人教版九下第一次月考试题及答案

合集下载

精选九年级历史下学期第一次月考试题新人教版

精选九年级历史下学期第一次月考试题新人教版

2016/2017学年度第二学期3月份月考九年级历史试卷(本试卷满分50分,考试时间50分钟)提示:请将所有答案写到答题纸上一、选择题(本项共25题,每题1分,25分。

每题四个选项中只有一项正确)1、关于半坡和河姆渡原始居民的生活说法不正确的一项是()A.开始农耕生产B.使用铁制农具C.能建造房屋D.过定居生活2.史学家吕思勉的《中国制度史》在论述“国体“时,把中国历史分为三个时代:部落时代、封建时代、郡县时代。

其中构成“封建时代”的主要制度是()A.皇帝制度和中央集权B.三公九卿制 C.三省六部制D.分封制3.《史记》记载,秦孝公死后,太子即位,守旧的贵族诬告商鞅“谋反”,商鞅也因此遭遇了车裂的命运。

这主要是因为商鞅变法触动了大贵族的利益。

商鞅变法内容中,最能触动大贵族利益的是()A.国家承认土地私有 B.允许土地自由买卖C.根据军功大小授予爵位和田宅 D.建立县制4.贾谊在《治安策》中认为:欲天下之治安,莫若众建诸侯而少其力。

这一思想启发了西汉政府实施()A.分封制 B.郡县制 C.推恩令 D.科举制5.下面有关西藏历史的说法,正确的是()①唐朝时的吐蕃人是藏族的祖先②元朝时设宣政院,管辖西藏地区③清初顺治帝赐予西藏佛教首领达赖五世“达赖喇嘛”封号④清朝设置伊犁将军代表清政府管理西藏地区A.①③④ B.②③④ C.①②③ D.①②④6、“水旱从人,不知饥馑,时无荒年,天下谓之‘天府’也。

”是对下列哪一工程的评价()A.都江堰 B.长城 C.灵渠 D.大运河7.古代中国科技和文学艺术成就辉煌。

下列搭配都正确的是()A.蔡伦:造纸术/施耐庵:《西游记》B.毕昇:指南针/李时珍:《天工开物》C.王羲之:《兰亭序》/曹雪芹:《红楼梦》D.顾恺之:《洛神赋图》/司马迁:《资治通鉴》8.中国一位民族资本家说:“我之廉价工人,彼(西方国家)亦得而使用;我之丰富原料,彼亦得而购买,就地制造,就地卖出,运费既省,关税无多,我之便利即彼得便利……”上述历史现象可能发生在哪一条约签订后()A.《南京条约》 B.《天津条约》 C.《马关条约》 D.《辛丑条约》9、小芳到图书馆查阅有关国民党历史的资料,发现有用民国纪年记载的历史事件,此事件最有可能是()A.虎门销烟B.戊戌变法C.武昌起义D.台儿庄战役10. 日本学者福泽谕吉的《文明论概略》就社会转型的问题说“汲取欧洲文明,必须先其难者而后其易者,首先变革人心,然后改变政令,最后达到有形的物质。

九年级下册语文第一次月考试卷及答案

九年级下册语文第一次月考试卷及答案

九年级下期语文第一次月考试卷(分数:120分时间:120分钟)姓名学号分数一、语言积累与运用(30分)1.下列词语中加点的字读音全对的一项是()(2分)A.蓬蒿.(hāo) 荇.藻(xíng) 蘸.着(zhàn) 亘.古(ɡèn)B.绽.出(zhàn) 间.或(jiān) 羼.水(chàn) 愤懑.(mân)C.戳.到(chuō) 休憩.(qì) 荫.庇(yìng) 枭.鸟(xiāo)D.绯.红(fēi) 踝.骨(huái) 黝.黑(yǒu) 慰藉.(jiâ)2.下列字形完全正确的一项是()(2分)A.走头无路海市蜃楼攫取阔绰B.漠不关心周道如砥阴霾默契C.猝不及防嗟来之食侧隐卑微D.舍生取义苦心孤旨荣膺虬须3.下列加点成语使用不正确的一项是【A】A.阳春三月,草长莺飞,同学们纷纷相约来到藉河畔,或戏水玩沙,或放风筝,在大自然中尽情享受着天伦之乐....。

B.黄晓明担任《中国梦之声》选手的导师,招来诸多质疑,韩红却劝大家不要吹毛求...疵.,因为艺术都是相通的。

C.莫言获得诺贝尔文学奖后,成为了家喻户晓....的人物。

D. 诵读经典对提升学生修养、陶冶学生性情的作用是不容置疑....的。

4.依次填入下面一段文字横线处的语句,衔接最恰当的一组是()蜜蜂可以搜索人为设埋的地雷。

蜜蜂为什么具有如此非凡本领呢?因为蜜蜂,。

加之。

因此在搜索同产面积的情况下,。

①它们的工作远远比狗有效②在长期生存竞争中形成的嗅觉十分敏锐③这种昆虫经常是群体动物④可以识别出狗无法分辨的许多种细微气体A.①②③④B.②①③④C.③①②④D.②④③①4.选择下列句子没有语病的一项。

()(2分)A.我们中学生如果缺乏创新精神,也不能适应知识经济时代的要求。

B.广深高速公路是广州和特区深圳的重要交通要道。

C.社会的发展需要具有综合能力的人才,所以,我们在日常的学习生活中应该注重培养自己解决问题、观察问题和分析问题的能力。

人教版数学九年级(下)第一次月考数学试卷(含答案)

人教版数学九年级(下)第一次月考数学试卷(含答案)

九年级(下)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.|﹣3|﹣1的值等于()A.4B.﹣4C.±4D.22.下列计算正确的是()A.a2+a2=2a4B.a2•a3=a6C.(a+1)2=a2+1D.(﹣a2)2=a43.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×103吨B.6.75×104吨C.0.675×105吨D.67.5×103吨4.下列立体图形中,俯视图是正方形的是()A.B.C.D.5.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°6.下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形7.如图,已知AB、AD是⊙O的弦,∠B=20°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=15°,则∠BAD的度数是()A.30°B.45°C.20°D.35°8.若实数x,y满足条件2x2﹣6x+y2=0,则x2+y2+2x的最大值是()A.14B.15C.16D.不能确定二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:═.10.化简:=.11.分解因式:3x2﹣6x+3=.12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.6,那么摸出黑球的概率是.13.若关于x的分式方程﹣=1解为非负数,则a的范围.14.已知圆锥的底面半径为1cm,母线长为3cm,则其侧面积为cm2.(结果保留π)15.直角坐标平面上将二次函数y=﹣2(x﹣1)2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为.16.在Rt△ABC中,AD是斜边BC边上的中线,G是△ABC重心,如果BC=6,那么线段AG的长为.17.在关于x,y的二元一次方程组中,若a(2x+3y)=2,则a=.18.如图,矩形ABCD中,AB=2,BC=4,P,Q分别是BC,AB上的两个动点,AE=1,△AEQ沿EQ 翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算(1)|﹣1|﹣﹣(1﹣)0+4sin30°(2)解不等式组:.20.(8分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)请将条形图补充完整;(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.23.(10分)某文化用品商店用1000元购进一批“晨光”套尺,很快销售一空;商店又用1500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?24.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=45°,AC=4,求图中阴影部分的面积.25.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.26.(10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?27.(12分)平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣2,﹣2),(,)…,都是梦之点,显然梦之点有无数个.(1)若点P(3,b)是反比例函数y=(n为常数,n≠0)的图象上的梦之点,则这个反比例函数解析式为;(2)⊙O的半径是2,①⊙O上的所有梦之点的坐标为;②已知点M(m,3),点Q是(1)中反比例函数y=图象上异于点P的梦之点,过点Q的直线q与y轴交于点A,tan∠OAQ=1.若在⊙O上存在一点N,使得直线MN∥q,求出m的取值范围.28.(12分)如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.九年级(下)第一次月考数学试卷参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.D;2.D;3.B;4.B;5.C;6.A;7.D;8.B;二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.4;10.﹣1;11.3(x﹣1)2;12.0.2;13.a≤﹣4且a≠﹣8;14.3π;15.(0,﹣1);16.2;17.2或﹣1;18.4;三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)21.560;26.26;27.y=;(,)、(﹣,﹣);。

人教版九年级下册数学第一次月考试卷及答案

人教版九年级下册数学第一次月考试卷及答案

人教版九年级下册数学第一次月考试卷及答案九年级第二学期数学第一次月考试卷时间:120分钟。

总分:120分。

姓名:一、选择题(本大题共8小题,每小题3分,共24分)1.绝对值是6的有理数是()A。

±6.B。

6.C。

-6.D。

162.计算a^2a^4的结果是()A。

a^5.B。

a^6.C。

2a^6.D。

a^83.半径为6的圆的内接正六边形的边长是()A。

2.B。

4.C。

6.D。

84.如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为()A。

2π。

B。

3π。

C。

2/3π。

D。

1+2/3π5.某校共有学生600名,学生上学的方式有乘车、骑车、步行三种.如图是该校学生乘车、骑车、步行上学人数的扇形统计图。

乘车的人数是()A。

180.B。

270.C。

150.D。

2006.函数y=(x-2)/x的自变量X的取值范围是()A。

x>2.B。

x<2.C。

x≥2.D。

x≤27.如右图,是一个下底小而上口大的圆台形,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,内对应的水高度为h,则h与t的函数图象只可能是()A。

一次函数。

B。

二次函数。

C。

三次函数。

D。

反比例函数8.如图所示的正方体的展开图是()二、填空题(本大题共7小题,每小题3分,共21分.)9.若分式(2x)/(x+2)的值为零,则x=_____。

10.已知反比例函数y=k/x的图象经过点(3,-4),则这个函数的解析式为y=______。

11.已知两圆内切,圆心距d=2,一个圆的半径r=3,那么另一个圆的半径为______。

(用科学记数法表示20 的结果是______(保留两位有效数字))12.二次函数y=x^2的图象向右平移1个单位,再向下平移1个单位,所得图象的与X轴的交点坐标是:(______。

0)。

13.如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是______。

九年级数学下学期第一次月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题

九年级数学下学期第一次月考试题(含解析)  新人教版-新人教版初中九年级全册数学试题

某某省池州市石台中学2015-2016学年九年级数学下学期第一次月考试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?2015-2016学年某某省池州市石台中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米==2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]= 2015 .【考点】估算无理数的大小.【分析】先求出的X围,再求出2020﹣的X围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2= 4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,AA1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ,∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC,CD的长,即可求出钢管ABCD的长度.【解答】解:在△BCG中,∠GBC=30°,BC=2BG=80cm,CD=≈41.2,钢管ABCD的长度=AB+BC+CD=25+80+41.2=146.2≈146cm.答:钢管ABCD的长度为146cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为60 人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD (只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值X围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值X围:0≤m≤或≤m≤1.【解答】解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t>1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.【点评】本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。

九年级下第一次月考数学试卷含答案解析

九年级下第一次月考数学试卷含答案解析

九年级(下)第一次月考数学试卷一、选择题:(本大题满分42,每小题3分)1.﹣2016的相反数是()A.B.C.6102 D.20162.下列计算正确的是()A.2a5+a5=3a10B.a10÷a2=a8C.(a2)3=a5 D.a2•a3=a63.如图所示几何体的俯视图是()A.B.C.D.4.方程x2+2x=0的解是()A.x1=0,x2=2 B.x1=0,x2=﹣2 C.x=2 D.x=﹣25.如图,直线EF分别与直线AB,CD相交于点G、H,已知∠1=∠2=50°,GM平分∠HGB 交直线CD于点M.则∠3=()A.60°B.65°C.70°D.130°6.不等式组的解集是()A.x>3 B.x<2 C.2<x<3 D.x>2或x<﹣37.数据:2,﹣1,3,5,6,5的众数是()A.﹣1 B.4 C.5 D.68.分式方程的解为()A.1 B.2 C.3 D.49.如图,△A′B′O′是由△ABO平移得到的,点A的坐标为(﹣1,2),它的对应点A′的坐标为(3,4),△ABO内仼意点P(a,b)平移后的对应点P′的坐标为()A.(a,b)B.(﹣a,﹣b)C.(a+2,b+4)D.(a+4,b+2)10.据报道,投资270亿元的西环高铁预计今年底建成通车,通车后能使西环高铁经过的市县约4360000人受益,数据4360000用科学记数法表示为()A.436×104B.4.36×105C.4.36×106D.4.36×10711.如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线CM将△CMA折叠,使点A落在点D处,若CD恰好与MB垂直,则tanA的值为()A.B.C.D.12.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个白球、两个红球.如果一次从袋中摸出两个球,那么摸出的两个球都是红球的概率是()A.B.C.D.13.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对14.点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0 D.1二、填空题:(本大题满分16分,每小题4分)15.因式分解:m2﹣25=.16.函数y=﹣1中,自变量x的取值范围是.17.如图,在▱ABCD中,对角线AC、BD交于点O,E是BC边上的中点,若OE=2,AC+BD=12,则△OAB的周长为.18.如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于C,连结BC、AC,若∠PAC=30°,AC=4,则BC=.三、解答题:(本大题满分62分)19.(1)计算:(﹣2)3÷(﹣4)+()﹣2+(3.14﹣π)0(2)化简:(a+b)2﹣a(2b﹣a)20.2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?21.如图,为了把海口建成全国文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老牛某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),请你根据图中所给的信息解答下列问题:(1)问这一天上午7:00~12:00这一时间段闯红灯人数共有;(2)请你把条形统计图补充完整;(3)在扇形统计图中,a=,b=;(4)7~8点所对应的圆心角是°.22.如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD 为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).23.如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.(1)求证:△OAE≌△OBG;(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由;(3)试求:的值(结果保留根号).24.如图,抛物线y=﹣x2+bx+c与直线AB相交于A(﹣1,0)、B(2,3)两点,与y轴交于点C,其顶点为D.(1)求抛物线的函数关系式;(2)设点M(3,m),求使MC+MD的值最小时m的值;(3)若P是该抛物线上位于直线AB上方的一动点,求△APB面积的最大值.2015-2016学年海南省昌江县九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:(本大题满分42,每小题3分)1.﹣2016的相反数是()A.B.C.6102 D.2016【考点】相反数.【分析】根据相反数的定义回答即可.【解答】解:﹣2016的相反数是2016.故选;D.2.下列计算正确的是()A.2a5+a5=3a10B.a10÷a2=a8C.(a2)3=a5 D.a2•a3=a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的除法法则:底数不变,指数相减;幂的乘方法则:底数不变,指数相乘;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.【解答】解:A、2a5+a5=3a5,故此选项错误;B、a10÷a2=a8,故此选项正确;C、(a2)3=a6,故此选项错误;D、a2•a3=a5,故此选项错误;故选:B.3.如图所示几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看的俯视图的左边是两个小正方形,右边一个小正方形,故选:A.4.方程x2+2x=0的解是()A.x1=0,x2=2 B.x1=0,x2=﹣2 C.x=2 D.x=﹣2【考点】解一元二次方程-因式分解法.【分析】利用因式分解法把方程转化为x=0或x+2=0,然后解两个一次方程即可.【解答】解:x(x+2)=0,x=0或x+2=0,所以x1=0,x2=﹣2.故选B.5.如图,直线EF分别与直线AB,CD相交于点G、H,已知∠1=∠2=50°,GM平分∠HGB 交直线CD于点M.则∠3=()A.60°B.65°C.70°D.130°【考点】平行线的判定与性质.【分析】根据邻补角的性质与∠1=50°,求得∠BGH=180°﹣50°=130°,由GM平分∠HGB 交直线CD于点M,得出∠BGM的度数,根据同位角相等,两直线平行,得到AB∥CD,从而利用平行线的性质求得∠3的度数.【解答】解:∵∠1=50°,∴∠BGH=180°﹣50°=130°,∵GM平分∠HGB,∴∠BGM=65°,∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),∴∠3=∠BGM=65°(两直线平行,内错角相等).故选B.6.不等式组的解集是()A.x>3 B.x<2 C.2<x<3 D.x>2或x<﹣3【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<3,解②得:x>2.则不等式组的解集是:2<x<3.故选C.7.数据:2,﹣1,3,5,6,5的众数是()A.﹣1 B.4 C.5 D.6【考点】众数.【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【解答】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故选C.8.分式方程的解为()A.1 B.2 C.3 D.4【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=3x+6,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.故选:C.9.如图,△A′B′O′是由△ABO平移得到的,点A的坐标为(﹣1,2),它的对应点A′的坐标为(3,4),△ABO内仼意点P(a,b)平移后的对应点P′的坐标为()A.(a,b)B.(﹣a,﹣b)C.(a+2,b+4)D.(a+4,b+2)【考点】坐标与图形变化-平移.【分析】根据点A(﹣1,2)平移后的对应点A′的坐标为(3,4),得出△ABO平移的规律,根据此规律即可求出点P(a,b)平移后的对应点P′的坐标.【解答】解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(﹣1,2),它的对应点A′的坐标为(3,4),∴△ABO平移的规律是:先向右平移4个单位,再向上平移2个单位,∴△ABO内仼意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).故选D.10.据报道,投资270亿元的西环高铁预计今年底建成通车,通车后能使西环高铁经过的市县约4360000人受益,数据4360000用科学记数法表示为()A.436×104B.4.36×105C.4.36×106D.4.36×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4360 000=4.36×106,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线CM将△CMA折叠,使点A落在点D处,若CD恰好与MB垂直,则tanA的值为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先设CD交AB于点E,根据折叠的性质可知,折叠前后的两个三角形全等,则∠D=∠A,∠MCD=∠MCA,再由直角三角形斜边中线的性质可得出∠MCD=∠D,从而求得∠A的度数,也就能得出tanA的值.【解答】解:设CD交AB于点E,∵CM是直角△ABC的中线,∴CM=AM=MB=AB,∴∠A=∠ACM,由折叠的性质可得:∠A=∠D,∠MCD=∠MCA,AM=DM,∴MC=MD,∠A=∠ACM=∠MCD,∵AB⊥CD,∴∠CMB=∠DMB,∠CEB=∠MED=90°,∵∠B+∠A=90°,∠B+∠ECB=90°,∴∠A=∠ECB,∴∠A=∠ACM=∠MCE=∠ECB,∴∠A=∠ACB=30°,∴tanA=tan30°=.故选A.12.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个白球、两个红球.如果一次从袋中摸出两个球,那么摸出的两个球都是红球的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看两次都摸到红球的情况数占总情况数的多少即可.共有种等可能结果.其中两次取出的小球都是红色的有4种,所以摸出的两个球都是红球的概率==,故选A.13.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CPB,∴△EDC∽△CBP,故有3对相似三角形.故选:D.14.点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0 D.1【考点】反比例函数图象上点的坐标特征.【分析】把点A(﹣1,1)代入函数解析式,即可求得m的值.【解答】解:把点A(﹣1,1)代入函数解析式得:1=,解得:m+1=﹣1,解得m=﹣2.故选B.二、填空题:(本大题满分16分,每小题4分)15.因式分解:m2﹣25=(m+5)(m﹣5).【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解即可.【解答】解:原式=(m+5)(m﹣5),故答案为:(m+5)(m﹣5)16.函数y=﹣1中,自变量x的取值范围是x≥0.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式的意义,被开方数不能为负数,据此求解.【解答】解:根据题意,得x≥0.故答案为:x≥0.17.如图,在▱ABCD中,对角线AC、BD交于点O,E是BC边上的中点,若OE=2,AC+BD=12,则△OAB的周长为10.【考点】平行四边形的性质;三角形中位线定理.【分析】由平行四边形的性质求出OA+OB=6,证明OE是△ABC的中位线,由三角形中位线定理得出AB=2OE=4,即可得出△OAB的周长.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∴OA+OB=(AC+BD)=6,∵E是BC边上的中点,∴OE是△ABC的中位线,∴AB=2OE=4,∴△OAB的周长=OA+OB+AB=6+4=10,故答案为:10.18.如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于C,连结BC、AC,若∠PAC=30°,AC=4,则BC=4.【考点】切线的性质.【分析】由切线的性质易求∠CAO=60°,由圆周角定理可得△ACB是直角三角形,又因为AC的长已知,所以BC的长可求.【解答】解:∵PA切⊙O于点A,∴OA ⊥AB ,∵∠PAC=30°,∴∠CAO=60°,∵AB 是⊙O 的直径,∴∠ACB=90°,∵AC=4,∴BC=AC=4,故答案为:4.三、解答题:(本大题满分62分)19.(1)计算:(﹣2)3÷(﹣4)+()﹣2+(3.14﹣π)0(2)化简:(a+b )2﹣a (2b ﹣a )【考点】实数的运算;整式的混合运算;零指数幂;负整数指数幂.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算计算即可得到结果;(2)原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=﹣8÷(﹣4)+9+1=2+9+1=12;(2)原式=a 2+2ab+b 2﹣2ab+a 2=2a 2+b 2.20.2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?【考点】二元一次方程组的应用.【分析】设小李预定了小组赛和淘汰赛的球票各x 张,y 张,根据10张球票共5800元,列方程组求解.【解答】解:设小李预定了小组赛和淘汰赛的球票各x 张,y 张,由题意得,,解得:. 答:小李预定的小组赛和淘汰赛的球票各8张,2张.21.如图,为了把海口建成全国文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老牛某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),请你根据图中所给的信息解答下列问题:(1)问这一天上午7:00~12:00这一时间段闯红灯人数共有 100 ;(2)请你把条形统计图补充完整;(3)在扇形统计图中,a= 20 ,b= 10 ;(4)7~8点所对应的圆心角是 54 °.【考点】条形统计图;扇形统计图.【分析】(1)根据8~9点闯红灯的人数为25人,占25%,可以求出总人数.(2)分别求出10~11,11~12之间的闯红灯的人数即可画出条形图.(3)根据百分比的定义即可解决问题.(4)利用圆心角=360×百分比计算即可.【解答】解:(1)设闯红灯的人数的总人数为x,∵8~9点闯红灯的人数为25人,占25%,∴=25%,∴x=100,故答案为100.(2)条形图如图所示:(3)∵9~10点闯红灯的人数为20人,∴a%==20%,∴a=20,∵7~8闯红灯的人数为15人,占15%,∴b=100﹣15﹣25﹣20﹣30=10,故答案分别为20,10.(4)7~8点所对应的圆心角:360×15%=54°.故答案为54.22.如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD 为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.【解答】解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.23.如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.(1)求证:△OAE≌△OBG;(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由;(3)试求:的值(结果保留根号).【考点】四边形综合题.【分析】(1)通过全等三角形的判定定理ASA证得:△OAE≌△OBG;(2)四边形BFGE是菱形.欲证明四边形BFGE是菱形,只需证得EG=EB=FB=FG,即四条边都相等的四边形是菱形;(3)设OA=OB=OC=a,菱形GEBF的边长为b.由该菱形的性质CG=GF=b,(也可由△OAE≌△OBG得OG=OE=a﹣b,OC﹣CG=a﹣b,得CG=b);然后在Rt△GOE中,由勾股定理可得a=b,通过相似三角形△CGP∽△AGB的对应边成比例得到:==﹣1;最后由(1)△OAE≌△OBG得到:AE=GB,故==﹣1.【解答】(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°.∵BH⊥AF,∴∠AHG=90°,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠GAH=∠OBG,即∠OAE=∠OBG.∴在△OAE与△OBG中,,∴△OAE≌△OBG(ASA);(2)四边形BFGE是菱形,理由如下:∵在△AHG与△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是线段BG的垂直平分线,∴EG=EB,FG=FB.∵∠BEF=∠BAE+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°∴∠BEF=∠BFE∴EB=FB,∴EG=EB=FB=FG,∴四边形BFGE是菱形;(3)设OA=OB=OC=a,菱形GEBF的边长为b.∵四边形BFGE是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,(也可由△OAE≌△OBG得OG=OE=a﹣b,OC﹣CG=a﹣b,得CG=b)∴OG=OE=a﹣b,在Rt△GOE中,由勾股定理可得:2(a﹣b)2=b2,求得a= b∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b∵PC∥AB,∴△CGP∽△AGB,∴===﹣1,由(1)△OAE≌△OBG得AE=GB,∴==﹣1,即=﹣1.24.如图,抛物线y=﹣x2+bx+c与直线AB相交于A(﹣1,0)、B(2,3)两点,与y轴交于点C,其顶点为D.(1)求抛物线的函数关系式;(2)设点M(3,m),求使MC+MD的值最小时m的值;(3)若P是该抛物线上位于直线AB上方的一动点,求△APB面积的最大值.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;(2)根据轴对称的性质,可得C′点,根据两点之间线段最短,可得M点,根据待定系数法,可得DC′的解析式,根据自变量与函数值的对应关系,可得答案;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【解答】解:(1)将A、B点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+2x+3;(2)如图1,,作C关于x=3的对称点C′,C′点的坐标(6,3).连接C′D,C′D交x=3于M点,设C′D的解析式为y=kx+b,将C′,D的坐标代入函数解析式,得,C′D的解析式为y=﹣x+,当x=3时,y=﹣×3+=,即M点坐标(﹣,);(3)如图2,,AB的解析式为y=kx+b,将A、B点的坐标代入函数解析式,得,解得,AB的解析式为y=x+1,设E点坐标为E(m,m+1),P(m,﹣m2+2m+3),PE═﹣m2+2m+3﹣(m+1)=﹣(m﹣)2+,S△APB=PE(x B﹣x A)=×[﹣(m﹣)2+]×[3﹣(﹣1)]=2×[﹣(m﹣)2+]=2×=.当m=时,S最大2016年4月28日。

人教版九年级下学期第一次月考数学试卷含答案详解

人教版九年级下学期第一次月考数学试卷含答案详解

九年级(下)第一次月考数学试卷一、选择题:(每小题4分,共48分)1.的值是()A.2B.﹣2C.±2D.42.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.x•x3=x4D.(2x2)3=6x53.如图,已知AB∥CD,∥DFE=135°,则∥ABE的度数为()A.30°B.45°C.60°D.90°4.下列说法中正确的是()A.想了解某种饮料中含色素的情况,宜采用抽样调查B.“打开电视,正在播放《新闻联播》”是必然事件C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小5.若﹣5x2y m与x n y是同类项,则m+n的值为()A.1B.2C.3D.46.若一个多边形的内角和等于900°,则这个多边形的边数是()A.9B.8C.7D.67.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.58.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AD∥BC B.OA=OC C.AC∥BD D.AC=BD9.如图,∥ABC内接于∥O,∥OBC=40°,则∥A的度数为()A.80°B.100°C.110°D.130°10.大年三十晚上,小六驾车从家出发到烟花燃放指定点去燃放烟花炮竹,小六驾车匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后小六加快速度继续匀速行驶,零点之前到达指定燃放地点,燃放结束后,小六按驾车匀速返回.其中,x表示小六从家出发后所用时间,y表示小六离家的距离.下面能反映y与x的函数关系的大致图象是()A.B.C.D.11.下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有()A.482B.483C.484D.48512.如图,已知反比函数y=的图象过Rt∥ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若∥ABO的周长为4+2,AD=2,则∥ACO的面积为()A.B.C.1D.2二、填空题(每小题4分,共24分)13.我国国内生产总值约为676700亿元,请用科学记数法表示国内生产总值约为亿元.14.代数式3x2﹣4x+6的值为12,则x2﹣x+6=.15.如图,在∥ABC中,D,E分别是AB,BC上的点,且DE∥AC,AE,CD交于点F,若S∥BDE:S∥DEC=1:3,则S∥DEF:S∥AFC=.16.如图,∥ABC是∥O的内接三角形,AD是∥O的直径,∥ABC=50°,则∥CAD=.17.有五张正面分别标有数字﹣2,﹣1,0,1,2的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是.18.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则(1)OA的长为,(2)点C的坐标为.三、解答题:(每小题7分,共14分)19.如图,已知AB∥CD,AF=CE,∥B=∥D,证明BE和DF的关系.20.某班有50名同学,男、女生人数各占一半.在本周操行评定中,该班操行得分情况见如下统计表;其中男生操行得分情况见如下不完整的条形统计图:操行分得分1分2分3分4分5分人数2410304(1)补全条形统形图;(2)若要在操行得分为5分的4名同学中选出两名同学作“本周操行明星”,用画树状图或列表的方法求出选为“本周操行明星”的正好是一名男同学和一名女同学的概率.四、解答题:(每题10分,共40分)21.化简下列各式:(1)(x﹣1)2(x+1)2﹣1;(2)÷(﹣x+2)+.22.如图,一次函数的图象与y轴交于C(0,4),且与反比例函数y=(x>0)的图象在第一象限内交于A(3,a),B(1,b)两点,(1)求∥AOC的面积;(2)若=2,求反比例函数和一次函数的解析式.23.如图,我国某边防哨所树立了“祖国在我心中”建筑物,它的横截面为四边形BCNM,其中BC∥CN,BM∥CN,建筑物顶上有一旗杆AB,士兵小明站在D处,由E点观察到旗杆顶部A的仰角为52°,底部B的仰角为45°,已知旗杆AB=2.8米,DE=1.8米.(参考数据:sin52°≈0.788,tan52°≈1.280)(1)求建筑物的高度BC;(2)建筑物长50米,背风坡MN的坡度i=1:0.5,为提高建筑物抗风能力,士兵们在背风坡填筑土石方加固,加固后建筑物顶部加宽4.2米,背风坡GH的坡度为i=1:1.5,施工10天后,边防居民为士兵支援的机械设备终于到达,这样工作效率提高到了原来的2倍,结果比原计划提前20天完成加固任务,士兵们原计划平均每天填筑土石方多少立方米?24.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.(其中的“+”是四则运算中的加法)例如:如果A(﹣1,3),那么「A」=|﹣1|+|3|=4.(1)点M在反比例函数y=的图象上,且「M」=4,求点M的坐标;(2)求满足条件「N」=3的所有点N围成的图形的面积.五、解答题:(每个小题12分,共24分)25.在∥ABC中,AB=AC,点D,点E在边BC上不同的两点,且∥ADE=75°.(1)如图1,若∥BAC=90°,CD=,求BC的长;(2)如图2,若∥BAC=90°,∥EAD=45°,求证:DC=BE;(3)如图3,若∥BAC=120°,∥EAD=60°,请问(2)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.26.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使∥BPC为直角三角形的点P的坐标.-学年重庆市开县九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:(每小题4分,共48分)1.的值是()A.2B.﹣2C.±2D.4【考点】算术平方根.【分析】根据如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.【解答】解:∥表示4的算术平方根,∥=2.故选:A.2.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.x•x3=x4D.(2x2)3=6x5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、利用合并同类项法则计算;B、利用同底数幂的除法计算;C、利用同底数幂的乘法计算;D、利用积的乘方计算,再分别判断对错.【解答】解:A、x+x=2x,此选项错误;B、x6÷x2=x4,此选项错误;C、x•x3=x4,此选项正确;D、(2x2)3=8x6,此选项错误.故选C.3.如图,已知AB∥CD,∥DFE=135°,则∥ABE的度数为()A.30°B.45°C.60°D.90°【考点】平行线的性质.【分析】先根据两角互补的性质得出∥CFE的度数,再由平行线的性质即可得出结论.【解答】解:∥∥DFE=135°,∥∥CFE=180°﹣135°=45°,∥AB∥CD,∥∥ABE=∥CFE=45°.故选B.4.下列说法中正确的是()A.想了解某种饮料中含色素的情况,宜采用抽样调查B.“打开电视,正在播放《新闻联播》”是必然事件C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小【考点】全面调查与抽样调查;众数;方差;随机事件.【分析】根据随机事件、必然事件以及众数、方差的意义即可作出判断.【解答】解:A、正确;B、打开电视,正在播放《新闻联播》”是随机事件,故选项错误;C、数据1,1,2,2,3的众数是1和2,故选项错误;D、一组数据的波动越大,方差越大,故选项错误.故选A.5.若﹣5x2y m与x n y是同类项,则m+n的值为()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n,m的值,再相加即可.【解答】解:∥﹣5x2y m和x n y是同类项,∥n=2,m=1,m+n=2+1=3,故选:C.6.若一个多边形的内角和等于900°,则这个多边形的边数是()A.9B.8C.7D.6【考点】多边形内角与外角.【分析】n边形的内角和为(n﹣2)180°,由此列方程求n的值.【解答】解:设这个多边形的边数是n,则:(n﹣2)180°=900°,解得n=7,故选C.7.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.5【考点】一元一次方程的解.【分析】根据方程的解的定义,把x=2代入方程,解关于a的一元一次方程即可.【解答】解;∥方程2x+a﹣9=0的解是x=2,∥2×2+a﹣9=0,解得a=5.故选:D.8.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AD∥BC B.OA=OC C.AC∥BD D.AC=BD【考点】菱形的性质.【分析】直接根据菱形的性质对各选项进行判断.【解答】解:∥四边形ABCD为菱形,∥AD∥BC,OA=OC,AC∥BD,所以A、B、C选项的说法正确,D选项的说法错误.故选D.9.如图,∥ABC内接于∥O,∥OBC=40°,则∥A的度数为()A.80°B.100°C.110°D.130°【考点】圆周角定理.【分析】连接OC,然后根据等边对等角可得:∥OCB=∥OBC=40°,然后根据三角形内角和定理可得∥BOC=100°,然后根据周角的定义可求:∥1=260°,然后根据圆周角定理即可求出∥A的度数.【解答】解:连接OC,如图所示,∥OB=OC,∥∥OCB=∥OBC=40°,∥∥BOC=100°,∥∥1+∥BOC=360°,∥∥1=260°,∥∥A=∥1,∥∥A=130°.故选:D.10.大年三十晚上,小六驾车从家出发到烟花燃放指定点去燃放烟花炮竹,小六驾车匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后小六加快速度继续匀速行驶,零点之前到达指定燃放地点,燃放结束后,小六按驾车匀速返回.其中,x表示小六从家出发后所用时间,y表示小六离家的距离.下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据题意可得离家的距离越来越远,根据途中加油,可得路程不变,根据加速行驶,可得路程变化快,燃放烟花炮竹时,路程不变,时间加长,再匀速回家,离家距离越来越近.【解答】解:由题意得:离家的距离越来越远,直线呈上升趋势,根据途中加油,可得路程不变,时间加长,直线呈水平状态,后来加速行驶,可得路程变化快,直线上升快,燃放烟花炮竹时,路程不变,时间加长,直线呈水平状态,再匀速回家,离家距离越来越近,直线呈下降趋势.故选:A.11.下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有()A.482B.483C.484D.485【考点】规律型:图形的变化类.【分析】由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.【解答】解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=2×32﹣1=17,第三个图形正三角形的个数为17×3+2=2×33﹣1=53,第四个图形正三角形的个数为53×3+2=2×34﹣1=161,第五个图形正三角形的个数为161×3+2=2×35﹣1=485.如果是第n个图,则有2×3n﹣1个故选:D.12.如图,已知反比函数y=的图象过Rt∥ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若∥ABO的周长为4+2,AD=2,则∥ACO的面积为()A.B.C.1D.2【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.【解答】解:在Rt∥AOB中,AD=2,AD为斜边OB的中线,∥OB=2AD=4,由周长为4+2,得到AB+AO=2,设AB=x,则AO=2﹣x,根据勾股定理得:AB2+OA2=OB2,即x2+(2﹣x)2=42,整理得:x2﹣2x+2=0,解得x1=+,x2=﹣,∥AB=+,OA=﹣,过D作DE∥x轴,交x轴于点E,可得E为AO中点,∥OE=OA=(﹣)(假设OA=+,若OA=﹣,求出结果相同),在Rt∥DEO中,利用勾股定理得:DE==(+),∥k=﹣DE•OE=﹣(+)×(﹣)=﹣,∥S∥AOC=DE•OE=×(+)×(﹣)=,故选A.二、填空题(每小题4分,共24分)13.我国2015年国内生产总值约为676700亿元,请用科学记数法表示2015年国内生产总值约为 6.767×105亿元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将676700亿用科学记数法表示为:6.767×105亿.故答案为:6.767×105.14.代数式3x2﹣4x+6的值为12,则x2﹣x+6=8.【考点】代数式求值.【分析】将原式变形成=(3x2﹣4x)+6,根据题意知3x2﹣4x=6,整体代入上式可得.【解答】解:∥3x2﹣4x+6=12,∥3x2﹣4x=6,则x2﹣x+6=(3x2﹣4x)+6=×6+6=8,故答案为:8.15.如图,在∥ABC中,D,E分别是AB,BC上的点,且DE∥AC,AE,CD交于点F,若S∥BDE:S∥DEC=1:3,则S∥DEF:S∥AFC=1:16.【考点】相似三角形的判定与性质.【分析】由三角形的面积关系得出BE:CE=1:3,得出BE:BC=1:4,由平行线得出DE:AC=BE:BC=1:4,∥DEF∥∥AFC,由相似三角形的面积比等于相似比的平方即可得出结果.【解答】解:∥S∥BDE:S∥DEC=1:3,∥BE:CE=1:3,∥BE:BC=1:4,∥DE∥AC,∥DE:AC=BE:BC=1:4,∥DEF∥∥AFC,∥S∥DEF:S∥AFC=()2=()2=.故答案为:1:16.16.如图,∥ABC是∥O的内接三角形,AD是∥O的直径,∥ABC=50°,则∥CAD=40°.【考点】圆周角定理.【分析】首先连接CD,由AD是∥O的直径,根据直径所对的圆周角是直角,可求得∥ACD=90°,又由圆周角定理,可得∥D=∥ABC=50°,继而求得答案.【解答】解:连接CD,∥AD是∥O的直径,∥∥ACD=90°,∥∥D=∥ABC=50°,∥∥CAD=90°﹣∥D=40°.故答案为:40°.17.有五张正面分别标有数字﹣2,﹣1,0,1,2的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是.【考点】概率公式;根的判别式;二次函数图象上点的坐标特征.【分析】首先根据使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)确定a的值,然后利用概率公式求解.【解答】解:∥使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,∥[﹣2(a﹣1)]2﹣4×1×a(a﹣3)>0,解得:a>﹣1,∥以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0),∥12﹣(a2+1)﹣a+2≠0,∥a≠1且a≠﹣2,∥满足条件的a只有0和2,∥使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x 为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是,故答案为:.18.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则(1)OA的长为2,(2)点C的坐标为(﹣,1).【考点】正方形的性质;坐标与图形性质.【分析】(1)利用勾股定理直接计算即可求出OA的长;(2)过点A作AD∥x轴于D,过点C作CE∥x轴于E,根据同角的余角相等求出∥OAD=∥COE,再利用“角角边”证明∥AOD和∥OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【解答】解:(1)∥点A的坐标为(1,),∥OA==2,故答案为:2;(2)如图,过点A作AD∥x轴于D,过点C作CE∥x轴于E,∥四边形OABC是正方形,∥OA=OC,∥AOC=90°,∥∥COE+∥AOD=90°,又∥∥OAD+∥AOD=90°,∥∥OAD=∥COE,在∥AOD和∥OCE中,,∥∥AOD∥∥OCE(AAS),∥OE=AD=,CE=OD=1,∥点C在第二象限,∥点C的坐标为(﹣,1).故答案为(﹣,1).三、解答题:(每小题7分,共14分)19.如图,已知AB∥CD,AF=CE,∥B=∥D,证明BE和DF的关系.【考点】全等三角形的判定与性质;平行线的性质.【分析】要证相等,可利用AAS判定∥ABE∥∥CDF从而得出BE=DF.【解答】证明:∥AB∥CD,BE=DF,∥∥A=∥C,又∥AF=CE,∥AF+FE=CE+FE,即AE=CF.在∥ABE和∥CDF中,,∥∥ABE∥∥CDF(AAS),∥BE=DF.20.某班有50名同学,男、女生人数各占一半.在本周操行评定中,该班操行得分情况见如下统计表;其中男生操行得分情况见如下不完整的条形统计图:操行分得分1分2分3分4分5分人数2410304(1)补全条形统形图;(2)若要在操行得分为5分的4名同学中选出两名同学作“本周操行明星”,用画树状图或列表的方法求出选为“本周操行明星”的正好是一名男同学和一名女同学的概率.【考点】列表法与树状图法;条形统计图.【分析】(1)利用男生人数25分别减去1分、2分、3分45分的人数即可得到5分人数,即可解答;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两位同学恰好是一名男同学和一位女同学的情况,再利用概率公式即可求得答案.【解答】解:(1)男生操行得分为5分的人数=25﹣2﹣2﹣8﹣11=2,补全统计图如下:(2)画树状图得:∥共有12种等可能的结果,所选两位同学恰好是一名男同学和一位女同学的有8种情况,∥所选两位同学恰好是一名男同学和一位女同学的概率为:=.四、解答题:(每题10分,共40分)21.化简下列各式:(1)(x﹣1)2(x+1)2﹣1;(2)÷(﹣x+2)+.【考点】分式的混合运算;整式的混合运算.【分析】(1)根据平方差公式进行计算即可;(2)先对式子能分解因式的先分解因式,对括号内的先通分再相加,然后化简即可.【解答】解:(1)(x﹣1)2(x+1)2﹣1=[(x﹣1)(x+1)]2﹣1=(x2﹣1)2﹣1=x4﹣2x2+1﹣1=x4﹣2x2;(2)÷(﹣x+2)+=======.22.如图,一次函数的图象与y轴交于C(0,4),且与反比例函数y=(x>0)的图象在第一象限内交于A(3,a),B(1,b)两点,(1)求∥AOC的面积;(2)若=2,求反比例函数和一次函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)作AD∥y轴于D,根据题意得出AD=3,OC=4,然后关键数据线面积公式即可求得;(2)根据反比例函数系数k=xy,得出3a=b,然后代入=2,即可求得a的值,求得A的坐标,从而求得k的值,然后关键待定系数即可求得一次函数的解析式.【解答】解:(1)作AD∥y轴于D,∥A(3,a),∥AD=3,∥一次函数的图象与y轴交于C(0,4),∥OC=4,∥S∥AOC=OC•AD=×4×3=6;(2)∥A(3,a),B(1,b)两点在反比例函数y=(x>0)的图象上,∥3a=b,∥=2,∥a2﹣2ab+b2=4,∥a2﹣2a•3a+(3a)2=4,整理得,a2=1,∥a>0,∥a=1,∥A(3,1),∥k=3×1=3,设直线的解析式为y=mx+n,∥,解得,∥反比例函数和一次函数的解析式分别为y=和y=﹣x+4.23.如图,我国某边防哨所树立了“祖国在我心中”建筑物,它的横截面为四边形BCNM,其中BC∥CN,BM∥CN,建筑物顶上有一旗杆AB,士兵小明站在D处,由E点观察到旗杆顶部A的仰角为52°,底部B的仰角为45°,已知旗杆AB=2.8米,DE=1.8米.(参考数据:sin52°≈0.788,tan52°≈1.280)(1)求建筑物的高度BC;(2)建筑物长50米,背风坡MN的坡度i=1:0.5,为提高建筑物抗风能力,士兵们在背风坡填筑土石方加固,加固后建筑物顶部加宽4.2米,背风坡GH的坡度为i=1:1.5,施工10天后,边防居民为士兵支援的机械设备终于到达,这样工作效率提高到了原来的2倍,结果比原计划提前20天完成加固任务,士兵们原计划平均每天填筑土石方多少立方米?【考点】解直角三角形的应用-坡度坡角问题;分式方程的应用.【分析】(1)根据题意得出EF=BF,进而利用tan∥AEF=即可得出答案;(2)利用坡比的定义得出QN,QH的长,进而利用梯形面积求法求出总的土方量,进而得出答案.【解答】解:(1)如图所示:过点E作EF∥BF交BC于点F,设EF=x,则EF=x,则根据题意可得:BF=x,同理可知tan∥AEF==≈1.28,解得:x=10,即BC=10+1.8=11.8(m).答:建筑物的高度BC为11.8m;(2)如图所示:过点M,G分别作MQ、GP垂直于CN,交CN于点Q、P,根据题意可得:PH=11.8×1.5=17.7(m),QN=5.9(m),可得:NH=17.7﹣5.9+4.2=11.8(m),故可得加固所需土石方为:(MG+NH)×PG=×11.8×(4.2+16)×50=5959,则根据题意可列方程:设原方程每天填筑土石方a立方米,=20+,解得:a=198.答:士兵们原计划平均每天填筑土石方198立方米.24.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.(其中的“+”是四则运算中的加法)例如:如果A(﹣1,3),那么「A」=|﹣1|+|3|=4.(1)点M在反比例函数y=的图象上,且「M」=4,求点M的坐标;(2)求满足条件「N」=3的所有点N围成的图形的面积.【考点】反比例函数图象上点的坐标特征.【分析】(1)设点M的坐标为(m,),根据勾股值的定义式可得出关于m的一元二次方程,解方程即可得出m的值,将m的值代入到点M的坐标中即可得出结论;(2)设点N的坐标为(x,y),根据勾股值的定义式可分段找出y关于x的函数解析式,画出图象根据菱形的面积公式即可得出结论.【解答】解:(1)设点M的坐标为(m,),∥「M」=4=|m|+||,∥m2﹣4m+3=0,或m2+4m+3=0,解得:m1=1,m2=3,m3=﹣1,m4=﹣3.∥点M的坐标为(﹣3,﹣1),(﹣1,﹣3),(1,3)和(3,1).(2)设点N的坐标为(x,y),∥「N」=3=|x|+|y|,∥分三种情况考虑.①xy>0时,x+y=3(x、y均为正),或x+y=﹣3(x、y均为负);②xy<0时,x﹣y=3(x>0,y<0),或﹣x+y=3(x<0,y>0);③xy=0时,x=0,y=±3,或y=0,x=±3.画出图象如图所示.点A(0,3),B(3,0),C(0,﹣3),D(﹣3,0).围城图形的面积S=BD•AC=[3﹣(﹣3)]×[3﹣(﹣3)]=6×6=36.五、解答题:(每个小题12分,共24分)25.在∥ABC中,AB=AC,点D,点E在边BC上不同的两点,且∥ADE=75°.(1)如图1,若∥BAC=90°,CD=,求BC的长;(2)如图2,若∥BAC=90°,∥EAD=45°,求证:DC=BE;(3)如图3,若∥BAC=120°,∥EAD=60°,请问(2)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.【考点】相似形综合题.【分析】(1)作DG∥AC于G,证明出∥ABC是等腰直角三角形,进而求出AG的长,即可求出BC的长;(2)作DH∥AE于H,设DC=a,利用a表示出BC、DE和CD的长,根据线段之间的关系得到结论;(3)作DG∥AC于G,AH∥BC于H,设DC=2a,还是利用a表示出BC、DE和CD的长,即可表示出线段DC和BE之间的数量关系.【解答】解:(1)如图1所示,作DG∥AC于G,∥∥BAC=90°,AB=AC,∥∥ABC是等腰直角三角形,∥∥1=∥B=45°,∥∥ADE=75°,∥∥2=60°,∥DAG=30°,∥DG=CG=CD=1,AD=2DG=2,∥AG==,∥AC=AG+CG=+1,∥BC=AG=+;(2)如图2所示,作DH∥AE于H,设DC=a,则DG=CG=a,∥AD=2DG=a,AG=a,∥AC=AG+CG=a,∥BC=AC=(+1)a,∥∥EAD=45°,∥∥ADH是等腰直角三角形,∥AH=DH=AD=a,∥∥4=180°﹣∥ADE﹣∥DAE=60°,∥DE=2EH,∥DE=DH÷=a,∥BE=BC﹣DE﹣CD=a=DC,∥DC=BE;(3)(2)中的结论不成立,理由如下:如图3所示,作DG∥AC于G,AH∥BC于H,∥AB=AC,∥BAC=120°,∥∥B=∥C=30°,∥∥1=60°,又∥∥ADE=75°,∥DAE=60°,∥∥2=∥3=∥4=∥5=45°,设DC=2a,则DG=AG=a,CG=a,∥AC=AG+CG=(+1)a,∥EH=AH=AC=a,CH=AC=a,∥BC=2CH=(3+)a,DH=CH﹣DC=a,∥DE=EH+DH=a,∥BE=BC﹣DE﹣DC=(3+)a﹣a﹣2a=a=DC,∥DC=2BE.26.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使∥BPC为直角三角形的点P的坐标.【考点】二次函数综合题.【分析】(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n 的值即可得到直线解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【解答】解:(1)依题意得:,解之得:,∥抛物线解析式为y=﹣x2﹣2x+3∥对称轴为x=﹣1,且抛物线经过A(1,0),∥把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∥直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∥M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∥B(﹣3,0),C(0,3),∥BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).2016年5月16日。

九年级下第一次月考数学试卷含解析(新课标人教版)

九年级下第一次月考数学试卷含解析(新课标人教版)

九年级下第一次月考数学试卷含解析(新课标人教版)一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分)1.据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二.将18亿用科学记数法表示为()A.1.8×10 B.1.8×108C.1.8×109D.1.8×10102.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm3.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,BC=EF,∠B=∠E;③∠B=∠E,∠C=∠F,BC=EF;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组4.某商场试销一种新款衬衫,一周内销信情况如表所示:)A.平均数B.众数C.中位数D.方差5.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()A.6 B.8 C.12 D.246.计算2a2÷a结果是()A.2 B.2a C.2a3D.2a27.如图,已知OA,OB均为⊙O上一点,若∠AOB=80°,则∠ACB=()A.80°B.70°C.60°D.40°8.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()A.B.C.D.9.有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg,根据题意,可得方程()A.B.C.D.10.若不等式组有解,则k的取值范围是()A.k<2 B.k≥2 C.k<1 D.1≤k<211.如图,等边△ABC的内切圆O切BC边于点D,己知等边三角形的边长为12cm,则图中阴影部分的面积为()A.πcm2B.πcm2C.2πm2D.cm212.如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE的面积的2倍;(3)CD+CE=OA;(4)AD2+BE2=2OPOC.其中正确的结论有()A.1个B.2个C.3个D.4个13.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.14.如图,四边形ABCD为正方形,若AB=4,E是AD边上一点(点E与点A、D不重合),BE的中垂线交AB于M,交DC于N,设AE=x,则图中阴影部分的面积S与x的大致图象是()A.B.C.D.15.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是()A.B.C.D.16.已知反比例函数的图象如图,则二次函数y=2kx2﹣x+k2的图象大致为()A .B .C .D .17.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于( )A .B .C .2D .18.如图,平面直角坐标系中,OB 在x 轴上,∠ABO=90°,点A 的坐标为(1,2),将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线y=(x >0)上,则k 的值为( )A .2B .3C .4D .619.如图,以等边三角形ABC 的BC 边为直径画半圆,分别交AB 、AC 于点E 、D ,DF 是圆的切线,过点F 作BC 的垂线交BC 于点G .若AF 的长为2,则FG 的长为( )A.4 B.C.6 D.20.若二次函数y=ax2+bx+c的x与y的部分对应值如下表,则当x=1时,y的值为()D.﹣27二、填空题(本大题共4个小题,满分12分,只要求填写最后结果,每小题填对的3分)21.计算的结果是.22.分解因式:m3﹣4m2+4m=.23.四边形ABCD的对角线AC、BD的长分别为m、n,可以证明当AC⊥BD时(如左图),四边形ABCD的面积S=mn,那么当AC、BD所夹的锐角为θ时(如图),四边形ABCD的面积S=.(用含m、n、θ的式子表示)24.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为.三、解答题(共48分)25.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.26.如图,在△ABC中,D是BC边上一点,E是AC边上一点,且满足AD=AB,∠ADE=∠C.(1)求证:∠AED=∠ADC,∠DEC=∠B;(2)求证:AB2=AEAC.27.某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?28.已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是矩形,且DE⊥CF.求证:;(2)如图2,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论;(3)如图3,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF.请直接写出的值.29.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.九年级(下)第一次月考数学试卷参考答案与试题解析一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分)1.据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二.将18亿用科学记数法表示为()A.1.8×10 B.1.8×108C.1.8×109D.1.8×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:18亿=18 0000 0000=1.8×109,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm【考点】平行四边形的性质;等腰三角形的性质.【分析】由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.【解答】解:根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC﹣EC=8﹣6=2.故选:A.【点评】本题直接通过平行四边形性质的应用,及等腰三角形的判定,属于基础题.3.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,BC=EF,∠B=∠E;③∠B=∠E,∠C=∠F,BC=EF;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点】全等三角形的判定.【分析】根据全等三角形判定的条件,可得答案.【解答】解:①AB=DE,BC=EF,AC=DF;②AB=DE,BC=EF,∠B=∠E;③∠B=∠E,∠C=∠F,BC=EF;故选:C.【点评】本题考查了全等三角形的判定,熟记全等三角形的判定是解题关键.4.某商场试销一种新款衬衫,一周内销信情况如表所示:)A.平均数B.众数C.中位数D.方差【考点】统计量的选择.【分析】根据题意可知最畅销的应为众数,本题得以解决.【解答】解:由题意可知,最畅销的型号应该是销售量最多的型号,故对商场经理来说最具有意义的是众数,故选B.【点评】本题考查统计量的选择,解题的关键是明确题意,找出满足所求问题的条件.5.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()A.6 B.8 C.12 D.24【考点】由三视图判断几何体.【分析】找到主视图中原几何体的长与高让它们相乘即可.【解答】解:主视图反映物体的长和高,左视图反映物体的宽和高,俯视图反映物体的长和宽.结合三者之间的关系从而确定主视图的长和高分别为4,2,所以面积为8,故选:B.【点评】解决本题的关键是根据所给的左视图和俯视图得到主视图的各边长.6.计算2a2÷a结果是()A.2 B.2a C.2a3D.2a2【考点】同底数幂的除法.【分析】同底数幂的除法,底数不变,指数相减.【解答】解:2a2÷a=2a2﹣1=2a.故选B.【点评】此题考查的是同底数幂的除法:底数不变,指数相减.7.如图,已知OA,OB均为⊙O上一点,若∠AOB=80°,则∠ACB=()A.80°B.70°C.60°D.40°【考点】圆心角、弧、弦的关系.【分析】由同弧所对的圆心角和圆周角的关系可得,∠AOB=2∠ACB,则结果即可得出.【解答】解:由题意得,∠ACB=∠AOB=×80°=40°.故选D.【点评】本题考查了圆心角、弧、弦的关系,重点是圆周角定理的应用.8.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()A.B.C.D.【考点】概率公式;专题:正方体相对两个面上的文字.【分析】让朝上一面上的数恰好等于朝下一面上的数的的情况数除以总情况数即为朝上一面上的数恰好等于朝下一面上的数的的概率.【解答】解:根据图看出只有6和3是对面,1和4是对面,2和5是对面;并且只有3在上面时6在下面,朝上一面上的数恰好等于朝下一面上的数的,抛掷这个立方体,朝上一面上的数恰好等于3的概率是.故选A.【点评】本题考查了统计与概率中概率的求法,要善于观察把图折成立方体时各个面是什么数字.用到的知识点为:概率=所求情况数与总情况数之比.9.有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg,根据题意,可得方程()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】关键描述语是:有两块面积相同的试验田.等量关系为:第一块的亩数=第二块的亩数.【解答】解:第一块试验田的亩数为:;第二块试验田的亩数为:.那么所列方程为:=.故选:C.【点评】题中一般有三个量,已知一个量,求一个量,一定是根据另一个量来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.10.若不等式组有解,则k的取值范围是()A.k<2 B.k≥2 C.k<1 D.1≤k<2【考点】不等式的解集.【分析】根据不等式的解集,即可解答.【解答】解:∵不等式组有解,∴k<1,故选:C.【点评】本题考查了解一元一次不等式和解一元一次不等式组的应用,解决本题的关键是熟记不等式的解集.11.如图,等边△ABC的内切圆O切BC边于点D,己知等边三角形的边长为12cm,则图中阴影部分的面积为()A.πcm2B.πcm2C.2πm2D.cm2【考点】扇形面积的计算;等边三角形的性质;三角形的内切圆与内心.【分析】根据等边三角形的三线合一,得三角形BOD是一个由半边、内切圆的半径和外接圆的半径组成的一个30°的直角三角形,那么阴影部分的面积为圆心角为60°,半径为2的扇形.【解答】解:三角形内切圆的半径是=2cm,∴其阴影部分的面积是=2πcm2.故选C【点评】主要考查等边三角形的三线合一,得等边三角形的内心也是它的外心;需熟悉扇形的面积公式.12.如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE的面积的2倍;(3)CD+CE=OA;(4)AD2+BE2=2OPOC.其中正确的结论有()A .1个B .2个C .3个D .4个【考点】等腰直角三角形;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.【分析】结论(1)错误.因为图中全等的三角形有3对; 结论(2)正确.由全等三角形的性质可以判断;结论(3)正确.利用全等三角形和等腰直角三角形的性质可以判断.结论(4)正确.利用相似三角形、全等三角形、等腰直角三角形和勾股定理进行判断.【解答】解:结论(1)错误.理由如下:图中全等的三角形有3对,分别为△AOC ≌△BOC ,△AOD ≌△COE ,△COD ≌△BOE .由等腰直角三角形的性质,可知OA=OC=OB ,易得△AOC ≌△BOC .∵OC ⊥AB ,OD ⊥OE ,∴∠AOD=∠COE . 在△AOD 与△COE 中,∴△AOD ≌△COE (ASA ). 同理可证:△COD ≌△BOE . 结论(2)正确.理由如下: ∵△AOD ≌△COE , ∴S △AOD =S △COE ,∴S 四边形CDOE =S △COD +S △COE =S △COD +S △AOD =S △AOC =S △ABC , 即△ABC 的面积等于四边形CDOE 的面积的2倍. 结论(3)正确,理由如下:∵△AOD ≌△COE , ∴CE=AD ,∴CD +CE=CD +AD=AC=OA .结论(4)正确,理由如下:∵△AOD ≌△COE ,∴AD=CE ;∵△COD ≌△BOE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:CD 2+CE 2=DE 2,∴AD 2+BE 2=DE 2. ∵△AOD ≌△COE ,∴OD=OE ,又∵OD ⊥OE ,∴△DOE 为等腰直角三角形,∴DE 2=2OE 2,∠DEO=45°.∵∠DEO=∠OCE=45°,∠COE=∠COE ,∴△OEP ∽△OCE ,∴,即OPOC=OE 2.∴DE 2=2OE 2=2OPOC ,∴AD2+BE2=2OPOC.综上所述,正确的结论有3个,故选:C.【点评】本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OPOC”线段乘积的形式,可以寻求相似三角形解决问题.13.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.【考点】同类项;解二元一次方程组.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.【解答】解:由同类项的定义,得,解得.故选C.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.14.如图,四边形ABCD为正方形,若AB=4,E是AD边上一点(点E与点A、D不重合),BE的中垂线交AB于M,交DC于N,设AE=x,则图中阴影部分的面积S与x的大致图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据ABCD是正方形,可以证明BE=MN,阴影部分的面积等于正方形ABCD的面积减去四边形MBNE的面积,得到S关于x的二次函数,然后确定函数的大致图形.【解答】解:在△ABE中,BE==,∵ABCD是正方形,∴BE=MN,∴S四边形MBNE=BEMN=x2+8,∴阴影部分的面积S=16﹣(x2+8)=﹣x2+8.根据二次函数的图形和性质,这个函数的图形是开口向下,对称轴是Y轴,顶点是(0,8),自变量的取值范围是0<x<4.故选C.【点评】本题考查的是动点问题的函数图象,先根据正方形的性质得到BE=MN,然后表示出S关于x的二次函数,确定二次函数的大致图象.15.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是()A.B.C.D.【考点】锐角三角函数的定义;勾股定理;翻折变换(折叠问题).【分析】折叠后形成的图形相互全等,利用三角函数的定义可求出.【解答】解:根据题意,BE=AE.设CE=x,则BE=AE=8﹣x.在Rt△BCE中,根据勾股定理得:BE2=BC2+CE2,即(8﹣x)2=62+x2解得x=,∴tan∠CBE===.故选:C.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻比斜;正切等于对比邻.16.已知反比例函数的图象如图,则二次函数y=2kx2﹣x+k2的图象大致为()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【分析】根据反比例函数图象确定出k<0,然后确定出二次函数的开口方向和对称轴以及二次函数与y轴的交点位置,从而得解.【解答】解:∵反比例函数图象在第二四象限,∴k<0,∴二次函数图象开口向下,抛物线对称轴为直线x=﹣<0,∵k2>0,∴二次函数图象与y轴的正半轴相交.纵观各选项,只有D选项图象符合.故选:D.【点评】本题考查了二次函数图象,反比例函数图象,根据k的取值范围求出二次函数开口方向、对称轴和与y轴的正半轴相交是解题的关键.17.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于()A.B.C.2 D.【考点】圆周角定理;锐角三角函数的定义.【分析】根据同弧或等弧所对的圆周角相等来求解.【解答】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故选D.【点评】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.18.如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为()A.2 B.3 C.4 D.6【考点】反比例函数图象上点的坐标特征;坐标与图形变化-旋转.【分析】由旋转可得点D的坐标为(3,2),那么可得到点C的坐标为(3,1),那么k等于点C的横纵坐标的积.【解答】解:易得OB=1,AB=2,∴AD=2,∴点D的坐标为(3,2),∴点C的坐标为(3,1),∴k=3×1=3.故选:B.【点评】解决本题的关键是利用旋转的性质得到在反比例函数上的点C的坐标.19.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B.C.6 D.【考点】切线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理;圆周角定理.【分析】连接OD,由DF为圆的切线,利用切线的性质得到OD垂直于DF,根据三角形ABC为等边三角形,利用等边三角形的性质得到三条边相等,三内角相等,都为60°,由OD=OC,得到三角形OCD为等边三角形,进而得到OD平行与AB,由O为BC的中点,得到D为AC的中点,在直角三角形ADF中,利用30°所对的直角边等于斜边的一半求出AD的长,进而求出AC的长,即为AB的长,由AB﹣AF求出FB 的长,在直角三角形FBG中,利用30°所对的直角边等于斜边的一半求出BG的长,再利用勾股定理即可求出FG的长.【解答】解:连接OD,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵OD=OC,∴△OCD为等边三角形,∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=2,∴AD=4,即AC=8,∴FB=AB﹣AF=8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选:B【点评】此题考查了切线的性质,等边三角形的性质,含30°直角三角形的性质,勾股定理,熟练掌握切线的性质是解本题的关键.20.若二次函数y=ax2+bx+c的x与y的部分对应值如下表,则当x=1时,y的值为()D.﹣27【考点】待定系数法求二次函数解析式.【分析】由表可知,抛物线的对称轴为x=﹣3,顶点为(﹣3,5),再用待定系数法求得二次函数的解析式,再把x=1代入即可求得y的值.【解答】解:设二次函数的解析式为y=a(x﹣h)2+k,∵当x=﹣4或﹣2时,y=3,由抛物线的对称性可知h=﹣3,k=5,∴y=a(x+3)2+5,把(﹣2,3)代入得,a=﹣2,∴二次函数的解析式为y=﹣2(x+3)2+5,当x=1时,y=﹣27.故选D.【点评】本题考查了待定系数法求二次函数的解析式,抛物线是轴对称图形,由表看出抛物线的对称轴为x=﹣3,顶点为(﹣3,5),是本题的关键.二、填空题(本大题共4个小题,满分12分,只要求填写最后结果,每小题填对的3分)21.计算的结果是3.【考点】二次根式的混合运算.【分析】本题只需将二次根式化为最简,然后合并同类二次根式,最后进行二次根式的除法运算即可.【解答】解:原式=(5﹣2)÷=3.故答案为:3.【点评】本题考查二次根式的混合运算,难度不大,解答此类题目时往往要先将二次根式化为最简.22.分解因式:m 3﹣4m 2+4m= m (m ﹣2)2 .【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m ,再对余下的多项式利用完全平方公式继续分解.【解答】解:m 3﹣4m 2+4m=m (m 2﹣4m +4) =m (m ﹣2)2.故答案为:m (m ﹣2)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.四边形ABCD 的对角线AC 、BD 的长分别为m 、n ,可以证明当AC ⊥BD 时(如左图),四边形ABCD的面积S=mn ,那么当AC 、BD 所夹的锐角为θ时(如图),四边形ABCD 的面积S= mnsin θ .(用含m 、n 、θ的式子表示)【考点】解直角三角形的应用.【分析】设AC 、BD 交于O 点,在①图形中,设BD=m ,OA +OC=n ,所以S 四边形ABCD =S △ABD +S △BDC ,由此可以求出四边形的面积;在②图形中,作AE ⊥BD 于E ,CF ⊥BD 于F ,由于AC 、BD 夹角为θ,所以AE=OAsin θ,CF=OCsin θ,∴S 四边形ABCD =S △ABD +S △BDC =BDAE +BDCF=BD (AE +CF ),由此也可以求出面积.【解答】解:如图,设AC 、BD 交于O 点,在①图形中,设BD=m ,OA +OC=n ,所以S 四边形ABCD =S △ABD +S △BDC =mOC +mOA=mn ; 在②图形中,作AE ⊥BD 于E ,CF ⊥BD 于F ,由于AC 、BD 夹角为θ, 所以AE=OAsin θ,CF=OCsin θ, ∴S 四边形ABCD =S △ABD +S △BDC=BDAE +BDCF=BD (AE +CF )=mnsin θ.故填空答案: mnsin θ.【点评】此题比较难,解题时关键要找对思路,即原四边形的高已经发生了变化,只要把高求出来,一切将迎刃而解.24.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为(36,0).【考点】旋转的性质;坐标与图形性质;勾股定理.【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).【点评】本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键.三、解答题(共48分)25.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=,再求出B的坐标是(﹣2,﹣2),利用待定系数法求一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围x<﹣2 或0<x<1.(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.【解答】解:(1)∵函数y1=的图象过点A(1,4),即4=,∴k=4,即y1=,又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,如图所示:当x<﹣2 或0<x<1时y1>y2.(3)由图形及题意可得:AC=8,BD=3,=AC×BD=×8×3=12.∴△ABC的面积S△ABC【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.以及三角形面积的求法,这里体现了数形结合的思想.26.如图,在△ABC中,D是BC边上一点,E是AC边上一点,且满足AD=AB,∠ADE=∠C.(1)求证:∠AED=∠ADC,∠DEC=∠B;(2)求证:AB2=AEAC.【考点】相似三角形的判定与性质;三角形的外角性质;等腰三角形的性质.【分析】(1)根据三角形的内角和定理可证∠AED=∠ADC,∠DEC=∠B;(2)根据相似三角形的判定,由AA可证△ADE∽△ACD,得到,即AD2=AEAC.又AB=AD,即证AB2=AEAC.【解答】证明:(1)在△ADE和△ACD中,∵∠ADE=∠C,∠DAE=∠DAE,∴∠AED=180°﹣∠DAE﹣∠ADE,∠ADC=180°﹣∠DAE﹣∠C,∴∠AED=∠ADC.∵∠AED+∠DEC=180°,∠ADB+∠ADC=180°,∴∠DEC=∠ADB,又∵AB=AD,∴∠ADB=∠B,∴∠DEC=∠B.(2)在△ADE和△ACD中,由(1)知∠ADE=∠C,∠AED=∠ADC,∴△ADE∽△ACD,∴,即AD2=AEAC.又AB=AD,∴AB2=AEAC.【点评】本题考查了三角形的内角和定理,等腰三角形的性质,相似三角形的判定等知识点,难度适中.27.某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?【考点】分式方程的应用.【分析】(1)等量关系为:4月份营业数量=5月份营业数量﹣20;(2)算出4月份的数量,进而求得成本及每件的盈利,进而算出5月份的售价及每件的盈利,乘以5月份的数量即为5月份的获利.【解答】解:(1)设该种纪念品4月份的销售价格为x元.根据题意得,20x=1000解之得x=50,经检验x=50是原分式方程的解,且符合实际意义,∴该种纪念品4月份的销售价格是50元;(2)由(1)知4月份销售件数为(件),∴四月份每件盈利(元),5月份销售件数为40+20=60件,且每件售价为50×0.9=45(元),每件比4月份少盈利5元,为20﹣5=15(元),所以5月份销售这种纪念品获利60×15=900(元).【点评】找到相应的关系式是解决问题的关键.注意求获利应求得相应的数量与单件获利.28.已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是矩形,且DE⊥CF.求证:;(2)如图2,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论;(3)如图3,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF.请直接写出的值.【考点】相似形综合题.【分析】(1)根据矩形性质得出∠A=∠FDC=90°,求出∠CFD=∠AED,证出△AED∽△DFC即可;(2)当∠B+∠EGC=180°时,=成立,证△DFG∽△DEA,得出=,证△CGD∽△CDF,得出=,即可得出答案;(3)过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,证△BCM∽△DCN,求出CM=x,在Rt△CMB中,由勾股定理得出BM2+CM2=BC2,代入得出方程(x﹣6)2+(x)2=62,求出CN=,证出△AED∽△NFC,即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴=;(2)当∠B+∠EGC=180°时,=成立.证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∵∠FDG=∠EDA,∴△DFG∽△DEA,∴=,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴=,∴=,∴=,即当∠B+∠EGC=180°时,=成立.(3)解:=.理由是:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,∵在△BAD和△BCD中∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴=,∴=,∴CM=x,在Rt△CMB中,CM=x,BM=AM﹣AB=x﹣6,由勾股定理得:BM2+CM2=BC2,∴(x﹣6)2+(x)2=62,x=0(舍去),x=,CN=,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴===.。

九年级语文下册第一次月考试卷及答案

九年级语文下册第一次月考试卷及答案

九年级语文下册第一次月考试卷及答案人教版九年级语文下册第一次月考试卷及答案第Ⅰ卷(选择题共20分)一、基础知识(每小题2分,共10分)1、选出下列各项词语中加点字注音完全正确的一项。

()A.拮据(jù)星宿(sù)B.惘然(wǎng)陨落(sǔn)C.发窘(jiǒng)狡黠(xiá)D.省悟(shěng)褴褛(lǔ)2、选出下列各项词语中没有错别字的一项。

()A.共同的鉴赏能力与博学多识使他们两人常常是一拍即和。

B.佛山是粤剧的发祥地,粤剧的精彩表演常常令人谈为观止。

C.在元旦文艺晚会模仿秀节目中,张萍把蔡依琳模仿得维妙维肖,D.他是美国家喻户晓的人物,曾成功地领导战时美国原子弹制造工作。

3、选出下列句子没有语病的—项。

()A.通过这次社区劳动,使她更喜欢参加青年志愿者活动。

C.夏天的西樵山,真是我们纳凉避暑、休闲娱乐的好季节。

D.新图书馆已经健全并建立了一系列图书管理制度。

4、下列加点的词语使用正确的一项是()B.看到大家都在积极参加志愿者活动,他忍无可忍地加入到这次活动中来。

C.为了满足人们健康的需要,厂家滔滔不绝的推出了绿色食品。

D.学校进行义务劳动时,有的同学拈轻怕重,受到老师的批评。

5、选出下列句子顺序排列正确的一项()①淡黑的起伏的连山,仿佛是踊跃的铁的兽脊似的,都远远地向船尾跑去了。

②但我却还以为船慢。

③月色便朦胧在这水气里。

④两岸的豆麦和河底的水草所发散出来的清香,夹杂在水气中扑面地吹来。

A、②④①③B、③②④①C、④③①②D、①②④③二、文言文阅读(每小题2分,共10分)阅读下面文言文,回答第6至10题。

唐雎不辱使命秦王谓唐雎曰:“寡人以五百里之地易安陵,安陵君不听寡人,何也?且秦灭韩亡魏,而君以五十里之地存者,以君为长者,故不错意也。

今吾以十倍之地,请广于君,而君逆寡人者,轻寡人与?”唐雎对曰:“否,非若是也。

安陵君受地于先王而守之,虽千里不敢易也,岂直五百里哉?”秦王怫然怒,谓唐雎曰:“公亦尝闻天子之怒乎?”唐雎对曰:“臣未尝闻也。

2019人教版九年级语文下册第一次月考试题及答案精品教育.doc

2019人教版九年级语文下册第一次月考试题及答案精品教育.doc

人教版2019年九年级语文下册第一次月考试题及答案内容预览:2019-2019学年度第二学期九年级第一次月考试卷语文试卷温馨提示:1、你现在拿到的试卷满分为150分(其中卷面书写5分);相信你能在150分钟内完成所有答题。

2、答题过程中,你可以随时使用你所带的《新华字典》。

一、语文积累和综合运用(35分)1、请根据提示填写相应的古诗文。

(10分)①“大爱无私,真情无悔”,李商隐在《无题》中用“ ,”来向世人诠释了这一种高尚的品质,这种不朽的感情。

②白居易用“可怜身上衣正单,心忧炭贱愿天寒。

”表现卖炭翁的矛盾心理,在《观刈麦》中诗人也用“___”来表现对劳动人民的同情。

③《关雎》是一首优美的恋歌,开头两句“__________”成功地运用了比兴手法,为下文抒发爱情创造了情意绵绵的意境。

④《渔家傲》中抒发壮志难酬的感慨和思乡忧国的情怀的诗句是“______。

”⑤站在江边,微风轻拂,江水浩淼,波平浪静一叶白帆悠然的飘荡在江面上,恰似王湾《次北固山下》中“_____”的美景。

2、下面这段文字是献给2019年安徽新闻人物汪雪艳、黄礼杰的颁奖辞,阅读后完成①--③题。

(8分)大地的一次颤抖,遥远的岛国坍蹋成一片废xū,出生入死,异国救援,有一双安徽儿女。

多少个震后的日子,他们折叠起对家乡的思念,以同胞之情,在动荡贫困的土地培植橄榄与希望,以维和警察的中国品质,用大爱谱写世界上最美丽的语言。

①给加点字注音,根据拼音写出汉字。

(2分)颤( )抖废xū( )②文中有个错别字的词语是,其正确的写法是。

(2分)③画线两处的文字,运用了一种相同的修辞手法。

其中“折叠”意为;“橄榄”象征。

(4分)3、运用你课外阅读积累的知识,完成①-②题。

(5分)①《西游记》中,唐僧自幼出家,由于他勤敏好学,悟性极高,在寺庙僧人中脱颖而出。

最终被唐朝皇上选定,前往西天取经。

临行前,唐王御赐素酒,并捻一撮土于杯中,其捻土之意为“ ,。

”唐僧的大徒弟孙悟空又名美猴王、齐天大圣、孙行者。

人教版九下第一次月考试题及答案

人教版九下第一次月考试题及答案

△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△订线(装订线内不要答题)2014-2015学年度第二学期九年级第一次模拟考试语文试题考生注意:1.考试时间120分钟1.请将下面的句子用楷体..准确、规范地抄写在田字格内。

(2分)白日莫闲过,青春不再来。

2.阅读下段文字,按要求答题。

(4分)一个个方块汉字,就是一个个音形义的结合体,就是中华经典文化的结晶。

读一首古诗,就读出了汉字在诗中流动的隽.永;赏一篇美文,就赏出了汉字在美文中yùn含的哲理。

亲进汉字,就可以感受到中华民族传统文化的搏大精深。

(1)给加点字注音,根据拼音写汉字。

(2分)(2)找出文中两个错别字,并改正。

(2分)改为分)①我市正在加快解决地沟油回流餐桌的问题,②政府一方面制定强制统一收购餐厨垃圾的办法,③另一方面通过立法协调环保、工商、城管等部门对餐厨废油的管理力度。

5.仿写。

(2分)生活是一首歌,吟唱着人生的节奏和旋律;生活是一条路,延伸着人生的足迹和。

6.古诗文默写。

九年级语文下册第一次测试月考试题(附答案解析)

九年级语文下册第一次测试月考试题(附答案解析)

第二学期第一次测试初三语文试卷友情提醒:1.本试题分试卷和答题纸两部分,其中试卷共6页,答题纸共4页。

全卷共23题,满分150分,考试时间150分钟。

2.试题答案书写在答题纸规定位置上,写在试卷及草稿纸上无效。

一(25分)1.阅读下面文字,根据拼音写出汉字或给加点字注音。

(4分)牢记老师的谆谆教诲.,míng记同学的深情厚谊,满怀对未来的chōng憬,我就要告别亲爱的母校了。

啊,母校,明天我可能成不了睿.智的哲人、风光的名人,但是,我一定会做一个知恩感恩的人,一个自立自强的人,一个勇于负责的人,一个乐观向上的人。

2. 下面这段文字中有三处语病,任选两处加以修改。

(4分)阅读课上,①我们讨论并阅读了海明威的名著《老人与海》,感触很多。

②不但我被人鲨搏斗那惊心动魄的场面所震撼,更被主人公那“人可以被消灭,不可以被打败”的信念所折服。

③我相信,在今后的日子里,这种阅读体验将无时无刻不伴随着我,激励着我战胜困难的动力。

第句,修改意见:第句,修改意见:3.诗、文名句填空(①一①题为必答题;①一①题为选答题,从中任选..两题..作答,若答两题以上,只批阅前两题)。

(8分)(1),赢得生前身后名。

(2)散入珠帘湿罗幕,。

(3)怀旧空吟闻笛赋,。

),将登太行雪满山。

(6),便引诗情到碧宵。

选答题:(7)桃李不言,。

(8)千里之堤,。

(9)业精于勤,荒于嬉;,。

(10)良药苦口利于病,。

4.阅读下面语段,按要求答题。

(4分)什么样的人才能称得上英雄?《①》中以勇武助刘备建立一番功业的张飞固然是,《②》里用谋略帮晁盖智取生辰纲的吴用何尝不是?《钢铁是怎样炼成的》中不屈服于命运、坚持崇高理想追求的③固然是,《名人传》中"扼住命运的咽喉"、创作了不朽乐章的音乐家④又何尝不是?5.综合性学习(5分)近日,学校组织一次“走近新词语”活动。

请你参加并完成以下任务。

(1)活动一:探究下列材料,写出你的发现。

人教版数学九年级下期第一次月考测试卷及解答

人教版数学九年级下期第一次月考测试卷及解答

人教版数学九年级下期第一次月考测试卷(同学们请注意:本试题共26个小题,满分150分,定时120分钟完成)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将请将答题卡上对应题目的正确答案标号涂黑.1.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱2.若代数式4x x -有意义,则实数x 的取值范围是( ) A .0x = B .4x = C .0x ≠ D .4x ≠3.实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >B .0bd >C .a d >D .0b c +>4.若正多边形的一个内角是150,则该正多边形的边数是( )A .6B .12C .16D .185.在平面直角坐标系中,若点(4,3)P x x --在第三象限,则x 的取值范围为( )A .3x <B .4x <C .34x <<D .3x >6.如图,四边形ABCD 和A B C D ''''是以点O 为位似中心的位似图形,若:2:3OA OA '=,则四边形ABCD 与四边形A B C D ''''的面积比为( )A .4 : 9B .2 : 5C .2 : 3D .2:37.下列哪一个是假命题( )A .五边形外角和为360B .圆的切线垂直于经过切点的半径C .(3,2)-关于y 轴的对称点为(3,2)-D .抛物线242017y x x =-+对称轴为直线2x =8.按如图所示的运算程序,能使输出结果为8-的是( )A .3,4x y ==B .4,3x y ==C .4,2x y =-=D .2,4x y =-=9.如图,在ABC ∆中,10AB =,8AC =,6BC =.按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交,AB AC 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧交于点E ;③作射线AE ;④以同样的方法作射线BF 、AE 交BF 于点O ,连结OC ,则OC 为( )A .22B .2C .2D .110.已知二次函数2(2)3y x a x =-+-+,当2x >时,y 随x 的增大而减小,且关于x 的方程2210ax x -+=无实数解.那么符合条件的所有整数a 的和是 ( )A .120B .20C .0D .无法确定11.如图,小明站在某广场一看台C 处,从眼睛D 处测得广场中心F 的俯角为21,若 1.6CD =米,1.5BC =米,BC 平行于地面FA ,台阶AB 的坡度为3:4i =,坡长10AB =米,则看台底端A 点距离广场中心F 的距离约为(参考数据:sin 210.36≈,cos210.93≈,tan 210.38≈)( )A .8.8米B .9.5米12.如图,在边长为1的菱形ABCD 中,120ABC ∠=,P 是边AB 上的动点,过点P 作PQ AB ⊥交线段AD 于点Q ,连接,CP CQ ,则CPQ ∆面积的最大值是( ) A .134 B .938 C .9316 D .9332二、填空题 : (本题共 6 个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图象相交于点(2,1)A ,当2x <时,1y ______2y .(填“>”或“<”)14.从数11,,0,23- - 中任取一个数记为a ,再从余下的三个数中,任取一个数记为b .若k a b =+,则0k <的概率是________.15.若关于,x y 的方程组4225x y x y n +=⎧⎨+=+⎩的解满足4314x y +=,则n 的值为________. 16.如图,在四边形ABCD 中,AB AD =,90BAD BCD ∠=∠=,连接AC .若6AC =,则四边形ABCD 的面积为________.17.如图所示,折叠矩形ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上.若2AB AD =+,1EH =,则AD =________. 18.如图,已知点A 在反比例函数(0)k y x x=<上,作Rt ABC ∆(边BC 在x 轴上),点D 是斜边AC 的中点,连接DB 并延长交y 轴于点E .若BCE ∆的面积为12,则k 的值为________.三、解答题:(本大题共8小题,第26题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.(1)计算:04cos30(12)122+--+- (2)解方程:1322x x x+=--20.如图,AB 为O 的直径,且4AB =,点C 是弧AB 上的一动点(不与,A B 重合),过点B 作O 的切线交AC 的延长线于点D ,点E 是BD 的中点,连接EC .(1)若8BD =,求线段AC 的长度;(2)求证:EC 是O 的切线;(3)当30D ∠=时,求图中阴影部分面积.21.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a .实心球成绩的频数分布如表所示:b .实心球成绩在7.07.4x ≤<这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c .一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m 的值为________;②一分钟仰卧起坐成绩的中位数为________个;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示.其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E 的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由. 女生代码 A B C D E F G H 实心球8.1 737 7.5 735 7.3 7.2 7.0 6.5 一分钟仰卧起坐* 42 47 * 47 52 * 4922.对任意一个四位正整数数m ,若其千位与百位上的数字之和为9,十位与个位上的数字之和也为9,那么称m 为“重九数”,如:1827、3663.将“重九数”m 的千位数字与十位数字对调,百位数字与个位数字对调,得到一个新的四位正整数数n ,如:2718m =,则1827n =,记(,)D m n m n =+. (1)请写出两个四位“重九数”:________,________.(2)求证:对于任意一个四位“重九数”m ,其(,)D m n 可被101整除.(3)对于任意一个四位“重九数”m ,记(,)(,)101D m n f m n =,当(,)f m n 是一个完全平方数时,且满足m n >,求满足条件的m 的值.23.有这样一个问题:探究函数2112y x x =+的图象与性质,小东根据学习函数的经验,对函数2112y x x=+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数的自变量x 的取值范围是________.(2)下表是y 与x 的几组对应值,求m 的值;(3)如图,在平面直角体系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是3(1,),结合函数的图象,写出该函数的其它性质(一条即可)________________.24.如图,已知抛物线2(0)y ax bx c a =++≠经过(1,0),(3,0),(0,3)A B C - -三点,直线l 是抛物线的对称轴.(1)求抛物线的函数解析式;(2)设点M 是直线l 上的一个动点,当点M 到点A ,点C 的距离之和最短时,求点M 的坐标;(3)在抛物线上是否存在点N ,使43ABN ABC S S ∆∆=.若存在,求出点N 的坐标,若不存在,说明理由.25.春临大地,学校决定给长12米,宽9米的一块长方形展示区进行种植改造现将其划分成如图两个区域:区域⎺矩形ABCD 部分和区域Ⅱ四周环形部分,其中区域Ⅰ用甲、乙、丙三种花卉种植,且EF 平分BD ,,G H 分别为,AB CD 中点.(1)若区域Ⅰ的面积为S m 2,种植均价为 180 元/m 2,区域Ⅱ的草坪均价为 40 元/m 2,且两区域的总价为16500元,求S 的值.(2)若AB : B C = 4 : 5,区域Ⅱ左右两侧草坪环宽相等,均为上、下草坪环宽的2倍①求,AB BC 的长;②若甲、丙单价和为 360 元/m 2,乙、丙单价比为13 : 12,三种花卉单价均为 20 的整数倍.当矩形ABCD 中花卉的种植总价为14520元时,求种植乙花卉的总价.26.在ABC ∆中,ABC ∠为锐角,点M 为射线AB 上一动点,连接CM ,以点C 为直角顶点,以CM 为直角边在CM 右侧作等腰直角三角形CMN ,连接NB .(1)如图1,图2,若ABC ∆为等腰直角三角形,问题初现:①当点M 为线段AB 上不与点A 重合的一个动点,则线段,BN AM 之间的位置关系是________,数量关系是________;(2)深入探究:②当点M 在线段AB 的延长线上时,判断线段,BN AM 之间的位置关系和数量关系,并说明理由;(3)类比拓展:如图3,90ACB ∠≠,若当点M 为线段AB 上不与点A 重合的一个动点,MP CM ⊥交线段BN 于点P ,且45CBA ∠=,42BC =,当BM =________时,BP 的最大值为________.。

九年级下学期第一次月考数学试卷(附参考答案与解析)

九年级下学期第一次月考数学试卷(附参考答案与解析)

九年级下学期第一次月考数学试卷(附参考答案与解析)班级:___________姓名:___________考号:___________一.选择题(共6小题,每小题3分,共18分)1.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形2.下列哪个是一元二次方程x2﹣6x+8=0的解()A.﹣2或﹣4B.2C.2或4D.无解3.一个正方体切去拐角后得到形状如图的几何体,其俯视图是()A.B.C.D.4.如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB 的高度为()A.B.20米C.30D.60米5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④6.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5二.填空题(共6小题,每小题3分,共18分)7.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是.8.如图,在⊙O中,AB是⊙O的弦,AB=10,OC⊥AB,垂足为点D,则AD=.9.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A (3,0),则由图象可知,不等式ax2+bx+c<0的解集是.10.如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂=3,则k的值是.足为M,连接BM,若S△ABM11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.12.正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为.三.解答题13.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.14.计算:(π﹣3.14)0×(﹣1)2010+(﹣)﹣2﹣|﹣2|+2cos30°15.有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.16.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?17.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.18.某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)19.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?20.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.21.我县绿色和特色农产品在国际市场上颇具竞争力.外贸商胡经理按市场价格10元/千克在我县收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如图)帮胡经理解决以下问题:(1)若胡经理想将这批蘑菇存放x天后一次性出售,则x天后这批蘑菇的销售单价为元,这批蘑菇的销售量是千克;(2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售总金额为100000元;(销售总金额=销售单价×销售量).(3)将这批蘑菇存放多少天后一次性出售可获得最大利润?最大利润是多少?22.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.23.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC 边以2cm/s的速度向终点C移动.①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.参考答案与解析一.选择题(共6小题,每小题3分,共18分)1.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【考点】命题与定理.【分析】利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.【解答】解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.2.下列哪个是一元二次方程x2﹣6x+8=0的解()A.﹣2或﹣4B.2C.2或4D.无解【考点】一元二次方程的解.【分析】利用因式分解法求出方程的解,即可作出判断.【解答】解:方程分解得:(x﹣2)(x﹣4)=0可得x﹣2=0或x﹣4=0解得:x=2或x=4故选C3.一个正方体切去拐角后得到形状如图的几何体,其俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据俯视图是从上面看到的图形判定则可.【解答】解:从上面看,是正方形右下角有阴影,故选C.4.如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB 的高度为()A.B.20米C.30D.60米【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据仰角为30°,BD=30米,在Rt△BDE中,可求得ED的长度,根据题意恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,可得AB=2ED.【解答】解:在Rt△BDE中∵∠EBD=30°,BD=30米∴=tan30°解得:ED=10(米)∵当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像∴AB=2DE=20(米).故选:B.5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a﹣b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选:B.6.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5【考点】垂径定理;勾股定理.【分析】由垂线段最短可知当OM⊥AB时最短,当OM是半径时最长.根据垂径定理求最短长度.【解答】解:由垂线段最短可知当OM⊥AB时最短,即OM===3;当OM是半径时最长,OM=5.所以OM长的取值范围是3≤OM≤5.故选A.二.填空题(共6小题,每小题3分,共18分)7.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是.【考点】锐角三角函数的定义;勾股定理;勾股定理的逆定理.【分析】连接BC,根据勾股定理,可求得AB,BC,AC,再根据勾股定理的逆定理,可得△ABC 为直角三角形,即可求得sin∠BAD的值.【解答】解:连接BC根据勾股定理,可求得AB=,BC=,AC=根据勾股定理的逆定理,可得∠ABC=90°∴sin∠BAD===.故答案为:.8.如图,在⊙O中,AB是⊙O的弦,AB=10,OC⊥AB,垂足为点D,则AD=5.【考点】垂径定理;勾股定理.【分析】根据垂径定理得出AD=BD,即可求出答案.【解答】解:∵OC⊥AB,垂足为点D,OC过0∴AD=BD∵AB=10∴AD=5故答案为:5.9.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A (3,0),则由图象可知,不等式ax2+bx+c<0的解集是﹣1<x<3.【考点】二次函数与不等式(组).【分析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.【解答】解:由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x轴的另一个交点坐标为(﹣1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集∴﹣1<x<3故填:﹣1<x<310.如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂=3,则k的值是3.足为M,连接BM,若S△ABM【考点】反比例函数系数k的几何意义;反比例函数图象的对称性.【分析】由反比例函数图象的对称性和反比例函数系数k的几何意义可得:△ABM的面积为=2S△AOM=|k|.△AOM面积的2倍,S△ABM=2S△AOM=3,S△AOM=|k|=,则k=3.【解答】解:由题意得:S△ABM故答案为:3.11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.【考点】列表法与树状图法.【分析】列举出所有情况,看两张图案一样的情况数占总情况数的多少即可.【解答】解:设粽子用A表示,龙舟用B表示.共有12种情况,两张图案一样的有4种所以所求的概率为.故答案为.12.正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为(﹣1,0)或(5,﹣2).【考点】位似变换;坐标与图形性质.【分析】由图形可得两个位似图形的位似中心必在x轴上,连接AF、DG,其交点即为位似中心,进而再由位似比即可求解位似中心的坐标.【解答】解:当位似中心在两正方形之间连接AF、DG,交于H,如图所示,则点H为其位似中心,且H在x轴上∵点D的纵坐标为2,点F的纵坐标为1∴其位似比为2:1∴CH=2HO,即OH=OC又C(﹣3,0),∴OC=3∴OH=1所以其位似中心的坐标为(﹣1,0);当位似中心在正方形OEFG的右侧时,如图所示,连接DE并延长,连接CF并延长两延长线交于M,过M作MN⊥x轴∵点D的纵坐标为2,点F的纵坐标为1∴其位似比为2:1∴EF=DC,即EF为△MDC的中位线∴ME=DE,又∠DEC=∠MEN,∠DCE=∠MNE=90°∴△DCE≌△MNE∴CE=EN=OC+OE=3+1=4,即ON=5,MN=DC=2则M坐标为(5,﹣2)综上,位似中心为:(﹣1,0)或(5,﹣2).故答案为:(﹣1,0)或(5,﹣2).三.解答题13.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.【考点】中心投影.【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把AB和DE的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接MN顶部N的直线与地面相交即可找到MN影子的顶端.线段GM是大树的高.若小明的眼睛近似地看成是点D,则看不到大树,GM处于视点的盲区.【解答】解:(1)点P是灯泡的位置;(2)线段MG是大树的高.(3)视点D看不到大树,GM处于视点的盲区.14.计算:(π﹣3.14)0×(﹣1)2010+(﹣)﹣2﹣|﹣2|+2cos30°【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、负指数幂、绝对值的化简、特殊角的锐角三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1×1+9﹣2+=8+2.15.有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.【考点】列表法与树状图法;中心对称图形.【分析】(1)列举出所有情况即可;(2)中心对称图形是绕某点旋转180°后能够和原来的图形完全重合,那么B,D是中心对称图形,看所求的情况占总情况的多少即可.【解答】解:(1)树状图:或列表法A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D);(2)由图可知:只有卡片B、D才是中心对称图形.所有可能的结果有16种,其中满足摸出的两张卡片图形都是中心对称图形(记为事件A)有4种,即:(B,B)(B,D)(D,B)(D,D).∴P(A)=.16.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?【考点】反比例函数与一次函数的交点问题.【分析】(1)设反比例函数解析式为y=,把点A的坐标代入解析式,利用待定系数法求反比例函数解析式即可,把点B的坐标代入反比例函数解析式进行计算求出a的值,从而得到点B的坐标;(2)写出一次函数图象在反比例函数图象上方的x的取值范围即可.【解答】解:(1)设反比例函数的解析式为y=(k≠0)∵反比例函数图象经过点A(﹣4,﹣2)∴﹣2=∴k=8∴反比例函数的解析式为y=∵B(a,4)在y=的图象上∴4=∴a=2∴点B的坐标为B(2,4);(2)根据图象得,当x>2或﹣4<x<0时,一次函数的值大于反比例函数的值.17.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.【考点】条形统计图.【分析】(1)将训练前各等级人数相加得总人数,将总人数减去训练后B、C两个等级人数可得训练后A等级人数;(2)将训练后A等级人数占总人数比例乘以总人数可得.【解答】解:(1)∵抽取的人数为21+7+2=30∴训练后“A”等次的人数为30﹣2﹣8=20.补全统计图如图:(2)600×=400(人).答:估计该校九年级训练后成绩为“A”等次的人数是400.18.某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)【考点】解直角三角形的应用﹣坡度坡角问题.【分析】(1)本题可通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN 的度数,又已知了AE的长,可在直角三角形ABE、ACE中分别求出BE、CE的长,BC就能求出了.(2)本题可先计算出最小安全距离是多少,然后于大灯的照明范围进行比较,然后得出是否合格的结论.【解答】解:(1)过A作AD⊥MN于点D在Rt△ACD中,tan∠ACD==,CD=5.6(m)在Rt△ABD中,tan∠ABD==,BD=7(m)∴BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m;(2)该车大灯的设计不能满足最小安全距离的要求.理由如下:∵以60 km/h的速度驾驶∴速度还可以化为:m/s最小安全距离为:×0.2+=8(m)大灯能照到的最远距离是BD=7m∴该车大灯的设计不能满足最小安全距离的要求.19.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?【考点】相似三角形的判定与性质;待定系数法求一次函数解析式;解直角三角形.【分析】(1)设直线AB的解析式为y=kx+b,解得k,b即可;(2)由AO=6,BO=8得AB=10,①当∠APQ=∠AOB时,△APQ∽△AOB利用其对应边成比例解t.②当∠AQP=∠AOB时,△AQP∽△AOB利用其对应边成比例解得t.(3)过点Q作QE垂直AO于点E.在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,再利用三角形面积解得t即可.【解答】解:(1)设直线AB的解析式为y=kx+b由题意,得解得所以,直线AB的解析式为y=﹣x+6;(2)由AO=6,BO=8得AB=10所以AP=t,AQ=10﹣2t①当∠APQ=∠AOB时,△APQ∽△AOB.所以=解得t=(秒)②当∠AQP=∠AOB时,△AQP∽△AOB.所以=解得t=(秒);∴当t为秒或秒时,△APQ与△AOB相似;(3)过点Q作QE垂直AO于点E.在Rt△AOB中,sin∠BAO==在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣tS△APQ=AP•QE=t•(8﹣t)=﹣t2+4t=解得t=2(秒)或t=3(秒).∴当t为2秒或3秒时,△APQ的面积为个平方单位20.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【考点】切线的判定;圆心角、弧、弦的关系;圆周角定理.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC∴∠DAO=∠COB,∠ADO=∠DOC又∵OA=OD∴∠DAO=∠ADO∴∠COB=∠COD∴=;(2)由(1)知∠DOE=∠BOE在△COD和△COB中CO=CO∠DOC=∠BOCOD=OB∴△COD≌△COB∴∠CDO=∠B.又∵BC⊥AB∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.21.我县绿色和特色农产品在国际市场上颇具竞争力.外贸商胡经理按市场价格10元/千克在我县收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如图)帮胡经理解决以下问题:(1)若胡经理想将这批蘑菇存放x天后一次性出售,则x天后这批蘑菇的销售单价为(10+0.1x)元,这批蘑菇的销售量是千克;(2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售总金额为100000元;(销售总金额=销售单价×销售量).(3)将这批蘑菇存放多少天后一次性出售可获得最大利润?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据等量关系蘑菇的市场价格每天每千克上涨0.1元则可求出则x天后这批蘑菇的销售单价,再根据平均每天有10千克的蘑菇损坏则可求出这批蘑菇的销售量;(2)按照等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出方程求解即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【解答】解:(1)因为蘑菇的市场价格每天每千克上涨0.1元,所以x天后这批蘑菇的销售单价为(10+0.1x)元;因为均每天有10千克的蘑菇损坏,所以x天后这批蘑菇的销售量是千克;故答案为:(10+0.1x),.(2)由题意得:(10+0.1x)=100000整理得:x2﹣500x+40000=0解方程得:x1=100,x2=400(不合题意,舍去)所以胡经理将这批蘑菇存放100天后,一次性出售所得的销售总金额为100000元;((3)设利润为w,由题意得w=(10+0.1x)﹣240x﹣6000×10=﹣x2+260x=﹣(x﹣130)2+16900∵a=﹣1<0∴抛物线开口方向向下∴x=110时,w最大=16500∴存放110天后出售这批香菇可获得最大利润16500元.22.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是相等;结论2:DM、MN的位置关系是垂直;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【考点】正方形的性质;全等三角形的判定与性质;三角形中位线定理;旋转的性质.【分析】(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE ≌△ADF,得到AE=AF,证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,位置关系式垂直;(3)连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,再有(1)的结论以及角角之间的数量关系得到∠DMN=∠DGE=90°.【解答】(1)证明:∵四边形ABCD是正方形∴AB=AD=BC=CD,∠B=∠ADF=90°∵△CEF是等腰直角三角形,∠C=90°∴CE=CF∴BC﹣CE=CD﹣CF即BE=DF∴△ABE≌△ADF∴AE=AF∴△AEF是等腰三角形;(2)解:相等,垂直;证明:∵在Rt△ADF中DM是斜边AF的中线∴AF=2DM∵MN是△AEF的中位线∴AE=2MN∵AE=AF∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD∵∠FMN=∠FAE,∠DAF=∠BAE∴∠ADM=∠DAF=∠BAE∴∠DMN=∠BAD=90°∴DM⊥MN;(3)(2)中的两个结论还成立证明:连接AE,交MD于点G∵点M为AF的中点,点N为EF的中点∴MN∥AE,MN=AE由(1)同理可证AB=AD=BC=CD,∠B=∠ADF,CE=CF又∵BC+CE=CD+CF,即BE=DF∴△ABE≌△ADF∴AE=AF在Rt△ADF中∵点M为AF的中点∴DM=AF∴DM=MN∵△ABE≌△ADF∴∠1=∠2∵AB∥DF∴∠1=∠3同理可证:∠2=∠4∴∠3=∠4∵DM=AM∴∠MAD=∠5∴∠DGE=∠5+∠4=∠MAD+∠3=90°∵MN∥AE∴∠DMN=∠DGE=90°∴DM⊥MN.23.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC 边以2cm/s的速度向终点C移动.①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A代入解析式求出c和a,最后根据抛物线的对称轴求出b,即可求出最后结果.(2)①本题需根据题意列出S与t的关系式,再整理即可求出结果.②本题需分三种情况:以PB为对角线,当点R在BQ的左边,且在PB下方时;以PQ为对角线,当点R在BQ的左边,且在PB上方时;以BQ为对角线,当点R在BQ的右边,且在PB 上方时,然后分别代入抛物线的解析式中,即可求出结果.【解答】解:(1)∵抛物线的解析式为y=ax2+bx+c由题意知点A(0,﹣12)∴c=﹣12又∵18a+c=0∵AB∥OC,且AB=6cm∴抛物线的对称轴是∴b=﹣4所以抛物线的解析式为;(2)①,(0<t<6)②当t=3时,S取最大值为9(cm2)这时点P的坐标(3,﹣12)点Q坐标(6,﹣6)若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:(Ⅰ)以PB为对角线,当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18)(Ⅰ)以PQ为对角线,当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.(Ⅰ)以BQ为对角线,当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.综上所述,点R坐标为(3,﹣18).。

人教版九年级下语文月考试卷第一次月考1

人教版九年级下语文月考试卷第一次月考1

初三第二学期语文第一次月考试卷班A卷100分一、知识与积累(23分)1.下面词语中读音完全正确的一组是()(2分)A 荇(xìng)藻荤(hūn)菜胚(pēi)芽咸(hán)亨酒店B 慰藉(jiè)驾驭(yù)河畔(bàn)打折(shé)了腿C 赚(jiàn)钱名讳(huì)戏谑(nuè)呱(guā)呱坠地D 腌(ā)臜吮(shǔn)吸干瘪(biě)擀(gǎn)面杖2.下面词语中书写完全正确的一组是()(2分)A 断壁残垣望眼欲穿无原无故奄奄一息虔信B 如坐针毡不屑置辨天伦之乐异想天开荣膺C 海市蜃楼妙手回春恰如其分乐此不疲阔绰D 沧海桑田周道如砥赔礼道歉吹毛求痴颤栗3.“掌柜是一副凶脸孔,主顾也没有好声气,教人活泼不得”中“教”字正确的读音、解释是()(2分)A jiāo传授B jiào教育C jiāo让D jiào使4.选出下列句子中加点的成语使用正确的一项。

()( 2分)A 奶奶八十多岁了,视力越来越差,看什么都眼花缭乱....。

B 在团委的精心策划下,我校“五四”联欢晚会办得栩栩如生....,得到同学们的赞扬。

C “中医中药中国行”活动每到一个城市都受到群众的热烈欢迎,吸引了数十万人袖.手旁观...。

D 四川汶川发生8。

0级大地震后,全国人民众志成城,抗震救灾,涌现出无数可歌可...泣.的动人事迹。

5.删除一些词语,使下面的语段简洁、顺畅并保持原意。

从画线的词语中选出必须保留的项。

(2分)国务院总理关于机构改革问题的电视讲话,引起了①社会各界的普遍关注。

近日以②来,北京③、上海④、贵阳⑤、贵州⑥、广东⑦等省市的各级⑧领导认真学习这一讲话精神⑨,并举行了各种座谈会。

舆论普遍⑩认为,精简机构势在必行。

必须保留的有:6.下列句子中,没有语病....的一句是( )(2分)A.开卷未必有益,只有开好卷、会开卷,就能真正受益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年度第二学期九年级第一次模拟考试语 文 试 题考生注意: 1.考试时间120分钟1.请将下面的句子用楷体..准确、规范地抄写在田字格内。

(2分) 白日莫闲过,青春不再来。

2.阅读下段文字,按要求答题。

(4分) 一个个方块汉字,就是一个个音形义的结合体,就是中华经典文化的结晶。

读一首古诗,就读出了汉字在诗中流动的隽.永;赏一篇美文,就赏出了汉字在美文中y ùn 含的 哲理。

亲进汉字,就可以感受到中华民族传统文化的搏大精深。

(1)给加点字注音,根据拼音写汉字。

(2分) (2)找出文中两个错别字,并改正。

(2分)改为分)① 我市正在加快解决地沟油回流餐桌的问题,②政府一方面制定强制统一收购餐厨垃圾的办法,③另一方面通过立法协调环保、工商、城管等部门对餐厨废油的管理力度。

5.仿写。

(2分)生活是一首歌,吟唱着人生的节奏和旋律;生活是一条路,延伸着人生的足迹和。

6.古诗文默写。

(11分)(1)何当共剪西窗烛, 。

(李商隐《夜雨寄北》)(2) ,铜雀春深锁二乔。

(杜牧《赤壁》) (3) ,勿施于人。

(《论语十则》)(4)《雁门太守行》中写敌人兵临城下,战云笼罩,而战士整装待发,士气旺盛的诗句是: , 。

(5)在《饮酒》中最能体现陶渊明怡然自得、恬淡相适的句子是: , 。

(6)欧阳修的《醉翁亭记》中“ , ”为全文写景抒情奠定了基调,成为千古名句。

(7)请写出古诗词中带“鸟”字的连续的两句:, 。

7.走进名著(3分)《水浒传》中塑造了三位身怀绝技的英雄:善盗的是“鼓上蚤” ,的是“小李广”花荣,善行的是 。

二、口语交际及综合性学习(第8—10题,共8分)中央电视台在春节期间推出了关于“家风”的系列采访,引起了积极的反响。

你所在的社区准备开展以“家风”为主题的活动。

请你参加。

8.请你为本次活动拟写宣传标语。

(2分)9.为了更好地宣传良好的家风,你认为社区可以组织哪些活动?(写出三种)(3分)10.活动需要一名主持人,你打算毛遂自荐,请用简明的语言向社区韩主任推荐自己。

(3分)三、阅读理解及分析(第11—26题,共36分)(一)阅读下面文言文,完成11—14题。

(共8分)孔子相卫,弟子予皋为狱吏,跀①人足,所跀者守门。

人有恶②孔子于卫君者,曰:“尼欲作乱。

”卫君欲执孔子。

孔子走,弟子皆逃。

子皋从出门,跀危引之而逃之门下室中,吏追不得。

夜半,子皋问跀危日:“吾不能亏主之法令而亲跀子之足,是子报仇之时,而子何故乃肯逃我?我何以得此于子?”跀危日:“吾断足也,固吾罪当之,不可奈何。

然方公之狱治臣也,公倾侧③法令,先后臣以言。

欲臣之免也甚,而臣知之。

及狱.决罪定,公憱④然不悦,形于颜色,臣见又知之。

非私.臣而然也,夫天性仁心固然也。

此臣之所以悦而德公也。

”【注释】①跀(yuè):古代一种酷刑,把人的脚或脚趾砍去。

②恶(wù):痛恨,引申为说坏话,诬陷。

③倾侧:这里是反复推敲之意。

④僦(cù):脸色改变,表现不安的神色。

11.解释下面句子中加点的词语。

(2分)(1)及狱.决罪定( ) (2)非私.臣而然也( )12.翻译下面的句子。

(2分)(1) 人有恶孔子于卫君者。

(2) 此臣之所以悦而德公也。

13.跀危为何会放掉处罚过他的法官子皋?(2分)14.读了本则小故事,你认为怎样的法律惩处才有最好的效果?(2分)(二)阅读下面选文《漫谈巧克力》,完成15—18题。

(9分)①巧克力是一种高级营养食品,风靡世界,被誉为“快速能源”,深得世界各国人民尤其是欧美人民的喜爱。

②巧克力的重要原料是可可。

可可原产于墨西哥、巴西等地。

据说在大约四千多年前,亚马逊河流域的人就开始种植可可豆。

那个时候,巧克力作为饮料(“巧克力”是音译,原意为饮料),只是墨西哥阿兹泰克统治者的御用食品。

1519年,一个到阿兹泰克的西班牙人品尝了这种又苦又香的饮料,并且很快喜欢上它。

于是这个西班牙人将原始配方带回祖国,献给查理五世国王。

最初,这种饮料因为味道发苦,并不很受欢迎。

后来,他们加进了糖,巧克力便迅速传开,1608年传到意大利,1765年英国伦敦开了一家巧克力商店。

英国人首先在这种饮料中加进牛奶,使之质量又迈进了一大步。

不久,这种饮料就传遍了整个欧洲。

1765年,英格兰巧克力制造商在美国建立了一家巧克力工厂,此后美国的巧克力生产便逐步发展起来。

到这个时候,巧克力还是饮料,只有瑞士人在1875年发明了一种可可制作固体牛奶巧克力的新方法之后,巧克力才扩大了它的领域,成为一种高营养食品。

③巧克力诞生之后便备受人们的青睐,原因是什么呢?④巧克力具有很高的营养价值。

据说拿破仑对于巧克力的功效是深信不疑的,他打仗时,总是要带着巧克力。

固体巧克力出现后,它成了美国前线士兵食粮的一部分。

美国和前苏联宇航员在空间飞行时,也总要携带巧克力。

世界各国的运动员也把巧克力作为必备食品。

⑤那么,巧克力的营养价值有多高呢?据分析,每100克巧克力中含碳水化合物55-66克,脂肪30-38克,另外还含有丰富的蛋白质、维生素B2、钙和铁。

巧克力极易被人体消化吸收,其所含的脂肪也不会使人体内的胆固醇增加。

而且巧克力入口即化,口感极佳,因此成为最理想的高热值食品。

⑥巧克力含有大量的苯乙胺,它能调节人的思维和情绪。

情绪低落的人苯乙胺含量远远低于一般正常的人,因而极易烦躁、苦闷和不安。

因此,情绪低落的人,宜多吃巧克力,以增加体内苯乙胺的含量,借以调节自己情绪。

⑦巧克力是高级营养品,但是不可否认,巧克力吃多了,对儿童成长是有一定的影响的。

国外生物化学、营养学专家发现:巧克力中含有一种溴化合物,它与巧克力中的咖啡碱共同作用,不仅会使儿童过度兴奋,不愿睡觉,而且对儿童大脑有不同程度的影响。

另外,巧克力还含有一定数量的草酸,它能干扰机体对钙的吸收,影响儿童的骨骼生长,因此儿童不宜无节制地食用巧克力。

“过则为灾”,这是值得注意的。

15.文章围绕“巧克力”分别从哪几个方面进行了说明。

(3分)16.根据文意,说说巧克力被称为“快速能源”的原因。

(2分)17.文章第②自然段采用了怎样的说明顺序,其作用是什么?(2分)18.第⑦段中说儿童不宜无节制地吃巧克力,过则为灾。

生活中“过则为灾”的现象还有很多,请再举出一个例子。

(2分)(三)阅读下面短文《自卑也是一种力量》,回答19—22题。

(8分)①看过很多描写一个人应该怎样自信的文章,它们说得非常有道理。

我们的生命之所以能拥有某种高度,是因为我们的心灵已经抵达了它,否则,你永远只能是山脚下一棵矮小的狗尾巴草。

然而,一般的人很少想到适当的自卑有时也是一种生命的补液,偶尔使用它,我们的事业之花就会开放得更艳更美,也更持久。

②或许你早已听说过奥地利小说家卡夫卡的故事。

卡夫卡出生于布拉格一个犹太商人家庭,他的父亲性情暴躁,而且非常专制,这使卡夫卡从小就形成了敏感多疑、忧郁孤独的性格,他有时不免有点自卑。

事业最不顺的时候,他甚至说过“巴尔扎克的手杖上写着‘我粉碎了一切困难’,我的手杖上写着‘一切困难粉碎了我’”这样很绝对的话,不过,卡夫卡没有放任这种自卑,而是一直企图超越自己,终于写出了《变形记》、《城堡》这样的优秀小说,成为西方现代派文学的鼻祖。

③拥有一点点自卑之心,对人生多有教益。

爱迪生的学业成绩差得让老师想跳楼,为此,老师竟建议家长让他退学。

爱迪生也曾自卑过,但他把这种自卑当成动力,最后成了发明家。

普希金当学生时,他的数学一塌糊涂,无论做什么题目,也不管运用哪种方法,最后他都会让答案等于零。

为了自我鼓劲,他选择了写诗,结果成为一代文豪。

④自卑能促使我们对自我作出一种冷静的剖析。

一个人不难走向自信,人天性中就有一种自恋和惟我独尊的基因,这种基因使我们自以为是,听不进别人的好意见。

我们真正难以做到的是时刻认识到自己生命的不完善、不完美,从而保持一种谦和的心境。

自卑是这种谦和的母亲。

⑤自卑对人生还有一个重要价值:让你变得有所敬畏。

人生的很多问题都是因为无所顾忌而起的:贪官之所以把手伸得很长,无非是因为觉得在他那个小圈子里,他可以搞定一切;奸商之所以泯灭天良牟取暴利,不过是由于他认为自己有足够的智慧对付国家的政策、法律……这些人的确没有自卑感,然而,没有道理的“自信”却毁了他们。

⑥人生自然不能过于自卑,过分的自卑会打倒一个人的毅力和勇气;但也决不能盲目自信,一个人盲目自信容易变得狂妄,自己挡住前进的道路。

最理想的是把两者结合起来,用自卑探照自己性格、知识、才华的黑洞,用自信寻找走出迷途的道路。

19.本文从哪几个方面阐述了“自卑也是一种力量”?(2分)20.请给第②段补充一个事实论据。

(2分)21.选文第③段运用了什么论证方法,有什么作用?(2分)22.请结合选文,联系生活实际,谈谈你对自卑的理解?(2分)(四)阅读《小溪》,回答23—26题。

(11分)我是一条流淌在崎岖山间的小溪。

我满身洒着细碎的光亮,怀着对大自然奇妙的幻想,流啊,顺着山绕过石,不停地流。

我有时被乱石阻塞,有时被泥沙搅混,但我浑浑噩噩,不知宇宙的真谛为何,不知生命价值何在。

我绕过碎石,抖抖泥沙,又淙淙地向前流去。

还不时仰望夜空,欢乐地听起夜莺的歌唱。

一次,猛地撞在重叠的巨石上,我似乎被击碎了。

呻吟着看着自己----我已经变成一畦小水洼,瑟缩在巨石缝隙中。

喘息一会,感到不自在,我想跳出去,却跳不出。

怎么办?我悲伤地哭了。

突然大石缝隙中闪过几缕阳光,随着阳光响起亲切的声音:“小溪,生活的真理你知道么?挣扎----奋斗----拼搏----超越。

”我听着,却不知这声音含意。

我无力挣扎,昏昏睡去。

醒来了,不知怎么,我又成了小溪。

原来是我身边的水多了,自然地从石缝中窜了出来。

我又是我了!多么美丽的春天啊,我流淌在山间小路上,路边盛开着艳丽的鲜花,峻岩上嫣红的桃花,轻盈的绿柳,笑靥迎人。

我挨着她们轻轻地流过。

她们对我说:“小溪,你就这样快活轻松地流下去吧,这就是你的幸福。

”我点点头,顺流而下。

一天,突然山崩地裂般一声巨响,我猛地不能动弹了。

我看不见天,看不见地,看不见红桃绿柳。

我虚飘飘不知自己是否存在。

我死了,却又渐渐苏醒。

我瑟缩在一层硬壳里动弹不得。

溪水被阻隔,我渐渐枯竭、干涸……咱等待死亡么?我虚弱地问自己。

突然岸缝间闪烁着几束阳光。

“啊,太阳!”我大喊着,“我真喜欢你,你是万物之母,你是光明的源泉,如今你又出现了,我要奔向你,请你救救我吧!……”忽而阳光不见了,我听见发自宇宙、也好像发自我自身深处的声音:“挣扎、奋斗、拼搏、超越,你才能找回自我!”我沉默了,我想着那欢乐的玫瑰色的日子,但那只是短暂的昙花一现。

永恒的、永恒的真理是什么?我叹息、我思索、我寻觅……阳光又出现了,而且愈来愈灿烂,我似乎有所领悟,于是我开始挣扎,开始奋斗。

相关文档
最新文档