利用函数性质与图像比较大小
幂函数图像及性质总结幂函数九个基本图像幂函数比较大小的方法
幂函数•冥函数的定义:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数。
幂函数的解析式:y=xα幂函数的图像:•幂函数图像的性质:所有幂函数在(0,+∞)上都有定义.①α>0,图像都过定点(0,0)和(1,1);在区间(0,+∞)上单调递增;②α<0,图像都过定点(1,1);在区间(0,+∞)上单调递减;③当O<a<l时,曲线上凸,当a>l时,曲线下凸.④当a=l时,图象为过点(0,0)和(1,1)的直线.⑤当a=0时,表示过点(1,1)且平行于x轴的直线(除去点(0,1)) 。
幂函数图象的其他性质:(1)图象的对称性:把幂函数的幂指数a(只讨论a是有理数的情况)表示成既约分数的形式(整数看作是分母1的分数),则不论a>0还是a<0,幂函数的图象的对称性用口诀记为:“子奇母偶孤单单;母奇子偶分两边;分子分母均为奇,原点对称莫忘记”,(2)图象的形状:①若a>0,则幂函数的图象为抛物线形,当a>l时,图象在[0,+∞)上是向下凸的(称为凸函数);当O<a<l时,图象在[o,+∞)上是向上凸的(称为凹函数).②若a<0,则幂函数y=x“的图象是双曲线形,图象与x轴、y轴无限接近,在(0,+∞)上图象都是向下凸的。
幂函数的单调性和奇偶性:对于幂函数(a∈R).(1)单调性当a>0时,函数在第一象限内是增函数;当a<0时,函数在第一象限内是减函数.(2)奇偶性①当a为整数时,若a为偶数,则是偶函数;若a为奇数,则是奇函数。
②当n为分数,即(p,q互素,p,q∈Z)时,若分母q为奇数,则分子p为奇数时,为奇函数;分子p为偶数时,为偶函数,若分母q为偶数,则为非奇非偶函数.。
指数函数比较大小口诀
指数函数比较大小口诀指数函数比较大小:比差(商)法;函数单调性法;中间值法。
指数函数是重要的基本初等函数之一。
指数函数如何比大小你可以根据图像判断:当底都大于1时,底较大的那个图像陡一些,此时,在第一象限即x>0时,底大的函数值大;在第三象限即x<0时,底小的函数值大;x=0时,函数值都为1.底大于1时函数是增函数。
当底都小于1时,底较小的那个图像陡些,此时,在第二象限即x<0时,底小的函数值大;在第四象限即x>0时,底较大的函数值大;x=0时,函数值都为1。
底小于1时函数是减函数。
指数函数幂的比较比较大小常用方法(1)做差(商)法:A-B大于0即A大于B,A-B等于0即A=B,A-B小于0即A小于B。
步骤:做差—变形—定号—下结论;A\B大于1即A大于B,A\B等于1即A等于B,A/B小于1即A小于B(A,B大于0)(2)函数单调性法;(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。
注意事项比较两个幂的大小时,除了上述一般方法之外,还应注意:(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。
(2)对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图像的变化规律来判断。
(3)对于底数不同,且指数也不同的幂的大小比较,则可以利用中间值来比较。
<1>对于三个(或三个以上)的数的大小比较,则应该先根据值的大小(特别是与0、1的大小)进行分组,再比较各组数的大小即可。
<2>在比较两个幂的大小时,如果能充分利用“1”来搭“桥”(即比较它们与“1”的大小),就可以快速的得到答案。
由指数函数的图像和性质可知“同大异小”。
即当底数a和1与指数x与0之间的不等号同向时,a的x次幂大于1,异向时a的x次幂小于1。
感谢您的阅读,祝您生活愉快。
初中数学巧用二次函数的性质比较数值大小
初中数学巧用二次函数的性质比较数值
大小
姓名:__________
指导:__________
日期:__________
比较二次函数值的大小是二次函数图像与性质应用的重要题型之一,是中考的热点。
要熟练准确地解决这类问题,同学们要理解二次函数的增减性、能画出图像的大致位置,会确定对称轴,还要掌握解决这类问题的一般方法和解题步骤。
以下面这道题为例,豆姐帮同学们梳理一下此类题目的相关知识点。
知识点一判断二次函数的开口方向
①当a>0时,抛物线开口向上,顶点为其最低点;
②当a<0时,抛物线开口向下,顶点为其最高点。
知识点二找到二次函数的对称轴
二次函数y=ax2+bx+c用配方法可化成:y=a(x-h)2+k的形式,即二次函数的顶点式,通过顶点式我们可以得出二次函数y=ax2+bx+c的顶点坐标为(h,k),因此,可以得出二次函数的对称轴为x=h
知识点三画示意图,确定点的位置大小
根据开口方向和对称轴,画出函数的示意图,不需要太精确。
根据对称轴,找到题目中所求点在x轴上的位置,对于有根号的数字,最好可以转化到小数形式,方便对比。
①对于开口向上的抛物线,离对称轴越近,点越低,y值越小;离对称轴越远,
点越高,y值越大
②对于开口向下的抛物线,离对称轴越近,点越高,y值越大;离对称轴越远,点越低,y值越小。
学案6:4.1.2 指数函数的性质与图像(二)
4.1.2 指数函数的性质与图像(二)素养目标·定方向课程标准学法解读1.进一步熟练掌握指数函数的图像、性质.2.会求指数型函数的定义域、值域、最值,以及能判断与证明单调性.3.能够利用指数函数的图像和性质比较数的大小、解不等式.1.通过例题进一步深入理解指数函数的单调性及其应用,提升学生的逻辑推理素养. 2.借助指数函数的性质,研究指数型函数的相关问题,提升学生的数学运算及数学抽象素养.必备知识·探新知知识点底数与指数函数图像的关系(1)由指数函数y =a x (a >0且a ≠1)的图像与直线x =1相交于点(1,a )可知,在y 轴右侧,图像从_______到______相应的底数由小变大.(2)由指数函数y =a x (a >0且a ≠1)的图像与直线x =-1相交于点⎝⎛⎭⎫-1,1a 可知,在y 轴左侧,图像从下到上相应的底数___________.如图所示,指数函数底数的大小关系为0<a 4<a 3<1<a 2<a 1.知识点解指数型不等式(1)形如a f (x )>a g (x )的不等式,可借助y =a x (a >0且a ≠1)的_______求解;(2)形如a f (x )>b 的不等式,可将b 化为以a 为底数的指数幂的形式,再借助y =a x (a >0且a ≠1)的_______求解;(3)形如a x >b x 的不等式,可借助两函数y =a x (a >0且a ≠1),y =b x (b >0且b ≠1)的图像求解. 知识点与指数函数复合的函数单调性一般地,形如y =a f (x )(a >0且a ≠1)函数的性质有: ①函数y =a f (x )与函数y =f (x )有_______的定义域.②当a >1时,函数y =a f (x )与y =f (x )具有_______的单调性;当0<a <1时,函数y =a f (x )与y =f (x )具有________的单调性.思考:(1)指数函数y =a x (a >0且a ≠1)的单调性取决于哪个量? (2)如何判断形如y =f (a x )(a >0且a ≠1)的函数的单调性?关键能力·攻重难题型探究题型指数函数性质的简单应用 典例剖析典例1 比较下列各组数的大小: (1)1.72.5,1.73; (2)0.8-0.1,0.8-0.2;(3)1.70.3,0.93.1; (4)55,33,2.规律方法:利用指数函数的性质比较大小的方法:1.把这两个数看作指数函数的两个函数值,再利用指数函数的单调性比较.2.若两个数不是同一个函数的两个函数值,则寻求一个中间量,中间量常选1,两个数都与这个中间量进行比较. 对点训练1.比较下列各题中两个值的大小. (1)0.3x 与0.3x +1; (2)⎝⎛⎭⎫12-2与212 .题型形如y =a f (x )类型函数的单调性与值域 典例剖析典例2 求函数y =⎝⎛⎭⎫12-x 2+x +2的单调递增区间、值域.规律方法:复合函数的单调性、值域 (1)分层:一般分为外层y =a t ,内层t =f (x ).(2)单调性复合:复合法则“同增异减”,即内外层的单调性相同则为增函数,单调性相反则为减函数.(3)值域复合:先求内层t 的值域,再利用单调性求y =a t 的值域. 对点训练2.函数f (x )=⎝⎛⎭⎫23x 2-2x 的单调递减区间是_________,值域是_________. 题型指数函数性质的综合应用 典例剖析典例3 (1)已知函数f (x )=⎩⎪⎨⎪⎧a x,x ≥1,⎝⎛⎭⎫4-a 2x +2,x <1,对任意x 1≠x 2 ,都有f (x 1)-f (x 2)x 1-x 2>0成立,则实数a 的取值范围是( ) A .(4,8) B .[4,8) C .(1,+∞)D .(1, 8)(2)已知函数f (x )=a ·2x -11+2x 是R 上的奇函数.①判断并证明f (x )的单调性;②若对任意实数,不等式f [f (x )]+f (3-m )>0恒成立,求m 的取值范围.规律方法:1.关于分段函数y =⎩⎪⎨⎪⎧f x ,x ≤x 0,g x ,x >x 0的单调性(1)增函数:f (x ),g (x )均为增函数,且f (x 0)≤g (x 0). (2)减函数:f (x ),g (x )均为减函数,且f (x 0)≥g (x 0). 2.含参数恒成立问题的一种处理方法将参数分离到左侧,根据不等号恒成立的方向,求出右侧函数的最大值或最小值,即可得到参数的范围.特别提醒:已知分段函数的单调性求参数的范围时,容易忽视判断分界点处取值的大小. 对点训练3.(1)若将本例(1)中的函数改为f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,其他条件不变,试求a 的范围;(2)已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x -1,函数g (x )=x 2-2x +m .如果对于任意的x 1∈[-2,2],总存在 x 2∈[-2,2],使得f (x 1)≤g (x 2),求实数m 的取值范围.易错警示典例剖析典例4 求函数y =⎝⎛⎭⎫14x +⎝⎛⎭⎫12x+1的值域.[错解] 令t =⎝⎛⎭⎫12x ,则y =t 2+t +1=⎝⎛⎭⎫t +122+34,所以t =-12时,y min =34, 所以函数的值域为⎣⎡⎭⎫34,+∞.参考答案必备知识·探新知知识点底数与指数函数图像的关系(1)下上(2)由大变小知识点解指数型不等式(1)单调性(2)单调性(3)①相同②相同相反思考:提示:(1)指数函数y=a x(a>0且a≠1)的单调性与其底数a有关,当a>1时,y=a x(a >0且a≠1)在定义域上是增函数,当0<a<1时,y=a x(a>0且a≠1)在定义域上是减函数.(2)①定义法,即“取值—作差—变形—定号”.其中,在定号过程中需要用到指数函数的单调性;②利用复合函数的单调性“同增异减”的规律.关键能力·攻重难题型探究题型指数函数性质的简单应用典例剖析典例1解:(1)考查指数函数y=1.7x,由于底数1.7>1,所以指数函数y=1.7x在(-∞,+∞)上是增函数.∵2.5<3,∴1.72.5<1.73.(2)考查函数y=0.8x,由于0<0.8<1,所以指数函数y=0.8x在(-∞,+∞)上为减函数.∵-0.1>-0.2,∴0.8-0.1<0.8-0.2.(3)由指数函数的性质得1.70.3>1.70=1,0.93.1<0.90=1,∴1.70.3>0.93.1.(4)底数不同、根指数也不同的两个数比较其大小,要化为同底数的或化为同指数的再作比较.∵2=122=(23)16=816,33=313=(32)16=916而8<9.∴816<916,即2<33,又2=122=(25) 110 =32110 ,55=515 =(52) 110 ,而25<32,∴55<2. 总之,55<2<33. 对点训练1.解:(1)∵y =0.3x 为减函数, 又x <x +1,∴0.3x >0.3x +1. (2)化同底为:(12)-2=22,与212 ,∵函数y =2x 为增函数,2>12.∴22>212 ,即(12)-2>212 .题型形如y =a f (x )类型函数的单调性与值域 典例剖析典例2 解:令t =-x 2+x +2, 则y =⎝⎛⎭⎫12t,因为t =-⎝⎛⎭⎫x -122+94,可得t 的减区间为⎣⎡⎭⎫12,+∞,因为函数y =⎝⎛⎭⎫12t 在R 上是减函数, 所以函数y =⎝⎛⎭⎫12-x 2+x +2的单调递增区间⎣⎡⎭⎫12,+∞; 又t ≤94,所以⎝⎛⎭⎫12t ≥⎝⎛⎭⎫1294, 所以函数y =⎝⎛⎭⎫12-x 2+x +2值域为⎣⎡⎭⎫⎝⎛⎭⎫1294,+∞. 对点训练2.【答案】 [1,+∞) ⎝⎛⎦⎤-∞,32【解析】令t =x 2-2x =(x -1)2-1,则f (x )=⎝⎛⎭⎫23t,利用二次函数的性质可得函数t 的增区间为[1,+∞),所以函数f (x )=⎝⎛⎭⎫23x 2-2x 的减区间是[1,+∞);因为t ≥-1, 所以f (x )≤32,所以函数f (x )=⎝⎛⎭⎫23x 2-2x 的值域为⎝⎛⎦⎤-∞,32.题型指数函数性质的综合应用 典例剖析典例3 (1) 【答案】B【解析】因为分段函数为增函数,所以满足⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥6-a 2,解得4≤a <8.(2) 解:①因为f (x )为R 上的奇函数, 所以f (0)=0,即a -12=0,由此得a =1,所以f (x )=2x -12x +1=1-22x +1,所以f (x )为R 上的增函数.证明:设x 1<x 2,则f (x 1)-f (x 2)=1-22x 1+1-⎝⎛⎭⎫1-22x 2+1=22x 2+1-22x 1+1, 因为x 1<x 2,所以22x 2+1-22x 1+1<0,所以f (x 1)<f (x 2),所以f (x )为R 上的增函数. ②因为f (x )为R 上的奇函数.所以原不等式可化为f [f (x )]>-f (3-m ), 即f [f (x )]>f (m -3),又因为f (x )为R 上的增函数,所以f (x )>m -3, 由此可得不等式m <f (x )+3=4-22x +1对任意实数x 恒成立,由2x >0⇒2x +1>1⇒0<22x +1<2⇒-2<-22x +1<0⇒2<4-22x +1<4,所以m ≤2. 对点训练3.解:(1)因为函数f (x )满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,所以函数f (x )在定义域上是增函数, 则满足⎩⎪⎨⎪⎧2-a >0,a >1,2-a +1≤a , 即⎩⎪⎨⎪⎧a <2a >1,a ≥32.得32≤a <2.(2)因为f (x )是定义在[-2,2]上的奇函数, 所以f (0)=0,当x ∈(0,2]时,f (x )=2x -1∈(0,3], 则当x ∈[-2,2]时,f (x )∈[-3,3], 若对于∀x 1∈[-2,2],∃x 2∈[-2,2], 使得g (x 2)≥f (x 1), 则等价为g (x )max ≥3,因为g (x )=x 2-2x +m =(x -1)2+m -1, x ∈[-2,2],所以g (x )max =g (-2)=8+m , 则满足8+m ≥3解得m ≥-5.易错警示典例剖析典例4 [正解] 令t =⎝⎛⎭⎫12x ,则y =t 2+t +1=⎝⎛⎭⎫t +122+34. 因为t >0,y =⎝⎛⎭⎫t +122+34在(0,+∞)上是增函数, 所以y >1,即函数的值域为(1,+∞). 参考答案。
常用函数性质及图像
一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
(二)一次函数1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式y=kx (k 不为零)①k 不为零②x 指数为1③b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时, 直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1)解析式:y=kx(k 是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时, 图像经过二、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (k 不为零)①k 不为零②x 指数为1③b 取任意实数一次函数y=kx+b 的图象是经过(0,b)和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b 是常数,k ≠0)(2)必过点:(0,b)和(-kb,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><0b k 直线经过第一、二、四象限⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移:当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)6、正比例函数和一次函数及性质正比例函数一次函数概念一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数.自变量范围X 为全体实数图象一条直线必过点(0,0)、(1,k)(0,b)和(-kb,0)走向k>0时,直线经过一、三象限;k<0时,直线经过二、四象限k>0,b>0,直线经过第一、二、三象限k>0,b<0直线经过第一、三、四象限k<0,b>0直线经过第一、二、四象限k<0,b<0直线经过第二、三、四象限增减性k>0,y 随x 的增大而增大;(从左向右上升)k<0,y 随x 的增大而减小。
正弦函数的性质与图像
正弦函数的性质与图像一、 基础知识精析:(1)利用正弦线解sinx>a 的方法:①找出使sinx=a 的角x 的终边所在位置; ②根据变化趋势,确定不等式的解集。
(2)利用正弦函数的图像解sinx>a 的方法:①作出直线y=a 和正弦函数y=sinx 的图像; ②确定sinx=a 的x 值; ③确定sinx>a 的解集。
二、 基础强化训练:1、 求满足条件sin x ≤23的角x 的取值范围。
2、 根据y=sinx 的图像,解不等式-23≤sin x ≤21。
3、 求下列函数的定义域: (1)y=1sin 1log 2-x; (2)y=lg(3-4sin 2x);4、若sinx=3212+-m m ,且x ∈R,则m 的取值范围是________________.5、若sinx=m m 231+-,且x ∈[-6π,6π],则m 的取值范围是____________6、函数f(x)=-sin 2x+sinx+a,若1≤f (x )≤417对一切x ∈R 恒成立,求a 的取值范围。
7、求函数y=-2 sin 2x+5 sinx-2的最大值及最小值。
8、求下列函数的值域: (1)y=sin 2x- sinx+1,x ∈[3π,43π]; (2)y=2sin sin +x x.9、求使函数y= -sin 2x+3 sinx+45取得最大值和最小值的自变量x 的集合,并求出函数的最大值和最小值。
10、比较大小: (1)sin 4π与sin 32π; (2)sin(-3200)与sin7000.11、判断下列函数的奇偶性: (1)f (x )=sin(43x +π); (2) f (x )=xx sin 1cos sin 12+-+三、高考在线:12、函数y= sin 2x+sinx-1的值域为( ) A 、[-1,1] B 、[-45,-1] C 、[-45,1] D 、[ -1,45]四、课后练习:1、求函数y=lgsin2x+29x -的定义域。
指数函数的图像与性质的应用
第2课时 指数函数的图像与性质的应用学习目标 1.进一步熟练掌握指数函数的图像、性质.2.能够利用指数函数的图像和性质比较大小、解不等式. 导语我们已经学习了指数函数的图像与性质,今天就探讨一下,利用这些知识去解决一些常见问题.一、指数函数图像的辨识例1 (1)已知函数f (x )=ax +b 的图像如图所示,则函数g (x )=a x +b 的图像可能是( )答案 B解析 由f (x )=ax +b 的图像可得f (0)=b <-1,f (1)=a +b >0, 所以a >1,b <-1,故函数g (x )=a x +b 为增函数,相对y =a x 向下平移大于1个单位,故B 符合.(2) (多选)已知实数a ,b 满足⎝⎛⎭⎫12a =⎝⎛⎭⎫13b ,给出下面几种关系,则其中可能成立的是( ) A .0<a <b B .0<b <a C .a <b <0 D .b =a答案 BCD解析 在同一坐标系中作出函数y =⎝⎛⎭⎫12x与函数y =⎝⎛⎭⎫13x 的图像,如图所示,若⎝⎛⎭⎫12a =⎝⎛⎭⎫13b>1,则a <b <0; 若⎝⎛⎭⎫12a =⎝⎛⎭⎫13b <1,则0<b <a ; 若⎝⎛⎭⎫12a =⎝⎛⎭⎫13b =1,则b =a =0.反思感悟 与指数函数相关的图像问题(1)熟记当底数a >1和0<a <1时,图像的大体形状. (2)注意图像平移问题:对于横坐标x 满足“左加右减”. (3)注意利用函数性质研究图像问题.跟踪训练1 (1)函数y =2x -1的图像一定不经过第________象限;若函数y =⎝⎛⎭⎫12x +b 的图像不经过第一象限,则实数b 的取值范围是________. 答案 二、四 (-∞,-1]解析 当x <0时,2x <1,y <0,在第三象限, 当x >0时,2x >1,y >0,在第一象限, 且当x =0时,y =0,故y =2x -1的图像一定不经过第二、四象限. 若函数y =⎝⎛⎭⎫12x +b 的图像不经过第一象限, 当x ∈[0,+∞)时,y =⎝⎛⎭⎫12x +b ≤0, 又∵0<12<1,且x ∈[0,+∞),y =⎝⎛⎭⎫12x 是[0,+∞)上的减函数, ∴0<⎝⎛⎭⎫12x ≤1,∴⎝⎛⎭⎫12x +b ≤1+b ≤0, 解得b ≤-1.(2)已知直线y =2a 与函数y =|2x -2|的图像有两个公共点,求实数a 的取值范围.解 函数y =|2x -2|的图像如图中实线部分所示,要使直线y =2a 与该图像有两个公共点,则有0<2a <2,即0<a <1,故实数a 的取值范围为(0,1).二、利用指数函数性质比较大小 例2 比较下列各组数的大小. (1)1.52.5与1.53.2; (2)56311⎛⎫⎪⎝⎭与56833⎛⎫⎪⎝⎭; (3)1.50.3与0.81.2.解 (1)∵函数y =1.5x 在R 上是增函数,2.5<3.2, ∴1.52.5<1.53.2.(2)指数函数y =⎝⎛⎭⎫311x 与y =⎝⎛⎭⎫833x 的图像(如图),由图知56311⎛⎫⎪⎝⎭>56833⎛⎫ ⎪⎝⎭. (3)由指数函数的性质知1.50.3>1.50=1, 而0.81.2<0.80=1, ∴1.50.3>0.81.2.反思感悟 比较指数式大小的3种类型及处理方法跟踪训练2 比较下列各组数的大小: (1)0.8-0.1与1.250.2;(2)1.70.3与0.93.1;(3)a 0.5与a 0.6(a >0且a ≠1). 解 (1)∵0<0.8<1, ∴y =0.8x 在R 上是减函数. ∵-0.2<-0.1,∴0.8-0.2>0.8-0.1, 而0.8-0.2=⎝⎛⎭⎫45-0.2=1.250.2, 即0.8-0.1<1.250.2.(2)∵1.70.3>1.70=1,0.93.1<0.90=1, ∴1.70.3>0.93.1.(3)a 0.5与a 0.6可看作指数函数y =a x 的两个函数值. 当0<a <1时,函数y =a x 在R 上是减函数. ∵0.5<0.6,∴a 0.5>a 0.6.当a >1时,函数y =a x 在R 上是增函数. ∵0.5<0.6,∴a 0.5<a 0.6.综上所述,当0<a <1时,a 0.5>a 0.6; 当a >1时,a 0.5<a 0.6.三、利用指数函数性质解不等式 例3 (1)不等式4x <42-3x的解集是________.答案 ⎝⎛⎭⎫-∞,12 解析 ∵4x <42-3x ,∴x <2-3x ,∴x <12.(2)解关于x 的不等式:a 2x +1≤a x -5(a >0且a ≠1).解 ①当0<a <1时, ∵a 2x +1≤a x -5,∴2x +1≥x -5,解得x ≥-6. ②当a >1时,∵a 2x +1≤a x -5, ∴2x +1≤x -5,解得x ≤-6.综上所述,当0<a <1时,不等式的解集为{x |x ≥-6}; 当a >1时,不等式的解集为{x |x ≤-6}. 反思感悟 指数型不等式的解法(1)指数型不等式a f (x )>a g (x )(a >0且a ≠1)的解法: 当a >1时,f (x )>g (x ); 当0<a <1时,f (x )<g (x ).(2)如果不等式的形式不是同底指数式的形式,要首先进行变形将不等式两边的底数进行统一,此时常用到以下结论:1=a 0(a >0且a ≠1),a -x =⎝⎛⎭⎫1a x(a >0且a ≠1)等. 跟踪训练3 (1)已知不等式13≤3x <27,则x 的取值范围为( ) A .-12≤x <3B.12≤x <3 C .R D .-12≤x <13答案 A解析 由题意可得123-≤3x <33,再根据函数y =3x 在R 上是增函数,可得-12≤x <3.(2)已知(a 2+a +2)x >(a 2+a +2)1-x ,则x 的取值范围是________. 答案 ⎝⎛⎭⎫12,+∞ 解析 ∵a 2+a +2=⎝⎛⎭⎫a +122+74>1, ∴(a 2+a +2)x >(a 2+a +2)1-x ⇔x >1-x ⇔x >12.∴x ∈⎝⎛⎭⎫12,+∞.1.知识清单:(1)指数函数图像的应用. (2)利用指数函数性质比较大小. (3)利用指数函数性质解不等式.2.方法归纳:转化与化归、分类讨论、数形结合.3.常见误区:研究y =a f (x )型函数,易忽视讨论a >1还是0<a <1.1.(多选)下列判断正确的是( ) A .2.52.5>2.53 B .0.82<0.83 C .π2>3πD .0.90.3>0.90.5答案 CD解析 ∵y =πx 是增函数,且2>3, ∴π2>3π;∵y =0.9x 是减函数,且0.5>0.3, ∴0.90.3>0.90.5.故C ,D 正确.2.函数y =a x -1a(a >0且a ≠1)的图像可能是( )答案 D解析 当a >1时,y =a x -1a 为增函数,当x =0时,y =1-1a <1且y =1-1a >0,故A ,B 不符合.当0<a <1时,y =a x -1a 为减函数,当x =0时,y =1-1a <0,故C 不符合,D 符合.3.若a 3.1>a 3(a >0且a ≠1),则实数a 的取值范围是________.答案 (1,+∞)解析 因为3.1>3,且a 3.1>a 3, 所以函数y =a x 是增函数,所以a >1. 4.不等式225x >5x+1的解集是________.答案 ⎝⎛⎭⎫-∞,-12∪(1,+∞) 解析 由225x >5x +1得2x 2>x +1,解得x <-12或x >1.5.设0<a <1,则关于x 的不等式22232223x x x x a a >-++-的解集为________.答案 (1,+∞)解析 因为0<a <1,所以y =a x 在R 上是减函数, 又因为22232223x x x x aa>-++-,所以2x 2-3x +2<2x 2+2x -3,解得x >1.1.若2x +1<1,则x 的取值范围是( ) A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)答案 D解析 ∵2x +1<1=20,且y =2x 是增函数, ∴x +1<0,∴x <-1.2.已知函数f (x )=(a 2-1)x ,若x >0时总有f (x )>1,则实数a 的取值范围是( ) A .1<|a |<2 B .|a |<2 C .|a |>1D .|a |> 2答案 D解析 由题意知a 2-1>1, 解得a 2>2, 即|a |> 2.3.函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图像如图所示,a ,b ,c ,d 分别是下列四个数:54,3,13,411中的一个,则a ,b ,c ,d 的值分别是( )A.54,3,13,411B.3,54,411,13C.411,13,3,54D.13,411,54, 3 答案 C解析 直线x =1与函数图像的交点的纵坐标从上到下依次为c ,d ,a ,b ,而3>54>411>13,所以a ,b ,c ,d 的值分别是411,13,3,54.4.函数y =a x (a >0且a ≠1)在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( ) A .6 B .1 C .3 D.32答案 C解析 函数y =a x 在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =2ax -1=4x -1在[0,1]上是增函数,当x =1时,y max =3. 5.在下列图像中,二次函数y =ax 2+bx 及指数函数y =⎝⎛⎭⎫b a x的图像只可能是( )答案 A解析 根据指数函数的定义,可知a ,b 同号且不相等,∴-b2a <0,可排除B ,D ;由选项C中二次函数的图像,可知a -b >0,a <0,∴ba >1,∴指数函数y =⎝⎛⎭⎫b a x 单调递增,故C 不正确,排除C ,故选A.6.函数f (x )=3x -3(1<x ≤5)的值域是________. 答案 ⎝⎛⎦⎤19,9 解析 因为1<x ≤5, 所以-2<x -3≤2.而函数y =3x 在(-2,2]上是增函数, 于是有19<f (x )≤32=9,即所求函数的值域为⎝⎛⎦⎤19,9.7.已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是________.(用“>”连接) 答案 c >a >b解析 因为函数y =0.8x 是R 上的减函数, 所以a >b .又因为a =0.80.7<0.80=1,c =1.20.8>1.20=1, 所以c >a .故c >a >b .8.已知方程|2x -1|=a 有两个不等实根,则实数a 的取值范围是________. 答案 (0,1)解析 函数y =|2x -1|=⎩⎪⎨⎪⎧2x -1,x ≥0,-2x+1,x <0,其图像如图所示.方程|2x -1|=a 有两个不等实根等价于直线y =a 与y =|2x -1|的图像有两个交点,所以由图可知0<a <1.9.已知a-5x<a x -7(a >0且a ≠1),求x 的取值范围.解 当a >1时,∵a -5x <a x -7,∴-5x <x -7, 解得x >76;当0<a <1时,∵a -5x <a x -7,∴-5x >x -7, 解得x <76.综上所述,当a >1时,x 的取值范围是⎝⎛⎭⎫76,+∞; 当0<a <1时,x 的取值范围是⎝⎛⎭⎫-∞,76. 10.若函数f (x )=(k +3)a x +3-b (a >0且a ≠1)是指数函数. (1)求k ,b 的值;(2)求解不等式f (2x -7)>f (4x -3).解 (1)∵f (x )=(k +3)a x +3-b (a >0且a ≠1)是指数函数, ∴k +3=1且3-b =0,解得k =-2且b =3. (2)由(1)得f (x )=a x (a >0且a ≠1), 因为f (2x -7)>f (4x -3),所以a 2x -7>a 4x -3.①当a >1时,f (x )=a x 单调递增,则不等式等价于2x -7>4x -3,解得x <-2; ②当0<a <1时,f (x )=a x 单调递减,则不等式等价于2x -7<4x -3,解得x >-2. 综上,当a >1时,原不等式的解集为{x |x <-2}; 当0<a <1时,原不等式的解集为{x |x >-2}.11.已知函数f (x )=a -x (a >0且a ≠1),且f (-2)>f (-3),则a 的取值范围是( ) A .a >0 B .a >1 C .a <1 D .0<a <1答案 D解析 因为-2>-3,f (-2)>f (-3),又f (x )=a -x =⎝⎛⎭⎫1a x ,所以⎝⎛⎭⎫1a -2>⎝⎛⎭⎫1a -3,所以1a>1,所以0<a <1. 12.函数f (x )=⎩⎪⎨⎪⎧ -x +3a ,x <0,a x ,x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( ) A .(0,1) B.⎣⎡⎭⎫13,1C.⎝⎛⎦⎤0,13 D.⎝⎛⎦⎤0,23答案 B解析 由单调性定义,得f (x )为减函数应满足⎩⎪⎨⎪⎧ 0<a <1,3a ≥a 0,即13≤a <1.13.设y 1=40.9,y 2=80.48,y 3=⎝⎛⎭⎫12-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2答案 D解析 40.9=21.8,80.48=21.44,⎝⎛⎭⎫12-1.5=21.5,由于y =2x 在R 上是增函数,所以21.8>21.5>21.44,即y 1>y 3>y 2.14.设函数f (x )=⎩⎪⎨⎪⎧ 2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是() A .(-∞,-1] B .(0,+∞)C .(-1,0)D .(-∞,0)答案 D解析 函数f (x )的图像如图所示,观察图像可知会有⎩⎪⎨⎪⎧2x <0,2x <x +1, 解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(-∞,0).15.设x <0,且1<b x <a x ,则( )A .0<b <a <1B .0<a <b <1C .1<b <aD .1<a <b答案 B解析 ∵1<b x <a x ,x <0,∴0<a <1,0<b <1.又当x =-1时,1b <1a, 即b >a ,∴0<a <b <1.16.已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图像经过点A (1,6),B (3,24).(1)求f (x );(2)若不等式⎝⎛⎭⎫1a x +⎝⎛⎭⎫1b x -m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.解 (1)把A (1,6),B (3,24)代入f (x )=b ·a x ,得 ⎩⎪⎨⎪⎧ 6=ab ,24=b ·a 3,结合a >0且a ≠1, 解得⎩⎪⎨⎪⎧a =2,b =3.∴f (x )=3·2x .(2)要使⎝⎛⎭⎫12x +⎝⎛⎭⎫13x ≥m 在(-∞,1]上恒成立,只需保证函数y =⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 在(-∞,1]上的最小值不小于m 即可.∵函数y =⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 在(-∞,1]上为减函数,∴当x =1时,y =⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 有最小值56. ∴只需m ≤56即可. ∴m 的取值范围为⎝⎛⎦⎤-∞,56.。
05第五课 对数函数的概念、图象、性质、比较大小
必修1 2.2对数函数课时5 对数函数的概念、图象、性质、比较大小班级: 姓名: 学号: _使用时间___________总编号_________课前预习学案一、预习目标记住对数函数的定义;初步把握对数函数的图象与性质. 二、预习内容1、对数函数的定义_______________________________________.2、对数函数y = x a log (a >0,且a ≠ 1)的图像和性质.研究函数和 的图象; 请同学们完成x ,y 对应值表,并用描点法分别画出函数 和的图象:三、提出疑惑:(图象性质与指数函数作比较)(对数函数与指数函数互为反函数,图象关于x y 21log =x y 2log =x y 2log =x y 21log =直线x y =对称)(反函数概念见教材P73)课内探究学案一、学习目标:1、理解对数函数的概念,熟悉对数函数的图象与性质规律.2、掌握对数函数的性质,求定义域和比较大小。
学习重难点:对数函数的图象与性质 二、学习过程 探究点一例1:求下列函数的定义域(教材P71)(1) (2)练习:求下列函数的定义域: (1) (2)例2、求下列函数的定义域:(1)()54log 221++-=x x y ; (2)()()211log -+x x .解析 : 直接利用对数函数的定义域求解,而不能先化简. 点评:本题主要考查了对数函数的定义域极其求法. 探究点二例3:比较下列各组数中两个值的大小:(利用单调性和图形) (1)5.1log 7.0与1.2log 7.0; (2)5log 3与4log 6;(3)()9.1lg m 与()()1lg 1.2>m m ; (4)7.0log 1.1与7.0log 2.1;(5)7.0log 2与8.0log 31; (6)3log 2与4log 3.(2倍与3作比较)探究点三例4、已知,0>a 求1≠a ,函数xa y =与()x y a -=log 的图像只能是( B )三、反思总结)4(log x y a -=2log x y a =)1(log 5x y -=xy 2log 1=课时5 对数函数的概念、图象、性质、比较大小 测试题____班 姓名_______一、基础过关(1~6各5分)1.函数y =log 2x -2的定义域是 ( D )A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞)2.设集合M ={y |y =(12)x ,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于( C )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1) 3.若f (x )=()12log 121+x ,则f (x )的定义域为 ( C )A.⎝⎛⎭⎫-12,0B.⎝⎛⎭⎫-12,+∞C.⎝⎛⎭⎫-12,0∪(0,+∞)D.⎝⎛⎭⎫-12,2 4.已知x =ln π,y =log 52,z =21-e,则 ( D )A .x <y <zB .z <x <yC .z <y <xD .y <z <x5.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值范围是____(1,2)____. 6.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是____(4,-1)____. 7. (10分)比较下列三个数的大小:(1)8.0log ,9.0log ,1.17.01.19.0. (2)32log ,2log ,3log 2332;8.(15分)设函数f (x )=ln(x 2+ax +1)的定义域为A .(1)若1∈A ,-3∉A ,求实数a 的取值范围;(2)若函数y =f (x )的定义域为R ,求实数a 的取值范围.解 (1)由题意,得⎩⎪⎨⎪⎧1+a +1>09-3a +1≤0,所以a ≥103.故实数a 的取值范围为[103,+∞).(2)由题意,得x 2+ax +1>0在R 上恒成立,则Δ=a 2-4<0,解得-2<a <2. 故实数a 的取值范围为(-2,2). 二、能力提升(9~11各5分)9.函数f(x)=log a|x|+1(0<a<1)的图象大致为(A)10.若log a23<1,则a的取值范围是(D) A.(0,23) B.(23,+∞) C.(23,1) D.(0,23)∪(1,+∞) 11.函数f(x)=log3(2x2-8x+m)的定义域为R,则m的取值范围是___ m>8_____.12.(15分)已知函数f(x)=log a(1+x),g(x)=log a(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值.(2)求使f(x)-g(x)>0的x的取值范围.解(1)当a=2时,函数f(x)=log2(x+1)为[3,63]上的增函数,故f(x)max=f(63)=log2(63+1)=6,f(x)min=f(3)=log2(3+1)=2.(2)f(x)-g(x)>0,即log a(1+x)>log a(1-x),①当a>1时,1+x>1-x>0,得0<x<1.②当0<a<1时,0<1+x<1-x,得-1<x<0.三、探究与拓展13.(15分)若不等式x2-log m x<0在(0,12)内恒成立,求实数m的取值范围.解由x2-log m x<0,得x2<log m x,要使x2<log m x在(0,12)内恒成立,只要y=log m x在(0,12)内的图象在y=x2的上方,于是0<m<1.在同一坐标系中作y=x2和y=log m x的草图,如图所示.∵x=12时,y=x2=14,∴只要x=12时,y=log m12≥14=log m m14.∴12≤m14,即116≤m.又0<m<1∴116≤m<1,即实数m的取值范围是[116,1).。
对数函数比较大小课件
根据对数函数的图像,可以确定不等式的解集。
使用对数函数的单调性
利用对数函数的单调性,可以解决一些不等式的问题。
求解最值问题
确定函数的最值
利用对数函数的图像和性 质,可以确定函数的最值 。
解决最优化问题
利用对数函数,可以解决 一些与最优化有关的问题 。
利用对数函数求导
通过求导,可以找到函数 的最值。
点(4,1)的下方,即 log2(3)<log2(4)。
结合对数函数的应用比较大小例题
总结词:结合对数函数的应用比 较大小是解决实际问题的一种方 法。
详细描述:在实际问题中,我们 经常需要比较两个量的相对大小 。
例如,有两个工厂A和B,工厂A的年 产量是10万吨,工厂B的年产量是5 万吨。我们需要比较这两个工厂的产 量大小。根据对数函数的性质,我们 可以将产量取对数,然后比较对数值 的大小。因为 log10(100)>log10(50),所以工厂A 的产量大于工厂B的产量。
对数函数比较大小课件
contents
目录
• 对数函数基础知识 • 比较对数函数大小的方法 • 对数函数的应用 • 典型例题解析 • 习题及答案
01
对数函数基础知识
对数函数的定义
自然对数
以e为底的对数,记作ln(x)。
常用对数
以10为底c)b/log(c)a,其中a>0且a≠1,c>0 且c≠1。
利用图像比较大小
根据对数函数的图像,可以比较 不同底数的对数函数在同一x值上 的大小。
结合对数函数的应用比较大小
利用对数函数解决实际问题
对数函数在生活和工作中有着广泛的应用,如计算复利、解决测量误差等问题 。
利用二次函数性质巧解比较大小问题
上海中学数学・2009年第12期37利用二次函数性质巧解比较大小问题226406江苏省拼茶高级中学康小峰二次函数作为最简单的非线性函数的模型之一,具有许多优美的性质.笔者发现,利用二次函数的性质来解决不等式中比较大小的问题,往往能收到事半功倍的效果,并用二次函数的一个性质,结合3个实例加以说明.命题设二次函数厂(z)一ax2+bx+f(口>o),若厂(z)满足厂(7,z)>0,,(口)=,(p=0(a<p,,(咒)<0,则m∈(一。
,口)U(卢,+oo),nE(口,p.例1已知实数n、b、C、d满足以<b,c<d,(n—f)(n—d)一1,(6一f)(b—d)一1,则n、b、f、d的大小关系是——.(用“<”连接).解析该题的一般解法是将两个等式相减,然后变形得出结论,但其过程繁琐.观察两个等式的结构特征,发现结构相同,其统一形式为(z—c)(z—d)=1(z=口、6),因此解析作出可行域(如图7中的阴影部分),该可行域是一个开放域,对于z2+y2可以看成是可行域内的点(z,y)与点(o,o)(即原点)的距离/≯可的平方,在图像上以原点为圆心作圆,显然当圆周过A点时,半径最短,求出点A(1,2),代入X2+y2得最小值5,故答案为5.:民….历—-垒’/礤y乙丁Ⅵ啉一一图73.逆向问题例8(2006重庆)已知变量z,Y满足约束条件14z+y≤4,一24z—y≤2.若目标函数z一口z+y(其中口>o)仅在点(3,1)处取得最大值,则口的取值范围为构造二次函数厂(z)一(z—f)(z—d)一1,则口、b为二次函数,(z)一(z—c)(z—d)一1与z轴交点的横坐标.同样C、d为二次函数g(X)一(z—c)(z—d)与z轴交点的横坐标,显然g(z)一厂(z)+1,即g(z)的图像可由,(z)的图像向上平移一个单位得到,观察2个函数图像(图1)得出n<f<d<b.或者仅观察,(z)一(z—c)(x--d)一1的图像,由厂(c)一,(d)一一1<o,知n<c<d<b.也可仅观察函数g(z)一(z—c)(z—d)的图像,方程g(z)一1的两个解为口和b,如图2,有口<c<d<b.图1、辱∞,入∥“八√dbX\:渗_.遵芦2_t/N)k、令\56—7891011乡/3…一l—未图8解析先作出约束条件的可行域(如图8中的阴影部分).目标函数z—日z+y变化为y一一ax+名.通过图像分析,最值有两种情况:①当斜率一a>0且一口>l,即a<一l,z为最小值;②当斜率一口<0且一n<一1,即口>1,2为最小值.因为口>o且要求最大值,故口>1.在上述关于比值、距离等约束条件是非线性目标函数的最值或已知最值求目标函数中参量取值的逆向问题时,首先识别其几何意义,然后在图像上进行分析、求解.上海中学数学・2009年第12期极坐标法证一竞赛题及其推广225300江苏省泰州实验学校黄萍高中数学新课程把“坐标系与参数方程”列入选修系列4,使得极坐标这一传统数学内容又回到了高中数学之中.为说明其应用,笔者应用极坐标法对一道美国数学竞赛题及其推广进行研究和探索.题目:已知P为正△A.E;C的外接圆BC上任意一点,求证:PA—PB+PC.证1:如图1,以。
反比例函数比较大小
03
反比例函数比较大小方法
观察法
观察反比例函数的增减性
对于反比例函数 $y = frac{k}{x}$ (k > 0),当 x 增大时,y 减小;当 x 减小时 ,y 增大。因此,可以通过观察 x 的大小关系来判断 y 的大小关系。
观察函数值的正负
ห้องสมุดไป่ตู้
题目
分析
比较 $frac{a + 1}{b + c}$ 与 $frac{b + 1}{c + a}$ 的大小,其中 $a, b, c > 0$ 且 $a + b + c = 1$。
首先,我们将两个表达式进行作差处 理,得到 $frac{a + 1}{b + c} frac{b + 1}{c + a} = frac{(a - b)(c a)}{(b + c)(c + a)}$。由于 $a, b, c > 0$ 且 $a + b + c = 1$,我们可以 推断出 $b + c > 0$,$c + a > 0$。 又因为 $a, b, c$ 都大于零且它们的 和等于1,所以 $a, b, c$ 中至少有一 个数小于 $frac{1}{3}$。不妨设 $a leq frac{1}{3}$,则 $c - a geq 0$。 因此,当 $a leq b$ 时,$frac{a + 1}{b + c} leq frac{b + 1}{c + a}$; 当 $a > b$ 时,$frac{a + 1}{b + c} > frac{b + 1}{c + a}$。
专题04 利用一次函数比较大小与求范围(解析版)
专题04 利用一次函数比较大小与求范围知识对接考点一、一次函数的性质性质:k>0时,y随x的增大(或减小)而增大(或减小);k<0时,y随x的增大(或减小)而减小(或增大).直线y=kx+b(k≠0)的位置与k、b符号之间的关系.(1)k>0,b>0图像经过一、二、三象限;(2)k>0,b<0图像经过一、三、四象限;(3)k>0,b=0 图像经过一、三象限;(4)k<0,b>0图像经过一、二、四象限;(5)k<0,b<0图像经过二、三、四象限;(6)k<0,b=0图像经过二、四象限。
一次函数表达式的确定:求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.专项训练一、单选题1.已知点(﹣2,y1),(3,y2)都在直线y=﹣x﹣5上,则y1,y2的值的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定【答案】B【分析】一次函数图象上点的坐标特征,把点(-2,y1)和(3,y2)代入y=-x-5中计算出y1与y2的值,然后比较它们的大小.【详解】解:∵点(﹣2,y1)和(3,y2)都在直线y=-x-5上,∵y1=-(-2)-5=-3,y2=-3-5=-8,∵y1>y2.故选B.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.直线上任意一点的坐标都满足函数关系式y=kx+b.2.若点()1,A m y ,点()221,B m a y ++都在一次函数54y x =+的图象上,则( ) A .12y y <B .12y y =-C .12y y >D .12y y =【答案】A【分析】 由偶次方的非负性可得出20a ,进而可得出2+1m a m +>,由50k =>,利用一次函数的性质可得出y 随x 的增大而增大,进而可得出12y y <.【详解】解:20a ,210a ∴+>,21m m a ∴<++.50k =>,∵y 随x 的增大而增大,12y y ∴<.故选:A .【点睛】本题考查了不等式的性质,实数的非负数,一次函数的增减性,灵活运用不等式比较自变量的大小,根据一次函数的增减性判断是解题的关键.3.下列有关一次函数42y x =--的说法中,正确的是( )A .y 的值随着x 值的增大而增大B .函数图象与y 轴的交点坐标为()0,2C .当0x >时,2y >-D .函数图象经过第二、三、四象限【答案】D【分析】根据一次函数的性质可以判断各个选项是否正确,从而可以解答本题.【详解】解:一次函数42y x =--的函数图像如图,A 、∵k =-4<0,∵当x 值增大时,y 的值随着x 增大而减小,故选项A 不正确;B 、当x =0时,y =-2,函数图象与y 轴的交点坐标为(0,-2),故选项B 不正确;C 、当x >0时,2y <-,故选项C 不正确;D 、∵k <0,b <0,图象经过第二、三、四象限,故选项D 正确;故选D .【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答. 4.在平面直角坐标系中,点(),P x y 在第一象限内,且8x y +=,点A 的坐标为()6,0.设OPA 的面积为S ,S 与x 之间的函数关系式是( )A .()64808S x x =-+<<B .()31208S x x =-+<<C .()32408S x x =-+<<D .()18083S x x =-+<< 【答案】C【分析】表示出OA 和PB 的长,建立关于x 的三角形面积的表达式,即为一次函数表达式.【详解】解:如选图所示:由x +y =8得,y =−x +8,即点P (x ,y )在y =−x +8的函数图象上,且在第一象限,过点P 做PB ∵x 轴,垂足为B则12OPA S OA PB ∆=•=()1683242x x =⨯⨯-+=-+ ∵点P (x ,y )在第一象限内∵x >0,y =−x +8>0,∵0<x <8∵S =−3x +24(0<x <8) .故选:C .【点睛】本题主要考查一次函数的关系式,根据三角形面积公式得出函数关系式是关键. 5.若一次函数2y x b =+的图象经过点()2,3,则b 的值是( )A .1-B .1C .5D .7 【答案】A【分析】直接把点(2,3)代入一次函数y =2x +b ,求出b 的值即可.【详解】解:∵一次函数y =2x +b 的图象经过点(2,3),∵3=4+b ,解得b =-1.故选:A .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.一次函数y =kx +b 的图象经过A (﹣1,1),B (4,0)两点,若点M (2,y 1)和点N (3,y 2)恰好也是该函数图象上的两点,则y 1,y 2的关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .无法确定【答案】C【分析】先用待定系数法求出一次函数的解析式,再根据一次函数的性质即可得出结论.【详解】解:∵一次函数y =kx +b 的图象经过A (-1,1),B (4,0)两点,∵104k b k b =-+⎧⎨=+⎩, 解得1545k b ⎧=-⎪⎪⎨⎪=⎪⎩,∵一次函数的解析式为y =15-x +45, ∵k =15-<0, ∵y 随x 的增大而减小,∵2<3,∵y 1>y 2.故选C .【点睛】本题主要考查的是一次函数图象上点的坐标特点,解决本题的关键是要熟练掌握一次函数图象的性质.7.在平面直角坐标系中,无论a 取任何实数,点P (2a ,a +1),Q (m ,n )都是直线l 上的点,则(m -2n +4)2的值为( )A .1B .4C .9D .16【答案】B【分析】设直线l 的解析式为y =kx +b ,根据不管a 取何值,P 点都在l 上,即可令a =0,令a =1得到2个点的坐标,求出l 的解析式,然后求解即可.【详解】解: 设直线l 的解析式为y =kx +b∵不管a 取何值,P (2a ,a +1)点都在l 上∵令a =1时,a +1=2,令a =0时,a +1=1∵(2,2)和(0,1)均在l 上 ∵221k b b +=⎧⎨=⎩解得121k b ⎧=⎪⎨⎪=⎩ ∵直线l 的解析式为112y x =+ ∵Q (m ,n )在直线上 ∵112n m =+ ∵22m n -=- ∵()()2224244m n -+=-+=故选B.【点睛】本题主要考查了待定系数法求函数解析式和代数式求值,解题的关键在于能够熟练掌握相关知识进行求解.8.已知在一次函数y =﹣3x +2的图象上有三个点A (﹣3,y 1),B (3,y 2),C (﹣4,y 3),则下列各式中正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 3<y 2<y 1 【答案】B【分析】根据一次函数图象的增减性来比较A 、B 、C 三点的纵坐标的大小.【详解】解:∵一次函数y =﹣3x +2中的﹣3<0,∵该函数的y 随x 的增大而减小.又∵3>﹣3>﹣4,∵y 2<y 1<y 3.故选:B .【点睛】本题考查了一次函数图象上点坐标特征.解答该题的关键是熟练掌握一次函数的增减性. 9.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .无法比较【答案】A【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较.【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<,所以y 随着x 的增大而减小,∵-2<1,∵12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-, ∵12y y >;故选:A .【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.10.若直线l 经过不同的三点(),A m n ,(),B n m ,(),C m n n m --,则直线l 经过的象限是( )A .第二,四象限B .第一,二象限C .第二,三,四象限D .第一,三,四象限【答案】A【分析】由点的坐标,利用待定系数法可求出一次函数的解析式,再利用正比例函数的性质可得出该函数图象经过的象限.【详解】解:设一次函数的解析式为(0)y kx b k =+≠, 将(),A m n ,(),B n m ,(),C m n n m --代入,得:()mk b n nk b m m n k n m +=⎧⎪+=⎨⎪-=-⎩,解得10k b =-⎧⎨=⎩, ∵一次函数的解析式为y x =-,∵该函数图象经过第二、四象限.故选:A .【点睛】本题考查了待定系数法求一次函数解析式以及正比例函数的性质,根据点的坐标,利用待定系数法求出一次函数的解析式是解题的关键.二、填空题11.已知一次函数的图象经过点0,5,且与直线y x =平行,则一次函数的表达式为______.【答案】5y x =+【分析】根据两直线平行的条件可知1k =,再把(0,5)代入y x b =+中,可求b ,进而可得一次函数解析式.【详解】解:设一次函数的表达式为y kx b =+,y kx b =+与直线y x =平行,y x b ∴=+,把(0,5)代入y x b =+中,得5b =,∴一次函数解析式是5y x =+,故答案为:5y x =+.【点睛】本题考查了两条直线平行的问题,解题的关键是知道两条直线平行的条件是k相等.12.如图,在平面直角坐标系中,已知点A(4,0),B(0,5).将∵BOA绕点A顺时针方向旋转得∵B′O′A,若点B在B′O′的延长线上,则直线BB′的解析式为__.【答案】y=﹣940x+5【分析】首先证明OO′∵AB,求出直线OO′解析式,与直线AB解析式联立求出M坐标,确定出O′坐标,设直线B′O′解析式为y=mx+n,把B与O′坐标代入求出m与n的值,即可确定出解析式.【详解】解:连接OO′交AB于M,∵∵BOA绕点A按顺时针方向旋转得∵B′O′A,∵∵BOA∵∵B′O′A,∵AB=AB′,OA=AO′,∵点B在B′O′的延长线上,AO′∵B B′,∵BO′=B′O′=OB,∵OA=AO′,BO=BO′,∵OO′∵AB,设直线AB解析式为y=kx+b,把A与B坐标代入得:405k bb+=⎧⎨=⎩,解得:545kb⎧=-⎪⎨⎪=⎩,∵直线AB解析式为y=﹣54x+5,∵直线OO′解析式为y=45 x,联立得:55445y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得:100418041x y ⎧=⎪⎪⎨⎪=⎪⎩,即M 10080(,)4141, ∵M 为线段OO ′的中点,∵O ′200160(,)4141, 设直线B ′O ′解析式为y =mx +n ,把B 与O ′坐标代入得:20016041415m n n ⎧+=⎪⎨⎪=⎩, 解得:m =940-,n =5, 则直线BB′解析式为y =940-x +5. 故答案为:y =﹣940x +5.【点睛】此题考查坐标与图形变化-旋转、待定系数法求一次函数解析式,正确理解各直线之间的关系,确定点坐标利用待定系数法求出函数解析式是解题的关键.13.已知一次函数1y x =和()()220220x x y x x ⎧--⎪=⎨-≥⎪⎩<,当12y y >时,x 的取值范围是 _________ 【答案】12x -<<【分析】根据函数解析式列出不等式求解即可;【详解】∵当0x <,12y y >时,20x x x --⎧⎨⎩><,解得:10x -<<;∵当0x ≥时,12y y >,220x x x -⎧⎨≥⎩>,解得 02x ≤<; 综上12x -<<;故答案是:12x -<<.【点睛】本题主要考查了一次函数的性质,分类讨论,解不等式组,准确计算是解题的关键.14.已知()111,P y -,()222,P y 是一次函数y x b =-+的图像上的两点,则1y ______2y (填“>”或“<”或“=”).【答案】>【分析】先根据一次函数y x b =-+中k =-1判断出函数的增减性,再根据-1<2进行解答即可.【详解】解:∵一次函数y x b =-+中k =-1<0,∵y 随x 的增大而减小,∵-1<2,∵y 1>y 2.故答案为>.【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解答此题的关键.15.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.∵0b <;∵0ac <;∵当1x >时,ax b cx d +>+;∵a b c d +=+;∵c d >.【答案】∵∵∵【分析】仔细观察图象:∵根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断a 、b 的正负;∵根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断c 、d 的正负,即可得出结论;∵以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;∵由两个一次函数图象的交点坐标的横坐标为1可得出结论;∵由一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),可得d c ->-1,解此不等式即可作出判断. 【详解】解:∵由图象可得:一次函数y =ax +b 图象经过一、二、四象限,∵a <0,b >0,故∵错误;∵由图象可得:一次函数y =cx +d 图象经过一、二、三象限,∵c >0,d >0,∵ac <0,故∵正确;∵由图象可得:当x >1时,一次函数y =ax +b 图象在y =cx +d 的图象下方,∵ax +b <cx +d ,故∵错误;∵∵一次函数y =ax +b 与y =cx +d 的图象的交点P 的横坐标为1,∵a +b =c +d ,故∵正确;∵∵一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),且d c->-1,c >0, ∵c >d .故∵正确.故答案为:∵∵∵.【点睛】本题考查了一次函数的图象与性质、一次函数与一元一次不等式,掌握一次函数的图象与性质并利用数形结合的思想是解题的关键.三、解答题16.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(0,1)-.(1)求这个一次函数的表达式;(2)当1x >时,对于x 的每一个值,函数y x m =-+的值小于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)1y x =-;(2)1m ≤【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(0,-1)代入y x b =+可得b 值即可求出解析式; (2)由题意可得临界值为当1x =时,两条直线都过点(1,0),即可得出当1x >时,y x m=-+都小于1y x =-,根据1x >,可得m 可取值1,可得出m 的取值范围.【详解】解:(1)∵一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,∵1k =.∵一次函数y x b =+的图象过点(01)-,, ∵1b =-.∵这个一次函数的表达式为1y x =-.(2)由(1)得y=x -1,解不等式-x+m <x -1得12m x +>由题意得11,2m +≤ 故m 的取值范围1m ≤【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键. 17.已知一次函数()()30y k x k =-≠.(1)求证:点()3,0在该函数图象上.(2)若该函数图象向上平移2个单位后过点()4,2-,求k 的值.(3)若0k <,点()11,A x y ,()22,B x y 在函数图象上,且12y y <,判断120x x -<是否成立?请说明理由.【答案】(1)见解析;(2)-4;(3)不成立,理由见解析【分析】(1)令x =3,得y =0即可得证;(2)一次函数y =k (x -3)图象向上平移2个单位得y =k (x -3)+2,将(4,-2)代入可得k ; (3)由y 1<y 2列出x 1、x 2的不等式,根据k <0可得答案.【详解】解:(1)在y =k (x -3)中令x =3,得y =0,∵点(3,0)在y =k (x -3)图象上;(2)一次函数y =k (x -3)图象向上平移2个单位得y =k (x -3)+2,将(4,-2)代入得:-2=k (4-3)+2,解得k =-4;(3)x 1-x 2<0不成立,理由如下:∵点A (x 1,y 1),B (x 2,y 2)在y =k (x -3)图象上,∵y 1=k (x 1-3),y 2=k (x 2-3),∵y 1-y 2=k (x 1-x 2),∵y 1<y 2,∵y 1-y 2<0,即k (x 1-x 2)<0,而k <0,∵x1-x2>0,∵x1-x2<0不成立.【点睛】本题考查一次函数图象上的点,解题的关键是将点坐标代入变形.18.已知一次函数的图象经过点(﹣1,2)和点(3,﹣2).(1)求这个一次函数的解析式;(2)若点A(x1,y1),B(x2,y2)在此函数图象上,且x1≤x2,请比较y1,y2的大小,并说明理由.【答案】(1)y=﹣x+1;(2)y1≥y2,理由见解析【分析】(1)根据待定系数法即可求得;(2)根据一次函数y=﹣x+1的性质即可判断.【详解】解:(1)根据题意,设一次函数解析式为:y=kx+b(0)k≠,将(﹣1,2)和(3,﹣2)代入得:232k bk b⎧-+=⎨+=-⎩,解得:11kb=-⎧⎨=⎩,∵一次函数解析式为:y=﹣x+1;(2)∵k=﹣1<0,∵y随x的增大而减小,∵当x1≤x2时,y1≥y2.【点睛】本题主要考查了一次函数的性质;待定系数法求一次函数解析式,解题的关键是熟练掌握待定系数法求一次函数解析式的过程,根据一次函数的性质比较函数值的大小.19.已知一次函数图象经过(0,-1)和(2,3)两点.(1)求此一次函数的解析式;(2)若点(m,-3)在函数图象上,求m的值.【答案】(1)y=2x-1;(2)-1【分析】(1)设一次函数解析式为y=kx+b(k≠0),再把点(0,-1)和(2,3)代入即可求出k,b的值,进而得出一次函数的解析式;(2)把点(m,-3)代入一次函数的解析式,求出m的值即可.【详解】解:(1)设一次函数的解析式为y =kx +b ,则有123b k b =-⎧⎨+=⎩, 解得:21k b =⎧⎨=-⎩, ∵一次函数的解析式为y =2x -1;(2)∵点(m ,-3)在一次函数y =2x -1图象上,∵2m -1=-3,∵m =-1.【点睛】本题考查的是用待定系数法求一次函数的解析式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.20.已知一次函数y kx b =+,当2x =时,5y =;当2x =-时,11y =-.求k 和b 的值.【答案】43k b =⎧⎨=-⎩ 【分析】根据题意列出关系k 、b 的二元一次方程组,求解即可.【详解】解:由题意,得25211k b k b +=⎧⎨-+=-⎩解得43k b =⎧⎨=-⎩∵k 和b 的值分别为4和-3.【点睛】本题主要考查了利用待定系数法求一次函数解析式,解题的关键在于能够熟练掌握相关知识进行求解.21.在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象经过点()0,1A -,点()10B ,. (1)求一次函数解析式;(2)当1x >时,对于x 的每一个值,函数2y x n =+的值大于一次函数y kx b =+的值,直接写出n 的取值范围.【答案】(1)1y x =-(2)2n ≥【分析】(1)通过待定系数法将点()0,1A -,点()10B ,代入解析式求解; (2)根据题意得出21x n x +->,求出x 得取值范围,结合1x >即可得出n 的取值范围.【详解】解:(1)∵一次函数()0y kx b k =+≠的图象经过点()0,1A -,点()10B ,, ∵10b k b-=⎧⎨=+⎩, 解得:11k b =⎧⎨=-⎩, ∵一次函数的解析式为:1y x =-,(2)由(1)得:1y x =-,根据题意:21x n x +->,解得:1x n -->,由题意得:11n --≤,即2n ≥.【点睛】本题考查了待定系数法求一次函数解析式,一次函数与一元一次不等式,根据数形结合的思想解题是关键.22.已知:y 与x +2成正比例,且x =﹣4时,y =﹣2;(1)求y 与x 之间的函数表达式;(2)点P 1(m ,y 1),P 2(m ﹣2,y 2)在(1)中所得函数图像上,比较y 1与y 2的大小.【答案】(1)2y x =+;(2)12y y >【分析】(1)根据待定系数法求解即可;(2)根据一次函数的增减性解答即可.【详解】解:(1)∵y +与x +2成正比例,设y =k (x +2),把x =﹣4,y =﹣2代入得:﹣2=k (﹣4+2),解得:k =1,∵y =x +2;(2)∵k =1>0,∵y 随x 的增大而增大,又∵m >m -2,∵y 1>y 2.【点睛】本题考查了利用待定系数法求一次函数的解析式和一次函数的性质,属于基本题型,熟练掌握一次函数的基本知识是解题关键.23.如图,直线1l 的解析表达式为:33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A 、B ,直线1l ,2l 交于点C .(1)求点D 的坐标.(2)求直线2l 的解析表达式.(3)求ADC 的面积.(4)在直线2l 上存在异于点C 的另—点P ,使得ADP △与ADC 的面积相等,请直接写出点P 的坐标.【答案】(1)(1,0)D ;(2)362y x =-;(3)92;(4)(6,3)P 【分析】(1)已知1l 的解析式,令0y =求出x 的值即可;(2)设2l 的解析式为y kx b =+,由图联立方程组求出k ,b 的值;(3)联立方程组,求出交点C 的坐标,继而可求出ADC S ∆; (4)ADP ∆与ADC ∆底边都是AD ,面积相等所以高相等,ADC ∆高就是点C 到AD 的距离. 【详解】解:(1)由33y x =-+,令0y =,得330x -+=,1x ∴=,(1,0)D ∴;(2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-,代入表达式y kx b =+, ∴40332k b k b +=⎧⎪⎨+=-⎪⎩, ∴326k b ⎧=⎪⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-; (3)由33362y x y x =-+⎧⎪⎨=-⎪⎩,解得23x y =⎧⎨=-⎩, (2,3)C ∴-,3AD =,193|3|22ADC S ∆∴=⨯⨯-=; (4)ADP ∆与ADC ∆底边都是AD ,面积相等所以高相等,ADC ∆高就是点C 到直线AD 的距离,即C 纵坐标的绝对值|3|3=-=,则P 到AD 距离3=,P ∴纵坐标的绝对值3=,点P 不是点C ,∴点P 纵坐标是3,1.56y x =-,3y =,1.563x ∴-=6x =,所以(6,3)P .【点睛】本题考查的是一次函数的性质,三角形面积的计算等有关知识,解题的关键是利用数形结合的思想进行解答.。
利用二次函数性质-巧解比较大小问题
利用二次函数性质-巧解比较大小问题在数学中,二次函数是一种常见的函数形式,通常表示为f(x)=ax² + bx + c,其中a,b和c是实数常数且a ≠ 0。
二次函数有很多独特的性质,可以帮助我们解决比较大小问题。
在本文中,我们将探讨如何利用二次函数性质巧解比较大小问题。
首先,我们来回顾一下二次函数的基本性质。
对于任何二次函数f(x) = ax² + bx + c,其中a ≠ 0,它的图像是一个抛物线。
抛物线的开口方向(向上还是向下)由二次项的系数a决定。
当a > 0时,抛物线开口向上,当a < 0时,抛物线开口向下。
其次,我们了解一些关于二次函数的特殊情况。
如果a>0,那么二次函数的最小值发生在抛物线的顶点上。
如果a<0,那么二次函数的最大值也发生在抛物线的顶点上。
这意味着我们可以通过找到二次函数的顶点来确定函数的最小值或最大值。
现在,让我们看一些具体的例子来展示如何利用二次函数性质巧解比较大小问题。
例1:比较两个二次函数的最小值假设我们要比较两个二次函数f(x)=x²+2x+1和g(x)=2x²-3x+4的最小值。
首先,我们可以找到这两个函数的顶点,因为最小值发生在顶点上。
对于f(x)=x²+2x+1,我们可以通过求导数找到x值,从而找到顶点。
f'(x)=2x+2,当f'(x)=0时,即2x+2=0,解得x=-1、将x=-1代入f(x),得到f(-1)=(-1)²+2(-1)+1=0。
所以f(x)在x=-1处有一个最小值,最小值为0。
同样地,对于g(x)=2x²-3x+4,我们可以通过求导数找到顶点。
g'(x)=4x-3,当g'(x)=0时,即4x-3=0,解得x=3/4、将x=3/4代入g(x),得到g(3/4)=2(3/4)²-3(3/4)+4=7/8、所以g(x)在x=3/4处有一个最小值,最小值为7/8由于0<7/8,所以f(x)的最小值小于g(x)的最小值。
指数函数性质比较大小
0.70.3 < 0.40.3
1.70.3 0.93.1
底数不同,指数不同
分析: 1.70.3 > 1.70 = 1 = > 0.90 0.93.1
1.70.3 1.70 1, 1 0.90 0.93.1
1.70.3 0.93.1 练习: 30.8 __>__ 0.27 20.8 __>__0.50.7
(1) 若2m 2n ,则m _>__ n (2)若0.2m 0.2n ,则m _<__ n (3)若am an ,则m __>_ n(0 a 1) (4)若am an ,则m __<_ n(a 1) (5)(1 m)2 > (1 m)(3 1 m 0)
单调性逆用:比较 自变量大小
0.5 0.7 (x2 2x 3)0.5 (x2 2x 3)0.7
(4)比较 a0.8,a0.7 的大小
当a 1,函数y ax在R上是增函数, 0.8 0.7,a0.8 a0.7 当0 a 1,函数y a x在R上是减函数, 0.8 0.7,a0.8 a0.7
当底数a >1时,指数越大,函数值越大
当0 < a <1 时,指数越大,函数值越小
(1)(x2 1)m
>
(x2
1)n (m
n)
(2)(
5 7
)
m
<
(5)n (m n) 7
(3)比较 (x2 2x 3)0.5,(x2 2x 3)0.7 的大小。
x2 2x 3 (x 1)2 2 1 函数y (x2 2x 3) x 在R上是增函数
反比例函数一次函数二次函数性质及图像
在工程学中,反比例函数、一次函数和二次函数可以用来描 述各种工程问题的数学模型,如结构优化、路径规划等。利 用这些函数的性质和图像,可以进行工程设计和优化,提高 工程质量和效率。
感谢您的观看
THANKS
顶点
二次函数的顶点坐标为 $left(frac{b}{2a}, c frac{b^2}{4a}right)$。
04
图像特征
01
02
03
04
形状
二次函数的图像是一条抛物线 。
位置
根据 $a$、$b$、$c$ 的取值 ,抛物线的位置会有所不同。
与坐标轴的交点
令 $y = 0$ 可求得与 $x$ 轴 的交点,令 $x = 0$ 可求得
05
函数图像比较
图像的平移与伸缩
平移
函数图像在平面直角坐标系中的位置可以通过平移来改变。对于一次函数和二次函数,图像可以沿x轴或y轴进 行平移,而对于反比例函数,图像可以沿原点进行平移。
伸缩
函数图像的形状可以通过伸缩来改变。对于一次函数,图像的伸缩表现为斜率的改变;对于二次函数,图像的 伸缩表现为开口大小或方向的改变;对于反比例函数,图像的伸缩表现为离原点的远近。
单调性
反比例函数
反比例函数的单调性取决于其定义域。在每个象限内,反比例函数都是单调的,但在整个 定义域内不是单调的。
一次函数
一次函数的单调性取决于其斜率。当斜率大于0时,函数在整个定义域内单调递增;当斜 率小于0时,函数在整个定义域内单调递减。
二次函数
二次函数的单调性取决于其二次项系数的正负和对称轴的位置。当二次项系数为正时,函 数在对称轴左侧单调递减,在对称轴右侧单调递增;当二次项系数为负时,函数在对称轴 左侧单调递增,在对称轴右侧单调递减。
高一函数比较大小难题及解析
高一函数比较大小难题及解析摘要:1.高一函数比较大小难题概述2.解题方法与策略3.实例分析与解答4.总结与建议正文:【高一函数比较大小难题概述】高一函数比较大小难题是数学学习中的一种常见题型。
这类题目主要考察学生对函数性质、函数图像以及函数解析式的理解和掌握,旨在培养学生的逻辑思维能力、分析问题和解决问题的能力。
为了更好地解决这类题目,我们需要掌握一些基本的解题方法和策略。
【解题方法与策略】1.熟悉函数的基本性质:了解函数的单调性、奇偶性、周期性等性质,这些性质在比较大小的题目中具有重要意义。
2.学会利用函数图像:函数图像能够直观地反映函数的走势,通过观察图像可以快速判断函数值的大小关系。
3.熟练掌握函数解析式:熟练掌握函数的解析式,可以方便地计算函数值,为比较大小提供依据。
4.分析法:通过分析函数的性质和条件,逐步推导出函数值的大小关系。
5.比较法:将函数值进行直接比较,找出大小关系。
【实例分析与解答】例1:已知函数f(x)=x^2-2x+1,求证:f(x)在区间[0,1]上单调递增。
解析:首先,我们可以通过求导数来判断函数的单调性。
f"(x)=2x-2。
当x∈[0,1]时,f"(x)≥0,说明函数在区间[0,1]上单调递增。
例2:比较函数f(x)=x^2与g(x)=2x+1在区间[0,+∞)上的大小。
解析:我们可以通过绘制两个函数的图像来直观地比较它们的大小。
从图像可以看出,在区间[0,+∞)上,f(x)=x^2的函数值始终大于g(x)=2x+1的函数值。
【总结与建议】1.掌握函数的基本性质,提高解题速度。
2.学会利用函数图像进行分析,增强解题直观性。
3.熟练运用比较法、分析法等解题方法,提高解题技巧。
4.多做练习,积累经验,提高解题能力。
专题01-利用函数值解决比较大小问题归类(解析版)
专题01 利用函数值解决比较大小问题归类一、重点题型目录【题型】一、利用指数函数的单调性比较大小 【题型】二、利用对数函数的单调性比较大小 【题型】三、利用幂函数的单调性比较大小 【题型】四、利用三角函数的单调性比较大小 【题型】五、作差法比较大小 【题型】六、作商法比较大小【题型】七、指数式与对数式互化法比较大小 【题型】八、构造函数法比较大小 【题型】九、放缩法比较大小 【题型】十、中间量法比较大小 二、题型讲解总结【题型】一、利用指数函数的单调性比较大小例1.(2023·全国·高三专题练习)已知0.50.60.3,0.3a b ==,122()5c =,则a 、b 、c 的大小关系为( ) A .a <b <c B .c <a <b C .b <a <c D .c <b <a【答案】C【分析】根据给定条件,利用指数函数、幂函数单调性即可比较大小作答. 【详解】函数0.3x y =是定义域R 上的单调减函数,且0.50.6,则0.50.60.30.3>,即a b >,又函数0.5y x = 在(0,)+∞上单调递增,且20.35<,于是得10.5220.3()5<,即c a >,所以a 、b 、c 的大小关系为b a c <<. 故选:C例2.(2023·全国·高三专题练习)已知311434333(),(),,552a b c ---⎛⎫=== ⎪⎝⎭则a ,b ,c 的大小关系是________.【答案】c b a <<或a b c >>【分析】利用指数函数的单调性比较大小即可【详解】因为35xy ⎛⎫= ⎪⎝⎭是R 上的减函数,且11034-<-<,所以11034333555--⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1a b >>,因为32xy ⎛⎫= ⎪⎝⎭是R 上的增函数,且304-<,所以30433122-⎛⎫⎛⎫<= ⎪⎪⎝⎭⎝⎭,所以1c <, 所以c b a <<故答案为:c b a <<或a b c >>【题型】二、利用对数函数的单调性比较大小例2.(2022·广西柳州·模拟预测(理))若35lg 0.3,log 2,log 4a b c ===,则( ) A .c b a >> B .b c a >> C .c a b >> D .a b c >>【答案】A【分析】利用对数的运算及对数函数的性质进行比较大小. 【详解】因为lg0.3lg10<=,所以a<0;因为3355log 2log 10,log 4log 10>=>=,所以0,0b c >>,42211log 5log 5log 2c ===21log 3b =,而22log 3log >所以11b c >,即b c <. 故选:A.例4.(2023·全国·高三专题练习)已知正数,,x y z 满足3815x y z ==,则下列说法正确的是( ) A .230x y -> B .230x y -< C .50x z -> D .50x z -<【答案】AD【分析】设38151x y z k ===>,可得3log x k =,8log y k =,15log z k =;根据对数运算法则和换底公式可表示出23x y -和5x z -,根据对数函数单调性可确定结果.【详解】,,x y z 为正数,∴可设38151x y z k ===>,则3log x k =,8log y k =,15log z k =;对于AB ,3821232log 3log log lg lg 2x y k k k k ⎛⎫-=-=-=⎪⎭,lg 2>1lg 2>,又lg lg10k >=,230x y ∴->,A 正确,B 错误; 对于CD ,31535log 5log log lg x z k k k k k ⎛⎫-=-=-=,5lg 243><lg lg10k >=,50x z ∴-<,C 错误,D 正确.故选:AD.【题型】三、利用幂函数的单调性比较大小例5.(2022·安徽·砀山中学高三阶段练习)已知实数()(),,00,m n ∈-∞+∞,且m n <,则下列结论一定正确的是( ) A .5533m n > B .65m n > C .22n mm n < D .142m n n m-->【答案】D【分析】根据幂函数的单调性可判断AD 选项,利用特值法可判断BC 选项. 【详解】因为53y x =为增函数,且m n <,故5533m n <,故A 错误; 令1m =,2n =,此时65m n <,故B 错误; 令2m =-,1n =,故214n m =,22m n =-,故22n m m n >,故C 错误; 因为0n m ->,故n m y x -=在第一象限为增函数,则11424m n n mn m--->=,故D 正确;故选:D.例6.(2022·河南·开封清华中学高三阶段练习(理))122a =,133b =,166c =,则a ,b ,c 的大小关系正确的是( ) A .a b c >> B .c b a >> C .b a c >> D .a c b >>【答案】C【分析】由幂的运算法则把幂的幂指数化为相同,然后由幂函数的单调性比较大小. 【详解】116228a ==,113639b ==,16y x =是增函数,689<<, ∴c<a<b 故选:C .例7.(2022·北京·北大附中高三开学考试)已知302a =,203b =则a ,b 中较大的数是___________. 【答案】b【分析】利用指数的性质有10108,9a b ==,结合幂函数的单调性即可判断大小关系. 【详解】由101030203892a b =<===, 所以a b <,较大的数是b . 故答案为:b .【题型】四、利用三角函数的单调性比较大小例8.(2022·全国·高三专题练习)sin1,sin 2,sin 3按从小到大排列的顺序为( ) A .sin3sin2sin1<< B .sin3sin1sin2<< C .sin1sin2sin3<<D .sin2sin1sin3<<【答案】B【分析】利用诱导公式化简后,再利用正弦函数的单调性比较即可. 【详解】sin 2sin(π2),sin3sin(π3)=-=-, 因为π0π31π22<-<<-<,sin y x =在π0,2⎛⎫⎪⎝⎭上为增函数,所以sin(π3)sin1sin(π2)-<<-, 所以sin3sin1sin2<<, 故选:B例9.(2022·四川·模拟预测(文))设1cos662a =︒︒,22tan131tan 13b ︒=+︒,c =则有( ) A .a b c >> B .a b c << C .a c b << D .b<c<a【答案】C【分析】利用辅助角公式化简a ,利用倍角公式化简,b c ,利用正弦函数的单调性比较大小.【详解】()1cos 66sin 306sin 242a ===︒-︒︒︒︒,2222tan132sin13cos13sin 261tan 13cos 13sin 13b ︒︒︒︒︒==︒︒=++,sin 25c ===︒. 因为函数sin y x =在π0,2⎛⎫ ⎪⎝⎭上是增函数,所以a c b <<.故选:C.例10.(2022·全国·高三专题练习)下列不等式中成立的是( ) A .34cos cos 109ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭B .sin507sin145<C .3tan tan 57ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D .sin4cos4<【答案】ABD【分析】利用三角函数的单调性判断.【详解】解:因为余弦函数cos y x =是偶函数,比较3cos 10π⎛⎫ ⎪⎝⎭与4cos 9π⎛⎫⎪⎝⎭即可,因为3401092πππ<<<,所以34cos cos 109ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即34cos cos 109ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,A 正确; sin507sin147=,正弦函数sin y x =,在(90,180)上单调递减,且90145147180<<<, 所以sin147sin145<,即sin507sin145<,B 正确;因为32752,且tan y x =在,22ππ⎛⎫- ⎪⎝⎭内单调递增, 所以3tan <tan 75ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,C 错误; 因为53442ππ<<,则sin4cos40<<,D 正确. 故选:ABD例11.(2022·广西·北海市教育教学研究室高一期末)设2sin38cos38a =︒︒,22tan 351tan 35b ︒=-︒,c =) A .c b a << B .c<a<b C .a c b << D .a b c <<【答案】B【分析】先对,a b 化简,然后利用三角函数的单调性比较大小即可 【详解】因为2sin38cos38sin76a =︒︒=︒,22tan 35tan 70tan 601sin 761tan 35b a ︒==︒>︒=>︒=-︒,sin 76sin 60a c =︒>︒==, 所以c<a<b . 故选:B【题型】五、作差法比较大小例12.(2023·全国·高三专题练习)已知01b a <<<,则下列不等式成立的是( ) A .log log a b b a < B .log 1a b > C .ln ln a b b a < D .ln ln a a b b >【答案】BC【分析】作差法判断选项A ;利用对数函数单调性判断选项B ;利用幂函数指数函数对数函数的单调性去判断选项C ;举反例排除选项D.【详解】选项A :()()22lg lg lg lg lg lg lg lg log log lg lg lg lg lg lg a b b a b a b a b a b a a b a b a b-+--=-== 由01b a <<<,可得lg lg 0b a <<,则lg lg 0b a >,lg lg 0b a -<,lg lg 0b a +< 则()()lg lg lg lg 0lg lg b a b a a b-+>,则log log a b b a >.判断错误;选项B :由01a <<,可得log a y x =为(0,)+∞上减函数, 又0b a <<,则log log 1a a b a >=.判断正确;选项C :由01a <<,可知x y a =为R 上减函数,又b a <,则a b a a > 由0a >,可知a y x =为(0,)+∞上增函数,又b a <,则a a b a <,则b a a b >又ln y x =为(0,)+∞上增函数,则ln ln b a a b >,则ln ln a b b a <.判断正确; 选项D :令211e e a b ==,,则01b a <<<,e ln l 111e n e a a =-=,222ln ln 112e e eb b =-=则22122e0e ln eln e a a b b --+==<-,即ln ln a a b b <.判断错误.故选:BC例13.(2023·全国·高三专题练习)已知实数m ,n 满足01n m <<<,则下列结论正确的是( ) A .11n n m m +<+ B .11m n m n+>+ C .n m m n > D .log log m n n m <【答案】AC【分析】利用作差法比较大小,可判断A,B,利用指数函数和幂函数的单调性,可判断C;根据对数函数的单调性,可判断D.【详解】由01n m <<<知,0n m -< ,故110,1(1)1n n n m n n m m m m m m +-+-=<<+++,A 正确; 由01n m <<<得0m n ->,110mn -<,所以()11110m n m n m n mn ⎛⎫⎛⎫+-+=--< ⎪ ⎪⎝⎭⎝⎭,即11m n m n+<+,故B 错误; 因为指数函数x y m =为单调减函数,故n m m m >,由幂函数m y x = 为单调增函数知m m m n > ,故n m m n >,故C 正确; 根据, 01n m <<<对数函数log ,log m n y x y x == 为单调减函数, 故log log 1log log m m n n n m n m >==>,故D 错误, 故选:AC【题型】六、作商法比较大小例14.(2023·全国·高三专题练习)下列说法中正确的是( ) A .若20352049x y =,则0x y == B .若22x x <,则12x <<C .若定义域为R 的奇函数()f x 在(),0∞-单调递减,且()20f =,则满足0xf x ≤()的x 的取值范围为][()22∞∞--⋃+,,D .若25log 3m =,log n =0mn m n <+<【答案】BD【分析】对于A ,令()203520490x yt t ==>,将指数式转化为对数式即可判断;对于B , 作出函数2,2x y y x ==的图像,结合图像即可得判断B ;对于C ,根据函数的奇偶性不等式()0xf x ≤即为0x =或()00x f x <⎧⎨≥⎩或()00x f x >⎧⎨≤⎩,解之即可判断C ;对于D ,分别判断,m n 的符号,再利用作商法比较,m n mn +即可判断D.【详解】解:对于A ,令()203520490x yt t ==>,则20352049log ,log x t y t ==,当且仅当1t =时,0x y ==,当1t ≠时,x y ≠,故A 错误;对于B ,作出函数2,2x y y x ==的图像,又当1x =时,1221=⨯,当2x =时,2222=⨯, 所以若22x x <,则12x <<,故B 正确;对于C ,因为()f x 为R 上的奇函数,所以()00f =,因为()f x 在(),0∞-单调递减,所以函数在()0,∞+也单调递减,因为()20f =,所以()()220f f -=-=, 则当()(),20,2x ∈-∞-时,()0f x >,当()()2,02,x ∈-+∞时,()0f x <,若()0xf x ≤,则0x =或()00x f x <⎧⎨≥⎩或()00x f x >⎧⎨≤⎩,所以0x =或2x ≤-或2x ≥,所以满足()0xf x ≥的x 的取值范围为[][){}22,0-⋃∞+∞⋃,-,故C 不正确;对于D ,2255log 31l 5og 2m =<=-,225525log 3log 24m m =>==-, 所以()2,1m ∈--,221log log 2n ==,22log log 21n =<=,所以1,12n ⎛⎫∈ ⎪⎝⎭,所以0m n +<,0mn <,由331128log log 55m n mn m n +=+=+=, 因为380log 15<<,所以1m n mn +<,所以m n mn +>,所以0mn m n <+<,故D 正确. 故选:BD.【题型】七、指数式与对数式互化法比较大小例15.(2023·全国·高三专题练习)已知2510a b ==,则( ) A .111a b+>B .2a b >C .4ab >D .4a b +>【答案】BCD【分析】根据指数式与对数式的互化,再利用对数的运算性质及对数大小的比较及不等式的性质即可求解.【详解】252510,log 10,log 10,a ba b ==∴==对于A ,lg lg lg lg log log lg lg lg lg a b +=+=+=+251111112510101010101025log log log log =+===⨯101010102255101,故A 不正确;对于B ,log ,log log log a b ====2255510221010100,342328,216,525,5125====log log log ;log log log a b <<⇒<<<<⇒<<222555816342510012522103,2a b >,故B 正确; 对于C ,()()lg lg lg lg lg lg log log log log lg lg lg lg ab ++=⋅=⋅=⋅=++102525251025101015122525log log log log log log =+++⋅=++25252515252252log log ,log log ab >=>=∴>++=22555422102204,故C 正确;对于D ,由B 知,,,a b b a b <<<<∴<<∴<+<311342231422,故D 正确;故选:BCD.【题型】八、构造函数法比较大小例16.(2022·广东·深圳中学高三阶段练习)下列大小关系正确的是( ). A .2 1.91.92< B . 2.922 2.9< C .712log 4log 7< D.712log 4log 7+【答案】ABC【分析】构造函数ln ()xf x x=,利用导数判断其单调性后判断A ,利用指数函数性质判断B ,利用对数函数性质及基本不等式判断C ,根据对数换底公式、对数函数性质判断D . 【详解】设ln ()x f x x=,则21ln ()xf x x -'=,0e x <<时,()0f x '>,()f x 递增,而0 1.92e <<<,所以(1.9)(2)f f <,即ln1.9ln 21.92<,2 1.9ln1.9ln 2<, 即2 1.91.92<,A 正确;2.9322288.41 2.9<=<=,B 正确;770log 4log 12<<,所以222777777(log 4log 12)(log 48)(log 49)log 4log 121444+⋅<=<=,所以71271log 4log 7log 12<=,C 正确;10102264(2)102410==>,76107823543104=<<,7107710log 4log 417=>,所以77log 40.710>=, 472401=,341217287=<,所以3412124log 7log 713=>,123log 70.754>=,所以712log 4log 70.70.75 1.45+>+=D 错. 故选:ABC .例17.(2022·河南河南·一模(文))已知e ππe e ,π,a b c ===,则这三个数的大小关系为( ) A .c b a << B .b c a << C .b a c << D .c a b <<【答案】A【分析】构造函数()()ln ,0xf x x x=>,利用导数法研究单调性,并利用单调性可比较,a b ,在同一坐标系中作出xy =与y x =的图象,结合图象与幂函数的性质可比较,b c ,即可求解【详解】令()()ln ,0xf x x x =>,则()()21ln ,0x f x x x -'=>, 由0fx,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0xf x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >, 所以()()πe f f <,即ln πln eπe<,所以eln ππlne <,所以e πln πln e <, 又ln y x =递增, 所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦,在同一坐标系中作出xy =与y x =的图象,如图:由图象可知在()2,4中恒有xx >,又2π4<<,所以ππ>,又e y x =在()0,∞+上单调递增,且ππ>所以eπe πeπ=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<, 故选:A【题型】九、放缩法比较大小例18.(2023·上海·高三专题练习)设0.21e 1,ln1.2,5a b c =-==,则,,a b c 的大小关系为___________.(从小到大顺序排) 【答案】b<c<a【分析】方法一:构造函数()e 1x f x x =--和()ln 1g x x x =-+,求导确定单调性,利用单调性即可比较大小.【详解】[方法一]:【最优解】构造函数法记()e 1x f x x =--,则()e 1xf x '=-,当0x >时,()0f x '>,故()f x 在()0+∞,上单调递增,故0.20.2(0.2)(0)e 0.210e 10.2f f >⇒-->⇒->,故a c >,记()ln 1g x x x =-+,则11()1xg x x x-'=-=,当1x >时,()0g x '<,故()g x 在()1+∞,单调递减,故(1.2)(1)0ln1.2 1.210ln1.20.2g g <=⇒-+<⇒<,故b c <,因此a c b >>. 故答案为:b<c<a [方法二]:泰勒公式放缩0.2110.210.2a e c =->+-==,由函数切线放缩ln(1)x x +<得()ln 10.20.2b c =+<=,因此a cb >>.故答案为:b<c<a【整体点评】方法一:根据式子特征,构造相关函数,利用其单调性比较出大小关系,是该题的通性通法,也是最优解;方法二:利用泰勒公式以及切线不等式放缩,解法简洁,但是内容超出教材,不是每一个同学可以掌握.【题型】十、中间量法比较大小例19.(2022·天津北辰·高三期中)已知0.12a =,0.3log 0.5b =,0.5log 0.2c =,则( ) A .c b a >> B .b c a >> C .c a b >> D .a c b >>【答案】C【分析】利用指数函数和对数函数的性质,与中间量1,2比较大小即可得到结果. 【详解】因为0.10.51222a <=<<,0.30.3log 0.5log 0.31b =<=,0.50.5log 0.2log 0.252c =>=, 所以c a b >>. 故选:C .例20.(2022·北京·北大附中高三阶段练习)设ln 2a =,122b =,133c =,则a ,b ,c 的大小关系为( ) A .a b c << B .b a c << C .a c b << D .c a b <<【答案】A【分析】通过0ln 21<<,所以判断出01a <<;又对122b =,133c =进行化简,得到121628b ==,131639c ==,从而判断出a ,b ,c 的大小关系. 【详解】ln 2a =,而0ln 21<<,所以01a <<;又121628b ==,131639c ==∴令16()f x x =,而函数()f x 在(0,)+∞上递增∴1b c << ∴a b c <<三、题型模拟演练 一、单选题1.(2022·山东·济南市历城第二中学高三阶段练习)已知集合{}{}231,340x A x B x x x =≥=-->,则A B =( )A .{}1x x <-B .{}04x x <≤C .{}4x x >D .{10x x -<≤或}4x >【答案】C【分析】利用指数函数图象可得[)0A =+∞,,根据一元二次不等式可得B =4∞∞(,+)(-,-1),进而求出A B ⋂.【详解】[)0A =+∞,,B =4(,+)(-,-1)∞∞,A B =4+∞(,) 故选:C.2.(2022·云南·高三阶段练习)已知0.11.1a -=,ln3b =,c = ) A .a b c << B .a c b << C .c a b << D .c b a <<【答案】B【分析】根据指数函数和对数函数的单调性即可判断,,a b c 的大小.【详解】0.101.1 1.11-<=,ln 3=,ln e 1=>= ,所以a c b <<; 故选:B.3.(2022·陕西·交大附中高一期中)已知12a ⎛⎫= ⎪⎝⎭4log 8b =,π32c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( ). A .a b c >> B .a c b >> C .b c a >> D .b a c >>【答案】A【分析】根据指数函数单调性及对数的运算性质即得.【详解】因为122a ⎛⎫==> ⎪⎝⎭,32443log 8log 42b ===,π33122c -⎛⎫⎛⎫=<= ⎪⎪⎝⎭⎝⎭, 所以a b c >>. 故选:A.4.(2022·重庆南开中学高三阶段练习)已知实数a ,b ,c 满足13440a b +⨯-=1=()()25log 3R a c x x x =+-+∈,则a ,b ,c 的大小关系是( ) A .a b c >> B .b c a >> C .c b a >>D .a c b >>【分析】对题意进行化简,利用函数的单调性即可判断大小 【详解】由13440a b +⨯-=可得034144b a-=<=,所以0b a -<即b a <,1=y =R 上的增函数,可得b c <,因为221113124x x x ⎛⎫-+=-+> ⎪⎝⎭,所以由()()25log 3R a c x x x =+-+∈可得()255log 3log 10a c x x -=-+>=,所以a c >,故a c b >>. 故选:D5.(2022·山东省青岛第九中学高三阶段练习)已知函数 ()3xf x = ,且函数 ()g x 的图像与 ()f x 的图像关于 y x = 对称,函数 ()x ϕ 的图像与 ()g x 的图像关于 x 轴对称,设 12a f ⎛⎫=- ⎪⎝⎭ , 12b g ⎛⎫= ⎪⎝⎭ , 12c ϕ⎛⎫= ⎪⎝⎭.则( )A .a b c <<B .b c a <<C .c b a <<D .b a c <<【答案】D【分析】根据函数图像的对称关系可以得到()g x ,()x ϕ的解析式,代入后跟特殊值0比较可得b 最小,然后构造函数,利用特殊值和函数的单调性比较a ,c 的大小即可.【详解】因为()g x 的图像与()f x 的图像关于y x =对称,所以()3log g x x =,又因为()x ϕ的图像与()g x 关于x 轴对称,所以()3log x x ϕ=-,1210312a f -⎛⎫<=-=< ⎪⎝⎭,311log 022b g ⎛⎫==< ⎪⎝⎭,33110log log 2122c ϕ⎛⎫<==-=< ⎪⎝⎭,所以b 最小;1a =221log 32log c== 构造()22log h x x x =-,则()2ln 221ln 2ln 2x h x x x -'=-=, 当20,ln 2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在20,ln 2x ⎛⎫∈ ⎪⎝⎭上单调递减,因为0ln 21<<,所以22ln 2>,令2x =,得()20h =,所以()20h h >=,22112log 02log a c>⇒>>, 又因为0a >,0c >,所以c a >,综上所述c a b >>. 故选:D.【点睛】比较对数、指数、幂的大小的方法:∴利用指数函数、对数函数、幂函数的单调性比较大小; ∴借助特殊值“0”、“1”或其它的数值比较大小; ∴根据两数之间的关系,构造函数来比较大小.6.(2022·广西南宁·高三阶段练习(理))设e 3a =,πe b =,3πc =,则a 、b 、c 的大小关系为( ) A .a b c >> B .b c a >>C .b a c >>D .c b a >>【答案】D【分析】利用e e 3ππ3m c a <=<==,构造ln ()xf x x=且(e,)x ∈+∞研究单调性比较ln ,ln b m 大小,构造()3ln g x x x =-且(3,)x ∈+∞研究单调性判断函数值符号比较ln ,ln b c 的大小,即可得结果.【详解】由e e 3ππ3m c a <=<==, 因为ln πlne b =,ln eln πm =,则ln ln e e πeb =,ln ln πe ππm =, 令ln ()xf x x=且(e,)x ∈+∞,则21ln ()0x f x x -'=<,则()f x 递减, 所以(e)(π)f f >,即ln e ln πe π>,则ln ln b m >,故b m a >>; 因为ln πb =,ln 3ln πc =,由ln ln π3ln πb c -=-, 令()3ln g x x x =-且(3,)x ∈+∞,则3()0x g x x-'=>,则()g x 递增; 故3e (3)33ln 3ln 027g =-=<,4e (4)43ln 4ln 064g =-=<,而3π4<<, 所以(π)π3ln π0g =-<,则ln ln b c <,即>c b , 综上,c b a >>. 故选:D【点睛】关键点点睛:利用中间值得到e e 3ππ3m c a <=<==,构造ln ()xf x x=利用导数研究单调性比较ln ,ln b m ,作差法并构造()3ln g x x x =-研究函数值符号比较ln ,ln b c 大小.二、多选题7.(2023·全国·高三专题练习)已知2log a x =,2x b =,3x c =,其中()1,2x ∈,则下列结论正确的是( ) A .log b a c >B .b c a b >C .b c a b <D .log log a b b c <【答案】CD【分析】根据()1,2x ∈求出()0,1a ∈,()2,4b ∈,()3,9c ∈,借助指数函数与对数函数的单调性分别判断选项即可.【详解】因为()1,2x ∈,所以()0,1a ∈,()2,4b ∈,()3,9c ∈,且b c <,所以log 1b c a >>,故A 错误;因为()0,1ba ∈,1cb >,即bc a b <,故B 错误,C 正确;因为log 0a b <,log 0b c >,即log log a b b c <,故D 正确. 故选:CD.8.(2023·全国·高三专题练习)已知x ,y ∈R 且3344x y y x -<-,则( ) A .x y < B .33x y --<C .()lg 0y x ->D .133yx -⎛⎫< ⎪⎝⎭【答案】AD【分析】将原不等式转化为3344x x y y +<+,结合函数的单调性可得x y <,再根据指对幂函数的性质逐个判断即可【详解】因为x ,y ∈R 且3344x y y x -<-,即x ,y ∈R ,且3344x x y y +<+,设()34f x x x =+,因为函数3y x =在R 上单调递增,函数4y x =在R 上单调递增,所以函数()34f x x x =+在R 上单调递增,A ,由3344x x y y +<+,得()()f x f y <,所以x y <,故选项A 正确;B ,因为x ,y ∈R ,所以当x =0或y =0时,3x -,3y -没意义,故选项B 错误;C ,因为x y <,而只有当1y x ->时,()lg 0y x ->才能成立,故选项C 错误;D ,因为x y <,所以1133yx⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即133yx -⎛⎫< ⎪⎝⎭,故选项D 正确.故选:AD三、填空题9.(2022·四川省泸县第二中学模拟预测(文))设32log 2a =,9log 15b ,13c -=,则a ,b ,c 大小关系为___________. 【答案】a b c >>【分析】根据对数的运算及对数函数的单调性,结合指数的运算即可求解.【详解】由题意可知,332log 2log 4log a ===,293331log 15log 15log 15log 152b , 当1a >时,log a y x =在()0,+∞上单调递增, 因为3331615,log 16log 15log 31,即1a b >>.11313c -==<,所以a b c >>. 故答案为:a b c >>.四、解答题10.(2022·全国·高三专题练习)已知0a >且1a ≠,()()log 1a f x x =+,()()log 1a g x x =-,()h x(1)求()()()f x g x h x ++的定义域D ;(2)已知0x D ∈,请比较()0f x 与()0g x 的大小关系. 【答案】(1)()0,1;(2)当1a >时,()()00f x g x >;当01a <<时,()()00f x g x <.【分析】(1)根据对数函数真数大于零,分母不为零,偶次开根根号下非负即可列出不等式组求D ;(2)根据a 的范围,根据对数函数单调性即可判断. (1)依题意,x 应满足10100x x x +>⎧⎪->⎨⎪>⎩,解得01x <<,∴函数()()()f x g x h x ++的定义域D =()0,1; (2)当()00,1x ∈时,有0011x x +>-,∴当1a >时,函数log a y x =单调递增,∴()()00f x g x >; ②当01a <<时,函数log a y x =单调递减,∴()()00f x g x <.。
必修一第二章《基本初等函数》复习课 比较两数大小
必修一第二章《基本初等函数》复习课——比较两数大小教学内容及其解析人教A版必修一第二章的内容主要分为两大块,一是根式、指数幂及对数的运算,二是三个基本初等函数的图像与性质,培养学生的数学运算能力和运用数学知识分析和解决问题的能力.教学重点是运用函数的图像及性质来解决高考中的常考题型——比较两数大小.教学目标及其解析1.知识与技能:能运用函数的图像和性质比较两数的大小.2.过程与方法:通过问题导学的形式回顾知识、自主构建知识结构,加深对函数图像与性质的理解.3.情感态度与价值观:通过自主构建和应用探索,感受知识的迁移和应用,体会数形结合和化归的思想,培养学生分析问题、解决问题的能力.学生学情分析学情分析:学生在本章学习后依然停留在三个基本初等函数的定义、图像及性质的理解,对函数图像及性质的用法不明确,也缺乏对基本题型和基本方法的归纳、总结,没有构建完整的结构框图.本节课将从函数的图像与性质的应用出发,解决比较两数大小问题.本节课难点:选择合适的函数模型解决比较两数大小问题.本节课通过自主构建知识网络,以问题导学的形式加深学生对知识和方法的掌握和理解.教学策略分析本节课的关键是比较不同底数、不同幂次、不同真数的两数大小.在问题的设置上应由浅入深,先解决同底数、同幂次、同真数的类型,提炼方法后,再由学生自主思考,构建知识体系,联系所学知识解决关键问题,培养学生观察分析、归纳类比、逻辑推理的能力.教学过程设计一、知识回顾问题1:第二章基本初等函数主要涉及哪些内容?设计意图:通过思维导图简单回顾本章知识结构,对知识进行二次理解和加工,为自主构建环节做铺垫.问题2:目前,利用三个基本初等函数的图像及性质可以解决哪些常见问题?解析:常见题型有运用函数图像及性质比较大小、解不等式、求定义域、求值域、求复合函数的单调性等.设计意图:由函数图像及性质性的用法,引出本节课的核心问题——比较大小.二、自主构建例1.比较以下两数的大小.(1)3.02 4.02;3.021⎪⎭⎫⎝⎛4.021⎪⎭⎫⎝⎛; 解析:这两组数都是同底的,学生利用函数的单调性得到答案,设计两个不同底的指数幂,主要引导学生观察分析、分类讨论110><<a a 、的两种情况,具体复习指数函数的图像.(2)9.04 48.08;解析:x y 2,2)2(8,2)2(444.148.0348.08.19.029.0===== 在R 上单调递增,48.044.18.19.08224=>=∴.总结:当底数不同,但易化同底,则先化同底,再化归为(1)类.(3)67.0 7.06;解析:17.06< ,167.0>,∴67.07.016>>. 总结:当底数不同,难化同底,利用“中间值”解决(4)2152⎪⎭⎫⎝⎛2153⎪⎭⎫ ⎝⎛. 解析:法一:因为21215352⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛、的幂次相同,所以我们将类比上面的方法,构建幂函数21x y =并利用幂函数的单调性和图像解决问题 .21x y =的图像在第一象限是单调递增的,且5352<,21215352⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛∴. 法二:因为21215352⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛、的底数不同、指数相同,所以回归两个指数函数的图像上也可以由图像变化规律(“底大图高”)来判断两数的大小.x a y = 恒过),1()1,0(a 、,∴当a 越大时,),1(a 会逐渐升高,x a y =在第一象限内的图像越高,故当0>x 时,若21a a <则x x a a 21<.如图所示:总结:在解决比较底数不同、指数相同的两数大小的问题时,幂函数模型比指数函数模型的更具有优势.让学生自主解决问题,自主归纳总结,感受从特殊到一般的数学思想,体会数形结合的思想方法,培养观察分析、解决问题的能力和数学建模的能力.问题3:比较指数型两数大小的方法是否适用对数型的呢?说说你的看法.设计意图:引导学生进行类比学习,对知识间的联系应用到解决问题的层面,培养学生分析问题、解决问题的能力,三、应用探索例2.比较下列各组数的大小.(1)3.0log 2 4.0log 2;3.0log 21 4.0log 21;(2)09.0log 4 3log 21;(3)3.0log 2 4.0log 2.0;xa y 2=()2,1a xa y 1=()1,1a(4)4.0log 2 4.0log 3.设计意图:让学生通过类比学习来解决对数型的两数大小问题,理解指数与对数的紧密关系,体会数形结合的思想方法,培养观察分析.问题4.通过对例1、例2探讨,比较两数大小的常见题型、解决方法有哪些?设计意图:通过比较两数大小的题型归纳,使学生学会选择合适的函数模型,优化解题方式,培养学生归纳类比的能力.四、总结归纳问题5:这节课你学到了什么?请谈谈你的收获.1. 知识内容收获2.数学思想方法数形结合的思想、分类讨论的思想、类比学习的思想、转化化归的思想.五、作业布置:必做题:本章复习题A P 82组4.5.6题.选做题:比较4.03.04.03.0、的大小.探究题:设z y x ,,为正数,且z y x 532==.比较z y x 5,3,2的大小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用函数性质与图像比较大小一、基础知识:(一)利用函数单调性比较大小1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x ∀∈<⇔<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁) 2、导数运算法则:(1)()()()()()()()'''f x g x f x g x f x g x =+(2)()()()()()()()'''2f x f xg x f x g x g x g x ⎛⎫-= ⎪⎝⎭3、常见描述单调性的形式(1)导数形式:()()'0f x f x >⇒单调递增;()()'0f x f x <⇒单调递减 (2)定义形式:()()12120f x f x x x ->-或()()()12120x x f x f x -->⎡⎤⎣⎦:表示函数值的差与对应自变量的差同号,则说明函数单调递增,若异号则说明函数单调递减 4、技巧与方法:(1)此类问题往往条件比较零散,不易寻找入手点。
所以处理这类问题要将条件与结论结合着分析。
在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么。
两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数。
在构造时多进行试验与项的调整(3)在比较大小时,通常可利用函数性质(对称性,周期性)将自变量放入至同一单调区间中进行比较(二)数形结合比较大小1、对称性与单调性:若已知单调性与对称性,则可通过作出草图观察得到诸如“距轴越近,函数值越……”的结论,从而只需比较自变量与坐标轴的距离,即可得到函数值的大小关系(1)若()f x 关于x a =轴对称,且(),a +∞单调增,则图像可能以下三种情况,可发现一个共同点:自变量距离轴越近,其函数值越小(2)若()f x 关于x a =轴对称,且(),a +∞单调减,则图像可能以下三种情况,可发现一个共同点:自变量距离轴越近,其函数值越大2、函数的交点:如果所比较的自变量是一些方程的解,则可将方程的根视为两个函数的交点。
抓住共同的函数作为突破口,将其余函数的图像作在同一坐标系下,观察交点的位置即可判断出自变量的大小 三、例题精析:例1:对于R 上可导的任意函数()f x ,若满足()'20xf x -≤,则必有( ) A.()()()1322f f f +< B. ()()()1322f f f +≤ C. ()()()1322f f f +> D. ()()()1322f f f +≥ 思路:由()'20x f x -≤可按各项符号判断出()2x -与()'f x 异号,即2x <时,()'0f x <,2x >时,()'0f x > ()f x ∴在(),2-∞单调递减,在()2,+∞上单调递增 ()()min 2f x f ∴=,进而()()()()12,32f f f f >> ∴()()()1322f f f +> 答案:C小炼有话说:相乘因式与零比较大小时,可分别判断每一个因式的符号,再判断整个式子的符号。
这样做可以简化表达式的运算。
例2: 已知定义域为R 的奇函数()f x 的导函数为()'f x ,当0x ≠时,()()'0f x f x x+>,若()()11,22,ln 2ln 222a f b f c f ⎛⎫==--= ⎪⎝⎭,则下列关于,,a b c 的大小关系正确的是( )A. b a c >>B. a c b >>C. c b a >>D. b c a >> 思路:观察所给不等式,左侧呈现轮流求导的特点,所比较大小的,,a b c 的结构均为()xf x 的形式,故与不等式找到联系。
当0x >时,()()''0()()0f x f x xf x f x x+>⇒+>,即()()'0xf x >,令()()g x xf x =,由此可得()g x 在()0,+∞上单调递增。
()f x 为奇函数,可判定出()g x 为偶函数,关于y 轴对称。
()()1,2,ln 22a g b g c g ⎛⎫==-= ⎪⎝⎭,作图观察距离y 轴近的函数值小,ln 2 与12可作差比较大小:()1114ln 22ln 21ln 0222e-=-=> 进而可得:b c a >> 答案:D例3:函数()f x 在定义域R 内可导,若()(2)f x f x =-,且当(),1x ∈-∞时,()'1()0x f x -<,设1(0),,(3)2a f b f c f ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系是( )A. a b c >>B. b a c >>C. b c a >>D.c a b >>思路:由()(2)f x f x =-可判断出()f x 关于1x =轴对称,再由()'1()0x f x -<,可得1x <时,()'0f x >,所以()f x 在(),1-∞单调递增,由轴对称的特点可知:()f x 在()1,+∞单调递减。
作出草图可得:距离1x =越近的点,函数值越大。
所以只需比较自变量距离1x =的远近即可判断出b a c >> 答案:B例4:已知()f x 是周期为2的偶函数,且在区间[]0,1上是增函数,则()()()5.5,1,0f f f --的大小关系是( )A. ()()()5.501f f f -<<-B. ()()()1 5.50f f f -<-<C. ()()()0 5.51f f f <-<-D. ()()()10 5.5f f f -<<-思路:()f x 的周期为2,所以可利用周期性将自变量放置同一个周期内:()()5.50.5f f -=,而由()f x 偶函数及[]0,1单调递增,作图可知在区间[]1,1-中,距离y 轴近的函数值小,所以有()()()()00.5 5.51f f f f <=-<-答案:C小炼有话说:周期性的一大应用就是可在已知区间中找到与所给自变量相同函数值的点。
从而代替原来的自变量。
例5:已知函数()1f x +为偶函数,当()1,x ∈+∞时,函数()sin f x x x =-,设12a f ⎛⎫=- ⎪⎝⎭,()()3,0b f c f ==,则,,a b c 的大小关系为( )A. a b c <<B. c a b <<C.b c a <<D.b ac <<思路:本题依然是利用对称性与单调性比较函数值大小,先分析()f x 的性质,由()1f x +为偶函数可得:()()11f x f x -+=+,从而()f x 关于1x =轴对称,当()1,x ∈+∞,可计算()'cos 10f x x =-≤,所以()f x 在()1,+∞单调递减,结合对称性可得距离对称轴1x =越近,函数值越大,所以()()1302f f f ⎛⎫<-< ⎪⎝⎭答案:D小炼有话说:本题的关键在于确定入手点是用函数的对称性单调性比较大小,从而对()sin f x x x =-的处理才会想到选出单调性而不是将自变量代入解析式。
所以说题目中有的条件可以有多种用途,要根据所求及其他条件来选择一个比较正确的方向。
例6:已知函数()f x 是定义在R 上的偶函数,且在区间()0,+∞上是增函数,令2sin7a f π⎛⎫= ⎪⎝⎭,55cos ,tan 77b f c f ππ⎛⎫⎛⎫==⎪⎪⎝⎭⎝⎭,则,,a b c 大小关系为________ 思路:由()f x 为偶函数且在()0,+∞单调递增可得距离y 轴越近,函数值越小。
所以需比较,,a b c 自变量与y 轴距离:522522cos=cos =cos ,tan =tan =tan 777777ππππππ,则需比较222sin ,cos ,tan 777πππ的大小,因为274ππ>,所以222tan 1sin cos777πππ>>>,所以c a b >> 答案:c a b >>小炼有话说:本题实质上是一道三角函数大小关系和函数性质比较大小的综合题,只需分解成这两步分别处理即可。
在比较三角函数时,本题有这样两个亮点:一是“求同存异”发现,,a b c 涉及的角存在互补关系,进而利用诱导公式和绝对值运算将角统一,以便于比较;二是利用好“桥梁”,比较的关键之处在与4π这个角的选择,这个角是两条分界线,一条是正切值与1大小的分界线,而正余弦不大于1,所以27π的正切值最大;另一条是正余弦大小的分界线,0,4πα⎛⎫∈ ⎪⎝⎭时,sin cos αα<;而,42ππα⎛⎫∈ ⎪⎝⎭时,sin cos αα>。
例7:已知函数()2log 1y x =+,且0a b c >>>,则()()(),,f a f b f c a b c的大小关系是( ) A.()()()f a f b f c a b c >> B.()()()f c f b f a c b a>>C. ()()()f b f a f c bac>> D.()()()f a f c f b acb>>思路:本题具备同构特点()()2log 1f x x y xx+==,但导数()()2'2log 11ln 2xx x y x -++=难于分析()f x 单调性,故无法比较()()(),,f a f b f c a b c 的大小。
换一个角度,可发现()f x 的图像可作,且()f x x具备几何含义,即()()00f x f x xx -=-,即()(),x f x 与原点连线的斜率。
所以作出()f x 的图像,可观察到图像上的点横坐标越大,与原点连线的斜率越小,所以由0a b c >>>可得:()()()f c f b f a cba>>答案:B例8:已知函数()f x 在R 上可导,其导函数为()'f x ,若()f x 满足:()()()'10,x f x f x ⎡⎤-->⎣⎦()()222x f x f x e --=,则下列判断一定正确的是 ( ) A .()()10f f < B .()()20f ef > C .()()330f e f > D .()()340f e f <思路:联系选项分析条件()()()'10x f x f x ⎡⎤-->⎣⎦:当1x >时,()()'0f x f x ->,()()'20x x x e f x e f x e ->即()'0x f x e ⎛⎫> ⎪⎝⎭令()()xf x F x e = ()F x ∴在()1,+∞单调递增,而选项中()()1,0f f 均不在单增区间中,考虑利用()()222x f x f x e --=进行转换。