数学分析 拟微分中值定理
微分中值定理
微分中值定理微分中值定理是微积分中的重要定理之一,它揭示了函数在某个区间内取得极值的一种方法。
微分中值定理包括拉格朗日中值定理和高尔的中值定理两种形式,下面将分别介绍这两种定理。
拉格朗日中值定理是微分学中的基本定理之一,它表明如果函数满足一些条件,那么在某个区间内一定存在一个点,它的导数等于函数在这个区间两个端点处的斜率。
具体来说,如果函数在闭区间[a,b]上连续,在开区间(a,b)上可导,并且a<b,那么存在一个点c∈(a,b),使得函数在点c处的导数等于函数在区间的两个端点处的斜率。
也就是说,存在c∈(a,b)使得:f'(c) = (f(b) - f(a)) / (b - a)这个定理的图像可以形象地理解为,曲线在某点的切线与连接两个端点的直线斜率相等。
高尔的中值定理是拉格朗日中值定理的一个推广,它是由高尔证明的。
高尔的中值定理的条件比拉格朗日中值定理更加宽松,它只要求函数在闭区间[a,b]上连续,在开区间(a,b)上可导。
具体来说,如果函数在闭区间[a,b]上连续,在开区间(a,b)上可导,并且函数在区间的两个端点处的斜率相等,那么存在一个点c∈(a,b),使得函数在点c处的导数等于函数在区间的两个端点处的斜率。
也就是说,存在c∈(a,b)使得:f'(c) = (f(b) - f(a)) / (b - a)高尔的中值定理可以看做拉格朗日中值定理的推广,它更加灵活,适用范围更广。
微分中值定理的证明可以通过利用拉格朗日中值定理或高尔的中值定理的定义和一些基本的微积分知识进行推导。
证明的过程比较复杂,需要运用到数学分析中的一些技巧与方法。
微分中值定理在微积分的应用中有着广泛的应用。
它可以用来证明一些数学定理,比如费马最值定理、罗尔定理和拉格朗日多重中值定理等。
此外,微分中值定理还可以用来求函数的零点、证明函数的单调性和判断函数的极值等。
在实际问题中,微分中值定理常常被用来解决一些最优化问题,比如求函数的最值、最小二乘法中的参数估计等。
数学分析第六章微分中值定理及其应用课件1
例如, f ( x) x2 2x 3 ( x 3)(x 1).
在[1,3]上连续, 在(1,3)上可导, 且 f (1) f (3) 0,
f ( x) 2( x 1), 取 1, (1 (1,3)) f () 0.
几何解释:
y
C
在曲线弧AB上至少有一
点C , 在该点处的切线是
二、拉格朗日(Lagrange)中值定理
拉格朗日(Lagrange)中值定理 (1)如果函数 f(x)在 闭区间[a, b]上连续(,2在) 开区间(a, b) 内可导,那末在 (a, b)内至少有一点(a b),使等式
f (b) f (a) f ' ()(b a) 成立.
注意 : 与罗尔定理相比条件中去掉了 f (a) f (b). 结论亦可写成 f (b) f (a) f (). ba
使 f ( x) 0.
又例如,
y
1 0,
x, x
x 0
(0,1] ;
y x, x [0,1].
例1 证明方程 x5 5x 1 0 有且仅有一个小于
1 的正实根.
证 设 f ( x) x5 5x 1, 则 f ( x)在[0,1]连续,
且 f (0) 1, f (1) 3.
由介值定理
所得曲线a, b两端点的函数值相等.
作辅助函数
F ( x) f ( x) [ f (a) f (b) f (a) ( x a)]. ba
F ( x) 满足罗尔定理的条件,
则在(a, b)内至少存在一点, 使得 F () 0.
即 f () f (b) f (a) 0 ba
或 f (b) f (a) f ()(b a).
拉格朗日中值公式
《微分中值定理》课件
积分中值定理的应用:求解 定积分、证明不等式等
积分中值定理:描述函数在 某区间上的平均值与该区间 内函数值的关系
傅里叶级数的应用:信号处 理、图像处理、数据分析等
06
微分中值定理的习题和 解析
基础题目解析
题目:求函数f(x)=x^2+2x+1在区间[0,1]上的最大值和最小值 解析:使用微分中值定理,找到函数f(x)在区间[0,1]上的最大值和最小值 题目:求函数f(x)=x^3-2x^2+3x+1在区间[0,1]上的最大值和最小值 解析:使用微分中值定理,找到函数f(x)在区间[0,1]上的最大值和最小值
解决实际问题:微分中值定理在物理、工程等领域的实际问题中有广泛应用。
优化算法:微分中值定理在优化算法中有重要应用,如梯度下降法、牛顿法等。
证明不等式:微分中值定理在证明不等式方面有广泛应用,如拉格朗日中值定理、柯西 中值定理等。
解决微分方程:微分中值定理在解决微分方程方面有重要应用,如欧拉-拉格朗日方程、 庞加莱方程等。
提高题目解析
分析题目:分析题目中的已 知条件和未知条件,找出题 目中的关键信息
理解题目:明确题目要求, 理解题目中的关键词和条件
解题步骤:列出解题步骤, 每一步都要有明确的依据和
理由
解题技巧:总结解题技巧, 如使用公式、定理、图形等
工具进行解题
综合题目解析
题目类型:微 分中值定理的
综合题目
题目来源:教 材、习题集、
03
微分中值定理的基本概 念和性质
导数的定义和性质
导数的定义:函数在某一点的切线 斜率
导数的计算方法:极限法、导数公 式、导数表
微分中值定理
微分中值定理微分中值定理是微分学中的重要定理,它揭示了函数在区间上的宏观的、整体的性质与函数在某一点上(中值点ξ)的微观的局部的性质之间的关系,是联系函数及其导数的桥梁和纽带。
其中罗尔中值定理、拉格朗日中值定理、柯西中值定理通常联系的是函数与其一阶导数的关系,泰勒中值定理通常联系的是函数与其高阶导数的关系。
一、微分中值定理的历史演变古希腊数学家在几何研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的底”,这是拉格朗日中值定理的特殊情况。
希腊著名数学家阿基米德正是巧妙地利用这一结论,求出抛物线弓形的面积。
意大利数学家卡瓦列里(Cavalieri,1598-1647)在《不可分量几何学》(1635年)的卷一中给出了处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦,这是几何形式的微分中值定理,被人们称为卡瓦列里定理。
1.费马定理法国数学家费马(Fermat,1601-1665)在《求最大值和最小值的方法》(1637年)中给出了费马定理。
费马在研究极大和极小问题的解法时,得到统一的解法“虚拟等式法”,从而得到原始形式的费马定理,费马定理在现行教科书中,一般作为微分中值定理的引理。
当应当注意的是,在当时微积分还处于初创阶段,没有明确导数、极限连续的概念,所以我们现在的看到的费马定理是后人根据微积分理论和费马发现的实质重新给出的。
2.罗尔定理(引理)法国数学家罗尔(Michel Rolle,1652-1719)在任意次方程的一个解法的证明》(1691年)中,给出多项式形式的罗尔定理:“在多项式a0xn+a1xn−1+⋯+an−1x+an=0 的两个相邻根之间,方程na0xn−1+(n−1)a1xn−2+⋯+an−1=0 至少有一个实根”。
这与现代罗尔定理不仅内容上有所不同,而且证明也大相径庭。
现代形式的罗尔定理,是后人根据微积分理论重新证明的,并把它推广到一般函数(可微函数),“罗尔定理”这一名称是由德国数学家德罗比什(Drobisch,1802-1896)在1834年给出的,并由意大利数学家贝拉维蒂斯(Bellavitis)在1846年发表的论文中正式使用,是此定理成为微分学的一个基本定理。
微分中值定理
定理证明
总结词
柯西中值定理的证明涉及到了微分学中的一 些基本概念和性质,如导数的定义、导数的 几何意义等。
Hale Waihona Puke 详细描述证明柯西中值定理,首先需要理解导数的定 义和性质,然后利用拉格朗日中值定理,再 结合闭区间上连续函数的性质,逐步推导, 最终得出结论。
定理应用
总结词
柯西中值定理在微分学中有广泛的应用,它可以用于研 究函数的单调性、极值等问题,还可以用于求解一些复 杂的微分方程。
详细描述
柯西中值定理的应用主要体现在两个方面,一是利用该 定理研究函数的单调性和极值问题,二是利用该定理求 解一些复杂的微分方程。通过柯西中值定理的应用,我 们可以更好地理解函数的性质,并且能够求解一些复杂 的数学问题。
06
罗尔中值定理
定理内容
总结词
罗尔中值定理是微分学中的基本定理之一,它指出如 果一个函数在闭区间上连续,在开区间上可导,并且 在区间的两端取值相等,那么在这个区间内至少存在 一点,使得函数在该点的导数为零。
定理应用
01
洛必达法则可以用于求极限,特别是当极限的形式为0/0或 者∞/∞时,可以通过洛必达法则求得极限值。
02
洛必达法则还可以用于判断函数的单调性,如果函数在某区间 的导数大于0,则函数在此区间单调递增;如果导数小于0,则
函数在此区间单调递减。
03
此外,洛必达法则还可以用于求函数极值,如果函数在某 点的导数等于0,则该点可能是函数的极值点。
定理应用
总结词
罗尔中值定理在微分学中有广泛的应 用,它可以用于证明其他中值定理、 研究函数的单调性、解决一些微分方 程问题等。
2. 研究函数的单调性
通过罗尔中值定理可以推导出一些关 于函数单调性的结论,例如如果函数 在区间上单调增加或减少,那么其导 数在该区间上非负或非正。
数学分析第6章 微分中值定理及其应用
lim f (x) lim f (x)
xa
xb
在( a , b ) 内至少存在一点 , 使 f ( ) 0.
f (a 0), x a
证明提示: 设 F(x) f (x), a x b
f (b 0), x b 证 F(x) 在 [a , b] 上满足罗尔定理 .
机动 目录 上页 下页 返回 结束
若 M = m , 则 f (x) M , x [a , b] ,
因此 (a , b), f ( ) 0 .
若 M > m , 则 M 和 m 中至少有一个与端点值不等,
不妨设 M f (a) , 则至少存在一点 (a,b), 使 f ( ) M , 则由费马引理得 f ( ) 0.
注意:
1) 定理条件条件不全具备, 结论不一定成立.
例如,
f
(
x)
x,
0
,
0 x 1 x 1
y
o
1x
y
f (x) x
x [1,1]
1 o 1 x
f (x) x x [0,1]
y
o 1x
机动 目录 上页 下页 返回 结束
2) 定理条件只是充分的. 本定理可推广为
y f (x) 在 ( a , b ) 内可导, 且
ba
f (b) f (a) f '( )(b a) a b f (b) f (a) f '(a (b a))(b a) 0 1
f (a h) f (a) f '(a h)h 0 1
即为函数值之差与导数关系式,今后凡遇到函数 值之差与导数值关系的问题,想法用中值定理
(2) 在区间 (a , b) 内可导
y
y f (x)
微分中值定理的证明以及应用
微分中值定理的证明以及应用1 微分中值定理的基本内容微分中值定理是反映导数值与函数值之间的联系的三个定理 ,它们分别是罗尔(R olle )中值定理 、拉格朗日(Lagrange )中值定理和柯西(Cauchy )中值定理 .具体内容如下 :1.1 罗尔中值定理[2]如果函数f 满足:(1)在闭区间[,]a b 上连续 ; (2)在开区间(,)a b 内可导 ;(3)在区间端点的函数值相等,即()f a f b ()=,那么在区间(,)a b 内至少有一点a b ξξ(<<),使函数()y f x =在该点的导数等于零,即'()0f ξ=. 1.2 拉格朗日中值定理[2]如果函数f 满足: (1)在闭区间[,]a b 上连续;(2)在开区间,a b ()内可导.那么,在,a b ()内至少有一点a b ξξ(<<),使等式()()()=f a f b f b aξ-'-成立.1.3 柯西中值定理[2]如果函数f 及g 满足: (1)在闭区间[,]a b 上都连续; (2)在开区间,a b ()内可导; (3)'()f x 和'()g x 不同时为零; (4)()()g a g b ≠则存在,a b ξ∈(),使得 ()()()()g ()()f f b f ag b g a ξξ'-='-2 三定理的证明2.1 罗尔中值定理的证明[2]根据条件在闭区间[,]a b 上连续和闭区间上连续函数的最大值和最小值定理,若函数()f x 在闭区间上连续,则函数()f x 在闭区间[,]a b 上能取到最小值m 和最大值M ,即在闭区间[,]a b 上存在两点1x 和2x ,使12(),()f x m f x M==且对任意[,x a b ∈],有()m f x M ≤≤.下面分两种情况讨论:①如果m M =,则()f x 在[,]a b 上是常数,所以对(,)x a b ∀∈,有()=0f x '.即,a b ()内任意一点都可以作为c ,使()=0f c '. ②如果m M <,由条件()=()f a f b ,()f x 在[,]a b 上两个端点a 与b 的函数值()f a 与()f b ,不可能同时一个取最大值一个取最小值,即在开区间,a b ()内必定至少存在一点c ,函数()f x 在点c 取最大值或最小值,所以()f x 在点c必取局部极值,由费尔马定理,有'()=0f c .2.2 拉格朗日中值定理的证明[2]作辅助函数()()()()f b f a F x fx a b x f a a--=-()-(-) 显然,()()(0)F a F b ==,且F 在[,]a b 满足罗尔定理的另两个条件.故存在,a b ξ∈(),使 ()()''()f b f a F f b aξξ--()=-=0移项即得()()'()=f b f a f b aξ--2.3 柯西中值定理的证明[2]作辅助函数()()()g()-g()()g(f b f a F x f x f a x a g b a --()=-()-())易见F 在[,]a b 上满足罗尔定理条件,故存在(,)a b ξ∈,使得()()''()g'()=0()g(f b f a F f g b a ξξξ--()=-)因为g'()0ξ≠(否则由上式'()f ξ也为零),所以把上式改写成()'()()()g ()()f f b f ag b g a ξξ-='-证毕3 三定理的几何解释和关系3.1 几何解释[1]罗尔中值定理在曲线()y f x=上存在这样的点,过该点的切线平行于过曲线两端点的弦(或x轴).拉格朗日中值定理在曲线()y f x=上存在这样的点,过该点的切线平行于过曲线两端点的弦.柯西中值定理在曲线()()f xyxg x=⎧⎨=⎩(其中x为参数,a x b<<)存在一点,使曲线过该点的切线平行于过曲线两端点((),()),((),())A f a g aB f b g b的弦.综上所述,这三个中值定理归纳起来,用几何解释为:在区间[,]a b上连续且除端点外每一点都存在不垂直于x轴的切线的曲线,它们有个共同的特征()y f x=在曲线上至少存在一点,过该点的切线平行于曲线端点的连线.3.2 三定理之间的关系[3]从这三个定理的内容不难看出它们之间具有一定的关系.利用推广和收缩的观点来看这三个定理.在拉格朗日中值定理中,如果()()f a f b=,则变成罗尔中值定理,在柯西中值定理中,如果()F x x=,则变成拉格朗日中值定理.因此,拉格朗日中值定理是罗尔中值定理的推广,柯西中值定理是拉格朗日中值定理的推广.反之,拉格朗日中值定理是柯西中值定理的特例,罗尔中值定理是拉格朗日中值定理的特例.总的来说,这三个定理既单独存在,相互之间又存在着联系.从上面的讨论中可以总结得到,罗尔中值定理是这一块内容的基石,而拉格朗日中值定理则是这一块内容的核心,柯西中值定理则是这一块内容的推广应用.4 三定理的深层阐述4.1 罗尔中值定理4.1.1 罗尔中值定理结论[8](1) 符合罗尔中值定理条件的函数在开区间,a b ()内必存在最大值或最小值. (2) 在开区间,a b ()内使'()=0f x 的点不一定是极值点. 例如 函数3()(53)4xf x x =-在闭区间[1,2]-上满足罗尔定理的三个条件, 由25'()3()4f x x x =- ,显然0x =,有'(0)=0f 成立,但0x =不是()f x 的极值点.如果加强条件, 可得如下定理:定理 1 若函数在闭区间,a b []上满足罗尔中值定理的三个条件,且在开区间,a b ()内只有唯一的一个点,使()=0f x '成立,则点x 必是()f x 的极值点.完全按照罗尔中值定理的证法,即可证得使()'=0f x 成立的唯一点x 就是()f x 在,a b ()内的最值点,当然是极值点. 4.1.2 逆命题不成立[3]罗尔中值定理的逆命题 设函数()y=f x 在闭区间,a b []上连续,在开区间,a b ()内可导,若在点x 在,a b ()处,有()=0f x ',则存在,[,]p q a b ∈,使得()()=fp f q .例 函数3y x =,[,](0)x a a a ∈->,显然3y x =在,a a [-]上连续,在a a (-,)内可导,()=0f x ',但是不存在,[,]p q a a ∈- ,p q <,使得()()=f p f q .但如果加强条件,下述定理成立:定理2 设函数y ()f x =在闭区间,a b []上连续,在开区间,a b ()内可导,且导函数()f x '是严格单调函数,则在点(,)x a b ∈处,有()=0f x '的充分必要条件是存在,[,]p q a b ∈,p q<,使得()()=f p f q .4.2 拉格朗日中值定理4.2.1 点x 不是任意的[7]拉格朗日中值定理结论中的点x 不是任意的. 请看下例:问题 若函数()f x 在(,)a +∞(a 为任意实数)上可导,且lim ()x f x c →+∞=(c 为常数),则lim ()0x f x →+∞=这一命题正确吗?证明 设x 为任意正数,由题设知()f x 在闭区间[,2]x x 上连续,在开区间(,2)x x 内可导,由拉格朗日中值定理知,至少存在一点(,2)x x ξ∈,使得()(2)()=f x f x f xξ-',又因为li m ()x f x c →+∞=,故(2)()limx f x f x x→+∞-=.由于ξ夹在x与2x 之间,当x +→∞时,ξ也趋于+∞,于是lim '()lim '()0x x f x f ξ→+∞→+∞==.上述证明是错误的,原因在于ξ是随着x 的变化而变化,即()g x ξ=,但当+x →∞时,()g x 未必连续地趋于+∞,可能以某种跳跃方式趋于+∞,而这时就不能由()f ξ'趋于0推出lim ()0x f x →+∞=了.例如 函数()2s i n =x f x x满足l i m ()0x f x→+∞=,且2221'()2cos sin f x x xx=-在+∞(0,)内存在,但2221lim '()lim [2cos sin ]x x f x x x x→+∞→+∞=-并不存在,当然li m '()0x f x →+∞=不会成立.4.2.2 条件补充[5]定理 3 若函数()f x 在(,)a +∞(a 为任意实数)上可导,且lim '()x f x →+∞存在,若lim '()x f x c→+∞=(c 为常数),则lim '()0x f x →+∞=.4.3 柯西中值定理柯西中值定理的弱逆定理[8]设()()f x g x ,在[,]a b 上连续,在(,)a b 内可微,且'()'()f g ξξ严格单调,'()0g x ≠,则对于12,a b x x ξξ∀∈∃<<(), ,使得2121'()'()=[()()][()()]f g f x f x g x g x ξξ--成立.证明:对,a b ξ∀∈(),作辅助函数 '()'()F x f x f g x ξξ()=()-()g().显然,()f x 在[,]a b 上连续,在(,)a b 内可微,并且由()()f x g x ,严格单调易知'()F x 也严格单调.由拉格朗日定理知,对于12,a b x x ξξ∀∈∃<<(),,使得 2121()()'()()F x F x F x x ξ-=-成立.而'()='()('()'())'()0F f f g g ξξξξξ-=所以有21()()0F x F x -=即2211['()('()'())'()]['()('()'())'()]0f x f g g x f x f g g x ξξξξ---=整理得2121'()'()[()()][()()]f g f x f x g x g x ξξ=--证毕.5 定理的应用三个定理的应用主要有讨论方程根的存在性、求极限、证明等式不等式、求近似值等.以下主要以例题的形式分别展示三个定理的应用.5.1 罗尔中值定理的应用例1 设(1,2,3,,)i a R i n ∈= 且满足1200231n a a a a n ++++=+ ,证明:方程2012++++0n n a a x a a x x = 在(0,1)内至少有一个实根. 证明: 作辅助函数23+1120231n n a a a F x a x x x xn +++++ ()=则=0(0F (),=(1)F 0,Fx ()在[0,1]上连续,在(0,1)内可导,故满足罗尔中值定理条件,因此存在(0,1)ξ∈,使'()0F ξ=,又2012'()++++0nn F x a a x a x a x==由此即知原方程在(0,1)内有一个实根.例2 设函数()f x 在[,]a b 上连续,在,a b ()内可导,且()()0f a f b ==.试证: 在[,]0a b a >()内至少存在一点ξ,使得'()f f ξξ=(). 证明:选取辅助函数()()x F x f x e -=,则F x ()在[,]a b 上连续,在,a b ()内可导,(a)()0F F b ==,由R olle 定理,至少存在一点,a b ξ∈(),使'()'()e['()()]0F f f f f ξξξξξξξξ---=-=-=()e e因 0e ξ-> 即'()()=0f f ξξ-或'()=()f f ξξ.例 3 设函数()f x 于有穷或无穷区间,a b ()中的任意一点有有限的导函数()f x ',且0lim ()lim ()x a x b f x f x →+→-=,证明:'()0f c =,其中c 为区间,a b ()中的某点.证明: 当,a b ()为有穷区间时,设()(,)(),f x x a b F x A x a b ∈⎧=⎨=⎩,当时,当与时,其中0lim ()lim ()x a x b A f x f x →+→-==.显然()F x 在[,]a b 上连续,在,a b ()内可导,且有()()F a F b =,故由R o l l e 定理可知,在,a b ()内至少存在一点c ,使'()=0F c .而在,a b ()内,'()'()F x f x =,所以'()=0F c .下设,a b ()为无穷区间,若,a b =-∞=+∞,可设tan ()22x t t ππ=-<<,则对由函数()f x 与tan x t=组成的复合函数g()(tan )t f t =在有穷区间()22ππ-,内仿前讨论可知:至少存在一点0t (,)22ππ∈-,使20g '()'()sec 0t f c t =⋅=,其中t a n c t =,由于20s e c 0t ≠,故'()=0f c .若a 为有限数,b =+∞,则可取0m a x {,0}b a >,而令00()b a t x b t-=-.所以,对复合函数00()g()()b a t t f b t-=-在有穷区间0,a b ()上仿前讨论,可知存在00t ,a b ∈()使000200()g '()'()=0)b b a t fc b t -=⋅-(,其中0000()b a t c b t -=-,显然a c <<+∞由于00200())b b a b t ->-(,故'()=0fc .对于a =-∞,b 为有限数的情形,可类似地进行讨论.5.2 拉格朗日中值定理的应用例 4 证明0x >时,ln(1)1x x x x<+<+证明: 设()ln(1)f x x =+ , 则()f x 在[0,]x 上满足Lagrange 中值定理1ln(1)ln(10)ln(1)'(),(0,)10x x f x x xξξξ+-++===∈+-又因为111x ξ<+<+所以1111+1xξ<<+所以1ln(1)11+x xx+<<即ln(1)1x x xx<+<+例 5 已知()()()11112na n n n n n n n =++++++ ,试求lim n x na →.解: 令()2f x x=,则对于函数()f x 在()(),1n n k n n k +++⎡⎤⎣⎦上满足L a g r a n g e定理可得: ()()()()21211n n k n n k n n k n n k ξ++-+=++-+ ,()()()(),1n n k n n k ξ∈+++所以()()111221n k n k nnn n k n n k +++<-<+++当0,1,,1k n =- 时,把得到的上述n 个不等式相加得:()()()()211111222121n n n n n n n n n n+++<-<+++++ ()()11221n n n n ++++-即112222n n a a n n<-<+-故11022212n a n ⎛⎫<--<- ⎪⎝⎭所以lim 222n n a →∞=-例 6 求0.97的近似值. 解: 0.97是()f x x=在0.97x =处的值, 令001,0.97x x x x ==+∆=,则0.03x ∆=-, 由Lagrange 中值定理,存在一点0.97,1ξ∈()(1)(0.97)'()0.03f f f ξ-=可取1ξ≈近似计算,得110.971+)'(0.03)1(0.03)0.9852x x =≈⋅-=+-=(5.3 柯西中值定理的应用例 7 设0x >,对01α<<的情况,求证1xx ααα-≤-.证明:当1x =时结论显然成立,当1x≠时,取[],1x 或[]1,x ,在该区间设()f x xα=,()F x x α=由Canchy 定理得:()()()()()()11f x f f F x F F ξξ'-='- (),1x ξ∈或()1,x ξ∈ 即111x x ααααξξααα---==-当1x >时,(),1x ξ∈,11αξ->即11x x ααα->-又()10x x ααα-=-<故1x x ααα->-即11x αα-<-当1x >时,()1,x ξ∈,11αξ-<则()10x x ααα-=->故1x x ααα->-即11x αα-<-证毕例 8 设()f x 在[,]a b 上连续,(,)a b 内可导,a b ≤≤(0),()()f a f b ≠ ,试证 ,a b ξη∃∈,(),使得'()'()2a b f f ξηξ+= .证明: 在等式'()'()2a b f f ξηξ+=两边同乘b a -,则等价于22'()'()()2f f b a b a ηξξ-=-(),要证明此题, 只需要证明上式即可.在[,]a b 上,取()()F x f x =,G x x ()=,当,a b ξ∈()时,应用Cauchy 中值定理()()'()()()'()f b f a f G b G a G ξξ-=-即()()'()1f b f a f b aξ-=-在[,]a b 上,再取()()F x f x =,2G x x ()= ,当,a b η∈()时,应用C a u c h y 中值定理()()'()()()'()f b f a f G b G a G ηη-=-即22()()'()2f b f a f b aηη-=-即22'()'()()()2f f b a b a ηξξ-=-即'()'()2a b f f ξηξ+=例 9 设函数f 在[,]0a b a >()上连续,在(,)a b 上可导.试证:存在(,)a b ξ∈使得()()'()lnb f b f a f aξξ-=证明: 设()ln g x x =,显然它在[,]a b 上与()f x 一起满足柯西中值定理条件,所以存在,a b ξ∈(),使得 ()()'()1ln ln f b f a f b aξξ-=-整理后即得()()'()lnb f b f a f aξξ-=6 定理的应用总结 6.1 三定理的应用关系一般来说, 能用R o l l e 定理证得的也可用Lagrange 定理或C a u c h y 定理证得,因此,在解题的过程中根据问题本身的特点能选取合适的中值定理,以取得事半功倍的效果.如上面例9 利用R olle 中值定理.令()[()()]ln ()(ln ln )F x f b f a x f x b a =---,则()()F a F b -,所以存在,a b ξ∈()使得'()0F x =, 即()()'()lnf b f a b f aξξ--=整理后即得所欲证明.上面的这个例子还不难看出在利用R olle 中值定理和Cauchy 中值定理证明的同一个不等式中,用R olle 中值定理时辅助函数的构造显然需要更多的观察和技术.相比之下,用Cauchy 中值定理则要简单得多.6.2 定理的应用方法技巧从定理应用的例题中不难发现,微分中值定理大多都是通过构造辅助函数来完成证明的.有的可以从函数本身出发构造辅助函数,有的需要利用指数、对数、三角函数等初等函数来构造辅助函数,还有的要根据需要证明的目标出发适当构造辅助函数.可见,在微分中值定理的应用中,广泛地使用辅助函数是做证明题的关键,在学习时应该掌握一些常用的构造辅助函数方法.在做证明题时一般先从要证的结论出发,观察目标式的特征,分析目标式可能要用的辅助函数,然后对目标式作相应的变形,这是构造辅助函数的关键.有了辅助函数就可以直接对辅助函数应用微分中值定理得到结论.7 结束语本课题的研究成果是通过大学阶段的有关数学分析知识的学习,和一些相关学科内容知识的学习,并结合一些相关的参考图书资料,以及通过网络收集期刊、报刊和杂志上的相关内容,其中还包括自己对这些内容的理解,还通过多方面的了解和研究,且在和老师及同学们的一起探讨下,了解到微分中值定理的内在联系,也对微分中值定理深层进行了探讨,还对微分中值定理的应用做了归纳总结.本课题主要是以罗尔中值定理、拉格朗日中值定理和柯西中值定理三个微分中值定理,感受到了定理来解决数学问题的方便快捷,学以致用得到充分体现.微分中值定理是微分学的基本定理,而且它是微分学的理论核心,有着广泛的应用.本课题主要是对微分中值定理证明等式不等式,方程根的存在性,求极限以及求近似值等的应用.应用微分中值定理证明命题的关键是构造辅助函数,构造满足某个微分中值定理的条件而得到要证明的结论.而构造辅助函数技巧性强,构造合适的辅助函数往往是困难的.因此,在构造辅助函数上本文没有深入系统论述,有待于研究.9 参考文献[1] 党艳霞. 浅谈微分中值定理及其应用[J]. 廊坊师范学院学报(自然科学版).2010,(1): 28-31.[2] 陈传璋. 数学分析[M]. 北京: 高等教育出版社. 2007.[3] 刘玉琏, 傅沛仁. 数学分析讲义[M]. 北京:高等教育出版社. 1982.[4] 林源渠, 方企勤等. 数学分析习题集[M]. 北京:高等教育出版社. 1986.[5] 赵香兰. 巧用微分中值定理[J]. 大同职业技术学院学报. 2004,(2):64-66.[6] 刘章辉. 微分中值定理及其应用[J]. 山西大同大学学报(自然科学版).2007.23(2): 12-15.[7] 何志敏. 微分中值定理的普遍推广[J]. 零陵学院学报. 1985. (1): 11-13.[8] 李阳, 郝佳. 微分中值定理的延伸及应用[J]. 辽宁师专学报. 2011.(3): 13-18.。
数学分析 第八讲 微分积分中值定理和极值
第八讲 微分与积分中值定理和函数极值§8.1 微分与积分中值定理一、知识结构 1、微分中值定理(1) 罗尔(Rolle )中值定理 若函数)(x f 满足下列条件:(i) )(x f 在闭区间[]b a ,上连续;(ii) )(x f 在开区间()b a ,内可导;(iii))()(b f a f =,则在()b a ,内至少存在一点ξ,使得0=')(ξf .(2)拉格朗日(Lagrange)中值定理 若函数)(x f 满足下列条件:(i) )(x f 在闭区间[]b a ,上连续;(ii) )(x f 在开区间()b a ,内可导,则在()b a ,内至少存在一点ξ,使得ab a f b f f --=')()()(ξ.(3)柯西中值(Cauchy)定理 若函数)(x f 和)(x g 满足下列条件:(i) )(x f 和)(x g 在闭区间[]b a ,上连续; (ii) )(x f 和)(x g 在开区间()b a ,内可导,(iii))(x f '和)(x g '不同时为零; (iv))()(b g a g ≠,则在()b a ,内至少存在一点ξ,使得)()()()()()(a g b g a f b f g f --=''ξξ.2、积分中值定理 (1)积分第一中值定理若函数)(x f 在[]b a ,上连续,则至少存在一点[]b a ,∈ξ,使得()⎰-=baa b f dx x f )()(ξ.(2)推广的积分第一中值定理若函数)(),(x g x f 在[]b a ,上连续,且)(x g 在[]b a ,上不变号,则至少存在一点[]b a ,∈ξ,使得⎰⎰=babadx x g f dx x g x f )()()()(ξ.3、积分第二中值定理 若函数)(x f 在[]b a ,上连续,(i)若函数)(x g 在[]b a ,上单调递减, 且0≥)(x g , 则存在[]b a ,∈ξ,使得⎰⎰=baadx x f a g dx x g x f ξ)()()()(.(ii)若函数)(x g 在[]b a ,上单调递增, 且0≥)(x g , 则存在[]b a ,∈η,使得⎰⎰=ba bdx x f b g dx x g x f η)()()()(.3、泰劳公式(微分中值定理的推广)麦克劳林公式 (1) 一元函数)(x f y =泰劳公式泰劳公式产生的背景: 将函数)(x f ()(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数) 近似的表示为关于)(0x x -的一个n 次多项式,由于多项式的算法是好算法,我们可以用关于)(0x x -的一个n 次多项式来求函数)(x f 在某点(()b a x ,∈)的近似值.定理1 如果函数)(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数,则当()b a x ,∈时, )(x f 可以表示为)(0x x -的一个n 次多项式与一个余项)(x R n 之和:(x)R )x (x n!)(x f)x )(x (x f )f(x f(x)n n(n)+-++-'+=00000!11 ,其中()()()()101!1)(++-+=n n n x x n fx R ξ(拉格朗日型余项),这里ξ是属于x 与0x 之间的某个值.或, 如果函数)(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数,则当()b a x ,∈时, )(x f 可以表示为)(0x x -的一个n 次多项式与一个当0x x →时的n)x (x 0-的高阶无穷小之和:()()nn(n)x x o )x (x n!)(x f)x )(x (x f )f(x f(x)000000!11-+-++-'+=其中()n )x (x o 0-为当0x x →时n)x (x 0-的高阶无穷小.(2)麦克劳林公式定理2 如果函数)(x f 在含有0的某个开区间()b a ,内具有直到1+n 阶地导数,则当()b a x ,∈时, )(x f 可以表示为x 的一个n 次多项式与一个余项)(x R n 之和:(x)R x n!)(x fx !)(f )x (f )f(f(x)n n(n)+++''+'+=022000 ,其中()()()11!1)(+++=n n n x n x fx R θ,(10<<θ).2、二元函数),(y x f z =的泰劳公式和麦克劳林公式 (1)泰劳公式定理3 如果函数),(y x f 在含有()00,y x 的某一领域内连续且有直到1+n 阶的连续偏导数,()k y h x ++00,为此邻域内任一点,则有()200000000100001,,,,2!11,,,1nn f(x h y k)f(x y )h k f(x y )h k f(x y )x y x y h k f(x y )h k f(x h y k)n!x y n !xy θθ+⎛⎫⎛⎫∂∂∂∂++=++++ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎛⎫⎛⎫∂∂∂∂+++++++ ⎪ ⎪∂∂+∂∂⎝⎭⎝⎭ 其中10<<θ,记号()()000000,,,y x kf y x hf )y f(x y k xh y x +=⎪⎪⎭⎫⎝⎛∂∂+∂∂, ()()()00200002002,,2,,y x f k y x hkf y x f h )y f(x y k x h yy xy xx ++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂, ……)y f(x yx kh C)y f(x y k x h pm pm pm p mp pmm00000,,--=∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∑,()k)y h f(x y k x h !n x R n n θθ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=+001,11)(, 10<<θ 称为拉格朗日型余项.(2)麦克劳林公式定理4 如果函数),(y x f 在含有()0,0的某一领域内连续且有直到1+n 阶的连续偏导数,()k h ,为此邻域内任一点,则有+⎪⎪⎭⎫⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=)f y y x x )f(y y x x )f(y)f(x 0,0!210,00,0,2()y)x f(y y x x !n )f(y y x x n!n n θθ,110,011+⎪⎪⎭⎫⎝⎛∂∂+∂∂++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+,其中10<<θ.二、解证题方法 1、微分中值定理例1 (山东师范大学2006年)设)(x P 为多项式函数,试证明:若方程0=')(x P 没有实根,则0=)(x P 至多有一个实根.证明 用反证法.因为)(x P 为多项式函数, 所以)(x P 在()+∞∞-,上连续并且可导. 如果0=)(x P 至少有两个实根, 不妨设为21ξξ<,则021==)()(ξξP P .在闭区间上用罗尔定理得,存在()21ξξη,∈,使得0=')(ηP . 这与方程0=')(x P 没有实根发生矛盾, 所以0=)(x P 至多有一个实根.例2 (河北大学2005年)设)(x f 可导,λ为常数,则)(x f 的任意两个零点之间必有0='+)()(x f x f λ的根.证明 不妨设)(x f 的任意两个零点为ηξ<. 令xex f x F λ)()(=,则0==)()(ηξF F . 因为)(x F 在[]ηξ,上连续, 在()ηξ,内可导,且0==)()(ηξF F , 所以, 由罗尔定理得:存在()ηξ,∈x ,使得0=')(x F ,即0='+='xxe xf ex f x F λλλ)()()(,进而有0='+)()(x f x f λ, 所以()ηξ,∈x 是0='+)()(x f x f λ的根.例3(电子科技大学2002年))(x f 在[]10,上二次可导,010==)()(f f ,试证明:存在()10,∈ξ,使得()())(ξξξf f '-=''211.证明 因为)(x f 在[]10,上连续, )(x f 在()10,内可导, 且010==)()(f f ,所以由罗尔定理得:存在()10,∈ξ,使得0=')(ξf .令⎪⎩⎪⎨⎧=∈'=-101011x x ex f x g x ,),[,)()(. 因为)(x g 在[]10,上连续,在()10,内可导, 且()()01==g g ξ, 所以由罗尔定理知, 存在()1,ξξ∈', 使得()0='ξg ,即()())(ξξξf f '-=''211.例4(山东科技大学2005年)设()x f 在整个数轴上有二阶导数,且00=→xx f x )(lim,01=)(f ,试证明: 在()10,内至少存在一点β,使得()0=''βf .证明 因为()x f 在整个数轴上有二阶导数,所以()x f 在整个数轴上连续. 进而0lim )(lim )(lim )(lim )0(0000=⋅=⎥⎦⎤⎢⎣⎡==→→→→x x x f x x x f x f f x x x x . 又因为01=)(f , 所以函数在()10,内满足罗尔定理的条件, 进而存在()10,∈α,使得0=')(αf . 又因00000=-=-='→→xx f xf x f f x x )(l i m)()(l i m)(, 并且()x f '在[]α,0上连续, 在()α,0内可导, 所以()x f '在[]α,0上满足罗尔定理的条件, 进而存在()αβ,0∈,使得()0=''βf .例5(汕头大学2005年) 设()x f 在闭区间[]b a ,上有二阶导数,且)()(b f a f 、均不是)(x f 在闭区间[]b a ,上最大值和最小值, 试证明: 存在()b a ,∈ξ,使得0='')(ξf .证明 由于)(x f 在[]b a ,上连续, 所以)(x f 在[]b a ,上取得最大值和最小值. 又因为)()(b f a f 、均不是)(x f 在闭区间[]b a ,上最大值和最小值, 所以存在()b a ,,∈21ξξ, 不妨设21ξξ<,使得()21ξξf f ),(是)(x f 在[]b a ,上的最大值和最小值. 进而()021='='ξξf f )(.由()x f 在闭区间[]21ξξ,上有二阶导数, 所以()x f '在闭区间[]21ξξ,上连续, 在开区间()21ξξ,内可导. 由罗尔定理知, 存在()21ξξξ,∈,使得0='')(ξf . 进而存在()b a ,∈ξ,使得0='')(ξf .例6(北京工业大学2005年)设)(x f 在()+∞∞-,上可导, 试证明:0=')(x f 当且仅当)(x f 为一常数.证明 (1)充分性 因为)(x f 为一常数C , 所以()0000==∆-=∆-∆+='→∆→∆→∆x x x xC C xx f x x f x f lim lim)(lim)(.(2)必要性对任意的()+∞∞-∈,,21x x , 不妨设21x x <. 显然()x f 在闭区间[]21x x ,上满足拉格朗日中值定理的条件, 所以存在()21x x ,∈ξ, 使得()()()()2121x f x f x x f -=-'ξ.因为()0='ξf , 所以()()21x f x f =. 进而)(x f 为一常数.例7(南京大学2001年)设)(x f 在()10,内可导, 且1<')(x f , ()10,∈x .令⎪⎭⎫⎝⎛=n f x n 1(2≥n ), 试证明n n x ∞→lim 存在且有限.分析 ()1111n m n m x x x x f f f n m n m εξ⎛⎫⎛⎫⎛⎫'-<⇐-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()11111n f nmnmnmmξε'=-<-<=<.证明 对0>∀ε, 存在⎥⎦⎤⎢⎣⎡=11,εN ,当N m n >>时, 有ε<=<-=-=-mnmn nmm n mn x x m n 111, 所以()()εξξ<=<-<-'=⎪⎭⎫ ⎝⎛-'=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-m nm n m n m n f m n f m f n f x x m n 111111111,进而由柯西收敛准则知, n n x ∞→lim 存在且有限.例8(华东师范大学2001年)证明: 若函数)(x f 在有限区域()b a ,内可导, 但无界,则其导函数)(x f '在()b a ,内必无界. 证明 用反证法 若函数)(x f '在()b a ,内有界, 则存在正数M ,使得M x f ≤')(,()b a x ,∈. 由拉格朗日中值定理得:⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+-≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-=22)(22)()(b a f b a f x f b a f b a f x f x f ()()⎪⎭⎫⎝⎛+++≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-'=2222b a f b a M b a f b a x f ξ,所以函数)(x f 在有限区域()b a ,内有界. 与已知矛盾.例9(天津工业大学2005年)设R x n ∈, ()1arctan -=n n ky y (10<<k ), 证明: (1)11-+-≤-n n n n y y k y y ; (2)n n y ∞→lim 收敛.证明 (1)令kx x f arctan )(=, ()+∞∞-∈,x ,则221xk k x f +=')(,于是kx f ≤')(,从而由拉格朗日中值定理得:()()1111---+-≤-'=-=-n n n n n n n n y y k y y f y f y f y y ξ)()(, 其中ξ介于1-n y ,n y 之间.(2)由(1)的递推关系知,011y y ky y nn n -≤-+,又因为级数∑∞=-101n ny y k收敛,所以由比较判别法知, 级数()∑∞=+-11n n n y y 绝对收敛,所以n n S ∞→lim 收敛, 其中()1111y y y yS k nk k k n -=-=+=+∑, 进而n n y ∞→lim 收敛.例10(湖南师范大学2004年)设)(x f 在),[+∞0上连续, 在()+∞,0内可导且00=)(f , )(x f '在()+∞,0内严格单调递增, 证明:xx f )(在()+∞,0内内严格单调递增.分析 关键是证明02>-'='⎪⎭⎫⎝⎛x x f x f x x x f )()()(. 证明 因为()[]000>'-'=⎥⎦⎤⎢⎣⎡---'=⎥⎦⎤⎢⎣⎡-'=-'ξf x f x x f x f x f x x x f x f x x f x f x )()()()()()()()(, 其中()+∞∈,0x , ()x ,0∈ξ, 所以xx f )(在()+∞,0内内严格单调递增.练习[1](辽宁大学2005年)设)(x f 在],[b a 上可导,且b x f a <<)(,1)(≠'x f . 证明: 方程x x f =)(在()b a ,内存在惟一的实根.[2] (南京农业大学2004年) 设函数)(x f 在]1,0[上可微, 0)0(=f , 当10<<x 时, 0)(>x f , 证明: 存在()1,0∈ξ,使得)1()1()()(2ξξξξ--'='f f f f .[3] (陕西师范大学2002年,武汉大学2004年) 设)(x f ,)(x g 是[]b a ,上的可导函数, 且0)(≠'x g . 证明: 存在()b a c ,∈使得)()()()()()(c g c f b g c g c f a f ''=--.[4] (西南师范大学2005年)设函数)(x f 在()+∞∞-,内可导,)(2)(x f x x f -=', 0)0(=f .证明: 42)(xex f -=,()+∞∞-∈,x .[5] (北京工业大学2004年)设函数)(x f 在0x 的某邻域)(0x N 内连续, 除0x 外可导,若l x f x x ='→)(lim 0,则)(x f 在0x 可导且l x f =')(0.[6] (辽宁大学2004年) 设函数)(x f 在()+∞∞-,内可导, 且0)0(>f ,1)(<≤'k x f ,证明: 方程x x f =)(有实根.[7] (厦门大学2004年) 设函数)(x f 在),[+∞a 上二阶可微, 且0)(>a f ,0)(<'a f , 当a x >时, 0)(<''x f . 证明: 方程0)(=x f 在),[+∞a 上有惟一的实根.[8] (北京化工大学2004年) 设函数)(x f 在]1,0[上连续, 在()1,0内可导,0)0(=f , 1)1(=f . 证明: 对于∀的正数a 和b , 存在()1,0,21∈ξξ, 使得()()b a f b f a +='+'21ξξ.[9] (中科院武汉物理与数学研究所2003年) 设函数)(x f 在闭区间[]b a ,上连续, 在开区间()b a ,内可微, 并且)()(b f a f =. 证明: 若函数)(x f 在闭区间[]b a ,上不等于一个常数, 则必有两点()b a ,,∈ηξ, 使得()0>'ξf , ()0<'ηf .[10] (中山大学2006年) 证明: 当0≥x 时, 存在()1,0)(∈x θ, 使得)(211x x x x θ+=-+, 并且)(lim 0x x θ+→和)(lim x x θ+∞→(答案:41)(lim 0=+→x x θ,21)(lim =+∞→x x θ ).2、积分中值定理例1(上海大学2005年)已知)(),(x g x f 在[]b a ,上连续,0>)(x f ,)(x g 不变号,求⎰∞→bann dx x g x f )()(lim.解 因为)(),(x g x f 在[]b a ,上连续, )(x g 在[]b a ,上不变号,所以由积分第一中值定理得⎰⎰=banb andx x g f dx x g x f )()()()(ξ,其中[]b a ,∈ξ. 又因为()0>ξf , 所以1=∞→nn f )(li m ξ,进而⎰⎰⎰=⎥⎦⎤⎢⎣⎡=∞→∞→baba n n bann dx x g dx x g f dx x g x f )()()(lim )()(limξ.例2(河北大学2005年)证明:dx xx dx xx ⎰⎰+≤+222211ππcos sin .分析0111222222≤+-⇐+≤+⎰⎰⎰dx xx x dx xx dx xx πππcos sin cos sin .证明 当⎥⎦⎤⎢⎣⎡∈4,0πx 时, 0≤-x x cos sin 在⎥⎦⎤⎢⎣⎡4,0π上不变号,当⎥⎦⎤⎢⎣⎡∈2,4ππx 时, 0≥-x x cos sin 在⎥⎦⎤⎢⎣⎡2,4ππ上不变号. 由推广的积分第一中值定理得:dx xx x dx xx x dx x x x ⎰⎰⎰+-++-=+-24242221cos sin 1cos sin 1cos sin ππππ()()dx x x dx x x ⎰⎰-++-+=242402cos sin11cos sin11πππηξ01121121121212222≤+--+-=+-++-=ξηηξ,其中⎥⎦⎤⎢⎣⎡∈40πξ,, ⎥⎦⎤⎢⎣⎡∈24ππη,, 进而dx xx dx x x ⎰⎰+≤+2220211ππcos sin .例3(电子科技大学2005年)设)(x f 在[]10,上可导,且⎰-=211221dx ex f f x)()(,证明: 存在()10,∈ξ,使得())(ξξξf f 2='.证明 令2)()(x e x f x F -=, []10,∈x . 由积分中值定理知, 存在⎪⎭⎫ ⎝⎛∈210,η,使得()⎰--=⎪⎭⎫ ⎝⎛-211122021dx ex f ef x)(ηη即()⎰--=211122)(2dx ex f ef xηη. 因为⎰-=2101221dx ex f f x)()(, 所以())(121f ef =-ηη, 进而()112--=ef ef )(ηη. 又因为112--==e f e f F )()()(ηηη, 111-=ef F )()(, 所以, 在区间[]1,η上由微分中值定理(罗尔)得:()0='ξF , 其中()1,ηξ∈. 因为222ξξξξξξ---'='ef ef F )()()(,所以())(ξξξf f 2='.例4(山东科技大学2004年)设()x f 在[]π,0上连续, 在()π,0内可导, 且()⎰-=ππππ1dx x f ef x)(,证明: 至少存在一点()πξ,0∈, 使得()()ξξf f ='.证明:令)()(x f e x F x -=,由()⎰-=ππππ1)(dx x f ef x和)()(πππf eF -=,得:()()⎰⎰⎰====----πππππππππππ111)()()(dx x F dx x f edx x f eef eF xx.由积分中值定理: ()()11()0()F F x dx F F ππππηηπ⎛⎫==-= ⎪⎝⎭⎰,其中⎥⎦⎤⎢⎣⎡∈πξ10,.在()πη,内应用微分中值定理(罗尔)得: 0=')(ξF ,其中()πηξ,∈.由)()(x f e x F x -=得: )()()(ξξξξξf e f e F '+-='--,所以()()ξξf f ='.例5(西安电子科技大学2003年)设()x f 在[]b a ,上二阶连续可导, 证明:存在()b a ,∈ξ使得()()()32412a b f b a f a b dx x f ba -''+⎪⎭⎫⎝⎛+-=⎰ξ)(. 证明: 由分部积分公式得⎰⎰⎰+++=baba ab b a dx x f dx x f dx x f 22)()()(()()⎰⎰++-+-=22)()(ba ab b a b x d x f a x d x f()[]()()[]()⎰⎰++++'---+'---=bb a b ba ba ab a adxx f b x x f b x dx x f a x x f a x 2222)()()()(()()()⎰⎰++-'--'-⎪⎭⎫⎝⎛+-=b b a ba ab x d x f a x d x f b a f a b 22222)(2)(2()()()⎰++''-+⎥⎦⎤⎢⎣⎡'--⎪⎭⎫ ⎝⎛+-=2222)(22)(2ba aba adx x f a x x f a x b a f a b()()⎰++''-+⎥⎦⎤⎢⎣⎡'--bba bb a dx x f b x x f b x 2222)(22)(()()()⎰⎰++''-+''-+⎪⎭⎫ ⎝⎛+-=b b a ba adx x f b x dx x f a x b a f a b 2222)(2)(22()()())(2)(2)(2222221积分中值定理⎰⎰++-''+-''+⎪⎭⎫⎝⎛+-=bba b a a dx b x c f dx a x c f ba f a b()()[]312()()()248b a a bb a f fc f c -+⎛⎫''''=-++⎪⎝⎭介值性定理()()3()224b a a bb a f fc -+⎛⎫''=-+⎪⎝⎭,其中c 介于21c c ,之间. 即()b a c ,∈. 3、泰劳公式(微分中值定理的推广)例1(西安电子科技大学2004年) 设)(x f 在[]1,0上有二阶导数,且满足条件a x f ≤)(,b x f ≤'')(,a 和b 为非负常数,证明不等式22)(b a x f +≤', )1,0(∈x .分析:要熟练运用Taylor 展开. 证明:在)1,0(∈x 处做Taylor 展开有21)1(2)()1)(()()1(x f x x f x f f -''+-'+=ξ,222)()()()0(x f x x f x f f ξ''+'-=上面两式相减有 22212)()1(2)()0()1()(x f x f f f x f ξξ''+-''--=',所以[]22)1(22)(22b a xx b a x f +≤+-+≤'.例2(陕西师范大学2003年,中国地质大学2004年)设函数f 在区间[]b a ,上有二阶导数且,0)()(='='-+b f a f 则必存在一点),(b a ∈ξ使得)()()(4)(2a fb f a b f --≥''ξ.分析:关键是做Taylor 展开. 证明:应用Taylor 公式,将)2(b a f +分别在b a 、点展开,注意0)()(='='-+b f a f ,故存在1ξ和2ξ,b b a a <<+<<212ξξ,使得212)(21)(2⎪⎭⎫⎝⎛-''+=⎪⎭⎫ ⎝⎛+a b f a f b a f ξ,222)(21)(2⎪⎭⎫⎝⎛-''+=⎪⎭⎫ ⎝⎛+a b f b f b a f ξ.两式相减得: []0)()()(81)()(221=-''-''+-a b f f a f b f ξξ, 故[])()()(21)()()(4212ξξξf f f a f b f a b ''≤''+''≤--.其中 ⎩⎨⎧''<''''≥''=)()(,)()(,212211ξξξξξξξf f f f .例3(北京交通大学2005年)设函数)(x f 在区间),0(+∞内有二阶函数,0)(lim =+∞→x f x ,并当),0(+∞∈x 时,有1)(≤''x f . 证明:0)(lim ='+∞→x f x .分析:关键是做Taylor 展开.证明:要证明0)(lim ='+∞→x f x ,即要证明对任意的0>ε,存在0>A ,当A x >时有ε<')(x f . 利用Taylor 公式,对任意的0>h ,有2)(21)()()(h f h x f x f h x f ξ''+'+=+, ()h ,0∈ξ,即[]h f x f h x f hx f )(21)()(1)(ξ''--+='. 从而[]hx f h x f hhf x f h x f hh f x f h x f hx f 21)()(1)(21)()(1)(21)()(1)(+-+≤''+-+≤''--+='ξξ, 取ε<h , 因为0)(li m =+∞→x f x , 所以021)()(1lim )(lim0=⎭⎬⎫⎩⎨⎧+-+≤'≤+∞→+∞→h x f h x f hx f x x , 其中2)()(ε<-+x f h x f . 即0)(lim ='+∞→x f x .例4(上海大学2005年、中国科学院2007年)设函数)(x f 在[]20,上有1)(≤x f ,1)(≤''x f . 证明:2)(≤'x f .分析:关键是做Taylor 展开. 证明:在)2,0(∈x 处做Taylor 展开有212)()()()0(xf x x f x f f ξ''+'-=,22)2(2)()2)(()()2(x f x x f x f f -''+-'+=ξ,将上面两式相减有[]21224)()2(4)()0()2(21)(x f x f f f x f ξξ''+-''--=',所以[][][].21)1(211)2(411)(4)2()(4)0()2(21)(22222212≤+-+≤+-+≤''-+''++≤'x xx f x f x f f x f ξξ.例5(江苏大学2004年)已知函数)(x f 在区间()1,1-内有二阶导数,且0)0()0(='=f f , )()()(x f x f x f '+≤'', 证明:存在0>δ,使得在()δδ,-内0)(≡x f .分析:关键是做Taylor 展开.证明:将)()()(x f x f x f '+≤''右端的)(x f ,)(x f '在0=x 处按Taylor 公式展开. 注意到0)0()0(='=f f ,有222)(2)()0()0()(x f x f x f f x f ξξ''=''+'+=, x f f x f )()0()(η''+'=',其中ηξ,是属于0与x 之间的某个值.从而x f x f x f x f )(2)()()(2ηξ''+''='+.现令⎥⎦⎤⎢⎣⎡-∈41,41x ,则由)()(x f x f '+在⎥⎦⎤⎢⎣⎡-41,41上连续知,存在⎥⎦⎤⎢⎣⎡-∈41,410x ,使得{}M x f x f x f x f xx ='+='+≤≤-)()(max )()(14100.下面只要证明0=M 即可. 事实上⎥⎦⎤⎢⎣⎡''+''≤''+''='+=)(2)(41)(2)()()(000020000ηξηξf f x f x f x f x f M ()()()()[]000041ηηξξf f f f +'++'≤(由()()x f x f x f x f ηξ''+''='+22)()()11242M M ≤⋅=,即M M 20≤≤, 所以0=M . 在⎥⎦⎤⎢⎣⎡-41,41上0)(≡x f . 例6(辽宁大学2005年)求⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-∞→x x x x 1sin1lim 2. 分析:利用Taylor 展开式计算函数极限. 解: 将x1sin展开成带Peano 余项的二阶Taylor 公式⎪⎭⎫ ⎝⎛+-=3316111s i n x o x x x ,则 ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-∞→→∞→332216111lim 1sin 1lim x o x x x x x x x x x x ()61161lim 16111lim 322=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅-+-=∞→∞→o x o x x x x x . 例7(山东师范大学2006年)求422cos limxex xx -→-.分析:利用Taylor 展开式计算函数极限. 解 进行带Peano 余项的Taylor 展开()5422421cos xo xxx ++-=, )(82154222x o xxex++-=-,所以)(12cos 5422x o xex x+-=--, 进而121cos lim422-=--→xex xx .例8(浙江大学2005年、华南理工大学2005年)设)(x f 在),[+∞a 上有连续的二阶导数,且已知(){}+∞∈=,0)(sup 0x x f M 和(){}+∞∈''=,0)(sup 2x x f M 均为有限数. 证明:(1)2022)(M t tM t f +≤' ,对任意的0>t ,),0(+∞∈x 成立;(2){}),0()(sup 1+∞∈'=x x f M 也是有限数,且满足不等式2012M M M ≤ .分析:Taylor 展开式.证明(1)考虑)(t x f + 在t 处的Taylor 展开式,,2)()()()(2>''+'+=+t t f t t t t f t t f ξ,则t f tt f t f t f 2)()()2()(ξ''--=',所以++≤'tt f t f t f )()2()(2)(ξf ''t ,有题设条件可得t M tM t f 22)(2+≤' .(2)同理由Taylor 展开式知,t M tM t f 22)(2+≤'成立,从而t M tM M 2221+≤,取202M M t = 即得证.例9(哈尔滨工业大学2006年)设)(x f 在[)+∞,0内二阶可微,0)(lim =+∞→x f x ,但)(lim x f x '+∞→不存在.证明:存在00>x ,使1)(0>''x f .分析 Taylor 展开式.证明 反证法,设对任意的),0(+∞∈x ,均有1)(≤''x f .利用Taylor 展开式,对任意的0>h ,有2)(21)()()(h f h x f x f h x f ξ''+'+=+,因此有2)()(1)(h x f h x f hx f +-+≤' ,取ε=h ,由0)(lim =+∞→x f x 知,存在0>A ,当A x > 时,有4)(2ε≤'x f ,于是ε<')(x f ,A x > ,即0)(lim ='+∞→x f x ,矛盾.例10 (华中科技大学2007年)设 )(x f 在(0,1) 上二阶可导且满足1)(≤''x f ,10(≤≤x ,又设)(x f 在()1.0 内取到极值41 .证明:1)1()0(≤+f f .分析 极值点,Taylor 展开式.证明 因为)(x f 在)1,0(上二阶可导,假设ξ在极值点,则41)(=ξf 、0)(='ξf .对)(x f 关于0=x 、1=x 在ξ点Taylor 展开有21)(2)())(()()0(ξηξξξ-''+-'+=f f f f ,)1,(2ξη∈.又有2)1(2)()1)(()()1(ξηξξξ-''+-'+=f f f f ,)1,(2ξη∈.所以有2221)1(2)(0)(2)(0)()1()0(ξηξξηξ-''+++''++=+f f f f f f[]2221)1()()(21)(2ξηξηξ-''+''+≤f f f[]22)1(121ξξ-++≤12121=+≤.这里另22)1()(x x x g -=,)1,0(∈x ,则最大值1)1(=g . 练习[1](华中科技大学2005年)设)(x f 在[]1,0上有二阶连续导数,0)1()0(==f f ,58)(≤''x f ,58)(≤'x f ,给出)10()(≤≤x x f 的一个估计.[2](华中科技大学2004年)设)10(,2)(,0)1()0(≤≤≤''==x x f f f ,证明:1)(≤'x f .[3](北京航空航天大学2005年)证明:对任意的n ,有)!1(1!)1(!31211+<⎪⎪⎭⎫ ⎝⎛-+⋅⋅⋅+---n n en. [4](华南理工大学2004年)设)(x f 在[]1,1-上三次可微,1)1(,0)0()0()1(=='==-f f f f .证明:存在)1,1(-∈x ,使得3)()3(≥x f.[5](大连理工大学2006年) 将2)1(1)(x x f += 在0=x 展开成Taylor 级数.[6](同济大学1999年)求⎥⎦⎤⎢⎣⎡+-→)11ln(lim 20x x x x (答案:21).[7](大连理工大学2004年)设)(x f 在[]1,0上二阶可导,且有,0)1()0(==f f []21)(m i n 1,0-=∈x f x ,证明:存在)1,0(∈ξ,使得4)(≥''ξf .[8] (东南大学2004年)(1)设)(x f 在[]2.0上二阶可导,0)2()0(='='f f .证明:存在)2,0(∈ξ使得[])(4)2()0(3)(320ξf f f dx x f ''++=⎰.(2)若在(1)中只假定)(x f 在[]2,0上存在二阶导数而不要求二阶导数连续,那么(1)的结论是否成立?[9](东南大学2003年) 求42cos lim2xx exx --→(答案:81-).[10](同济大学1999年)求xx x x x x x arcsin )1ln(cos sin lim2220+-→(答案:61).§8.2 函数的极值和最值 函数的凸性与拐点一、知识结构 1、函数的极值和最值函数)(x f y =的极值是一个局部概念,而函数)(x f y =的最值是一个整体概念. 如函数)(x f y =在区间[]b a ,上有定义, 如果[]b a x ,0∈的某个邻域),(0δx U 内有)()(0x f x f ≤()()(0x f x f ≥), 则我们称函数)(x f y =在点0x 取得极大值(极小值). 函数)(x f y =在区间[]b a ,上的最大值)(0x f 满足)()(0x f x f ≥, 其中[]b a x ,∈.函数)(x f y =在区间[]b a ,上的最小值)(0x f 满足)()(0x f x f ≤, 其中[]b a x ,∈.(1) 一元函数)(x f y =的极值和最值定理1(必要条件) 设函数)(x f 在点0x 处可导,且在0x 处取得极值,那未这函数在0x 处的导数为零,即0)(0='x f .定理2(第一种充分条件) 设函数)(x f 在点0x 的一个邻域内可导且0)(0='x f .(1)如果当x 取0x 左侧邻近的值时,)(x f '恒为正;当x 取0x 右侧邻近的值时,)(x f '恒为负,那未函数)(x f 在0x 处取极大值;(2)如果当x 取0x 左侧邻近的值时,)(x f '恒为负;当x 取0x 右侧邻近的值时,)(x f '恒为正,那未函数)(x f 在0x 处取极小值;(3)如果当x 取0x 左右两侧邻近的值时,)(x f '恒为正或恒为负;那未函数)(x f 在0x 处没有极值.定理3 (第二种充分条件)设函数)(x f 在点0x 处具有二阶导数且0)(0='x f 0)(0≠''x f ,那么(1)当0)(0<''x f 时,函数)(x f 在点0x 处取极大值; (2)当0)(0>''x f 时,函数)(x f 在点0x 处取极小值. 一元函数)(x f y =在闭区间[]b a ,上的最值:(1)一元函数)(x f y =在()b a ,内的极大值与)(),(b f a f 中最大的为一元函数)(x f y =在闭区间[]b a ,上的最大值;(2)一元函数)(x f y =在()b a ,内的极小值与)(),(b f a f 中最小的为一元函数)(x f y =在闭区间[]b a ,上的最小值.(2) 二元函数()y x f z ,=的极值和最值定理1(必要条件) 设函数),(y x f 在点()00,y x 处可导,且在()00,y x 处取得极值,那未这函数在()00,y x 处的偏导数为零,即0),(00=y x f x ,0),(00=y x f y .定理2 (充分条件)设函数),(y x f 在点()00,y x 某邻域内连续且有一阶、二阶连续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则函数),(y x f 在点()00,y x 是否取得极值的条件如下:(1)02>-B AC 时具有极值, 且当0<A 时有极大值,当0>A 时有极小值;(2)02<-B AC 时没有极值;(3)02=-B AC 时可能有极值,也可能没有极值,还需另作讨论. 利用拉格朗日函数求极值和最值(条件极值)求函数),(y x f z =的极值,其中()y x ,满足条件0),(=y x F . 构造拉格朗日函数),(),(),,(y x F y x f y x L λλ+=, 解方程⎪⎩⎪⎨⎧===0),,(0),,(0),,(λλλλy x L y x L y x L y x 得⎪⎩⎪⎨⎧===000λλy y x x ,则()00,y x 为函数),(y x f z =的极值点(根据实际问题确定),进而求得函数),(y x f z =的极值),(00y x f z =.2、函数的凸性与拐点定义1 若曲线)(x f y =在某区间内位于其切线的上方, 则称该曲线在此区间内是凸的, 此区间称为凸区间. 若曲线位于其切线的下方, 则称该曲线在此区间内是凹的, 此区间称为凹区间.定义 2 设函数)(x f y =在区间I 上连续,如果对区间I 上任意两点21,x x ,恒有2)()(22121x f x f x x f +<⎪⎭⎫⎝⎛+,那么称)(x f y =在区间I 的图形是(向上)凹(或凹弧);如果恒有2)()(22121x f x f x x f +>⎪⎭⎫⎝⎛+,那么称)(x f y =在区间I 的图形是(向上)凸(或凸弧).定理1 设函数)(x f y =在区间[]b a ,上连续,在()b a ,内具有一阶和二阶导数,那么(1) 若在()b a ,内0)(>''x f ,则)(x f y =在区间[]b a ,的图形是凹的; (2) 若在()b a ,内0)(<''x f ,则)(x f y =在区间[]b a ,的图形是凸的. 3、函数)(x f y =图像的描绘主要用函数)(x f y =的一阶导数)(x f y '='和二阶导数)(x f y ''=''的性质和曲线)(x f y =的渐进线描绘函数)(x f y =图像.如果0)(>''x f , ()b a x ,∈, 则函数)(x f y =图像在区间()b a ,内向下凸. 如果0)(<''x f , ()b a x ,∈, 则函数)(x f y =图像在区间()b a ,内向上凸. 如果0)(0=''x f , 且)(x f ''在()0,x a ,()b x ,0上异号, 则0x 为函数)(x f y =图像的拐点.如果0)(>'x f , ()b a x ,∈, 则函数)(x f y =在区间()b a ,内单调递增. 如果0)(<'x f , ()b a x ,∈, 则函数)(x f y =在区间()b a ,内单调递减.二、解证题方法 1、函数的极值和最值例1(南京大学2003年)对任意00>y , 求)1()(00x x y x y -=ϕ在()1,0中的最大值, 并证明该最大值对任意00>y , 均小于1-e .解 由于000120)1()(y y xy x xy x --='-ϕ ,令0)1()(000120=--='-y y xy x xy x ϕ得函数)(x ϕ的稳定点100+=y y x , 所以函数)(x ϕ的最大值为10000111)1(+⎪⎪⎭⎫⎝⎛+-=+y y y y ϕ.因为()x x -<-1ln , 10<<x , 所以()11111000000111)1(-⎪⎪⎭⎫⎝⎛+-++<=⎪⎪⎭⎫⎝⎛+-=+eey y y y y y ϕ .例2(复旦大学2000年, 北京理工大学2003年)在下列数,,,4,3,2,143n n 中,求出最大的一个数.解 构造辅助函数xx x f =)(, 1≥x , 则222ln 1ln 1ln 1ln 1)(xxx x x x x e e x f xxx x x x -=⎪⎭⎫ ⎝⎛+-='⎪⎪⎭⎫ ⎝⎛=', 令0)(='x f 得函数xx x f =)(, 1≥x 的稳定点e x =. 当e x <≤1, 0)(>x f ,当e x ≥,0)(<x f , 所以函数)(x f 在点e x =取得最大值ee . 从而下列数,,,4,3,2,143n n 中最大的一个数只可能是33,2中的一个, 又因332<, 所以下列数 ,,,4,3,2,143n n 中最大的一个数是33.例3(北京化工大学2004年)在下列数,2004,,4,3,2,12004242322中,求出最大的一个数.解 构造辅助函数xxx f 2)(=, 1≥x , 则22222ln 2ln 1ln 222ln 2)(x x x x x x x e e x f x x x x x x ⋅-⋅=⎪⎭⎫ ⎝⎛+-='⎪⎪⎭⎫ ⎝⎛=', 令0)(='x f 得函数xxx f 2)(=, 1≥x 的稳定点e x =. 当e x <≤1,0)(>x f ,当e x ≥, 0)(<x f , 所以函数)(x f 在点e x =取得最大值ee 2.从而下列数 ,2004,,4,3,2,12004242322中最大的一个数只可能是3223,2中的一个,又因32232<,所以下列数,2004,,4,3,2,12004242322中最大的一个数是323.例4(中山大学2006年)设S 为由两条抛物线12-=x y 与12+-=x y 所围成的闭区域,椭圆12222=+by ax 在S 内, 确定b a ,(0>b a 、), 使椭圆的面积最大.解 两条抛物线12-=x y 与12+-=x y 的交点为()0,1-,()0,1,()1,0-,()1,0.S 为1122+-≤≤-x y x ,因为椭圆12222=+by ax 在S 内, 所以1,0≤<b a . 椭圆的参数方程为⎩⎨⎧==t b y ta x s i n c o s ,π20≤≤t ,由椭圆12222=+by ax 和区域S 的对称性知,椭圆12222=+by ax 的面积最大时, 必须有ta tb 22cos 1sin -= ,20π≤≤t 有惟一解. 即0cos 1sin 22=+-t a t b ,20π≤≤t 有惟一解.令01sin sin cos 1sin )(22222=-++-=+-=a t b t a t a t b t f ,20π≤≤t .则01)0(2≤-=a f , 012≤-=⎪⎭⎫⎝⎛b f π ,0)1(4222=-+=∆a a b ,()122sin 22≤=--=ab ab t . 于是212a a b -=,122≤≤a . 椭圆12222=+by ax 的面积2221212)(aaa a a ab a f -=-==πππ,122≤≤a . 即01214)(232=---='aaa a a f ππ, 得36=a , 322=b , 故最大面积为934π.例5(湖南师范大学2005年)设q p b a ,,,都是正数,(1)求()q px xx f -=1)(在区间[]1,0上最大值;(2)证明:qp qpq p b a q b p a +⎪⎪⎭⎫ ⎝⎛++≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛.解(1)因为()qpx xx f -=1)(, 所以()()1111)(-----='q pq p x qxx pxx f ,令()()011)(11=---='--q pqp x qxx pxx f 得稳定点qp p x +=. 又0)1()0(==f f , ()qp q p q p qp q p p f ++=⎪⎪⎭⎫⎝⎛+, 进而函数()qp x x x f -=1)(在区间[]1,0上最大值为()qp qp q p qp q p p f ++=⎪⎪⎭⎫⎝⎛+.(2)因为()1,qppqp q p qa a a ab p p qf f a b a b a b a b a b p q p q +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=≤= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭+⎝⎭⎝⎭所以qp q p q p b a q b p a +⎪⎪⎭⎫⎝⎛++≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛.例6(南京农业大学2004年)试问方程033=+-q px x 在实数域内有几个实根.解 由于()+∞=+-+∞→q px x x 3lim 3, ()-∞=+--∞→q px x x 3lim 3, 所以方程033=+-q px x 在实数域内至少有一个实根. 令q px x x f +-=3)(3, 则()p x p x x f -=-='22333)(.(1)当0<p 时, 有0)(>'x f , 进而)(x f 单调递增, 方程033=+-q px x 在实数域内只有一个实根.(2) 当0>p 时, 得q px x x f +-=3)(3的稳定点p x =, p x -=. 上述稳定点将()+∞∞-,分成三个区间()p -∞-,, ()p p ,-, ()+∞,p . 当()p x -∞-∈,时, )(x f 严格单调递增, 当()pp x ,-∈时, )(x f 严格单调递减, 当()+∞∈,p x 时, )(x f 严格单调递增. 进而,在p x -=时, )(x f 取得极大值q p p +2.在p x =时, )(x f 取得极小值q p p +-2. 所以, 当()()042232>-=+-+p q q p pq p p时,方程33=+-q px x 只有一个实根, 当()()042232=-=+-+p q q p pq p p时, 方程033=+-q px x 有两个实根, 当()()042232<-=+-+p q q p pq p p时, 方程033=+-q px x 有三个实根.综上所述, 当0<p 时, 方程033=+-q px x 在实数域内有一个实根, 当0>p , 且0432>-p q 时, 方程033=+-q px x 只有一个实根, 当0>p , 且0432=-p q 时, 方程033=+-q px x 有两个实根, 当0>p ,且0432<-p q 时, 方程033=+-q px x 有三个实根.例7(上海交通大学2005年)求函数444),,(z y x z y x f ++=在条件1=xyz 下的极值.分析 用Lagrange 乘数法求函数444),,(z y x z y x f ++=在条件1=x y z 下的极值.解 构造Lagrange 函数()1),,,(444-+++=xyz z y x z y x L λλ, 由⎪⎪⎩⎪⎪⎨⎧=-==+==+==+=01),,,(04),,,(04),,,(04),,,(333xyz z y x L xy z z y x L zx y z y x L yz x z y x L zy x λλλλλλλλ得1===z y x , 所以极值为3)1,1,1(=f .。
《微分学中值定理》课件
结论:柯西定理是微分学中值定理的一个重要结果,对于理解微 分学的基本概念和定理具有重要意义。
单击此处输入你的项正文,文字是您思想的提炼,言简意赅的阐述观点。 Nhomakorabea04
微分学中值定理的推论
推论一:若函数在某区间内可导,则函数在该区间内单调
推论二:若函数在某区间内可导,则函数在该区间内至多 存在一个极值点
极值点的定义:函数在某点处的导数为0,且该点两侧的导数符号相 反
极值点的存在性:若函数在某区间内可导,则函数在该区间内至多 存在一个极值点
极值点的唯一性:若函数在某区间内可导,且该区间内只有一个极 值点,则该极值点为函数的最大值或最小值
极值点的应用:在微分学中,极值点是研究函数性质的重要工具, 可以用于求解函数的最大值和最小值,以及判断函数的单调性等。
推论三:若函数在某区间内可导,则函数在该区间内取得 极值的必要条件
必要条件:函数在某区间内可导
极值:函数在某点处的值大于或小于其附近点的值
证明:通过微分学中值定理的推论,可以证明函数在某区间内取得极值的必要条件
利用微分学中值定理解决实际问题
实例1:求解函数在某点处的导 数
实例2:求解函数在某区间上的 最大值和最小值
实例3:求解函数在某点处的斜 率
实例4:求解函数在某点处的切 线方程
06
微分学中值定理的扩展
泰勒定理与微分学中值定理的关系
泰勒定理是微分 学中值定理的推 广和延伸
泰勒定理将微分 学中值定理中的 函数值扩展到函 数值和导数值
应用:在解决实际问题时,可以利用这个推论来判断函数是否取得极值,从而找到最优解
微分中值定理公式
微分中值定理公式
微分中值定理:
1、定义:如果函数f(x)在闭区间[a,b]上连续,且其在该区间上具有一阶导数,那么,存在一个c属于[a,b],使得f'(c)=(f(b)-f(a))/(b-a)
2、应用:
(1)求解函数f(x)在闭区间[a,b]中的最值。
(2)确定区间上函数的局部极大值和极小值,以及单调区间。
(3)确定函数凹凸变化,如果有拐点,则根据导数解一元二次不等式获取。
(4)计算凸函数f(x)的极限值,如极限存在的话,就用微分中值定理来确定它。
3、几何意义:围绕着函数曲线c,有两个相交面积相等,其一个为上和下凸函数组成的不规则四边形的面积,而另一个则为分别以端点a,b为对角的矩形的面积之和:S=(f(a)+f(b))(b-a)
4、优势:
(1)微分中值定理是由微积分中基础概念构成;
(2)它是通过计算数学原理而不是函数曲线平移,形变等操作来确定突变点;
(3)它是通过极值解决拐点计算的有力工具;
(4)它可以用来计算凸函数极限值,是一种快捷有效的方法。
微分中值定理解析
微分中值定理解析微分中值定理是微积分中一个重要的定理,它为我们提供了研究函数的性质和特点的重要工具。
本文将对微分中值定理进行解析,从定义、形式化表述、几何意义以及应用等方面进行论述。
一、定义微分中值定理是微积分中的一个重要定理,它是拉格朗日中值定理的推广和具体化。
该定理的核心思想是:若函数f(x)在[a, b]上满足一定条件,那么在(a, b)的某一点c处,函数的导数f'(c)与函数在[a, b]上的平均斜率相等。
二、形式化表述设函数f(x)在[a, b]上连续,在(a, b)上可导。
则存在某一点c∈(a, b),使得f'(c) = (f(b) - f(a))/(b - a)三、几何意义微分中值定理的几何意义是:在函数图像上,必然存在一条与割线平行的切线。
也即,函数在区间[a, b]上的斜率是局部变化率的平均值,那么在(a, b)的某一点c处,函数的斜率与该平均斜率相等。
四、应用微分中值定理在实际问题中有着广泛的应用,下面举几个例子进行说明:1. 高速公路行车速度问题:假设一辆汽车在时间t内,以速度v(t)行驶。
则根据微分中值定理,可以得知在某个时刻c,汽车的瞬时速度v'(c)等于汽车在整个行驶过程中的平均速度。
2. 生产线产品质量控制问题:假设某个生产线上,产品的质量由参数q(t)表示,其中t为生产时间。
根据微分中值定理,可以得知在某个时间点c,产品的质量变化率q'(c)等于该产品在整个生产过程中的平均变化率。
3. 就业市场薪水调查问题:假设在某个城市中,不同行业的毕业生就业薪水分别由函数f(x)表示,其中x表示毕业生的学历水平。
根据微分中值定理,可以得知在某个学历水平c处,不同行业的薪水增长率f'(c)等于整个就业市场中薪水增长的平均率。
五、总结微分中值定理是微积分中的一个重要定理,它通过连接函数的斜率、平均斜率和切线的关系,为我们提供了研究函数特性的重要工具。
微分中值定理
微分中值定理微分中值定理是微积分中的重要定理之一,它揭示了函数在一定条件下存在某个点,该点的导数与函数在两个端点的斜率相等。
本文将介绍微分中值定理的三种形式,以及它们的应用和证明过程。
一、拉格朗日中值定理拉格朗日中值定理是微分中值定理的一种形式,它表述为:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则在(a, b)上至少存在一点c,使得f(b) - f(a) = f'(c)(b - a)。
拉格朗日中值定理的证明依赖于罗尔中值定理。
首先,由于函数f(x)在闭区间[a, b]上连续,在[a, b]上一定存在最大值M和最小值m。
若M=m,则f(x)是一个常数函数,此时拉格朗日中值定理显然成立。
若M≠m,则根据罗尔中值定理,存在某个点ξ∈(a, b),使得f'(ξ)=0。
于是,可以将区间[a, b]分成两个子区间:[a, ξ]和[ξ, b]。
在两个子区间上分别应用拉格朗日中值定理,可得:f(ξ) - f(a) = f'(c1)(ξ - a), f(b) - f(ξ) = f'(c2)(b - ξ)其中,c1∈(a, ξ),c2∈(ξ, b)。
因此,通过简单的变形,我们可以得到f(b) - f(a) = f'(c)(b - a),其中c∈(a, b)。
证明完毕。
拉格朗日中值定理的经典应用是利用导数来研究函数的增减性和极值问题。
通过该定理,我们可以找出函数在某一区间上的极值点,并且可以了解函数在该区间上的增减性。
二、柯西中值定理柯西中值定理是微分中值定理的另一种形式,它用于描述两个函数在给定区间内的导数之间的关系。
柯西中值定理的表述为:若函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导且g'(x)≠0,则在(a, b)上至少存在一点c,使得(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c)。
微分中值定理及其证明及应用
定理及其证明费马定理:设)(f x 在c 的某邻域)(δδ+-c c ,内有定义,而且在这个领域上有)()(c f x f ≤(其中)c (f 为局部最大值)或者)()(c f x f ≥(其中)c (f 为局部最小值),当)(f x 在c 处可导时,则有0)c ('=f .证明:因为假设)c ('f 存在,由定义可得左导数)('-x f 和右导数)(f 'c +均存在且满足:)(f )()('''-c c f c f ==+当c x <时,0)()(≥--c x c f x f ,所以0)(f )(lim )(f '≥--=-→c x c x f c c x当c >x 时,0)()(≤--c x c f x f ,所以0)(f )(lim)(f '≤--=+→c x c x f c cx 所以0)c ('=f以上是对于)()(c f x f ≤这种情况进行的证明,同理也可证明)()(c f x f ≥这种情形 罗尔定理:设)(f x 在[]b ,a 上连续,在()b ,a 上可导,若)()a (b f f =,则必有一点()b a ,c ∈使得0)c ('=f .证明:分两种情况,若)(f x 为常值,结论显然成立.若)(f x 不为常值,根据最大、最小值定理(有界闭区间[]b ,a 上的连续函数)(f x 具有最大值和最小值)可知,)(f x 必在()b ,a 内某一点c 处达到最大值或最小值,再有费马定理可得,0)c ('=f .拉格朗日中值定理:设)(f x 在[]b ,a 上连续,在()b ,a 上可导,则一定有一点()b ,a ∈ξ使ab a f --=)(f )b ()(f 'ξ.证明:分两种情况,若)(f x 恒为常数,则0)x ('=f 在()b ,a 上处处成立,则定理结论明显成立.若)(f x 在[]b ,a 不恒为常数时,由于)(f x 在[]b ,a 上连续,由闭区间连续函数的性质,)(f x 必在[]b ,a 上达到其最大值M 和最小值m ,有一种特殊情况)()a (b f f =时,定理成立,这就是上面所证明过的罗尔定理.考虑一般情形,)()a (b f f ≠.做辅助函数x )(f )b ()(f )x (ab a f x ---=ϕ.由连续函数的性质及导数运算法则,可得)x (ϕ在[]b ,a 上连续,在()b ,a 上可导,且()a ab b a bf ϕϕ=--=)(f )a ()b (,这就是说)x (ϕ满足刚刚的特殊情况,因此在()b ,a 内至少有一点ξ,使得()0)(f )b (f )(''=---=ab a f ξξϕ.即()ab a f --=)(f )b (f 'ξ.定理得证. 柯西中值定理:若)(f x 和)(g x 在[]b ,a 上连续,在()b ,a 上可导,且0)x (g '≠,则一定存在()b ,a ∈ξ使()()()()ξξ''g )(f )b (g f a g b a f =--. 证明:首先能肯定)()a (g b g ≠,因为如果)()a (g b g =,那么由拉格朗日中值定理,)x (g '在()b ,a 内存在零点,因此与假设矛盾. 还是做辅助函数()()()()()a g a g b a f x F ----=x g g )(f )b ()(f )x (.由()()b F F =a ,再由拉格朗日中值定理,可以证明定理成立.泰勒中值定理:若)(f x 在0x =点的某个邻域内有直到1n +阶连续导数,那么在此邻域内有()()()()()()()x R x n f x f f f x n nn +++++=!0...!20x 00f 2'''.其中()()()()11n x !1+++=n n n f x R ξ.ξ是介于0与x 之间的某个值.证明:做辅助函数()()()()()()()()()()n n t x n t f t x t f t x t f t f x f -------+=!...!2t 2'''ϕ.由假设容易看出()t ϕ在[]x ,0或[]0,x 上连续,且()()x R n 0=ϕ,()0x =ϕ,()()()()()[]()()()()()()()()()()()()()()()⎥⎦⎤⎢⎣⎡-----------⎥⎦⎤⎢⎣⎡------=-+11n 2'''''2''''''''!1!...!2...f -!2-f n n n t x n t f t x n t f t x t f t x t f t x t t x t f t f t x t f t t ϕ化简后有()()()()n 1n '!-t x n t f t -=+ϕ.在引进一个辅助函数()()1t +-=n t x ψ.对函数()t ϕ和()t ψ利用柯西中值定理得到()()()()()()ξψξϕψψϕϕ''00x =--x ,ξ是介于0与x 之间的某个值,此时有()()x R n 0=ϕ,()0x =ϕ,()()()()n x n f ξξξϕ-=+!-1n ',()1n x 0+=ψ,()0x =ψ,()()()nx ξξψ-+=1n -',代入上式,即得()()()()11n x !1+++=n n n f x R ξ.定理证明完毕.这是函数()x f 在0x =点的泰勒公式,同理推导可得()x f 在0x x =点附近的泰勒公式()()()()()()()()()()x R x x n x f x x x f x x x f x f x n n o n +-++-+-+=0200''00'0!...!2f .其中()()()()()101n !1++-+=n n x x n f x R ξ.ξ是介于0x 与x 之间的某个值.定理间关系:罗尔定理,拉格朗日定理,柯西定理以及泰勒公式是微分学的基本定理。
《数学分析》第六章微分中值定理及其应用
第六章 微分中值定理及其应用(计划课时: 8时 )§ 1中值定理 ( 3时 )一 思路: 在建立了导数的概念并讨论了其计算后,应考虑导数在研究函数方面的一些作用。
基于这一目的,需要建立导数与函数之间的某种联系。
还是从导数的定义出发:00)()(limx x x f x f x x --→=)(0x f '.若能去掉导数定义中的极限符号,即00)()(x x x f x f --=?)(0x f ',则目的就可达到.这样从几何上说就是要考虑曲线的割线与切线之间的平行关系. 一方面要考虑给定割线, 找平行于该割线的切线; 另一方面要考虑给定切线, 找平行于该切线的割线. (1)若给定的割线是水平的、斜的或曲线的方程以参数方程的形式给出,则分别可找出相应的切线平行于该割线,再分析所需要的条件,就可建立起Rolle 定理、Lagrange 定理、Cauchy 定理. 这三个微分中值定理用一句话概括:对于处处连续、处处有切线曲线的每一条割线都可以找到平行于该割线的切线. (2)若给定切线, 找平行于该切线的割线, 则不一定能实现.二 微分中值定理:1. Rolle 中值定理: 叙述为Th1. ( 证 ) 定理条件的充分但不必要性.2. Lagrange 中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.Lagrange 中值定理的各种形式. 关于中值点的位置. 系1 函数)(x f 在区间I 上可导且)( ,0)(x f x f ⇒≡'为I 上的常值函数. (证) 系2 函数)(x f 和)(x g 在区间I 上可导且,)()( ),()(c x g x f x g x f +=⇒'≡'.I ∈x 系 3 设函数)(x f 在点0x 的某右邻域)(0x + 上连续,在)(0x +内可导.若)0()(lim 00+'='+→x f x f x x 存在 , 则右导数)(0x f +'也存在, 且有).0()(00+'='+x f x f (证)但是, )0(0+'x f 不存在时, 却未必有)(0x f +'不存在. 例如对函数⎪⎩⎪⎨⎧=≠=.0,0,0 ,1sin )(2x x xx x f 虽然)00(+'f 不存在,但)(x f 却在点0=x 可导(可用定义求得0)0(='f ).Th3 (导数极限定理) 设函数)(x f 在点0x 的某邻域 )(0x 内连续, 在)(0x内可导. 若极限)(lim 0x f x x '→存在, 则)(0x f '也存在, 且).(lim )(00x f x f x x '='→ ( 证 )由该定理可见, 若函数)(x f 在区间I 上可导,则区间I 上的每一点,要么是导函数)(x f '的连续点,要么是)(x f '的第二类间断点.这就是说,当函数)(x f 在区间I 上点点可导时, 导函数)(x f '在区间I 上不可能有第二类间断点.3. Cauchy 中值定理:Th 4 设函数f 和g 在闭区间],[b a 上连续, 在开区间),(b a 内可导, f '和g '在),(b a 内不同时为零, 又).()(b g a g =/ 则在),(b a 内至少存在一点,ξ 使得)()()()()()(a g b g a f b f g f --=''ξξ. 证 分析引出辅助函数 -=)()(x f x F )()()()(a g b g a f b f --)(x g . 验证)(x F 在],[b a 上满足Rolle 定理的条件, ∍∈∃⇒ ),,( b a ξ-'=')()(ξξf F )()()()(a g b g a f b f --.0)(='ξg必有0)(=/'ξg , 因为否则就有0)(='ξf .这与条件“f '和g '在),(b a 内不同时为零” 矛盾. ⇒Cauchy 中值定理的几何意义.Ex [1]P 163 1—4;三 中值定理的简单应用: ( 讲1时 ) 1. 证明中值点的存在性:例1 设函数f 在区间],[b a 上连续, 在),(b a 内可导, 则),(b a ∈∃ξ, 使得)()(a f b f -)(lnξξf ab'⋅=. 证 在Cauchy 中值定理中取x x g ln )(=.例2 设函数f 在区间],[b a 上连续, 在),(b a 内可导, 且有0)()(==b f a f .试证明: 0)()( ),,(='-∍∈∃ξξξf f b a .2. 证明恒等式: 原理.例3 证明: 对R ∈∀x , 有 2π=+arcctgx arctgx .例 4 设函数f 和g 可导且 ,0)(≠x f 又 .0=''g f gf 则 )()(x cf xg =.(证明0) (='fg. ) 例 5 设对R ∈∀ , h x ,有 2|)()(|Mh x f h x f ≤-+,其中M 是正常数.则函数)(x f 是常值函数. (证明 0='f ).3. 证明不等式: 原理.例6 证明不等式: 0>h 时,h arctgh h h<<+21. 例7 证明不等式: 对n ∀,有nn n 1) 11 ln(11<+<+.4. 证明方程根的存在性:例8 证明方程 0cos sin =+x x x 在),0(π内有实根.例9 证明方程 c b a cx bx ax ++=++23423在) 1 , 0 (内有实根.四 单调函数 (结合几何直观建立)1 可导函数单调的充要条件Th 5设函数)(x f 在区间),(b a 内可导. 则在),(b a 内)(x f ↗(或↘) ⇔在),(b a 内 0)(≥'x f ( 或0≤ ).例10 设13)(3+-=x x x f .试讨论函数)(x f 的单调区间. 解:⑴确定定义域. 函数)(x f 的定义域为),(+∞-∞. ⑵求导数并分解因式.)1)(1(333)(2+-=-='x x x x f⑶确定导数为0的点和不存在的点.令0)(='x f ,得1,1=-=x x⑷将导数为0的点和不存在的点作为分点插入函数的定义域,列表讨论各个区间上的单Th6设函数)(x f 在区间),(b a 内可导. 则在),(b a 内)(x f ↗↗( 或↘↘) ⇔ⅰ> 对),,(b a x ∈∀ 有0)(≥'x f ( 或)0≤; ⅱ> 在),(b a 内任子区间上.0)(≡/'x f3 可导函数严格单调的充分条件 推论 见P124例11 证明不等式 .0,1≠+>x x e xEx [1]P 124—125 1—7.§2 不定式的极限 ( 2时 )一.型: Th 1 (L 'Hospital 法则 ) ( 证 ) 应用技巧. 例1 .cos cos 1lim2xxtg xx +→π例2 )1l n ()21(l i m2210x x e xx ++-→. 例3 xx ex-+→1l i m 0. ( 作代换x t = 或利用等价无穷小代换直接计算. )例4 xx x x s i n 1s i nlim20→. ( L 'Hospital 法则失效的例 )二∞∞型: Th 2 (L 'Hospital 法则 ) ( 证略 )例5 ) 0 ( ,ln lim >+∞→ααxxx .例6 3lim x e xx +∞→.注: 关于x x e x ln ,,α当+∞→x 时的阶.例7 xxx x sin lim +∞→. ( L 'Hospital 法则失效的例 )三. 其他待定型: ∞-∞∞∞⋅∞ , ,0 ,1 ,000.前四个是幂指型的. 例8.ln lim 0x x x +→例9)(sec lim 2tgx x x -→π.例10xx x =→0lim .例11xx x ⎪⎭⎫⎝⎛++→11lim 0.例12()21cos lim x x x →.例13nn n ⎪⎭⎫ ⎝⎛+∞→211lim .例14设⎪⎩⎪⎨⎧=≠=.0 ,0,0 ,)()(x x x x g x f 且 .3)0( ,0)0()0(=''='=g g g 求).0(f '解 200)(lim 0)(lim )0()(lim )0(x x g xx x g x f x f f x x x →→→=-=-=' 23)0(21)0()(lim 212)(lim 0000=''='-'='=→→g x g x g x x g x x .Ex [1]P 132—133 1—5.§3 Taylor 公式 ( 3时 )一. 问题和任务:用多项式逼近函数的可能性; 对已知的函数, 希望找一个多项式逼近到要求的精度.二. Taylor ( 1685—1731 )多项式:分析前述任务,引出用来逼近的多项式应具有的形式定义 (Taylor 多项式 )(x P n 及Maclaurin 多项式)例1 求函数24)(23+-=x x x f 在点20=x 的Taylor 多项式.三. Taylor 公式和误差估计:称 )()()(x P x f x R n n -=为余项. 称给出)(x R n 的定量或定性描述的式 )()()(x R x P x f n n +=为函数)(x f 的Taylor 公式.1. 误差的定量刻画( 整体性质 ) —— Taylor 中值定理: Th 1 设函数f 满足条件:ⅰ> 在闭区间],[b a 上f 有直到n 阶连续导数; ⅱ> 在开区间),(b a 内f 有1+n 阶导数. 则对),,( ),,(b a b a x ∈∃∈∀ξ 使+-++-''+-'+=n n a x n a f a x a f a x a f a f x f )(!)()(!2)())(()()()(21)1()()!1()(++-++n n a x n f ξ∑=+-=nk kk a x k a f 0)()(!)(1)1()()!1()(++-+n n a x n f ξ. 证 [1]P 138—139.称这种形式的余项)(x R n 为Lagrange 型余项. 并称带有这种形式余项的Taylor 公式为具Lagrange 型余项的Taylor 公式. Lagrange 型余项还可写为 ,)()!1())(()(1)1(++-+-+=n n n a x n a x a fx R θ ) 1 , 0(∈θ.0=a 时, 称上述Taylor 公式为Maclaurin 公式, 此时余项常写为,)()!1(1)(1)1(+++=n n n x x f n x R θ 10<<θ. 2. 误差的定性描述( 局部性质 ) —— Peano 型余项: Th 2 若函数f 在点a 的某邻域 )(a 内具有1-n 阶导数, 且)()(a fn 存在, 则+-++-''+-'+=n n a x n a f a x a f a x a f a f x f )(!)()(!2)())(()()()(2()n a x )(- , )(a x ∈.证 设)()()(x P x f x R n n -=, na x x G )()(-=. 应用L 'Hospital 法则1-n 次,并注意到)()(a fn 存在, 就有=====--→→)()(lim )()(lim )1()1(00x G x R x G x R n n n a x n a x )(2)1())(()()(lim)()1()1(a x n n a x a f a f x f n n n a x -------→ = 0)()()(lim !1)()1()1(=⎪⎪⎭⎫ ⎝⎛---=--→a f a x a f x f n n n n a x . 称()nn a x x R )()(-= 为Taylor 公式的Peano 型余项, 相应的Maclaurin 公式的Peano型余项为)()(nn x x R =. 并称带有这种形式余项的Taylor 公式为具Peano 型余项的Taylor 公式( 或Maclaurin 公式 ).四. 函数的Taylor 公式( 或Maclaurin 公式 )展开:1. 直接展开:例2 求 xe xf =)(的Maclaurin 公式.解 ) 10 ( ,)!1(!!2!1112<<++++++=+θθn xn xx n e n x x x e . 例3 求 x x f sin )(=的Maclaurin 公式.解 )()!12() 1 (!5!3sin 212153x R m x x x x x m m m +--+-+-=-- , 10 ,)21(sin )!12()(122<<⎪⎭⎫ ⎝⎛+++=+θπθm x m x x R m m . 例4 求函数)1ln()(x x f +=的具Peano 型余项的Maclaurin 公式 .解 )!1() 1()0( ,)1()!1() 1()(1)(1)(--=+--=--n f x n x f n n nn n . )() 1(32)1l n (132n nn x nx x x x x +-+-+-=+-. 例5 把函数tgx x f =)(展开成含5x 项的具Peano 型余项的Maclaurin 公式.2. 间接展开: 利用已知的展开式, 施行代数运算或变量代换, 求新的展开式.例6 把函数2sin )(x x f =展开成含14x 项的具Peano 型余项的Maclaurin 公式 .解 ) (!7!5!3sin 7753x x x x x x +-+-=, ) (!7!5!3sin 141410622x x x x x x +-+-=.例7 把函数x x f 2cos )(=展开成含6x 项的具Peano 型余项的Maclaurin 公式 . 解 ) (!6!4!21c o s6642x x x x x +-+-=, ), (!62!34212cos 66642x x x x x +-+-= (注意, 0),()(≠=k x kx )∴ ) (!62!321)2c o s1(21c o s 665422x x x x x x +-+-=+=.例8 先把函数xx f +=11)(展开成具Peano 型余项的Maclaurin 公式.利用得到的展开式, 把函数x x g 531)(+=在点20=x 展开成具Peano 型余项的Taylor 公式. 解 ,)1(!)1(1)(++-=n n n x n f !)1()0()(n f n n -=. ); ()1(1)(32nn n x x x x x x f +-++-+-=13)2(511131)2(5131531)(-+=-+=+=x x x x g=⎪⎭⎫⎝⎛--+--+--n n n x x x )2() 135 () 1()2() 135 ()2(135113122 +().)2(n x - 例9 把函数shx 展开成具Peano 型余项的Maclaurin 公式 ,并与x sin 的相应展开式进行比较.解 ), (!!2!112n nxx n x x x e +++++= )(!)1(!2!112n n n xx n x x x e +-+-+-= ; ∴ ) ( )!12(!5!32121253---+-++++=-=m m x x x m x x x x e e shx . 而 ) ()!12()1(!5!3sin 1212153---+--+-+-=m m m x m x x x x x . 五. Taylor 公式应用举例:1. 证明e 是无理数: 例10 证明e 是无理数.证 把xe 展开成具Lagrange 型余项的Maclaurin 公式, 有10 ,)!1(!1!31!2111<<+++++++=ξξn e n e . 反设e 是有理数, 即p q p e ( =和q 为整数), 就有 =e n !整数 + 1+n e ξ.对qpn e n q n ⋅=>∀!! ,也是整数. 于是,-⋅=+q p n n e !1ξ整数 = 整数―整数 = 整数.但由,30 ,10<<<⇒<<e e ξξ 因而当 3>n 时,1+n e ξ不可能是整数. 矛盾.2. 计算函数的近似值:例11 求e 精确到000001.0的近似值.解 10 ,)!1(!1!31!2111<<+++++++=ξξn e n e . 注意到,30 ,10<<<⇒<<e e ξξ 有 )!1(3) 1 (+≤n R n . 为使000001.0)!1(3<+n , 只要取9≥n . 现取9=n , 即得数e 的精确到000001.0的近似值为 718281.2!91!31!2111≈+++++≈ e . 3. 利用Taylor 公式求极限: 原理:例12 求极限 ) 0 ( ,2lim20>-+-→a x a a x x x . 解 ) (ln 2ln 1222ln x a x a x ea ax x+++==,) (ln 2ln 1222x a x a x ax++-=-;). (ln 2222x a x aa xx+=-+-∴ a xx a x x a a x x x x 22222020ln )(ln lim 2lim =+=-+→-→ . 4. 证明不等式: 原理.例13 证明: 0≠x 时, 有不等式 x e x+>1. Ex[1]P141 1—3.§4 函数的极值与最大(小)值( 4时 )一 可微函数极值点判别法:极值问题:极值点,极大值还是极小值, 极值是多少.1. 可微极值点的必要条件: Th1 Fermat 定理(取极值的必要条件).函数的驻点和(连续但)不可导点统称为可疑点, 可疑点的求法.2. 极值点的充分条件: 对每个可疑点, 用以下充分条件进一步鉴别是否为极(结合几何直观建立极值点的判别法)Th 2 (充分条件Ⅰ) 设函数)(x f 在点0x 连续, 在邻域) , (00x x δ-和) , (00δ+x x 内可导. 则ⅰ> 在) , (00x x δ-内,0)(<'x f 在) , (00δ+x x 内0)(>'x f 时,⇒ 0x 为)(x f 的一个极小值点;ⅱ> 在) , (00x x δ-内,0)(>'x f 在) , (00δ+x x 内0)(<'x f 时,⇒ 0x 为)(x f 的一个极大值点;ⅲ> 若)(x f '在上述两个区间内同号, 则0x 不是极值点.Th 3 (充分条件Ⅱ——“雨水法则”)设点0x 为函数)(x f 的驻点且)(0x f ''存在.则 ⅰ> 当0)(0<''x f 时, 0x 为)(x f 的一个极大值点;ⅱ> 当0)(0>''x f 时, 0x 为)(x f 的一个极小值点.证法一 .)(lim )()(lim)(000000x x x f x x x f x f x f x x x x -'=-'-'=''→→当0)(0<''x f 时, 在点0x 的某空心邻域内0)(x x x f -')( ,0x f '⇒<与0x x -异号,…… 证法二 用Taylor 公式展开到二阶, 带P eano 型余项. Th 4 (充分条件Ⅲ ) 设0)()()(0)1(00===''='-x f x f x f n ,而0)(0)(≠x fn .则ⅰ> n 为奇数时, 0x 不是极值点; ⅱ> n 为偶数时, 0x 是极值点. 且0)(0)(>x fn 对应极小; 0)(0)(<x f n 对应极大.例1 求函数32)52()(x x x f -=的极值.例2 求函数x x x f 432)(2+=的极值. 例3 求函数34)1()(-=x x x f 的极值.注 Th 2、 Th 3、 Th 4只是极值点判别的充分条件.如函数⎪⎩⎪⎨⎧=≠=-.0,0,0,)(21x x e x f x 它在0=x 处取极小值,但因 ,2,1,0)0()(==k f k .所以无法用Th 4对它作出判别.二 函数的最大值与最小值:⑴设函数)(x f 在闭区间],[b a 上连续且仅有有限个可疑点n x x x ,,,21 . 则 )(m a x ],[x f b a x ∈=max } )(,),(),(),(),( {21n x f x f x f b f a f ;m i n )(m i n ],[=∈x f b a x } )(,),(),(),(),( {21n x f x f x f b f a f .⑵函数最值的几个特例: ⅰ> 单调函数的最值:ⅱ> 如果函数)(x f 在区间],[b a 上可导且仅有一个驻点, 则当0x 为极大值点时,0x 亦为最大值点; 当0x 为极小值点时, 0x 亦为最小值点.ⅲ> 若函数)(x f 在R 内可导且仅有一个极大(或小)值点, 则该点亦为最大(或小)值点.ⅳ> 对具有实际意义的函数, 常用实际判断原则确定最大(或小)值点. 例4 求函数x x x x f 1292)(23+-=在闭区间⎥⎦⎤⎢⎣⎡-25,41上的最大值与最小值.⑶最值应用问题:例5 A 、B 两村距输电线(直线)分别为km 1 和km 5.1(如图), CD 长.3km . 现两村合用一台 变压器供电. 问变压器设在何处,输电线总长BE AE +最小.解 设x 如图,并设输电线总长为(x L.30 ,5.1)3(1)(222≤≤+-++=+=x x x EB AE x L015.1)3(1)3(5.1)3()(222222令===+⋅+-+--+-='x x x x x x x L ,⇒1)3(5.1)3(222+-=+-x x x x , .09625.1 2=-+⇒x x解得 2.1=x 和 6-=x ( 舍去 ). 答: …… 三 利用导数证明不等式:我们曾在前面简介过用中值定理或Taylor 公式证明不等式的一些方法. 其实, 利用 导数证明不等式的方法至少可以提出七种 ( 参阅[3]P 112—142 ). 本段仅介绍利用单调性 或极值证明不等式的简单原理.1. 利用单调性证明不等式:原理: 若f ↗, 则对βα<∀, 有不等式)()(βαf f ≤. 例5证明: 对任意实数a 和b , 成立不等式. 1 ||1||||1b b a a b a b a +++≤+++证 取⇒>+='≥+= ,0)1(1)( ).0( ,1)(2x x f x x x x f 在) , 0 [∞+内)(x f ↗↗. 于是, 由 |||| ||b a b a +≤+, 就有 ) |||| () || (b a f b a f +≤+, 即||1||||1||||||1||||||1||||||1||||||1||b b a a b a b b a a b a b a b a b a +++≤+++++=+++≤+++.2. 不等式原理: 设函数)(x f 在区间) , [∞+a 上连续,在区间) , (∞+a 内可导, 且0)(>'x f ; 又 .0)(≥a f 则 a x >时, .0)(>x f (不等式原理的其他形式.)例6 证明: 21>x 时, 1)1ln(2->+arctgx x .例7 证明: 0>x 时, !3sin 3x x x ->.3. 利用极值证明不等式: 例8 证明: 0≠x 时, x e x+>1. Ex [1]P 146—147 1—9.§5 函数的凸性与拐点( 2时 )一. 凸性的定义及判定:1. 凸性的定义:由直观引入. 强调曲线弯曲方向与上升方向的区别. 定义 见书P146凸性的几何意义: 曲线的弯曲方向;曲线与弦的位置关系;曲线与切线的位置关系. 引理(弦与弦斜率之间的关系)2. 利用一阶导数判断曲线的凸向 Th1 (凸的等价描述) 见书P146例1 (开区间内凸函数的左、右可导性,从而开区间内凸函数是连续的)3. 利用二阶导数判断曲线的凸向:Th2 设函数)(x f 在区间),(b a 内存在二阶导数, 则在),(b a 内 ⑴ )( ,0)(x f x f ⇒<''在),(b a 内严格上凸; ⑵ )( ,0)(x f x f ⇒>''在),(b a 内严格下凸. 证法一 ( 用Taylor 公式 ) 对),,(,21b a x x ∈∀ 设2210x x x +=, 把)(x f 在点 0x 展开成具Lagrange 型余项的Taylor 公式, 有,)(2)())(()()(201101001x x f x x x f x f x f -''+-'+=ξ 202202002)(2)())(()()(x x f x x x f x f x f -''+-'+=ξ.其中1ξ和2ξ在1x 与2x 之间. 注意到 )(0201x x x x --=-, 就有[]20222011021))(())((21)(2)()(x x f x x f x f x f x f -''+-''+=+ξξ, 于是若有⇒<'' ,0)(x f 上式中[])(2)()( ,0021x f x f x f <+⇒< , 即)(x f 严格上凸. 若有⇒>'' ,0)(x f 上式中[])(2)()( ,0021x f x f x f >+⇒> , 即)(x f 严格下凸.证法二 ( 利用Lagrange 中值定理. ) 若,0)(>''x f 则有)(x f '↗↗, 不妨设21x x <,并设2210x x x +=,分别在区间],[01x x 和],[20x x 上应用Lagrange 中值定理, 有 ))(()()( ),,(10110011x x f x f x f x x -'=-∍∈∃ξξ, ))(()()( ),,(02202202x x f x f x f x x -'=-∍∈∃ξξ.有),()( ,2122011ξξξξf f x x x '<'⇒<<<< 又由 00210>-=-x x x x ,⇒ ))((101x x f -'ξ<))((022x x f -'ξ, ⇒)()()()(0210x f x f x f x f -<-, 即 ⎪⎭⎫⎝⎛+=>+22)(2)()(21021x x f x f x f x f , )(x f 严格下凸.可类证0)(<''x f 的情况.例2 讨论函数x x f arctan )(=的凸性区间.例3 若函数)(x f 为定义在开区间),(b a 内的可导函数,则),(0b a x ∈为)(x f 的极值点的 充要条件是0x 为)(x f 的稳定点,即.0)(0='x f4. 凸区间的分离: )(x f ''的正、负值区间分别对应函数)(x f 的下凸和上凸区间.二.曲线的拐点: 拐点的定义.Th3 (拐点的必要条件) Th4注:. 例4 讨论曲线x x f arctan )(=的拐点.Jensen 不等式: 设在区间],[b a 上恒有0)(>''x f ( 或) 0<, 则对],[b a 上的任意n 个点 )1(n k x k ≤≤, 有Jensen 不等式:∑=≥n k k x f n 1)(1( 或⎪⎭⎫⎝⎛≤∑=n k k x n f 11) ,且等号当且仅当n x x x === 21时成立.证 令∑==nk k x n x 101, 把)(k x f 表为点0x 处具二阶Lagrange 型余项的Taylor 公式,仿前述定理的证明,注意∑==-nk kx x10,0)( 即得所证.对具体的函数套用Jensen 不等式的结果,可以证明一些较复杂的不等式.这种证明不等式的方法称为Jensen 不等式法或凸函数法.具体应用时,往往还用到所选函数的严格单调性.例2 证明: 对,,R ∈∀y x 有不等式 )(212y xy x e e e+≤+. 例3 证明均值不等式: 对+∈∀R n a a a ,,,21 , 有均值不等式na a a n11121+++ n a a a a a a nn n +++≤≤ 2121 . 证 先证不等式na a a a a a nn n +++≤ 2121.取x x f ln )(=. )(x f 在) , 0 (∞+内严格上凸, 由Jensen 不等式, 有∑∑∑∑∏=====⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛≤==n k n k k n k k k n k k n nk k x n x n f x f n x n x 111111ln 1)(1ln 1ln .由)(x f ↗↗ ⇒ na a a a a a n n n +++≤ 2121 .对+∈R na a a 1,,1,121 用上述已证结果, 即得均值不等式的左半端. 例4 证明: 对R ∈∀n x x x ,,,21 , 有不等式nx x x n x x x nn 2222121+++≤+++ . ( 平方根平均值 ) 例5设6=++z y x ,证明 12222≥++z y x . 解 取2)(x x f =, 应用Jensen 不等式.例6 在⊿ABC 中, 求证 233sin sin sin ≤++C B A . 解 考虑函数x x x f x x x f sin . 0 , 0 sin .0 ,sin )(⇒<<-=''≤≤=ππ在 区间) , 0 (π内凹, 由Jensen 不等式, 有233sin 33)()()(3sinC sinB sinA ==⎪⎭⎫⎝⎛++≤++=++∴πC B A f C f B f A f . 233sinC sinB sinA ≤++⇒.例7 已知1 ,,,=++∈+c b a c b a R . 求证6737373333≤+++++c b a .解 考虑函数3)(x x f =, )(x f 在) , 0 (∞+内严格上凸. 由Jensen 不等式, 有≤+++++=+++++3)73()73()73(3737373333c f b f a f c b a 28)8()7(37373733===+++=⎪⎭⎫⎝⎛+++++≤f c b a f c b a f . ⇒6737373333≤+++++c b a .例8 已知 .2 , 0 , 033≤+>>βαβα 求证 2≤+βα. ( 留为作业 )(解 函数3)(x x f =在) , 0 (∞+内严格下凸. 由Jensen 不等式, 有=+≤⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+2)()(228)(33βαβαβαβαf f f ⇒=≤+ ,122233βα 2 , 8)(3≤+⇒≤+βαβα. )Ex [1]P 153 1—5.§6 函数图象的描绘( 2时 )微分作图的步骤: ⑴确定定义域.⑵确定奇偶性、周期性.⑶求一阶导数并分解因式,同时确定一阶导数为0的点和不存在的点. ⑷求二阶导数并分解因式,同时确定二阶导数为0的点和不存在的点.⑸将一阶、二阶导数为0的点和不存在的点作为分点插入函数的定义域,列表讨论各个区间上的单调性、凹凸性及各分点的极值、拐点. ⑹确定渐近线.⑺适当补充一些点,如与坐标轴的交点. ⑻综合以上讨论作图. 例1 描绘函数3231)(+--=x x x x f 的图象. 例2 描绘函数222)(21)(σμσπ--=x ex f (其中0,>σμ为常数)的图象.Ex [1]P 155 (1)—(8).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析(二):多元微积分
梅加强副教授
南京大学数学系
内容提要:
内容提要:
微分中值定理;
内容提要:
微分中值定理; 拟微分中值定理.
问题:一元函数的微分中值定理非常有用,多元函数有没有对应的结果呢?
问题:一元函数的微分中值定理非常有用,多元函数有没有对应的结果呢?设σ:(a,b)→R n为向量值函数,写成分量的形式为
σ(t)=
x1(t),···,x n(t)
,t∈(a,b).
设σ(t)的每一个分量都在t0处可导,且多元函数f在x0=σ(t0)处可微,则复合函数f◦σ在t0处可导,且
f◦σ
(t0)=∇f(x0)·σ (t0),(1)
其中σ (t0)=
x
1
(t0),···,x n(t0)
.
问题:一元函数的微分中值定理非常有用,多元函数有没有对应的结果呢?设σ:(a,b)→R n为向量值函数,写成分量的形式为
σ(t)=
x1(t),···,x n(t)
,t∈(a,b).
设σ(t)的每一个分量都在t0处可导,且多元函数f在x0=σ(t0)处可微,则复合函数f◦σ在t0处可导,且
f◦σ
(t0)=∇f(x0)·σ (t0),(1)
其中σ (t0)=
x
1
(t0),···,x n(t0)
.
证明.
这是链式法则的直接推论.
(微分中值定理)
设D⊂R n为凸域,函数f:D→R在D中处处可微.则任给x,y∈D,存在
θ∈(0,1),使得
f(x)−f(y)=∇f(ξ)·(x−y),ξ=θx+(1−θ)y.(2)
(微分中值定理)
设D⊂R n为凸域,函数f:D→R在D中处处可微.则任给x,y∈D,存在
θ∈(0,1),使得
f(x)−f(y)=∇f(ξ)·(x−y),ξ=θx+(1−θ)y.(2)
证明.
令σ(t)=tx+(1−t)y,由D为凸域可知当t∈[0,1]时σ(t)∈D.对一元函数
ϕ(t)=f◦σ(t)用微分中值定理可知存在θ∈(0,1),使得ϕ(1)−ϕ(0)=ϕ (θ).由(1)式可得
ϕ(1)−ϕ(0)=∇f(ξ)·σ (θ)=∇f(ξ)·(x−y),
其中ξ=σ(θ)=θx+(1−θ)y.由f(x)=ϕ(1),f(y)=ϕ(0)可知欲证结论成立.
向量值函数的微分中值定理
问题:微分中值定理能否推广到向量值函数?
问题:微分中值定理能否推广到向量值函数?
设D⊂R n为凸域,f:D→R m为向量值的多元函数.设x,y∈D.对f的每一个分量f i应用微分中值定理可得ξi∈D,使得
f i(x)−f i(y)=∇f i(ξi)·(x−y).
问题:微分中值定理能否推广到向量值函数? 设D ⊂R n 为凸域,f :D →R m 为向量值的多元函数.设x ,y ∈D .对f 的每一个分量f i 应用微分中值定理可得ξi ∈D ,使得
f i (x )−f i (y )=∇f i (ξi )·(x −y ).
注意:这些ξi 未必相同.例如,考虑函数f :R →R 2,f (t )=(t 2,t 3).取x =1,y =0,简单的计算表明ξ1=1/2,ξ2=±1/√3,因此ξ1=ξ2.
问题:微分中值定理能否推广到向量值函数? 设D ⊂R n 为凸域,f :D →R m 为向量值的多元函数.设x ,y ∈D .对f 的每一个分量f i 应用微分中值定理可得ξi ∈D ,使得
f i (x )−f i (y )=∇f i (ξi )·(x −y ).
注意:这些ξi 未必相同.例如,考虑函数f :R →R 2,f (t )=(t 2,t 3).取x =1,y =0,简单的计算表明ξ1=1/2,ξ2=±1/√3,因此ξ1=ξ2.
此例表明,一般地我们不能指望f (x )−f (y )=Jf (ξ)(x −y )对某个ξ成立.
问题:微分中值定理能否推广到向量值函数? 设D ⊂R n 为凸域,f :D →R m 为向量值的多元函数.设x ,y ∈D .对f 的每一个分量f i 应用微分中值定理可得ξi ∈D ,使得
f i (x )−f i (y )=∇f i (ξi )·(x −y ).
注意:这些ξi 未必相同.例如,考虑函数f :R →R 2,f (t )=(t 2,t 3).取x =1,y =0,简单的计算表明ξ1=1/2,ξ2=±1/√3,因此ξ1=ξ2.
此例表明,一般地我们不能指望f (x )−f (y )=Jf (ξ)(x −y )对某个ξ成立. 不过,我们有
(拟微分中值定理)
设D⊂R n为凸域,f:D→R m在D中处处可微.则任给x,y∈D,存在ξ∈D,使得
f(x)−f(y) ≤ Jf(ξ) · x−y .
(拟微分中值定理)
设D⊂R n为凸域,f:D→R m在D中处处可微.则任给x,y∈D,存在ξ∈D,使得
f(x)−f(y) ≤ Jf(ξ) · x−y .
证明.
基本的想法是对f的分量的线性组合应用微分中值定理.为此,不妨设f(x)=f(y).任意取定R m中的单位向量u=(u1,···,u m),记
g=u·f=
m
i=1
u i f i,
则g为D中可微函数.根据微分中值定理,存在ξ∈D,使得
g(x)−g(y)=∇g(ξ)·(x−y).
证明(续).
注意到∇g(ξ)=
m
i=1
u i∇f i(ξ).利用Cauchy-Schwarz不等式可得 ∇g(ξ) ≤
m
i=1
|u i|· ∇f i(ξ)
≤ u ·
m
i=1
∇f i(ξ) 2
1/2
= Jf(ξ) .
由g(x)−g(y)=u·[f(x)−f(y)]可得
u·[f(x)−f(y)]
≤ ∇g(ξ) · x−y ≤ Jf(ξ) · x−y .
在上式中取u=[f(x)−f(y)]/ f(x)−f(y) 就完成了定理的证明.。