初二上册数学勾股定理及其逆定理知识点总结
初二上册数学知识点勾股定理及其逆定理
初二上册数学知识点勾股定理及其逆定理初二上册数学知识点勾股定理及其逆定理一、勾股定理:1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的`方法用拼图的方法验证勾股定理的思路是:(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
4.勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c 为三边的三角形是直角三角形,但此时的斜边是b.2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的平方和;(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
三、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。
五、勾股定理及其逆定理的应用解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。
初二数学知识点梳理:勾股定理
初二数学知识点梳理:勾股定理知识点总结一、勾股定理:勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:确定最大边;算出最大边的平方与另两边的平方和;比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
三、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。
五、勾股定理及其逆定理的应用解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。
常见考法直接考查勾股定理及其逆定理;应用勾股定理建立方程;实际问题中应用勾股定理及其逆定理。
勾股定理及其逆定理的内容
勾股定理及其逆定理的内容勾股定理和逆定理都是数学中非常经典的内容,不过听起来可能会有点儿陌生。
其实,它们非常实用,而且还很有趣。
让我们一起来聊聊吧。
1. 勾股定理的基本概念1.1 什么是勾股定理首先,咱们得知道勾股定理到底是什么。
它是关于直角三角形的一个定理。
简单来说,直角三角形的两条直角边(我们叫它们“勾”和“股”)的平方和等于斜边(我们叫它“弦”)的平方。
这就是勾股定理的核心内容。
听起来有点复杂,但举个例子就明白了。
假设你有一个直角三角形,直角边长分别是3和4,那么这两个边的平方和就是3²+4²=9+16=25。
斜边的平方也得等于25,所以斜边的长度就是5。
1.2 生活中的应用这个定理在我们的生活中非常有用。
比如说,如果你要测量房间的对角线长,只需要知道长和宽就能算出来。
又或者你在设计一些东西时,勾股定理能帮你确保每个角都是直角。
它就像是生活中的一个小工具,随时随地帮你解决问题。
2. 勾股定理的证明2.1 几何证明说到证明,勾股定理有几种不同的方法,其中几何证明是最直观的。
简单来说,就是我们可以用几何图形来证明这个定理。
想象一下,你在一个直角三角形的每一边上画出一个正方形,这些正方形的面积就像是拼图一样,可以用来证明勾股定理。
看起来可能会有点复杂,但其实就是一种图形化的方法,让定理更容易理解。
2.2 代数证明除了几何证明,还有一种代数证明的方法。
我们可以用代数公式来证明勾股定理的正确性。
这种方法比较适合那些喜欢公式和计算的人。
它用的是代数的语言,通过一些方程式来展示定理的正确性。
3. 勾股定理的逆定理3.1 什么是逆定理勾股定理的逆定理其实也很有趣。
它告诉我们,如果一个三角形的三边满足勾股定理的条件,那么这个三角形就是直角三角形。
也就是说,如果你知道一个三角形的三条边分别是a、b和c,并且它们满足a²+b²=c²的关系,那么这个三角形肯定是直角三角形。
初二上册数学期中复习要点:勾股定理及其逆定理
初二上册数学期中复习要点:勾股定理及其逆定理学习是一个墨守成规的进程,也是一个不时积聚不时创新的进程。
下面小编为大家整理了初二上册数学期中温习要点:勾股定理及其逆定理,欢迎大家参考阅读!一、勾股定理:1.勾股定理内容:假设直角三角形的两直角边长区分为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:勾股定理的证明方法很多,罕见的是拼图的方法用拼图的方法验证勾股定理的思绪是:(1)图形进过割补拼接后,只需没有堆叠,没有空隙,面积不会改动;(2)依据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
4.勾股定理的适用范围:勾股定理提醒了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,关于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理1.逆定理的内容:假设三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的逆定理是判定一个三角形能否是直角三角形的一种重要方法,它经过〝数转化为形〞来确定三角形的能够外形,在运用这一定理时,可用两小边的平方和与较长边的平方作比拟,假定它们相等时,以a,b,c为三边的三角形是直角三角形;(2)定理中a,b,c及a2+b2=c2只是一种表现方式,不可以为是独一的,如假定三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.2.应用勾股定理的逆定理判别一个三角形能否为直角三角形的普通步骤:(1)确定最大边;(2)算出最大边的平方与另两边的平方和;(3)比拟最大边的平方与别两边的平方和能否相等,假定相等,那么说明是直角三角形。
三、勾股数可以构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足〝两个较小面积和等于较大面积〞。
五、勾股定理及其逆定理的运用处置圆柱正面两点间的距离效果、航海效果,折叠效果、梯子下滑效果等,常直接直接运用勾股定理及其逆定理的运用。
勾股定理及勾股定理的逆定理
八年级上册全科资料群5526293231. 勾股定理文字表述符号语言在直角三角形中,如果两直角边的长分别为a和b,斜边长为c,那么a2+b2=c2.2.勾股定理命名依据我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.因此,我们称上述定理为勾股定理,国外称为毕达哥拉斯定理.勾股定理反映了直角三角形中三边之间的平方关系,它把图形的特征转化成了数量之间的关系.相传2500多年前,古希腊有一位非常著名的数学家毕达哥拉斯,他善于观察和思考问题,经常从生活中寻找一些数学问题,有一次,他到朋友家做客,发现朋友家用砖铺成的地面中反映了直角三角形三边长度平方的某种数量关系.(2)在应用时,要分清哪个是直角边的长、斜边的长及直角边和斜边的位置;(3)已知直角三角形的两条边长,可求第三条边长.除勾股定理外,要注意勾股定理的如下两种变形:①b2=c2–a2,②a2 =c2–b2(其中a和b为直角边,c为斜边).示范例题例题1. (解析题)在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a=6,b=8,求c;(2)若b=5,c=13,求a;(3)若a:b=3:4,c=20,求a和b.【答案】见解析【解析】在△ABC中,∠C=90°,由勾股定理,得a2+b2=c2.(1)∵a2+b2=c2,∴c2=a2+b2=62+82=100,∴c=10.(2)∵a2+b2=c2,∴a2=c2-b2=132-52=144,∴a=12.点拨已知直角三角形两边之比及第三边的长,常用设参数的方法把两边表示出来,然后利用勾股定理求出第三边,就可求出两边的长.知识点2 勾股定理的证明【重点】勾股定理的验证方法较多,例如,以下动图很好地展示了边长为a的正方形的面积加上边长为b的正方形的面积,等于边长为c勾股定理证明勾股定理证明最佳勾股定理证明勾股定理证明另外,还有常用的拼图法:式,通过化简等运算就可验证勾股定理.举例列表如下:拼图法1拼图法2拼图法3 划重点用拼图法证明勾股定理的关键是抓住图形面积间的关系,即用不同的面积形式表示同一个图形的面积.示范例题例题1. (解析题)如图1,是用硬纸板做成的两个完全一样的直角三角形,两直角边的长分别为a和b,斜边长为c,图2是以c 为直角边的等腰直角三角形,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,写出它是什么图形?(2)用这个图形证明勾股定理;(3)假设图1中的直角三角形有若干个,你能运用图1中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图.【答案】见解析【解析】(1)如下图,是直角梯形.(3)如下图所示,拼出能证明勾股定理的图形.用拼图法证明勾股定理,关键是抓住图形面积间的关系,利用同一个图形面积的不同表示法,列等式证明.知识点3 勾股定理的逆定理【重点】1. 勾股定理的逆定理文字表述三角形是直角三角形.数学语言在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,如果a2+b2=c2,那么△ABC是直角三角形.的思想.(3)在判定时不能说成“在直角三角形中”“直角边”“斜边”,因为还没有确定是直角三角形.(4)a2+b2=c2只是一种表现形式,满足a2=b2+c2或b2=a2+ c2的也是直角三角形.2. 直角三角形的判定方法(1)利用定义如果有一个角是直角,那么这个三角形是直角三角形.当题目中的条件与角有关时,常用此方法.(2)利用勾股定理的逆定理.先找出最长边,再计算两个短边的平方和,看它与最长边的平方是否相等.若相等,则是直角三角形;若不相等,则不是直角三角形.当已知三边的长或三边之间的关系时,常用此方法.示范例题例题1. (解析题)判断满足下列条件的三角形是不是直角三角形,若是,请指出哪个角是直角.(1) 在△ABC中,AB=12,BC=20,CA=16;(2) 在△ABC中,AB=52,BC=42,CA=32;(3) △ABC的三边分别为2n,n2 –1,n2 +1(n为正整数).【答案】见解析【解析】(1) ∵AB2 +CA2=122+162=144 +256=400,而BC2=400,∴AB2+CA2=BC2,∴△ABC是直角三角形,且∠A为直角.(2)∵BC2+CA2=(42)2+(32)2=256+81=337,而AB2=(52)2=625,∴BC2+CA2≠AB2,∴△ABC不是直角三角形.(3) ∵(n2 +1)2 = n4 +2n2 +1,(n2-1)2 =n4 –2n2+1,(2n)2 =4n2.∴(n2+1)2 =n4 +2n2 +1=(n4 -2n2+1) +(4n2) ,即(n2 +1)2 = (n2 –1)2 +(2n)2,∴△ABC是直角三角形,且长度为n2 +1的边所对的角为直角.做第(2)题时要注意不要由32+42=52,得出三角形是直角三角形.知识点4 勾股数【基础】1. 定义2. 判别勾股数的一般步骤这三个数不是一组勾股数.(2)如果一组数是勾股数,那么当它们扩大相同整数倍(3)常见的勾股数有:①3,4,5;②6,8,10;③8,15,17;④7,24,25;⑤5,12,13;⑥9,12,15.(1)毕达哥拉斯发现的勾股数组:2n+1,2n2 +2n,2n2+2n+1(n是正整数).当n=2时,可以得到一组勾股数5,12,13.(2)柏拉图发现的勾股数组:2n,n2-1,n2 +1(n>1,且n是正整数).当n=4时,可以得到一组勾股数8,15,17.示范例题例题1.(单选题)[2019陕西宝鸡陈仓区期末]下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,6,9【答案】D【解析】A、32+42=52,是勾股数;B、72+242=252,是勾股数;C、82+152=172,是勾股数;D、52+62≠92,不是勾股数.故选D.K重难题型1勾股定理的简单应用示范例题例题1.(单选题)[2020湖北黄冈蕲春县期中]如图在正方形网格中,每个小正方形的边长均为1,则在△ABC中,边长为无理数的边有()A.3条B.2条C.1条D.0条【答案】B题型2 勾股定理的证明勾股定理的证明一般通过同一个图形,不同的面积表示形式,或两个图形面积相等,列出等式,然后变形证明.示范例题例题1. (解析题)中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形说明a2+b2=c2.【答案】见解析点拨根据题意,我们可在图中找到等量关系,大正方形面积=小正方形面积+四个直角三角形面积,列出等式化简即可得出勾股定理的表达式.题型3 勾股定理的逆定理的简单应用已知三边判断是否是直角三角形时,只需验证两条较小边的平方和是否等于最大边的平方即可.若相等,则是直角三角形,且最长边所对的角是直角.若不相等,则不是直角三角形.示范例题例题1.(单选题)[2020山东济南历城区校级期中]在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个【答案】B【解析】①∠A+∠B=∠C,是直角三角形;②∠A:∠B:∠C=1:2:3,是直角三角形;③∠A=2∠B=3∠C,不是直角三角形;④∠A=∠B=∠C,不是直角三角形,是等边三角形,能确定△ABC是直角三角形的条件有2个.故选B.。
初二勾股定理逆定理公式
初二勾股定理逆定理公式1. 勾股定理勾股定理是初中数学中非常重要的定理之一,它是由古希腊数学家毕达哥拉斯(Pythagoras)提出的。
勾股定理的公式表达如下:a^2 + b^2 = c^2其中 a、b、c 分别表示直角三角形的两条直角边和斜边,满足该公式的三条边的比例关系。
2. 逆定理逆定理是勾股定理的一个重要推论,它在解决初中数学中一些几何问题时非常有用。
逆定理的公式表达如下:如果 a^2 + b^2 = c^2 成立,那么这三个数构成一个直角三角形。
逆定理的意义在于,当我们已知某个三角形的边长满足勾股定理的公式时,可以根据这个公式判断该三角形是否为直角三角形。
3. 应用示例为了更好地理解逆定理的应用,下面通过一个例子来说明。
例子:已知一个三角形的三边分别为 3、4 和 5,我们要判断这个三角形是否为直角三角形。
根据逆定理,我们可以将已知的三边长度代入勾股定理的公式中,并验证等式是否成立。
3^2 + 4^2 = 5^29 + 16 = 25计算结果符合等式,所以根据逆定理,我们可以得出结论,这个三角形是一个直角三角形。
4. 注意事项在应用逆定理时,需要注意以下几点:•应用逆定理时,必须满足勾股定理的公式,即 a^2 + b^2 = c^2,才能判断三角形是否为直角三角形。
•如果已知三边的长度满足 a^2 + b^2 = c^2,但等式的两边可能相差一个数的误差,这时我们可以使用近似值来验证等式是否成立。
•在进行计算时,应注意数值的精确性,尽量避免精度误差带来的影响。
5. 总结初二勾股定理逆定理公式是初中数学中重要的概念之一,在几何学习中有着广泛的应用。
逆定理可以帮助我们判断已知三边长度的三角形是否为直角三角形,为解决几何问题提供了便利。
在应用逆定理时,我们应注意勾股定理公式的条件和计算的精确性,以得出准确的结论。
希望通过本文的介绍,您对初二勾股定理逆定理公式有了更深入的理解和应用。
数学八年级上册知识点第一章
数学八年级上册知识点第一章数学八年级上册知识点第一章1.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾最短的边、股较长的直角边、弦斜边。
勾股定理又叫毕达哥拉斯定理2.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3.勾股数:满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用例题精讲:练习:例1:若一个直角三角形三边的.长分别是三个连续的自然数,则这个三角形的周长为解析:可知三边长度为3,4,5,因此周长为12(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为解析:可知三边长度为6,8,10,则周长为24例2:已知直角三角形的两边长分别为3、4,求第三边长.解析:第一种情况:当直角边为3和4时,则斜边为5第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7例3:一个直角三角形中,两直角边长分别为3和4,以下说法正确的是( )A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为20解析:根据勾股定理,可知斜边长度为5,选择C数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式〞。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
八年级数学上册 知识点总结
八年级数学上册知识点总结数学》(八年级上册)知识点总结第一章勾股定理1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。
2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a²+b²=c²,那么这个三角形是直角三角形。
3、勾股数:满足a²+b²=c²的三个正整数,称为勾股数。
第二章实数一、实数的概念及分类1、实数的分类:正有理数、有理数零有限小数和无限循环小数、实数负有理数、正无理数、无理数无限不循环小数、负无理数。
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一特点,归纳起来有四类:1)开方开不尽的数,如7、32等;2)有特定意义的数,如圆周率π,或化简后含有π的数,如222π+8等;3)有特定结构的数,如0.xxxxxxxx01…等;4)某些三角函数值,如sin60等。
二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=−b,反之亦成立。
2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值(|a|≥)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥;若|a|=−a,则a≤。
3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和−1.零没有倒数。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算。
三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的算术平方根。
八年级数学上册勾股定理知识点笔记
八年级数学上册勾股定理知识点笔记基础知识点1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。
即:a?+b?=c?要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边;(3)利用勾股定理可以证明线段平方关系的问题。
2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a?+b?=c?,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c?=a?+b?,则△ABC是以∠C为直角的直角三角形(若c?>a?+b?,则△ABC是以∠C为钝角的钝角三角形;若c?<a?+b?,则△ABC为锐角三角形)。
3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。
3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。
初二数学--勾股定理讲义
初二数学 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c ,那么一定有222c b a =+勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在R t△AB C中,∠C=90°①若a=5,b=12,则c=___________; ②若a =15,c=25,则b =___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c =10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nﻩB 、n+1ﻩC 、n2-1ﻩD 、1n 2+(3)在R t△A BC 中,a,b,c为三边长,则下列关系中正确的是( )A.222a b c += B . 222a cb +=C. 222c b a += D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25ﻩﻩB 、14ﻩC 、7ﻩ ﻩD 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
八年级上册数学知识点总结非常全
北师大版《数学》(八年级上册)知识点总结大战场中学第一章勾股定理1、勾股定理直角三角形两直角边a,b 的平方和等于斜边222 c 的平方,即a b c作用:用来在直角三角形中已知两边求第三边的长度2、勾股定理的逆定理如果三角形的三边长a,b, c 有关系a2b2c 2 ,那么这个三角形是直角三角形。
作用:已知三边用来判断三角形是否为直角三角形3、勾股数:满足a2 b 2 c 2的三个正整数,称为勾股数。
常见的勾股数:3,4,5 ; 6,8,10第二章实数一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:( 1)开方开不尽的数,如7 , 3 2 等;( 2)有特定意义的数,如圆周率π,或化简后含有π的数,如π+8等;3(3)有特定结构的数,如 0.1010010001 , 等;(4)某些三角函数值,如 sin60o等二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0, a=— b,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
是它本身,也可看成它的相反数,若|a|=a,则 a≥0;若 |a|=-a,则3、倒数(|a|≥0)。
零的绝对值a≤0。
如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。
倒数等于本身的数是 1 和 -1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于 a,即 x2=a,那么这个正数x 就叫做 a 的算术平方根。
八上数学勾股定理必背知识点总结
第一章 勾股定理1、1-25的平方:12=1 22=4 32=9 42=16 52=25 62=36 72=49 82=64 92=81 102=100 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400 212=441222=484232=529242=576252=6252、勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果 a ,b 和 c分别表示直角三角形的两直角边和斜边,那么 a 2 + b 2 = c 2.几何语言:在 Rt△ABC 中,由勾股定理得 c 2=a 2 + b 2 或a 2=c 2-b 2 或b 2=c 2-a 23、A 、B 、C 三个正方形的面积之间的关系:以直角三角形两直角边为边长的两个小正方形的面积的和,等于以斜边为边长的正方形的面积.即A 的面积+B 的面积=C 的面积4、用面积求高:直角三角形两直角边的积等于斜边与斜边上高的积.即AC×BC=AB×CD5、 直角三角形:a 2+b 2=c 2锐角三角形:a 2+b 2˃c 2 钝角三角形:a 2+b 2˂c 26、勾股定理的逆定理:如果三角形的三边长a,b,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.其中a,b 是较小两边,c 是最长边.几何语言:在 △ABC 中, ∵a 2+b 2=c 2∴△ABC 是直角三角形 ∴∠C=90°ABCC B A7、勾股数:满足a...,称为勾股数..2.+b..2.=c..2.的三个正整数判断勾股数的方法:(1)必须是三个正整数.(2)必须满足较小两个数的平方和等于最大数的平方.常见的勾股数有:(选择填空可以用,大题不能用)3 4 5 5 12 13 7 24 258 15 17 9 40 41 及其倍数。
北师大版八年级上册数学第2讲《勾股定理逆定理》知识点梳理
北师大版八年级上册数学第 2 讲《勾股定理逆定理》知识点梳理【学习目标】1.理解勾股定理的逆定理,并能与勾股定理相区别;2.能运用勾股定理的逆定理判断一个三角形是否是直角三角形;3.理解勾股数的含义;4.通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力.【要点梳理】要点一、勾股定理的逆定理如果三角形的三条边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形首先确定最大边(如c ).验证c2与a2+b2是否具有相等关系.若c2=a2+b2,则△ABC 是∠C=90°的直角三角形;若c2≠a2+b2,则△ABC 不是直角三角形.要点诠释:当a2+b2<c2时,此三角形为钝角三角形;当a2+b2>c2时,此三角形为锐角三角形,其中c 为三角形的最大边.要点三、勾股数满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x、y、z 为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a、b、c 是勾股数,当t 为正整数时,以at、bt、ct 为三角形的三边长,此三角形必为直角三角形. 要点诠释:(1)n2-1,2n,n2+1 (n >1, n 是自然数)是直角三角形的三条边长;(2)2n2+ 2n, 2n +1, 2n2+ 2n +1(n≥1,n 是自然数)是直角三角形的三条边长;(3)m2-n2 , m2+n2 , 2mn(m >n, m、n 是自然数)是直角三角形的三条边长;【典型例题】⎛ 3 ⎫ ⎛ 4 ⎫ 类型一、勾股定理的逆定理1、判断由线段a ,b ,c 组成的三角形是不是直角三角形.(1) a =7, b =24, c =25;(2) a = 4 , b =1, c = 3 ;3 4(3) a = m 2 - n 2 , b = m 2 + n 2 , c = 2mn (m > n > 0 ); 【思路点拨】判断三条线段能否组成直角三角形,关键是运用勾股定理的逆定理:看较短的两条线段的平方和是否等于最长线段的平方.若是,则为直角三角形,反之,则不是直角三角形.【答案与解析】解:(1)∵ a 2 + b 2 = 72 + 242 = 625 , c 2 = 252 = 625 ,∴ a 2 + b 2 = c 2 .∴ 由线段a ,b ,c 组成的三角形是直角三角形.2 (2)∵ a > b > c , b 2 + c 2 = 12 + ⎪ ⎝ 4 ⎭ = 1+ 9 = 25 16 16 2 , a 2 = ⎪ ⎝3 ⎭ = 16 , 9∴ b 2 + c 2 ≠ a 2 .∴ 由线段a ,b ,c 组成的三角形不是直角三角形.(3)∵ m > n > 0 ,∴ m 2 + n 2 > 2mn , m 2 + n 2 > m 2 - n 2 .∵ a 2 + c 2 = (m 2 - n 2 )2 + (2mn )2 = m 4 - 2m 2n 2 + n 4 + 4m 2n 2 = m 4 + 2m 2n 2 + n 4 ,b 2 = (m 2 + n 2 )2 = m 4 + 2m 2n 2 + n 4 ,∴ a 2 + c 2 = b 2 .∴ 由线段a ,b ,c 组成的三角形是直角三角形.【总结升华】解此类题的关键是准确地判断哪一条边最大,然后再利用勾股定理的逆定理进行判断, 即首先确定最大边,然后验证c 2 与a 2 + b 2 是否具有相等关系,再根据结果判断是否为直角三角形. 举一反三:【变式】(2015 春•安陆市期中)发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5, 12,13;(3)12,15,20;(4)7,24,25.其中能作为直角三角形的三边长的有()A.1 组B.2 组C.3 组D.4 组【答案】C.解:①∵82+152=172,∴能组成直角三角形;②∵52+122=132,∴能组成直角三角形;③122+152≠202,∴不能组成直角三角形;④72+242=252,∴能组成直角三角形.故选C.2、(2016 春•丰城市期末)如图,已知四边形ABCD 中,∠B=∠90°,AB=3,BC=4,CD=12,AD =13,求四边形ABCD 的面积.【思路点拨】由AB=3,BC=4,∠B=90°,应想到连接AC,则在Rt△ABC 中即可求出△ABC 的面积,也可求出线段AC 的长.所以在△ACD 中,已知AC,AD,CD 三边长,判断这个三角形的形状,进而求得这个三角形的面积.【答案与解析】解:连接AC,在△ABC 中,因为∠B=90°,AB=3,BC=4,所以AC 2=AB2+BC 2= 32+ 42= 9 +16 = 25 ,所以AC=5,在△ACD 中,AD=13,DC=12,AC=5,所以DC 2+AC 2= 52+122= 25 +144 = 169 = 132=AD2,即DC 2+AC 2=AD2.所以△ACD 是直角三角形,且∠ACD=90°.所以S四边形ABCD =S△ABC+S△ACD=1g AB g BC +1AC g DC2 2=1⨯3⨯ 4 +1⨯5⨯12 = 6 + 30 = 36 .2 2【总结升华】有关四边形的问题通常转化为三角形的问题来解,本题是勾股定理及逆定理的综合考察.类型二、勾股定理逆定理的应用3、已知:a, b, c 为∆ABC 的三边且满足a2+b2+c2+ 338 = 10a + 24b + 26c ,试判断∆ABC 的形状.【答案与解析】解:∵ a2+b2+c2+ 338 = 10a + 24b + 26c∴a 2-10a +b 2- 24b +c 2- 26c + 338 = 0(a - 5)2+ (b -12)2+ (c -13)2= 0∴a = 5, b = 12, c = 13 ,a 2+b 2=c 2∴△ABC 是直角三角形.【总结升华】此类问题中要判断的三角形一般都是特殊三角形,一定要善于把题目中已知的条件等式进行变形,从而得到三角形的三边关系.对条件等式进行变形常用的方法有配方法,因式分解法等. 举一反三:【变式】请阅读下列解题过程:已知a、b、c 为△ABC 的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC 的形状.解:∵a2c2﹣b2c2=a4﹣b4,第一步∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),第二步∴c2=a2+b2,第三步∴△ABC 为直角三角形.第四步问:(1)在上述解题过程中,从哪一步开始出现错误:;(2)错误的原因是:;(3)本题正确的结论是:.【答案】解:(1)第三步;(2)方程两边同时除以(a2﹣b2)时,没有考虑(a2﹣b2)的值有可能是0;(3)∵c2(a2﹣b2)=(a2+b2)(a2﹣b2)∴c2=a2+b2 或a2﹣b2=0∵a2﹣b2=0∴a+b=0 或a﹣b=0∵a+b≠0∴c2=a2+b2 或a﹣b=0∴c2=a2+b2 或a=b∴该三角形是直角三角形或等腰三角形.4、(2015•秦皇岛校级模拟)如图,铁路MN 和铁路PQ 在P 点处交汇,点A 处是第九十四中学,AP=160 米,点A 到铁路MN 的距离为80 米,假使火车行驶时,周围100 米以内会受到噪音影响.(1)火车在铁路MN 上沿PN 方向行驶时,学校是否会受到影响?请说明理由.(2)如果受到影响,已知火车的速度是180千米/时那么学校受到影响的时间是多久?【思路点拨】(1)过点A 作AE⊥MN 于点E,由点A 到铁路MN 的距离为80 米可知AE=80m,再由火车行驶时,周围100 米以内会受到噪音影响即可直接得出结论;(2)以点A 为圆心,100 米为半径画圆,交直线MN 于BC 两点,连接AB、A C,则AB=AC=100m,在Rt△ABE 中利用勾股定理求出BE 的长,进而可得出BC 的长,根据火车的速度是180 千米/时求出火车经过BC 是所用的时间即可.【答案与解析】解:(1)会受到影响.过点A 作AE⊥MN 于点E,∵点A 到铁路MN 的距离为80 米,∴AE=80m,∵周围100 米以内会受到噪音影响,80<100,∴学校会受到影响;(2)以点A 为圆心,100 米为半径画圆,交直线MN 于BC 两点,连接AB、AC,则AB=AC=100m,在Rt△ABE 中,∵AB=100m,AE=80m,∴BE= ==60m,∴BC=2BE=120m,∵火车的速度是180 千米/时=50m/s,∴t= ==2.4s.答:学校受到影响的时间是2.4 秒.【总结升华】题考查的是勾股定理的应用,在解答此类题目时要根据题意作出辅助线,构造出直角三角形,再利用勾股定理求解.。
八年级上册数学知识点总结非常全
北师大版《数学》(八年级上册)知识点总结大战场中学第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 作用:用来在直角三角形中已知两边求第三边的长度 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
作用:已知三边用来判断三角形是否为直角三角形3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
常见的勾股数:3,4,5;6,8,10第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
八上数学勾股定理知识点
勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。
勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2.勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:①有一个角为90°的三角形是直角三角形。
②有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:①确定最大边(不妨设为c);②若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:①直角三角形斜边上的中线等于斜边的一半②在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
③在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:①已知直角三角形的两边求第三边;②已知直角三角形的一边,求另两边的关系;③用于证明线段平方关系的问题; ④利用勾股定理,作出长为n 的线段。
二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。
(也称为二次方根),也就是说如果x 2=a ,那么x 就叫做a 的平方根。
2、平方根的性质:①一个正数有两个平方根,它们互为相反数;一个正数a 的正的平方根,记作“a ”,又叫做算术平方根,它负的平方根,记作“—a ”,这两个平方根合起来记作“±a ”。
初二数学勾股定理讲义
初二数学 勾股定理【知识点归纳】考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是() A 、2n B 、n+1 C 、n 2-1 D 、1n 2+(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )A.222a b c +=B. 222a c b +=C. 222c b a +=D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
(1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
(2)已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A 、242c mB 、36 2c mC 、482c mD 、602c m (3)已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A 、5B 、25C 、7D 、15例3:探索勾股定理的证明有四个斜边为c 、两直角边长为a,b 的全等三角形,拼成如图所示的五边形,利用这个图形证明勾股定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二上册数学勾股定理及其逆定理知识点总结
初二上册数学勾股定理及其逆定理知识点总结
一、勾股定理:
1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是:
(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;
(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
3.勾股定理的适用范围:
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理
1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的'逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形
状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;
(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c 为三边的三角形是直角三角形,但此时的斜边是b.
2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:
(1)确定最大边;
(2)算出最大边的平方与另两边的平方和;
(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
三、勾股数
能够构成直角三角形的三边长的三个正整数称为勾股数.
四、一个重要结论:
由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。
五、勾股定理及其逆定理的应用
解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。