数学分析 拟微分中值定理

数学分析(二):多元微积分

梅加强副教授

南京大学数学系

内容提要:

内容提要:

微分中值定理;

内容提要:

微分中值定理; 拟微分中值定理.

问题:一元函数的微分中值定理非常有用,多元函数有没有对应的结果呢?

问题:一元函数的微分中值定理非常有用,多元函数有没有对应的结果呢?设σ:(a,b)→R n为向量值函数,写成分量的形式为

σ(t)=

x1(t),···,x n(t)

,t∈(a,b).

设σ(t)的每一个分量都在t0处可导,且多元函数f在x0=σ(t0)处可微,则复合函数f?σ在t0处可导,且

f?σ

(t0)=?f(x0)·σ (t0),(1)

其中σ (t0)=

x

1

(t0),···,x n(t0)

.

问题:一元函数的微分中值定理非常有用,多元函数有没有对应的结果呢?设σ:(a,b)→R n为向量值函数,写成分量的形式为

σ(t)=

x1(t),···,x n(t)

,t∈(a,b).

设σ(t)的每一个分量都在t0处可导,且多元函数f在x0=σ(t0)处可微,则复合函数f?σ在t0处可导,且

f?σ

(t0)=?f(x0)·σ (t0),(1)

其中σ (t0)=

x

1

(t0),···,x n(t0)

.

证明.

这是链式法则的直接推论.

(微分中值定理)

设D?R n为凸域,函数f:D→R在D中处处可微.则任给x,y∈D,存在

θ∈(0,1),使得

f(x)?f(y)=?f(ξ)·(x?y),ξ=θx+(1?θ)y.(2)

(微分中值定理)

设D?R n为凸域,函数f:D→R在D中处处可微.则任给x,y∈D,存在

θ∈(0,1),使得

f(x)?f(y)=?f(ξ)·(x?y),ξ=θx+(1?θ)y.(2)

证明.

令σ(t)=tx+(1?t)y,由D为凸域可知当t∈[0,1]时σ(t)∈D.对一元函数

?(t)=f?σ(t)用微分中值定理可知存在θ∈(0,1),使得?(1)??(0)=? (θ).由(1)式可得

?(1)??(0)=?f(ξ)·σ (θ)=?f(ξ)·(x?y),

其中ξ=σ(θ)=θx+(1?θ)y.由f(x)=?(1),f(y)=?(0)可知欲证结论成立.

问题:微分中值定理能否推广到向量值函数?

问题:微分中值定理能否推广到向量值函数?

设D?R n为凸域,f:D→R m为向量值的多元函数.设x,y∈D.对f的每一个分量f i应用微分中值定理可得ξi∈D,使得

f i(x)?f i(y)=?f i(ξi)·(x?y).

问题:微分中值定理能否推广到向量值函数? 设D ?R n 为凸域,f :D →R m 为向量值的多元函数.设x ,y ∈D .对f 的每一个分量f i 应用微分中值定理可得ξi ∈D ,使得

f i (x )?f i (y )=?f i (ξi )·(x ?y ).

注意:这些ξi 未必相同.例如,考虑函数f :R →R 2,f (t )=(t 2,t 3).取x =1,y =0,简单的计算表明ξ1=1/2,ξ2=±1/√3,因此ξ1=ξ2.

问题:微分中值定理能否推广到向量值函数? 设D ?R n 为凸域,f :D →R m 为向量值的多元函数.设x ,y ∈D .对f 的每一个分量f i 应用微分中值定理可得ξi ∈D ,使得

f i (x )?f i (y )=?f i (ξi )·(x ?y ).

注意:这些ξi 未必相同.例如,考虑函数f :R →R 2,f (t )=(t 2,t 3).取x =1,y =0,简单的计算表明ξ1=1/2,ξ2=±1/√3,因此ξ1=ξ2.

此例表明,一般地我们不能指望f (x )?f (y )=Jf (ξ)(x ?y )对某个ξ成立.

问题:微分中值定理能否推广到向量值函数? 设D ?R n 为凸域,f :D →R m 为向量值的多元函数.设x ,y ∈D .对f 的每一个分量f i 应用微分中值定理可得ξi ∈D ,使得

f i (x )?f i (y )=?f i (ξi )·(x ?y ).

注意:这些ξi 未必相同.例如,考虑函数f :R →R 2,f (t )=(t 2,t 3).取x =1,y =0,简单的计算表明ξ1=1/2,ξ2=±1/√3,因此ξ1=ξ2.

此例表明,一般地我们不能指望f (x )?f (y )=Jf (ξ)(x ?y )对某个ξ成立. 不过,我们有

(拟微分中值定理)

设D?R n为凸域,f:D→R m在D中处处可微.则任给x,y∈D,存在ξ∈D,使得

f(x)?f(y) ≤ Jf(ξ) · x?y .

(拟微分中值定理)

设D?R n为凸域,f:D→R m在D中处处可微.则任给x,y∈D,存在ξ∈D,使得

f(x)?f(y) ≤ Jf(ξ) · x?y .

证明.

基本的想法是对f的分量的线性组合应用微分中值定理.为此,不妨设f(x)=f(y).任意取定R m中的单位向量u=(u1,···,u m),记

g=u·f=

m

i=1

u i f i,

则g为D中可微函数.根据微分中值定理,存在ξ∈D,使得

g(x)?g(y)=?g(ξ)·(x?y).

证明(续).

注意到?g(ξ)=

m

i=1

u i?f i(ξ).利用Cauchy-Schwarz不等式可得 ?g(ξ) ≤

m

i=1

|u i|· ?f i(ξ)

≤ u ·

m

i=1

?f i(ξ) 2

1/2

= Jf(ξ) .

由g(x)?g(y)=u·[f(x)?f(y)]可得

u·[f(x)?f(y)]

≤ ?g(ξ) · x?y ≤ Jf(ξ) · x?y .

在上式中取u=[f(x)?f(y)]/ f(x)?f(y) 就完成了定理的证明.

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点考研数学高数定理证明的知识点 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求 会证。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推 举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想 必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导” 和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得 函数在该点的导数为0。 前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直 接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔 定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连 续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。 那么最值和极值是什么关系?这个点需要想清楚,因为直接影响 下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若 最值均取在区间端点,则最值不为极值。那么接下来,分两种情况 讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条 告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值 和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在 开区间上任取一点都能使结论成立。 拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,

若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过 程中体现出来的基本思路,适用于证其它结论。 以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑 在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗 尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子 是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现 场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函 数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值 换成x,再对得到的函数求不定积分。 2015年真题考了一个证明题:证明两个函数乘积的导数公式。 几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的.较为 陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公 式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急 功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可 能从未认真思考过该公式的证明过程,进而在考场上变得很被动。 这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中 未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写 出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则, 因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。 利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有” 的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了 f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

考研数学中值定理五大注意事项

考研数学中值定理五大注意事项 来源:文都图书 中值定理是考研数学得分较低的一块,可以说是考生的“灾难区”,看到一个题目怎么思考处理是个问题,下面,就给大家就这一部分讲解一下事项。 1. 所有定理中只有介值定理和积分中值定理中的ξ所属区间是闭区间。 2. 拉格朗日中值定理是函数f(x)与导函数f'(x)之间的桥梁。 3. 积分中值定理是定积分与函数之间的桥梁。 4. 罗尔定理和拉格朗日中值定理处理的对象是一个函数,而柯西中值定理处理的对象是两个函数,如果结论中有两个函数,形式与柯西中值定理的形式类似,这时就要想到我们的柯西中值定理。 5. 积分中值定理的加强版若在定理证明中应用,必须先证明。 其次对于中值定理证明一般分为两大类题型:第一应用罗尔定理证明,也可又分为两小类:证明结论简单型和复杂型,简单型一般有证明f'(ξ)=0,f'(ξ)=k (k为任意常数),f'(ξ1)=g'(ξ2),f''(ξ)=0,f''(ξ)=g''(ξ),像这样的结论一般只需要找罗尔定理的条件就可以了,一般罗尔定理的前两个条件题目均告知,只是要需找两个不同点的函数值相等,需找此条件一般会运用闭区间连续函数的性质、积分中值定理、拉格朗日中值定理、极限的性质、导数的定义等知识点。复杂型就是结论比较复杂,需要建立辅助函数,再使辅助函数满足罗尔定理的条件。辅助函数的建立一般借助于解微分方程的思想。第二就是存在两个点使之满足某表达式。这样的题

目一般利用拉格朗日中值定理和柯西中值定理,处理思想把结论中相同字母放到等是一侧首先处理。 上述就是值定理需要注意的事项。希望大家在做题的过程中多加注意,可以配套着汤家凤的《2016考研数学绝对考场最后八套题》来进行对应的训练,掌握好上述的知识点。

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

考研数学中值定理总结

中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。 1、所证式仅与ξ相关 ①观察法与凑方法 ②原函数法 ③一阶线性齐次方程解法的变形法 2、所证式中出现两端点 ①凑拉格朗日 ②柯西定理 ③k值法 ④泰勒公式法 老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。 3、所证试同时出现ξ和η ①两次中值定理 ②柯西定理(与之前所举例类似) 有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。 一、高数解题的四种思维定势 1、在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 2、在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分

中值定理对该积分式处理一下再说。 3、在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 4、对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 二、线性代数解题的八种思维定势 1、题设条件与代数余子式A ij 或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E 。 2、若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 3、若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。 4、若要证明一组向量a 1,a 2 ,…,a s 线性无关,先考虑用定义再说。 5、若已知AB=0,则将B的每列作为Ax=0的解来处理再说。 6、若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 7、若已知A的特征向量ζ 0,则先用定义Aζ =λ ζ 处理一下再说。 8、若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

高等数学第三章微分中值定理与导数的应用题库(附带答案)

第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A ( 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''= 3、的凸区间是 x e y x -=( ) ) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞ 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4, 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x )π=+ =( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) ] 5 4 , 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 的极值 必定不是的极值点为必定为曲线的驻点 , 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000 二、填空题 1、__________________e y 82 x 的凸区间是曲线-=. 2、______________ 2 x y x 的极小值点是函数=.

第六章 微分中值定理及其应用

第六章 微分中值定理及其应用 引言 在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法.这样一来,类似于求已知曲线上点的切线问题已获完美解决.但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具. 另一方面,我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理. 本章以中值定理为中心,来讨论导数在研究函数性态(单调性、极值、凹凸性质)方面的应用. §6.1 微分中值定理 教学章节:第六章 微分中值定理及其应用——§6.1微分中值定理 教学目标:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础. 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之 间的包含关系. 教学重点:中值定理. 教学难点:定理的证明. 教学方法:系统讲解法. 教学过程: 一、一个几何命题的数学描述 为了了解中值定理的背景,我们可作以下叙述:弧? AB 上有一点P,该处的切线平行与弦AB.如何揭示出这一叙述中所包含的“数量”关系呢? 联系“形”、“数”的莫过于“解析几何”,故如建立坐标系,则弧? AB 的函数是y=f(x),x ∈[a,b]的图像,点P 的横坐标为x ξ=.如点P 处有切线,则f(x)在点x ξ=处可导,且切线的斜率为()f ξ';另一方面,弦AB 所在的直线斜率为()() f b f a b a --,曲线y=f(x)上点P 的切线平行于弦 AB ?()() ()f b f a f b a ξ-'= -. 撇开上述几何背景,单单观察上述数量关系,可以发现:左边仅涉及函数的导数,右边仅涉及

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

微分中值定理历史与发展

微分中值定理历史与发展 卢玉峰 (大连理工大学应用数学系, 大连, 116024) 微分中值定理是微分学的基本定理之一, 研究函数的有力工具. 微分中值 定理有着明显的几何意义和运动学意义. 以拉格朗日(Lagrange) 定理微分中值定理为例,它的几何意义:一个定义在区间[]b a ,上的可微的曲线段,必有中一点()x f (b a ,)ξ, 曲线在这一点的切线平行于连接点())(,a f a 与割线.它的运动学意义:设是质点的运动规律,质点在时间区间()(,b f b )f []b a ,上走过的路程),()(a f b f ?a b a f b f ??)()(代表质点在()b a ,上的平均速度, 存在()b a ,的某一时刻ξ,质点在ξ的瞬时速度恰好是它的平均速度. 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在 几何研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的 底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes) 正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实: 曲线段上必有一点的切线平行于曲线的弦.这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了. 1637年,著名法国数学家费马(Fermat) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy) ,他是数学分析严格化运动的推动者,他的三部

考研数学专题训练:中值定理

1 中值定理 【本章定位】 本部分内容属于考研数学中的难点内容,而且经常被考生所忽略,往往受到课本中的误导,低估了其难度和重要性,事实证明,在历年考研中,虽不是年年必考,但是出现的几率很大,且一般作为区分题加大了试卷的难度,如 201年的真题中“证明拉格朗日中值定理”的题目,让人无从下手,有人将此归结为看书不仔细,实际上是对本该好好研究学习的内容没有认真把握和总结,没有掌握中值定理的方法和技巧。所以,请考生务必重视! 1、 所证式仅与ξ相关 ①观察法与凑方法 1 ()[0,1](0)(1)(0)0 2() (,)()1 ()()2()0(1) ()() [()]()f x f f f f a b f x f x xf x f x f x xf x xf x xf x '==='ζ''ζ∈ζ=-ζ '''''ζ--='''''''= 例设在上二阶可导,试证至少存在一点使得分析:把要证的式子中的换成,整理得由这个式可知要构造的函数中必含有,从找突破口 因为()(1) ()()[()()]0()()[()]0 ()(1)()() f x f x f x xf x f x f x f x xf x F x x f x f x '+'''''''''''--+=?--='=--,那么把式变一下: 这时要构造的函数就看出来了②原函数法 ?-?-? ===?=?+=?='ζζζ=ζ'∈ζ?==?dx x g dx x g dx x g e x f x F C C e x f Ce x f C dx x g x f x g x f x f x g f f g f b a b a x g b f a f b a b a x f )()()()()( )( )(ln )()(ln )() ()( ) ()()(),( ],[)()()( ),(],[)( 2 很明显了 ,于是要构造的函数就现在设换成把有关的放另一边,同样有关的放一边,与现在把与方法 造的函数,于是换一种是凑都不容易找出要构分析:这时不论观察还使得求证:上连续在,又内可导,上连续,在在设例两边积分00

微分中值定理及其应用

分类号UDC 单位代码 密级公开学号 2006040223 四川文理学院 学士学位论文 论文题目:微分中值定理及其应用 论文作者:XXX 指导教师:XXX 学科专业:数学与应用数学 提交论文日期:2010年4月20日 论文答辩日期:2010年4月28日 学位授予单位:四川文理学院 中国 达州 2010年4月

目 录 摘要 .......................................................................... Ⅰ ABSTRACT....................................................................... Ⅱ 引言 第一章 微分中值定理历史 (1) 1.1 引言 ................................................................... 1 1.2 微分中值定理产生的历史 .................................................. 2 第二章 微分中值定理介绍 (4) 2.1 罗尔定理 ............................................................... 4 2.2 拉格朗日中值定理........................................................ 4 2.3 柯西中值定理 ........................................................... 6 第三章 微分中值定理应用 (7) 3.1 根的存在性的证明........................................................ 7 3.2 一些不等式的证明........................................................ 8 3.3 求不定式极限 .......................................................... 10 3.3.1 型不定式极限 .................................................... 10 3.3.2 ∞ ∞ 型不定式极限 .................................................... 11 3.4 利用拉格朗日定理讨论函数的单调性 ....................................... 12 第四章 结论 ................................................................... 14 参考文献....................................................................... 15 致谢 .. (16)

高数中值定理

第三章中值定理与导数 的应用

中值定理与导数的应用的结构 洛必达法则 Rolle 定理 Lagrange 中值定理 常用的泰勒公式 型 0,1,0∞∞型 21∞-∞型 ∞?0型00型∞ ∞Cauchy 中值定理 Taylor 中值定理 x x F =)() ()(b f a f =0 =n g f g f 1= ?2 11 2 21111∞∞∞-∞=∞-∞取对数 令g f y =单调性,极值与最值,凹凸性,拐点,函数图形的描绘;曲率;求根方法. 导数的应用

第三章中值定理与导数的应用 1. 中值定理 2. 常用麦克劳林公式 3. 洛必达法则 4. 函数的单调性、凹凸性、极值与拐点 5. 函数图形性质的讨论 6. 判定极值的充分条件 7. 最值问题 8. 典型例题

1. 中值定理 泰勒中值定理 设f (x )在含0x 的某开区间(a ,b )内具有(n +1)阶 导数, 则当),(b a x ∈时,在 x 与0x 之间存在 ξ ,使 (柯西中值公式) ) () ()()()()('' ξξg f b g a g b f a f =--(拉氏中值公式) )()()(ξf b f a f '=-柯西中值定理 设f (x ), g (x )在闭区间[a ,b ]上连续,在开区间 (a ,b )内可导且g '(x )≠0, 那末),(b a ∈?ξ,使 罗尔中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导且f (a )= f (b ), 那末),(b a ∈?ξ,使f '(ξ )=0 1 0)1(0 00)() ()!1()()(!)()(++=-++-=∑n n n k n n x x n f x x n x f x f ξ拉氏中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导, 那末),(b a ∈?ξ,使

微分中值定理论文

引言 通过对数学分析的学习我们知道,微分学在数学分析中具有举足轻重的地位,它是组成数学分析的不可缺失的部分。对于整块微分学的学习,我们可以知道中值定理在它的所有定理里面是最基本的定理,也是构成它理论基础知识的一块非常重要的内容。由此可知,对于深入的了解微分中值定理,可以让我们更好的学好数学分析。通过对微分中值定理的研究,我们可以得到它不仅揭示了函数整体与局部的关系,而且也是微分学理论应用的基础。微分中值定理是一系列中值定理总称,但本文主要是以拉格朗日定理、罗尔定理和柯西定理三个定理之间的关系[1-3]以及它们的推广为研究对象,利用它们来讨论一些方程根(零点)的存在性, 和对极限的求解问题,以及一些不等式的证明。 中值定理的内容及联系 基本内容[4][5] 对于,微分中值定理的了解,我们了解到它包含了很多中值定理,可以说它是一系列定理的总称。而本文主要是以其中的三个定理为对象,进行探讨和发现它们之间的关系。它们分别是“罗尔(Rolle )定理、拉格朗日(Lagrange )定理和柯西(Cauchy )定理”。这三个定理的具体内容如下: Rolle 定理 若()f x 在[],a b 上连续,在(),a b 内可导,且()()f a f b =,则至少存在一点(),a b ξ∈,使()0f ξ'=。 Lagrange 定理 若()f x 在[],a b 上连续,在(),a b 内可导,则至少存在一点(),a b ξ∈,使()()()() =f b f a f b a ξ-'- Cauchy 定理 设()f x ,()g x 在[],a b 上连续,在(),a b 内可导,且()0g x '≠,则至少存在一点 (),a b ξ∈,使得 ()()()()()() f b f a f g b g a g ξξ'-='-。 三个中值定理之间的关系 现在我们来看这三个定理,从这三个定理的内容我们不难看出它们之间具有一定的关系。那它们之间具体有什么样的关系呢?我们又如何来探讨呢?这是我们要关心的问题,我们将利用推广和收缩的观点来看这三个定理。首先我们先对这三个定理进行观察和类比,从中可以发现,如果把罗尔定理中的()()f a f b =这一条件给去掉的话,那么定理就会变成为拉格朗日定理。相反,如果在拉格朗日定理中添加()()f a f b =这一条件的话,显然就该定理就会成为了罗尔定理。通过这一发现,可以得到这样的一个结论:拉格朗日定理是罗尔定理的推广,而罗尔定理是拉格朗日定理的收缩,或是它的特例。继续用这一思路来看拉格朗日

最新3[1]1微分中值定理及其应用汇总

3[1]1微分中值定理 及其应用

3.2 微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基 础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:2学时 一、微分中值定理: 1. Rolle中值定理: 设函数在区间上连续,在内可导,且有.则?Skip Record If...?,使得?Skip Record If...?.

https://www.360docs.net/doc/3416127381.html,grange中值定理: 设函数在区间上连续,在内可导, 则?Skip Record If...?,使得?Skip Record If...?. 推论1 函数在区间I上可导且为I上的常值函 数. 推论2 函数和在区间I上可导且 推论3 设函数在点的某右邻域上连续,在内可导. 若存在,则右导数也存在,且有 (证) 但是, 不存在时, 却未必有不存在. 例如对函数 虽然不存在,但却在点可导(可用定义求得). Th ( 导数极限定理 ) 设函数在点的某邻域内连续,在 内可导. 若极限存在, 则也存在, 且( 证 ) 由该定理可见,若函数在区间I上可导,则区间I上的每一点,要么是导函 数的连续点,要么是的第二类间断点.这就是说,当函数在区间I 上点点可导时,导函数在区间I上不可能有第二类间断点.

微分中值定理及应用综述

微分中值定理及应用综述 谢娟 09211045 江苏师范大学 数学与统计学院 徐州 221116 摘 要:微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理、泰勒定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁和基石.本文对微分中值定理中的一些条件给予了相关说明,介绍了微分三大中值定理以及它们之间的关系,后又在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 关键词:微分中值定理;关系;应用 引言 微分中值定理是微分学的基本定理,是沟通函数与其导数之间的桥梁,是应用导数的局部性研究函数整体性的重要数学工具,应用十分广泛. 1 浅谈微分中值定理 1.1 微分中值定理的基本内容 微分中值定理是反映导数值与函数值之间的联系的定理, 它们分别是罗尔定理、拉格朗日定理和柯西中值定理.具体内容如下: 1.1.1 罗尔定理 如果函数()y f x = 满足: ( 1) 在闭区间[],a b 上连续; ( 2) 在开区间(),a b 内可导; ( 3) 在区间端点的函数值相等, 即()()f a f b =, 那么在区间(),a b 内至少有一 点ε()a b ε<< , 使函数()y f x =在该点的导数等于零, 即 ()/0f ε= 几何分析 在(图1) 中可见()y f x =曲线在[],a b 上是一条连续光滑的曲线, 曲线()y f x =在 (),a b 内处处有切线且没有垂直于x 轴的切线.在曲线的两端点一般高(罗尔定理的三条件在 平面几何中成立), 因而在(),a b 内曲线()y f x =至少有一点处的切线平行于x 轴(罗尔定理的结论成立,/ ()0f x =).通过对罗尔定理的几何分析, 抽象的罗尔定理得到了具体化(这也反应了数学的一般思想, 抽象思维具体化)。对于我们理解和掌握罗尔定理大有帮助.

2017考研数学七大中值定理精讲

2017考研数学七大中值定理精讲 来源:文都图书 高数占据了考研数学的半壁江山,而在高等数学中七大中值定理(零点定理、介值定理、三大微分中值定理、泰勒定理与积分中值定理)是学生在学习过程中认为最难的部分。七大定理的难主要在于难 理解、难应用。在历次考试,包括研究生入学考试中,与中值有关的问题一直是考试中得分最少的题,我们应如何更好的理解与掌握定理,灵活有效的使用定理呢?我们来详细的分析一下这几大定理。 第一,七大定理的归属。 零点定理与介值定理属于闭区间上连续函数的性质。三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。积分中值定理属于积分范畴,但其实也是微分中值定理的推广。 第二,对使用每个定理的体会。 学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。关键在于是对哪个函数在哪个区间上使用哪个中值定理。 1、使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。 2、介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。 3、用微分中值定理说明的问题中,有两个主要特征:含有某个 函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。应用微分中值定理主要难点在于构造适当的函数。在微分中值定理证明问题时,需要注意下面几点:

高等数学微分中值定理应用举例

微分中值定理应用举例 单调性与极值 1.函数)(x f 在[]0,1上//()0f x >,比较//(1),(0),(1)(0)f f f f -的大小. 解:)(x f 在[]0,1上满足拉氏中值定理条件,存在()0,1ξ∈,使得/(1)(0)()f f f ξ-=.由于//()0f x >,所以/()f x 单调增加,而01ξ<<,所以///(0)()(1)f f f ξ<<, 即//(0)(1)(0)(1)f f f f <-<. 2.函数)(x f 在[]0,1上/////()0,(0)0f x f >=,比较//(1),(0),(1)(0)f f f f -的大小. 解:由于///()0f x >,所以//()f x 单调增加,而//(0)0f =,所以在[]0,1上//()0f x >,同上题讨论有//(0)(1)(0)(1)f f f f <-< 3.()()f x f x =--在()0,+∞内///()0,()0f x f x >>,判断在(),0-∞内///(),()f x f x 的符号. 解:()()f x f x =--,所以)(x f 在(),-∞+∞内为奇函数,/()f x 为偶函数,//()f x 为奇函数,在()0,+∞内///()0,()0f x f x >>,所以在(),0-∞内///()0,()0f x f x ><. 4.已知函数)(x f 在区间()1,1δδ-+内具有二阶导数,且/()f x 严格递增, /(1)(1)1f f ==,则:A.在()1,1δδ-+内均有()f x x <;B.在()()1,1,1,1δδ-+内均有()f x x >;C. 在()1,1δ-内均有()f x x <,在()1,1δ+内均有()f x x >; D. 在()1,1δ-内均有()f x x >,在()1,1δ+内均有()f x x <. 解:令()()F x f x x =-,则(1)(1)10F f =-=,//()()1F x f x =- 选择B.

微分中值定理及其在不等式的应用

安阳师范学院本科学生毕业论文微分中值定理及其应用 作者张在 系(院)数学与统计学院 专业数学与应用数学 年级2008级 学号06081090 指导老师姚合军 论文成绩 日期2010年6月

学生诚信承诺书 本人郑重承诺:所成交的论文是我个人在导师指导下进行的研究工作即取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包括其他人已经发表的或撰写的研究成果,也不包括为获得安阳师范学院或其他教育机构的学位或证书所需用过的材料。与我一同工作的同志对本研究所作出的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名:导师签名:日期

微分中值定理及其应用 张庆娜 (安阳师范学院 数学与统计学院, 河南 安阳455002) 摘 要:介绍了使用微分中值定理一些常见方法,讨论了洛尔中值定理、拉格朗日中值定理、柯西中值定理在证明中根的存在性、不等式、等式及判定级数的敛散性和求极限等方面的应用,最后通过例题体现微分中值定理在具体问题中的应用. 关键词:连续;可导;微分中值定理;应用 1 引言 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在几何研究中,得到如下论:“抛物线弓形的顶点的切线必平行于抛物线弓形的底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes )正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri ) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦,这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了.1637,著名法国数学家费马(Fermat ) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle ) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy ) ,他是数学分析严格化运动的推动者,他的三部巨著《分析教程》、《无穷小计算教程概论》 (1823年)、《微分计算教程》(1829年),以严格化为其主要目标,对微积分理论进行了重构.他首先赋予中值定理以重要作用,使其成为微分学的核心定理.在《无穷小计算教程概论》中,柯西首先严格地证明了拉格朗日定理,又在《微分计算教程》中将其推广为广义中值定理—柯西定理.从而发现了最后一个微分中值定理. 近年来有关微分中值定理问题的研究非常活跃,且已有丰富的成果,相比之下,对有关中值定理应用的研究尚不是很全面.由于微分中值定理是高等数学的一个重要基本内容,而且无论是对数学专业还是非数学专业的学生,无论是研究生入学考试还是更深层次的学术研究,中值定理都占有举足轻重的作用,因此有关微分中值定理应用的研究显得颇为必要. 2 预备知识 由于微分中值定理与连续函数紧密相关,因此有必要介绍一些闭区间上连续函数的性质、定理. 定理2.1[1](有界性定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有界.即常数0M > ,使得x [,]a b 有|()|f x M ≤. 定理2.2(最大、最小值定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有最大值与最小值. 定理2.3(介值性定理) 设函数()f x 在闭区间[,]a b 上连续,且()()f a f b ≠.若μ为介于()f a 与()f b 之间的任意实数(()()f a f b μ<<或()()f b f a μ<<),则至少存在一点

相关文档
最新文档