系统的结构和参数, 与外施信号的大小和形式无关。
3) 传递函数为复变量S 的有理分式。
4) 传递函数是在零初始条件下定义 的,不能反映非零初始条件下系统的运 动过程。
二、 基本环节的传递函数
不同的物理系统,其结构差别很 大。但若从系统的数学模型来看,一 般可将自动控制系统的数学模型看作 由若干个典型环节所组成。研究和掌 握这些典型环节的特性将有助于对系 统性能的了解。
结构图特点
• 结构图是方块图与微分方程(传函)的结合。一方面它直观反映了整 个系统的原理结构(方块图优点),另一方面对系统进行了精确的定 量描述(每个信号线上的信号函数均可确定地计算出来) • 能描述整个系统各元部件之间的内在联系和零初始条件下的动态性能, 但不能反映非零条件下的动态性能 • 结构图最重要的作用:计算整个系统的传函 • 对同一系统,其结构图具有非唯一性;简化也具有非唯一性。但得到 的系统传函是确定唯一的. • 结构图中方块≠实际元部件,因为方框可代表多个元件的组合,甚至 整个系统

自动控制理论第二章--线性系统的数学模型全

自动控制理论第二章--线性系统的数学模型全


论 一.物理模型 、数学模型及数学建模
物理模型 :
任何元件或系统实际上都是很复杂的,难以对
它作出精确、全面的描述,必须进行简化或理想化。
简化后的元件或系统称为该元件或系统的物理模型。
简化是有条件的,要根据问题的性质和求解的精确
要求来确定出合理的物理模型。
2
第二章 线性系统的数学模型



制 理
物理模型的数学描述。是指描述系统
零初使条件是指当t≤0时,系统r(t)、c(t)以及它们的各阶
导数均为零。
传递函数
输出信号的拉氏变换 输入信号的拉氏变换
零初始条件
C(s) R(s)
26
第二章 线性系统的数学模型


控 线性系统微分方程的一般形式为:

理 论
制 理 论
F(s)
br (s p1)r
br 1 (s p1)r1
b1 (s p1)
ar 1 s pr1
an s pn
br
B(s)
A(s)
(s
p1
)r
s p1
br 1
d
ds
B(s) A(s)
(s
p1 ) r
s p1
br j
1 dj
j!
ds
j
B(s) A(s)
(s
p1
La
dia (t ) dt
Raia (t )
Ea
+
(1) -
La
if Ra
m
+ ia
Ea ——电枢反电势,其表达式为 Ua
Ea S M
负 载
jmfm
Ea Cem(t) (2) --

第二章物理系统的数学模型及传递函数

第二章物理系统的数学模型及传递函数

要 消去它们, 就要找出中间变量与其它因素间的关系. 感应 电势 E ( t ) 正比于转速 m ( t ) 和激磁电流 I f 产生的磁通量 由于激磁电流是恒定的, 所以磁通量也恒定, 感应电势仅取 决于转速, 并可表示为:
a
(3) 消去中间变量 从式(1)和式(2)中可见,
i a ( t ), E a ( t ), M m ( t ) 是中间变量,
uC (t ) u (t )
m
d x(t ) dt
2
2
f
dx(t ) dt
Kx(t ) F (t )
相似系统:揭示了不同物理现象之间的相似关系
三、非线性系统的线性化
1)线性系统 线性系统是由线性元件组成的系统,线性微分
方程用来描述线性系统。 若微分方程的系数是常数称线性定常系统,或 线性时不变系统。 这是经典控制论主要研究的对象,因为它可以 方便地进行拉氏变换,并求得传递函数。
4.用解析法建立运动方程的步骤
1)分析系统的工作原理和系统中各变量间的关系,确 定出待研究元件或系统的输入量和输出量; 2)从输入端入手(闭环系统一般从比较环节入手), 依据各元件所遵循的物理,化学,生物等规律,列写 各自方程式,但要注意负载效应。所谓负载效应,就 是考虑后一级对前一级的影响。 3)将所有方程联解,消去中间变量,得出系统输入输 出的标准方程。所谓标准方程包含三方面的内容:① 将与输入量有关的各项放在方程的右边,与输出量有 关的各项放在方程的左边;②各导数项按降幂排列; ③将方程的系数通过元件或系统的参数化成具有一定 物理意义的系数。
§2-1 系统的数学模型

线性系统微分方程的建立
步骤:1.分析系统和元件的工作原理,找出 各物理量之间的关系,确定输出量及输入 量。 2.设中间变量,依据物理、化学等定律忽 略次要因素列写微分方程式。 3. 将所有方程联解,消去中间变量,得出系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
dx1 (t dt
)
dx2 (t dt
)
D dx(t) dt
机械平移系统
fi(t)
fi(t)
m
0
m
fm(t) 0
静止(平衡)工作点作为
xo(t)
xo(t) 零点,以消除重力的影响
k
D
fk(t) fD(t)
机械平移系统 及其力学模型
fi (t) fk (t)
fD (t) kxo (t)
数学模型应能反映系统内在的本质特征,同时 应对模型的简洁性和精确性进行折衷考虑。
数学模型的形式
➢ 时间域:微分方程 差分方程 状态方程 (一阶微分方程组)
➢ 复数域:传递函数 结构图
➢ 频率域:频率特性
控制系统的运动微分方程
机电控制系统的受控对象是机械系统。在 机械系统中,有些构件具有较大的惯性和 刚度,有些构件则惯性较小、柔度较大。 在集中参数法中,我们将前一类构件的弹 性忽略将其视为质量块,而把后一类构件 的惯性忽略而视为无质量的弹簧。这样受 控对象的机械系统可抽象为质量-弹簧-阻 尼系统。
x1(t) v1(t)
k
x2(t)
v2(t) 对于弹簧, 受力相同,
fk(t) 变形量不同。
fk (t) k x1(t) x2 (t) kx(t)
k
t
v1
(t
)
v2
(t
)
dt
t
k v(t)dt
✓ 阻尼
v1(t)
v2(t)
x1(t)
x2(t)
fD(t)
fD(t)
D
fD (t) Dv1(t) v2 (t) Dv(t)
uo
(t)
RC
d dt
uo
(t)
uo
(t)
ui
(t)
一般R、L、C均为常数,上式为二阶常系数微 分方程。
若L=0,则系统简化为:
RC
d dt
uo
(t
)
uo
(t
)
ui
(t
)
有源电路网络
i2(t)
ui(t) i1(t)
C
a
R
+
uo(t)
iu1a(t()t
)0 i2 (t
)
ui (t) C duo (t)
进给传动装置示意图及等效力学模型
组合机床动力滑台及其力学模型
控制系统微分方程的列写
➢ 机械系统
机械系统中以各种形式出现的物理现象,都可 简化为质量、弹簧和阻尼三个要素:
✓ 质量
fm(t)
x (t) v (t)
m 参考点
fm (t)
m
d dt
v(t)
m
d2 dt 2
x(t)
✓ 弹簧
fk(t)
R
dt
即:
RC
duo (t) dt
ui
(t)
电动机
T t KT ia t
磁场对载流线圈
作用的定律
ei t
Raia t
La
dia t
dt
em t
基尔霍夫定律
em t
✓ 电容
i(t)
C
u(t) ✓ 电感
i(t) L
u(t)
u(t)
1 C
i(t)dt
u(t) L di(t) dt
R-L-C无源电路网络
L
R
ui(t)
i(t) C
uo(t)
R-L-C无源电路网络
ui
(t)
Ri (t )
L
d dt
i(t)
1 C
i(t)dt
uo
(t)
1 C
i(t)dt
LC
d2 dt 2
建立控制系统的数学模型,并在此基础上对控制系 统进行分析、综合,是机电控制工程的基本方法。如 果将物理系统在信号传递过程中的动态特性用数学表 达式描述出来,就得到了组成物理系统的数学模型。
经典控制理论采用的数学模型主要 以传递函数为基础。而现代控制理论采 用的数学模型主要以状态空间方程为基 础。而以物理定律及实验规律为依据的 微分方程又是最基本的数学模型,是列 写传递函数和状态空间方程的基础。
弹簧-阻尼系统
fi(t)
0
xo(t)
fi (t) fD (t) fk (t)
k
D
D
d dt
xo (t) kxo (t)
fi (t)
弹簧-阻尼系统
系统运动方程为一阶常系数 微分方程。
机械旋转系统
i(t)0
o(t) 0
k Tk(t)
J
J —旋转体转动惯量;
TD(t)
k —扭转刚度系数; D —粘性阻尼系数
控制工程基础
(第二章)
2011年
第二章 控制系统的动态数学模型
一、系统数学模型 二、传递函数 三、典型环节的传递函数 四、系统方框图及其联接 五、物理系统传递函数推导
第二章 控制系统的动态数学模型
本章要熟悉下列内容: ➢ 建立基本环节(质量-弹簧-阻尼系统、电路 网络和电机)的数学模型及模型的线性化 ➢ 重要的分析工具:拉氏变换及反变换 ➢ 经典控制理论的数学基础:传递函数 ➢ 控制系统的图形表示:方块图及信号流图 ➢ 建立实际机电系统的传递函数及方块图
对于给定的动态系统,数学模型表达不 唯一。工程上常用的数学模型包括:微分方 程,传递函数和状态方程。对于线性系统, 它们之间是等价的。
建立数学模型的方法 ➢ 解析法 依据系统及元件各变量之间所遵循的物理或化 学规律列写出相应的数学关系式,建立模型。
➢ 实验法 人为地对系统施加某种测试信号,记录其输出 响应,并用适当的数学模型进行逼近。这种方 法也称为系统辨识。
一、系统数学模型
系统的数学模型 数学模型是描述系统输入、输出量以及内部 各变量之间关系的数学表达式,它揭示了系 统结构及其参数与其性能之间的内在关系。
静态数学模型:静态条件(变量各阶导数为 零)下描述变量之间关系的代数方程。反映 系统处于稳态时,系统状态有关属性变量之 间关系的数学模型。
动态数学模型:描述变量各阶导数之间 关系的微分方程。描述动态系统瞬态与过渡 态特性的模型。也可定义为描述实际系统各 物理量随时间演化的数学表达式。动态系统 的输出信号不仅取决于同时刻的激励信号, 而且与它过去的工作状态有关。微分方程或 差分方程常用作动态数学模型。
fk
(t)
m
d2 dt 2
xo (t
xo
(t)
m
d2 dt 2
yo
(t
)
D
d dt
yo (t) kyo (t)
fi (t)
式中,m、D、k通常均为常数,故机械平移系 统可以由二阶常系数微分方程描述。
显然,微分方程的系数取决于系统的结 构参数,而阶次等于系统中独立储能元 件(惯性质量、弹簧)的数量。
柔性轴
粘性液体
齿轮
D
Tk (t) k i (t) o (t)
TD
(t )
D
d dt
o
(t )
J
d2 dt 2
o (t)
Tk (t) TD (t)
J
d2 dt 2
o (t)
D
d dt
o (t)
ko (t)
ki (t)
➢ 电路系统
电路系统三个基本元件:电阻、电容和电感。
✓ 电阻
i(t)
R
u(t) u(t) R i(t)
相关文档
最新文档