成都七中2017年外地生招生考试题解析(标准)

合集下载

成都七中2017年外地生招生考试 数学答案

成都七中2017年外地生招生考试 数学答案

【答案】6 . 4 星
【解】设三种盒子依次有 x, y, z 个. 10x+9y+6z=108 . 注意到 x 应为 3 的倍数, ∴ x=3, 6, 9.
当 x=3 时, 方程化为:3y+2z=26 . 得(y, z)=(8,1), (6,4),(4,7),(2,10) . 共 4 种 .
当 x= 6 时, 方程化为:3y+2z=16 . 得(y, z)=(4,2), (2,5) . 共 2 种 .
【解】有理化或平方去根号得 x 1 1, 原式= (x 1)(x2 1 1 ) 12 2 1 2
x
x
x2
7、已知关于
x
的方程
x

2 x

3

0
的两实数根为
x1,
x2.

1
2 1
__________ .
x1 x2
【答案】 4 . 3
【解】
8、化简 (a2 2a 2)2 (a 1)(a 2)(a 3)(a 4) 25 __________ . (a 3)(a 1)
【解】(1)联立

y

2 x
得 A(1, 2), B(2,1).所以正方形 ABCD 的中心为 (2, 2) .于是 C(3, 2).
y x 3
代入 y m 得 m 6. 6分 x
(2) 因为 AP BP ,所以点 P 落在线段 AB 的垂直平分线 y x 上.
2)
6 3. 2
当 P( 6, 6) 时, MP ( 6 3)2 ( 6 3)2 2 3 3 2 .
2
2

2017年四川省成都七中自主招生考试数学试卷(含详细解析)

2017年四川省成都七中自主招生考试数学试卷(含详细解析)

2017年四川省成都七中自主招生考试数学试卷一、选择题(共10小题,每小题6分,满分60分)1.(6分)有一个角为60°的菱形,边长为2,其内切圆面积为()A. B. C.D.2.(6分)若方程组的解为(a,b,c),则a+b+c=()A.1 B.0 C.﹣1 D.23.(6分)圆O1与圆O2半径分别为4和1,圆心距为2,作圆O2的切线,被圆O1所截得的最短弦长为()A.﹣1 B.8 C.2 D.24.(6分)如下图,梯形ABCD中,AD∥BC,AC与BD交于O,记△AOD、△ABO、△BOC的面积分别为S1、S2、S3,则S1+S3与2S2的大小关系为()A.无法确定B.S1+S3<2S2C.S1+S3=2S2D.S1+S3>2S25.(6分)关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值共有()A.1个 B.2个 C.3个 D.4个6.(6分)两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种数为()A.32 B.36 C.40 D.447.(6分)若a=,则的值的整数部分为()A.1 B.2 C.3 D.48.(6分)在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E 作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN9.(6分)由若干个边长为1的小正方形组成一个空间几何体(小正方形可以悬空),其三视图如图,则这样的小正方体至少应有()A.8个 B.10个C.12个D.14个10.(6分)正方体ABCD的边长为1,点E在边AB上,BE=,BF=,动点P 从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,而当碰到正方形顶点时沿入射路径反弹,当点P第一次返回E时,P所经过的路程为()A. B.C.2D.二、填空题(共8小题,每小题6分,满分48分)11.(6分)对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是.12.(6分)如图,圆锥母线长为2,底面半径为,∠AOB=135°,经圆锥的侧面从A到B的最短距离为.13.(6分)设(3x﹣2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,那么a1+a2+a3+a4+a5+a6=.14.(6分)如图,向正五边形ABCDE区域内均匀掷点,落在五边形FGHJK区域内的概率为.15.(6分)函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),若+=18,则k=.16.(6分)在△ABC中,∠C=90°,D、E分别是BC、CA上的点,且BD=AC,AE=CD,BE、AD相交于点P,则∠BPD=.17.(6分)函数y=2+的最大值为.18.(6分)若x≥y≥z,则(2x+1)(2y+1)(2z+1)=13xyz的正整数解(x,y,z)为.三、解答题(共2小题,满分42分)19.(22分)正方形ABCD边长为2,与函数x=(x>0)的图象交于E、F两点,其中E位于线段CD上,正方形ABCD可向右平移,初始位置如图所示,此时,△DEF的面积为.正方形ABCD在向右平移过程中,位于线段EF上方部分的面积记为S,设C点坐标为(t,0)(1)求k的值;(2)试写出S与t的函数关系式及自变量t的取值范围;(3)若S=2,求t的值;(4)正方形ABCD在向右平移过程中,是否存在某些位置,沿线段EF折叠,使得D点恰好落在BC边上?若存在,确定这些位置对应t的值得大致范围(误差不超过0.1);若不存在,说明理由.20.(20分)(1)求函数y=|x﹣1|+|x﹣3|的最小值及对应自变量x的取值;(2)求函数y=|x﹣1|+|x﹣2|+|x﹣3|的最小值及对应自变量x的取值;(3)求函数y=|x﹣1|+|x﹣2|+…+|x﹣n|的最小值及对应自变量x的取值;(4)求函数y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|的最小值及对应自变量x的取值.2017年四川省成都七中自主招生考试数学试卷参考答案与试题解析一、选择题(共10小题,每小题6分,满分60分)1.(6分)有一个角为60°的菱形,边长为2,其内切圆面积为()A. B. C.D.【解答】解:过A作AE⊥BC,如图所示:∵菱形ABCD的边长为2,∠ABC═60°,∴∠BAE=30°,∴BE=AB=1,∴AE=BE=,∴内切圆半径为,∴内切圆面积=π•()2=;故选:A.2.(6分)若方程组的解为(a,b,c),则a+b+c=()A.1 B.0 C.﹣1 D.2【解答】解:,②×5﹣①得:14y+3z=﹣17④,②×2﹣③得:5y+2z=﹣7⑤④×2﹣⑤×3得:13y=﹣13,解得:y=﹣1,把y=﹣1代入⑤得:z=﹣1,把y=﹣1,z=﹣1代入②得:x=2,则(a,b,c)=(2,﹣1,﹣1),则a+b+c=2﹣1﹣1=0.故选:B.3.(6分)圆O1与圆O2半径分别为4和1,圆心距为2,作圆O2的切线,被圆O1所截得的最短弦长为()A.﹣1 B.8 C.2 D.2【解答】解:∵圆O1与圆O2半径分别为4和1,圆心距为2,∴4﹣1>2,故两圆内含,不妨设截得的弦为AB,切点为C,连接O1A,连接O1O2,O2C,∵半径确定,∴弦心距越小,则弦越长,∵AB是⊙O2的切线,∴O2C⊥AB,∴当O1、O2、C在一条线上时,弦AB最短,由题意可知OC1=2+1=3,AO1=4,在Rt△ACO1中,由勾股定理可得AC==,∴AB=2AC=2,故选:C.4.(6分)如下图,梯形ABCD中,AD∥BC,AC与BD交于O,记△AOD、△ABO、△BOC的面积分别为S1、S2、S3,则S1+S3与2S2的大小关系为()A.无法确定B.S1+S3<2S2C.S1+S3=2S2D.S1+S3>2S2【解答】解:∵AD∥BC,∴△AOD∽△COB,∴=,∵△AOD与△AOB等高,∴S1:S2=AD:BC=a:b,∴S1=S2,S3=S2,∴S1+S3=(+)S2=S2,∵a≠b,∴a2+b2>2ab,∴>2,∴S1+S3>2S2,故选:D.5.(6分)关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值共有()A.1个 B.2个 C.3个 D.4个【解答】解:方程两边都乘x(x+2)得,(2k﹣4)x(x+2)+(k+1)(x+2)=x(k ﹣5),整理得,(k﹣2)x2+(2k﹣1)x+k+1=0.①当k﹣2≠0时,∵△=(2k﹣1)2﹣4(k﹣2)(k+1)=9>0,∴一元二次方程(k﹣2)x2+(2k﹣1)x+k+1=0有两个不相等的实数根.∵关于x的分式方程2k﹣4+仅有一个实数根,而x(x+2)=0时,x=0或﹣2,∴x=0时,k+1=0,k=﹣1,此时方程﹣3x2﹣3x=0的根为x=0或﹣1,其中x=0是原方程的增根,x=﹣1是原方程的根,符合题意;x=﹣2时,4(k﹣2)﹣2(2k﹣1)+k+1=0,k=5,此时方程3x2+9x+6=0的根为x=﹣2或﹣1,其中x=﹣2是原方程的增根,x=﹣1是原方程的根,符合题意;即k=﹣1或5;②当k﹣2=0,即k=2时,方程为3x+3=0,解得x=﹣1,符合题意;即k=2.综上所述,若关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值为﹣1或5或2,共有3个.故选:C.6.(6分)两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种数为()A.32 B.36 C.40 D.44【解答】解:设从左向右位置为①,②,③,④,⑤,∵英语书不在最左边,∴最左边①有4种取法,∵同类书不相邻,∴②有3种取法,③有两种取法,④有两种取法,⑤有一种取法,共4×3×2×2×1=48,但是英语书排在第②位置时,只能是语文、英语、数学、语文、数学,或者数学、英语、语文、数学、语文,故英语书排在第②位置时只有8种情况,故种情况为48﹣8=40种,故选:C.7.(6分)若a=,则的值的整数部分为()A.1 B.2 C.3 D.4【解答】解:∵==﹣=﹣=﹣,∴=﹣+﹣+﹣=﹣∵a=,∴==4,0<a27<a3=()3=<,∴<1﹣a27<1,∴1<<2,∴的值的整数部分为2.故选:B.8.(6分)在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E 作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN【解答】解:如图,在NM上截取NF=ND,连结DF,AF∴∠NFD=∠NDF,∵A,B,C,D四点共圆,∴∠ADC+∠B=180°,∵MN∥BC,∴∠AMN=∠B,∴∠AMN+∠ADN=180°,∴A,D,N,M四点共圆,∴∠MND+∠MAD=180°,∵AE,DE分别平分∠BAD,∠CDA,∴∠END+2∠DFN=∠END+2∠DAE=180°,∴∠DFN=∠DAE,∴A,F,E,D四点共圆,∴∠DEN=∠DAF,∠AFM=∠ADE,∴∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND=∠EDN=∠ADE=∠AFM,∴MA=MF,∴MN=MF+NF=MA+ND.故选:D.9.(6分)由若干个边长为1的小正方形组成一个空间几何体(小正方形可以悬空),其三视图如图,则这样的小正方体至少应有()A.8个 B.10个C.12个D.14个【解答】解:综合三视图,我们可以得出,这个几何模型的底层至少有3个小正方体,第二层至少有3个小正方体,第三层至少有3个小正方体,则这样的小正方体至少应有3+3+3=9个,选项中10是满足条件最小的数字.故选:B.10.(6分)正方体ABCD的边长为1,点E在边AB上,BE=,BF=,动点P 从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,而当碰到正方形顶点时沿入射路径反弹,当点P第一次返回E时,P所经过的路程为()A. B.C.2D.【解答】解:根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为M,在DA上,且DM=DA,第三次碰撞点为N,在DC 上,且DN=DC,第四次碰撞点为G,在CB上,且CG=BC,第五次碰撞点为H,在DA上,且AH=AD,第六次碰撞点为Z,在AB上,且AZ=AD,第七次碰撞点为I,在BC上,且BI=AD,第八次碰撞点为D,再反方向可到E,由勾股定理可以得出EF=HZ==,FM=GH=ID=,MN=NG=,ZI=,P所经过的路程为(×2+×3+×2+)×2=.故选:B.二、填空题(共8小题,每小题6分,满分48分)11.(6分)对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是(﹣2,1).【解答】解:∵y=kx+(2k+1)∴y=k(x+2)+1,∴图象恒过一点是(﹣2,1),故答案为(﹣2,1).12.(6分)如图,圆锥母线长为2,底面半径为,∠AOB=135°,经圆锥的侧面从A到B的最短距离为2.【解答】解:如右图所示,是圆锥侧面展开的一部分,∵圆锥母线长为2,底面半径为,∠AOB=135°,∴,作AD⊥SB于点D,∵SA=SB=2,∴展开的扇形所对的圆心角为,∴在Rt△SAD中,AD=SD=,∴BD=SB﹣SD=2﹣,∴AB==,故答案为:2.13.(6分)设(3x﹣2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,那么a1+a2+a3+a4+a5+a6= 1﹣26.【解答】解:由题意可知a0=(﹣2)6,令x=1,则1=a0+a1+a2+a3+a4+a5+a6,因此a1+a2+a3+a4+a5+a6=1﹣a0=1﹣(﹣2)6=1﹣26.故答案为:1﹣26.14.(6分)如图,向正五边形ABCDE区域内均匀掷点,落在五边形FGHJK区域内的概率为.【解答】解:正五边形ABCDE,∴∠BAE=∠ABC=BCD=∠CDE∠AED=108°,AB=BC=CD=DE=AE,∴△ABC≌△ABE,∴AC=BE,同理:△ABH≌△△BCG≌△AJE,∴AH=CG=JE,∴HJ=HG,同理:FG=FK=JK=HG,∴五边形HGFKJ是正五边形,∴正五边形HGFKJ∽正五边形ACBDE,设HE=CD=a,HJ=x,由题意,△HAB∽△ABE,∴,∴x=∴落在五边形FGHJK区域内的概率为=,故答案为.15.(6分)函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),若+=18,【解答】解:∵函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),∴,消去y得x2﹣kx+1=0,∴x1+x2=k,x1x2=1,∴+====18,∴k(k2﹣2)﹣k=18,解答k=3.故答案为3.16.(6分)在△ABC中,∠C=90°,D、E分别是BC、CA上的点,且BD=AC,AE=CD,BE、AD相交于点P,则∠BPD=45°.【解答】解:作AF∥CD,DF∥AC,AF交DF于点F,∴四边形ACDF是平行四边形.∵∠C=90°∴四边形ACDF是矩形,∴CD=AF,AC=DF,∠EAF=∠FDB=∠AFD=90°.∵BD=AC,AE=CD∴△BDF和△AEF是等腰直角三角形,∴∠AFE=∠DFB=45°,∴∠DFE=45°,∴∠EFB=90°.∴∠EFB=∠AFD.∴△BDF∽△AEF,∵∠EFB=∠AFD,∴△ADF∽△EBF∴∠PAF=∠PEF∴∠APE=∠AFE∵∠AFE=45°∴∠APE=45°17.(6分)函数y=2+的最大值为.【解答】解:根据题意得:,解得:1≤x≤2,由柯西不等式得:y=2+≤•=×=(当且仅当2=,即x=时,取等号),故函数y=2+的最大值为.故答案为:.18.(6分)若x≥y≥z,则(2x+1)(2y+1)(2z+1)=13xyz的正整数解(x,y,z)为(45,7,1)或(19,9,1).【解答】解:∵(2x+1),(2y+1),(2z+1)都是奇数,∴x,y,z都是奇数,∵(2x+1)(2y+1)(2z+1)=13xyz,∴(2+)(2+)(2+)=13,∵x≥y≥z,如果z≥3,那么(2+)(2+)(2+)≤(2+)2=<13,∴z=1,∴3(2x+1)(2y+1)=13xy,化简得:xy=6(x+y)+3,则x==6+,∵39的因子有:1,3,12,39,∴y﹣6=1,3,13,39,∴y=7,9,19,45,∴x的对应只有:45,19,9,7,∵x>y,∴正整数解(x,y,z)为:(45,7,1)或(19,9,1).故答案为:(45,7,1)或(19,9,1).三、解答题(共2小题,满分42分)19.(22分)正方形ABCD边长为2,与函数x=(x>0)的图象交于E、F两点,其中E位于线段CD上,正方形ABCD可向右平移,初始位置如图所示,此时,△DEF的面积为.正方形ABCD在向右平移过程中,位于线段EF上方部分的面积记为S,设C点坐标为(t,0)(1)求k的值;(2)试写出S与t的函数关系式及自变量t的取值范围;(3)若S=2,求t的值;(4)正方形ABCD在向右平移过程中,是否存在某些位置,沿线段EF折叠,使得D点恰好落在BC边上?若存在,确定这些位置对应t的值得大致范围(误差不超过0.1);若不存在,说明理由.【解答】解:(1)由题设可知S=(2﹣)2=,△DEF解得k=1或7(不合题意,舍去),∴k=1;(2)①如图1,当2≤t≤时,因为C点坐标为(t,0),所以E点坐标为(t,),所以DE=2﹣,而F点坐标为(,2),所以DF=t﹣,所以S=DE•DF=(2﹣)(t﹣)=t+﹣1;②如图2,当t>时,此时OB=t﹣2,所以F点的坐标为(t﹣2,),所以AF=2﹣,所以S=•2•(DE+AF)=•2•(2﹣+2﹣)=4﹣﹣;(3)当2≤t≤时,DE和DF随t的增大而增大,S也类似,故当t=时S有最大值为<2,所以S=2只可能发生在t>时,令4﹣﹣=2,解得t=;(4)①如图3,当2≤t≤时,假设位置存在,由对称性知Rt△FDE∽Rt△DCD1,因为DE=D1E,则有=,其中D1C==,整理得:t(t﹣1)=4,解得t=>,与假设矛盾,所以当2≤t≤时,不存在;②如图4,当t>时,假设位置存在,过F作直线FG∥x轴交CD于G,由对称性可知Rt△FGE≌Rt△DCD1,DE=D1E,所以GE=D1C,而GE=﹣,整理可得t(t﹣1)(t﹣2)2=1,设y=t(t﹣1)(t﹣2)2,当t>2时,y随t的增大而增大,取t=2.5,则y=0.9375<1,取t=2.6,则y=1.4976>1,利用试值法可以判断位置存在且唯一,对应的t的取值在2.5和2.6之间.20.(20分)(1)求函数y=|x﹣1|+|x﹣3|的最小值及对应自变量x的取值;(2)求函数y=|x﹣1|+|x﹣2|+|x﹣3|的最小值及对应自变量x的取值;(3)求函数y=|x﹣1|+|x﹣2|+…+|x﹣n|的最小值及对应自变量x的取值;(4)求函数y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|的最小值及对应自变量x的取值.【解答】解:(1)函数y=|x﹣1|+|x﹣3|的最小值的几何意义是数轴上x到1和3两点距离之和的最小值,∵两点之间线段最短,∴当1<x<3时,y min=|3﹣1|=2,(2)∵y=|x﹣1|+|x﹣2|+|x﹣3|=(|x﹣1|+|x﹣3|)+|x﹣2|,当x=2时,|x﹣2|有最小值,∴结合(1)的结论得出,当x=2时,y min=2+0=2,(3)当n为偶数时,y=|x﹣1|+|x﹣2|+…+|x﹣n|=(|x﹣1|+|x﹣n|)+(|x﹣2|+|x ﹣(n﹣1)|)+…+(|x﹣|+|x﹣(+1)|),由(1)知,当<x<+1时,|x﹣1|+|x﹣n|有最小值n﹣1,|x﹣2|+|x﹣(n﹣1)|有最小值(n﹣1)﹣2=n﹣3,…|x ﹣|+|x ﹣(+1)|有最小值1,∴当<x <+1时,y min=1+3+5+…+(n﹣3)+(n﹣1)=,当n为奇数时,y=|x﹣1|+|x﹣2|+…+|x﹣n|=(|x﹣1|+|x﹣n|)+(|x﹣2|+|x﹣(n﹣1)|)+…+(|x ﹣|+|x ﹣(+1)|)+|x ﹣|,由(1)知,当x=时,|x﹣1|+|x﹣n|有最小值n﹣1,|x﹣2|+|x﹣(n﹣1)|有最小值(n﹣1)﹣2=n﹣3,…|x ﹣|+|x ﹣(+1)|有最小值1,|x ﹣|的最小值为0,∴当x=时,ymin=0+2+4+…+(n﹣3)+(n﹣1)=,(4)类似(3)的做法可知,y=|x﹣a1|+|x﹣a2|+…+|x﹣a n|,如果n 为偶数时,当时,y有最小值,如果n为奇数时,当x=时,y有最小值;∵y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|=++…++|x﹣1|∴共有9+8+7+…+2+1=45项,为奇数.∴当x=时,ymin=|﹣1|+|﹣1|+…+|﹣1|+|﹣1|=第21页(共21页)。

四川省成都七中2017届高三上学期入学数学试卷(理科) 含解析

四川省成都七中2017届高三上学期入学数学试卷(理科) 含解析

2016—2017学年四川省成都七中高三(上)入学数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.设全集U=R,若集合A={x∈N||x﹣2|<3},B={x|y=lg(9﹣x2)},则A∩∁R B()A.{x|﹣1<x<3}B.{x|3≤x<5} C.{0,1,2} D.{3,4}2.已知复数z=x+yi(x,y∈R),且有=1+yi,是z的共轭复数,则的虚部为()A.B.i C.D.i3.已知x,y取值如表:x01456y 1.3m3m5。

67。

4画散点图分析可知,y与x线性相关,且回归直线方程=x+1,则实数m的值为()A.1.426 B.1。

514 C.1。

675 D.1.7324.已知函数f(x)的部分图象如图所示.向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为33,由此可估计f(x)dx的值约为( )A.B.C.D.5.已知点P(3,3),Q(3,﹣3),O为坐标原点,动点M(x,y)满足,则点M所构成的平面区域的内切圆和外接圆半径之比为()A.B. C.D.6.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1=AB=AD=,若∠A1AD=∠A1AB=45°,∠BAD=60°,则点A1到平面ABCD的距离为()A.1 B.C.D.7.在△ABC中,若4(sin2A+sin2B﹣sin2C)=3sinA•sinB,则sin2的值为()A.B. C.D.8.若直线xcosθ+ysinθ﹣1=0与圆(x﹣cosθ)2+(y﹣1)2=相切,且θ为锐角,则这条直线的斜率是()A. B. C.D.9.定义在R上的函数f(x)满足f(x﹣2)=﹣f(x),且在区间[0,1]上是增函数,又函数f(x﹣1)的图象关于点(1,0)对称,若方程f(x)=m在区间[﹣4,4]上有4个不同的根,则这些根之和为()A.﹣3 B.±3 C.4 D.±410.设双曲线﹣=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ(λ,μ∈R),λ•μ=,则该双曲线的离心率为()A.B.C. D.11.已知函数f(x)=,g(x)=,则函数h(x)=g(f(x))﹣1的零点个数为()个.A.7 B.8 C.9 D.1012.若对任意的x1∈[e﹣1,e],总存在唯一的x2∈[﹣1,1],使得lnx1﹣x1+1+a=x22e x2成立,则实数a的取值范围是()A.[,e+1] B.(e+﹣2,e]C.[e﹣2,) D.(,2e﹣2]二、填空题13.已知P1(x1,x2),P2(x2,y2)是以原点O为圆心的单位圆上的两点,∠P1OP2=θ(θ为钝角).若sin()=,则的x1x2+y1y2值为.14.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x i(i=1,2,3,4)(单位:立方米).根据如图所示的程序框图,若知x1,x2,x3,x4分别为1,1.5,1.5,3,则输出的结果S为.15.已知a<b,二次不等式ax2+bx+c≥0对任意实数x恒成立,则M=的最小值为.16.设x∈R,定义[x]表示不超过x的最大整数,如[]=0,[﹣3。

成都七中2017年外地生招生考试数学答案

成都七中2017年外地生招生考试数学答案

一、填空题(1-6每题5分,7-12每题7分,13-18每题8分,共120分)1、102、153、84、315、236、27、34-8、159、5410、111、19812、2113、-114、-715.616、617、1318、17二、解答题(第19题12分,第2题18分)19.解(1)联立⎪⎩⎪⎨⎧+-==3x 2x y y 得()()1221,,,B A .所以正方形ABCD 的中心为()2,2.于是()2,3。

带入6==m x m y 得。

...........6分(2)因为BP AP =,所以点P 落在线段AB 的垂直平分线x y =上。

联立⎪⎩⎪⎨⎧==xy y 6解得)6,6()66(--p P 或,AB 的中点22323(=AB M ,当=MP P 时,,)66(2233223623622-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-2362233222121-=⎪⎭⎫ ⎝⎛-⨯⨯=⋅⋅=∆MP AB S ABP 当=--MP P 时,,)66(2233223623622+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+2362233222121+=⎪⎭⎫ ⎝⎛+⨯⨯=⋅⋅=∆MP AB S ABP 所以ABP ∆的面积236±……12分(掉一解扣2分)20.解(1)若0=q 。

方程为053222=+-+p px x 。

()()020*********>-=+--=∆p p p 452>p 。

p x x 221-=+,53221+-=p x x 53211712212121+--=+=+=p p x x x x x x 即⎪⎩⎪⎨⎧≠+-=--0530514322p p p 解得5=p 或31-因为452>p ,所以5=p ……6分(多一解扣2分)(2)显然0>q 。

方程可写成q p px x ±=+-+53222。

因为方程有三个不同的实数根,结合()53222+-+=p px x x f 与q y ±=的图像知()54,54,223-=+-=-=--=p q p p f q p x 21,x x 是q q px x =+-+53222的两根。

四川省成都七中2016-2017学年高一上学期入学考试语文试题(含答案)

四川省成都七中2016-2017学年高一上学期入学考试语文试题(含答案)

四川省成都七中2016-2017学年高一上学期入学考试语文试题(含答案)XXX高2016级语文试题(2016.9.1)考试时间:120分钟总分:150分命题人:高2016级语文备课组审题人:XXX第Ⅰ卷一、(40分,每小题4分)1.下列词语中,加点字的读音全都正确的一组是A.秩序(chì)踉跄(liàng)尸骸(hái)...B.弄堂(lòng)鞭挞(tà)..C.精悍(hàn)执拗(niù)..莘莘学子(shēn).惩创(chãnɡ)不屑一顾(xuâ)..长篙(gāo)长歌当哭(dàng)..D.浸渍(jìn)作揖(yī)解剖(pōu)叱咤风云(chà)....2.下列各组词语中,没有错别字的一组是A.籍贯伎俩绿草如荫黯然失色B.和睦光牒阴谋诡计殚精竭虑C.浮躁通缉敝帚自珍震耳欲聋D.桀骜惆怅难以起齿瞠目结舌3.下列加点词语使用正确的一项是A.儒家学说由XXX创立,颠末冗长的岁月,得以延续和发展,推许它的声音一直滚滚不...绝。

.B.最令我回味的是同学们说得最火热的时候,吹胡子瞪眼、撅鼻子翘嘴的模样,真是富有嫡亲之乐。

....C.您刚刚乔迁新居,房间宽敞明亮,只是摆设略显单调,建议您挂幅油画,一定会使居室蓬荜生辉。

....D.在人行道上卖菜的那些小贩们,远远地看见城管法律人员走来,立刻七手八脚地摒挡....摊子准备撤退。

4.以下各句中,加点的成语利用适合的一句是A.《汉字英雄》《中国汉字听写大会》播出后,引发社会强烈回响,人们对其内容和方式评头论足,赞美有加。

....B.在XXX的诗歌中,我们可以真切地感受到,历时七八年、祸及半个中国的安史之乱,造成了人民的生灵涂炭。

....C.峨眉山是闻名中外的旅游胜地,其巍峨磅礴,重峦叠嶂,山山有奇景,十里不同天,真是秀色可餐。

....D.《瑰宝,瑰宝》讲述的是XXX的妹妹——啾啾的故事,读着读着,我就被这位父亲对1女儿的深情打动,时不时拍案而起,连连叫好。

2017成都七中高三数学(文)入学试题答案

2017成都七中高三数学(文)入学试题答案

高2017届2016~2017学年度下期入学考试数学(文科)参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的. ACBDCDCBDDAC二、填空题:本大题共4小题,每小题5分.13、⎩⎨⎧⎭⎬⎫-1,2,2214、415、94三、解答题:解答应写出文字说明,证明过程或演算步骤. 17、(Ⅰ)由茎叶图知,极差为98-52=46.……………………2分 平均值52+65+72788686868787889098=12X +++++++++=81.25.……………………6分(Ⅱ)设得分为优秀的班级为12,A A ,得分为良好的班级为123456B ,B ,B ,B ,B ,B 从中任选2个班级,不同的选法有:1211121314151621222324(A ,A ),(A ,B ),(A ,B ),(A ,B ),(A ,B ),(A ,B )(A ,B ),(A ,B ),(A ,B ),(A ,B )(A ,B ),,, 2526121314151623242526(A ,B ),(A ,B )(B ,B ),(B ,B ),(B ,B ),(B ,B )(B ,B ),(B ,B ),(B ,B ),(B ,B )(B ,B ),,,, 343536454656(B ,B ),(B ,B ),(B ,B ),(B ,B ),(B ,B ),(B ,B )共28种.……………………10分选出两人不在同一年龄段的选法有13种,故所求概率13P =18、(Ⅰ)证明:由11A B A D =,O 为BD 的中点,则1A O ⊥又因为ABCD 是菱形,所以CO BD ⊥.因为1AO CO = 所以BD ⊥平面1ACO .因为BD ⊂平面11BB D D , 所以平面11BB D D ⊥平面1ACO . ……………………5分(Ⅱ)由60BAD ∠=,ABCD 是菱形,可得1BO =,AO = 由1A B =11A O =.在1AOA 中,由12AA =,可得1AO AO ⊥.AO BO O = ,1AO ABCD ∴⊥底面. 由11//AA BB ,故1A 到平面1BCB 的距离等于A 到平面1BCB 的距离h . 又111112,2,BCB BC BB AA B C A D ===== 解得:S 由11111133A BCB BCB B ABC ABC V S h V S A O h --=⨯⨯===⨯⨯=⇒= ……………12分19、(Ⅰ)当11, 1.n a ==当22112312,222(2)21n n n n a a a a n ---≥++++=-⋅+ ,相减可得:112(1)2(2)2.n n n n n a n n a n --=-⋅--⋅⇒=由11,1n a ==满足故n a n =.……………6分(Ⅱ)1tan tan tan tan(1)n n n b a a n n +=⋅=⋅+tan(1)tan tan(1)tan tan1tan(1)tan(1)tan 1.1tan(1)tan tan1n n n nn n n n n n +-+-=+-=⇒+=-++故12tan 2tan1tan3tan 2tan(1)tan tan1tan1tan1n n n nT b b b n --+-=+++=+++- ,tan(1)tan1tan1n n T n +-∴=-. ……………12分20、..........................4分 (Ⅱ)由题意设()()1122,,,A x y B x y ,直线AB 方程为:y x n =-+.,消y 整理可得:2234220x nx n -+-=, 由()()222412222480n n n ∆=---=->,解得................5分................6分设直线AB 之中点为 由点P 在直线AB上得:又点P 在直线l 上,........................7分1211(5)(5)22QABS n x x n =⨯--=⨯-= ........................9分记22()(5)(3),f n n n =--'()2(5)(3)(21)f n n n n =--+ ,故()f nQAB ∆,............11分 此时直线l..........12分 21、(Ⅰ)由题意224144()ln 4,'()(0)x f x x f x x xxx x-=+-=-=>.'()0(4,),f x x >⇒∈+∞ ∴()f x 的单调递增区间为(4,)+∞,()f x 的单调递减区间为(0,4)..................3分 (Ⅱ)由题意,221'()(0)a x af x x x x x-=-=>. ①0a ≤时,()f x 在(0,)+∞单增,(1)0,(0,1),()0f x f x =∴∈< ,不合题意; ②0a >时,()f x 在(0,)a 单减,在(,)a +∞单增,min ()()ln 10.f x f a a a ∴==-+≥ 记11()ln 1,'()1,ag a a a g a a a-=-+=-= ∴()g x 在(0,1)单增,在(1,)+∞单减, ()g(1)0, 1.g a a ∴≤=∴= 综上{1}.a ∈....................8分(Ⅲ)由(Ⅱ),当1a =时,1ln (*)x x x-≥,当且仅当1x =时等号成立. 要证13211113e <(),只需证明:21313()11e <,两边同时取对数,可以转化为证明: 13132213ln ln 111113<⇔> .由(*)式,13113211ln .13111311->=13211113e ∴<().............12分 22、(Ⅰ)直线l 的普通方程为的普通方程为221x y +=.联立方程组解得l 与1C 的交点为分 (Ⅱ)曲线2C 为cos (3sin x y θθθ=⎧⎨=⎩为参数),故点P 的坐标是()cos ,3sin θθ (6)分从而点P 到直线l 的距离是分 ,d 取得最大值,分。

2017成都七中外地生自主招生考试物理测试题及解析

2017成都七中外地生自主招生考试物理测试题及解析

2017成都七中外地生自主招生考试物理测试题一、单项选择题1.以下说法中正确的是A. 某同学走路上学的速度大约25m/sB. 光在水中传播的速度大约25m/sC. 高速路上汽车行驶的速度大约25m/sD. 高空中飞机飞行的速度大约25m/s2.以下现象中属于凝固现象的是A. 水结成冰B. 洒在地面上的水逐渐变干C. 水蒸气凝结成冰D. 卫生球日久变小3.如图所示,用吸管吸饮料,让饮料进入口中的力是A. 玻璃杯的重力B. 饮料对吸管的浮力C. 手握玻璃杯的力D. 大气压力4.一个小石块,从空中的某一高度,由静止开始下落,若不计空气阻力,从开始下落到刚到达地面的过程中,小石块的重力势能E随着时间t的变化图像可能是A. B.C. D.5.如图所示,A在水面上方,B在水面下方,AC、BD垂直于水面,垂足分别是C和D,AB 连线与水面相交与E点,若从A处射出一束激光,要使激光能够照射到B点,则射出的激光在水面上的入射位置是A. E点B. D点C. D与E之间的某一个点D. C与E之间的某一个点6.如图所示,金属块A通过轻绳系于木块C的下方,静止在水中;金属块B平放在木块D 的上表面,静止在水面上。

已知长方体木块C和D密度、体积、形状均完全相同,密度是水密度的一半,它们的上表面均正好与水面相平;金属块A和B的体积、形状完全相同,它们各自的体积是单个木块体积的一半,则A、B的密度之比为A. 3:1B. 2:1C. 6:1D. 4:17.如图所示,一块长3cm、宽4cm的质量不计的矩形薄板ABCD可绕过A点的固定轴在纸面内无摩擦地自由转动,现过B点沿CB方向对板施加T=9N的拉力作用,为使板保持静止,需要在板上的某一处施加另一个在纸面内的拉力F(未画出),其大小由F的作用位置和方向决定,在所有可能情况中,F的最小值为A. 4.5NB. 7.5NC. 7.2ND. 9.0N8.如图所示,圆心为0的光滑半圆面放置于水平桌面上,圆面上静止放置一条匀质、柔软、不可伸长的细棉线。

四川省成都市第七中学2017届高三下学期入学考试英语试题英语答案

四川省成都市第七中学2017届高三下学期入学考试英语试题英语答案

成都七中高2017届高三下入学考试试题参考答案一、听力:1-5 CBACA 6-10CBACB 11-15CBBCC 16-20ACABB二、阅读: 21-24 BDAB 25-27 CAD 28-31 ADCB 32-35 ACDB三、七选五:36-40 BACEG四、完形:41-45 ACDBA 46-50 DADBD51-55 CABBA 56-60 CCDAC五. 语法填空:61. surveyed 62. aged 63. while / and 64. which 65. as66. an 67. dependence 68. are going 69. about 70. constantly六.短文改错:1. and改成but2. anything改成something3. reason改成reasons4.去掉it5. noise that ∧they trouble6. where改成which7. it改成they 8.mostly改成most 9. Take改成Taking10. do前加to/can/should七.书面表达:As is vividly shown in the picture, a tiny man living in the city is standing there wearing a mask, terrified by the heavy smog, which looks like a huge frightening monster.What the picture mirrors is clearly heavy smog and severe air pollution. Confronted with potential risk of sickness, people are always forced to wear masks in order to avoid breathing poisonous air.With smog getting increasingly serious, environmental protection has become an urgent issue for human beings. As a saying goes, great things may be done by mass effort. For one thing, our government should develop more green and energy-saving ways to lower the amount of polluted air. For another, every single person should raise their awareness of environmental protection and use more public transport. Only if we spare no effort to protect our environment can we enjoy a greener and better life.1。

成都七中外地生招生考试试题卷

成都七中外地生招生考试试题卷

成都七中外地生招生考试试题卷英语(考试时间:100分钟满分:100分)I. 选择题 (20%)1. Two days isn’t enough for me to finish the work. I need____day.A. a thirdB. the thirdC. the otherD. other2. There are four____and two____at the____.A. Johns, Marys, doctorsB. Johns, Marys, doctor’sC. John’s, Mary’s, doctor’sD. John, Mary, doctor’s3. ----I’m looking forward____taking a holiday in Hainan.----So am I. It’s great to be____holiday there.A. for, onB. to, atC. to, onD. for, at4. Read the sentence carefully and you’ll see you’ve____a verb in it.A. lostB. goneC. missedD. left5. The teacher did what she could____that child.A. to helpB. helpingC. helpedD. helps6. The sharks in the sea will ______ people.A. driveB. keepC. attackD. protect 7. There ____ a number of animals in the zoo. The number of them ____ two thousand.A. is, areB. are, isC. is, isD. are, are 8. The visitors ______ lions _____ meat.A. feed, onB. feed, toC. give, toD. eat, from 9. “Elevator” means ______.A. light in British EnglishB. light in American EnglishC. lift in British EnglishD. lift in American English 10. He’snever ridden the horse before, ______?A. is heB. isn’t heC. has heD. hasn’t he11. You’ll like it if you ______ on the sea.A. are surfingB. will surfC. surfedD. have surfed 12. Do you know _______?A. what he happenedB. what the matter is with himC. what happened to himD. what did he happened 13. He asks me______ to use the computer.A. whyB. ifC. whetherD. what 14. She _____ for ten hours at least. It was at nine that she fell asleep last night.A. sleptB. had sleptC. has sleptD. was sleeping 15. --- Whatwould you like to eat?--- I don’t mind. _______ --- whatever you’ve got.A. SomethingB. EverythingC. AnythingD. Nothing 16. I’m sorry you told him the secret. I wish you _____ him the secret.A. didn’t tellB. wouldn’t tellC. will not tellD. had not tell17. --- Do you mind if I smoke here? --- _______.A. Pardon, I doB. Yes, not at allC. No, I do mindD. I’m sorry, but I do18. The camel was blind _____ the right eye and only ate the grass _____ the left side.A.on;inB.in;onC.in;atD.at;on 19. Korea(朝鲜) is _____ Asia。

2017年四川省成都七中外地生自主招生物理试卷〔精品解析版〕

2017年四川省成都七中外地生自主招生物理试卷〔精品解析版〕

2017年四川省成都七中外地⽣⾃主招⽣物理试卷〔精品解析版〕百度⽂库百度⽂库精品⽂库百度⽂库baiduwenku** 2017年四川省成都七中外地⽣⾃主招⽣物理试卷⼀、单项选择题:本题共10⼩题,每⼩题3分,共30分.每⼩题给出的四个选项中,只有⼀项符合题⽬要求1.(3分)以下说法中正确的是()A.某同学⾛路上学的速度⼤约25m/sB.光在⽔中使播的速度⼤约25m/sC.⾼速路上汽车⾏映的速度⼤约25m/sD.⾼空中飞机飞⾏的速度⼤约25m/s2.(3分)以下现象中属于凝固现象的是()A.⽔结成冰B.洒在地⾯上的⽔逐渐变⼲C.⽔蒸⽓凝结成冰D.卫⽣球⽇久变⼩3.(3分)如图所⽰,⽤吸管吸饮料,让饮料进⼊⼝中的⼒是()A B.饮料对吸管的浮⼒C.⼿握玻璃杯的⼒D.⼤⽓压⼒4.(3分)⼀个⼩⽯块从空中的某⼀⾼度,由静⽌开始竖直下落,若不计空⽓阻⼒,从⼩⽯块开始下落,到刚落到地⾯的过程中,⼩⽯块的重⼒势能E p随着时间的变化图象可能是()百度⽂库百度⽂库精品⽂库-baiduwenku**百度⽂库baiduwenku**A.B.C.D.5.(3分)如图所⽰,A在⽔⾯上⽅,B在⽔⾯下⽅,AC、BD垂直于⽔⾯,垂⾜分别是C 和D,AB连线与⽔⾯相交与E点,若从A处射出⼀束激光,要使激光能够照射到B点,则射出的激光在⽔⾯上的⼊射位置是()A.E点B.D点C.D与E之间的某⼀个点D.C与E之间的某⼀个点6.(3分)如图所⽰,⾦属块A通过轻绳系于⽊块C的下⽅,静⽌在⽔中;⾦属块B平放在⽊块D的上表⾯,静⽌在⽔⾯上。

已知长⽅体⽊块C和D密度、体积、形状均完全相同,密度是⽔密度的⼀半,它们的上表⾯均正好与⽔⾯相平;⾦属块A和B的体积、形状完全相同,它们各⾃的体积是单个⽊块体积的⼀半,则A、B的密度之⽐为()A.3:1B.2:1C.6:1D.4:17.(3分)如图所⽰,⼀块长3cm、宽4cm的质量不计的矩形薄板ABCD可绕过A点的固定轴在纸⾯内⽆摩擦地⾃由转动,现过B点沿CB⽅向对板施加T=9N的拉⼒作⽤,为使板保持静⽌,需要在板上的某⼀处施加另⼀个在纸⾯内的拉⼒F(未画出),其⼤⼩由。

2017年四川省成都市第七中学高中自主招生数学试题及参考答案(外地生)

2017年四川省成都市第七中学高中自主招生数学试题及参考答案(外地生)

成都七中2017年高中自主招生数学试题(外地生)一、填空题(1-6每题5分,7-12每题7分,13-18每题8分,共120分)1.若073=-+-b a ,则=+b a ________.2.设b a ≠,且53322=+=+b b a a ,则=+b a ab 22________.3.如图,在长方体1111D C B A ABCD -中,已知4=AB ,3=AD ,21=AA .则三棱锥DB A C 11-的体积为________.第3题图第10题图4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数4相差2的概率是________.5.抛物线22-=ax y ,24bx y -=与坐标轴恰有4个交点,这4个交点组成的筝形面积为12,则=+b a ________.6.设251-=x ,则=-331xx ________.7.已知关于x 的方程032=--x x 的两实数根为1x ,2x ,则=+21112x x ________.8.化简()()()()()()()=+----++-+-132********2a a a a a a a a ________.9.已知m ,n 为正整数,若424n m =,则m 的最小值为________.10.如图,在边长为3的正△ABC 中,D 、E 分别在边AC 、AB 上,且AC AD 31=,AB AE 32=,BD ,CE 相交于点F ,则点A ,D ,F 所在圆的半径为________.11.若y x ≠,且122+=x x ,122+=y y ,则=+66y x ________.12.在△ABC 中,边BC 上的高为1,点D 为AC 的中点,则BD 的最小值为________.13.方程3232222=++++x x x x 的所有实数解的和为________.14.若方程0122=--x x 的根也是方程023=+++c bx ax x 的根,则=++c b a 3________.15.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装4个苹果,一种可以装6个苹果,要求每种规格的盒子都能恰好装满,则不同的装法总数为________.16.如图,在圆心为O 的圆中,点C ,D 分别位于圆O 的直径AB 两侧,若△OCD的面积是△BCD 面积的2倍,又CA CD =,则cos ∠OCB =________.第16题图17.设1001≤≤n ,若18+n 为完全平方数,则整数n 的个数为________.18.从1,2,3,…,2017中任选k 个数中一定可以找到能构成三角形边长的三个数(要求互不相等),则满足条件的k 的最小值是________.二、解答题(第19题12分,第20题18分,共30分)19.已知曲线x y 2=与直线3+-=x y 相交于A ,B 两点,C ,D 两点在曲线x m y =(m >2)的图象上,四边形ABCD 是正方形.(1)求m 的值;(2)若点P 在函数xm y =的图象上,且BP AP =.求△ABP 的面积。

【全国百强校】四川省成都市第七中学2017年自主招生考试试数学试题(无答案)

【全国百强校】四川省成都市第七中学2017年自主招生考试试数学试题(无答案)

四川省成都七中自主招生考试试卷一.选择题(每小题3 分,共36分)1:(-4)2的平方根是( )A :4B :-4C :±16D :±42:函数y=3-1+x x 中自变量x 的取值范围是( ) A :x ≤1 B ;-3<x ≤1 C ;x ≤1且x ≠3 D ;x>-33:方程3(x-5)2=2(5-x)的解是( )A :x=13/3B :x 1=x 2=5C :x 1=5,x 2=13/3D :x 1=4,x 2=-13/34:如图,设P 是函数xy 4=在第二象限的图象上的任意一点,点P 关于原点的对称点P’.过P 作PA ∥y 轴,过P’作P’A ∥x 轴,PA 与P’A 交于点A,最△PAP’的面积是( )A :2B :4C :8D :随P 的变化而变化5:一次数学测试后,随机抽取九年级6名同学的成绩如下:80,85,86,88,88,95.关于这组数据的说法错误的是( )A :极差是15B :众数是88C :中位数是86D :平均数是876:如图是一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A :5个B :6个C :7个D :8个7:若),21(),,41-(),,21-(321y P y N y M 三点都在函数的图象上,则( )A :y 2>y 1>y 3B :y 2>y 3>y 1C :y 3>y 2>y 1D :无法确定8:如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有不同的数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A :52B :103C :203D :519:用120根长短相同的火柴,首尾相接围成一个三条边都不相等的三角形,已知最大边是最小边的3倍,则最小边用了( )A :20根火柴B :19根火柴C :18或19根火柴D :20或19根火柴10:如图,边长为1的正方形ABCD 绕点A 逆时针旋转300到正方形AB’C’D’.图中阴影部分的面积为( )A :21B :33C :33-1D :43-1 11:已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,有下列五个结论;①abc>0.②b-a>0.③4a+2b+c>0.④2c<3b.⑤a+b>m(am+b)(m ≠1的实数).其中正确的结论有( )A :5个B :4个C :3个D :2个12:如图,矩形ABCD 中,AB=1,AD=2,M 是CD 的中点,点P 在矩形的边上沿A ⇒B ⇒C ⇒M,则△APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )二:填空题(每小题4分,共24分)13:实数范围内分解因式:x 3-5x 2-6x=________14:已知关于x 的不等式组02-30-{>>x a x 的整数解共有6个,则a 的取值范围是_____ 15:如图,将Rt △ABC 绕直角顶点C 顺时针方向旋转900到△A’B’C 的位置.D,D’分别是AB,A’B’的中点,已知AC=12cm,BC=5cm,则线段DD’的长为_____cm.16:如图所示,△ABC 中,AB=AC,∠BAC=900,直角∠EPF 的顶点P 是BC 中点,两边PE,PF 分别交AB,AC 于E,F.给出下列四个结论;①AE=CF;②△PEF 为等腰直角三角形③S 四边形AEPF =21S △ABC ;④EF=AP .当∠EPF 在△ABC 内绕顶点P 旋转时(E 不与A,B 重合).上述结论始终正确的有_____(填序号)17:已知α,β是关于x 的一元二次方程(m-1)x 2-x+1=0两个实根,且满足(α+1)(β+1)=m+1,则m 的值为_____.18:如图是一回形图,其回形通道的宽和OB 的长都是1,回形线与射线OA 交于A 1,A 2,A 3,…若从O 点到A 1点的回形线为第一圈(长为7),从A 1到A 2点的回形线为第二圈,…依此类推,则第10圈的长为_____三.解答题19:(16分)(1)计算:32)31(1-60tan -)6π-2009()2-(161-003×++÷ (2)先化简,再求值:21),11-2-1-(1-2-22=+÷x x x x x x x 其中 20:(12分)某公司现有甲,乙两种品牌的打印机,其中甲品牌有A.B 两种型号,乙品牌有C,D,E 三种型号,朝阳中学计划从甲,乙两种品牌中各选一种型号的打印机(1)利用树形图或列表法写出所有选购方案.(2)若各种型号的打印机被选购的可能性相同,那么C 型号打印机被选购的概率是多少?(3)各种型号打印机的价格如下表:朝阳中学购买了两种品牌的打印机共30台,其中乙品牌只选购了E 型号,共用去资金5万元,问E 型号的打印机购买了多少台?21:(12分)在梯形ABCD 中,AD ∥BC,AB=CD=AD=6,∠ABC=600,点E,F 分别在线段AD,DC 上(点E 与A,D 不重合),且∠BEF=1200.设AE=x,DF=y(1)求y 与x 的函数表达式(2)当x 为何值时,y 有最大值,最大值是多少?22:(12分)如图所示,在平面直角坐标系内点A 和点C 的坐标分别为(4,8),(0,5).过点A 作AB ⊥x 轴于点B.过OB 上的动点D 作直线y=kx+b 平行于AC,与AB 相交于点E,连结CD,过点E 作EF ∥CD 交AC 于点F(1)求经过A,C 两点的直线的解析式(2)当点D 在OB 上移动时,能否使四边形CDEF 为矩形?若能,求出此时k,b 的值;若不能,请说明理由.23:(12分)如图,△ABC 中,过点A 分别作∠ABC,∠ACB 的外角的平分线的垂线AD,AE.D.E 为垂足求证:(1)ED ∥BC (3)ED=21(AB+AC+BC)24:(12分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱(1)求平均每天销售量y(箱)与销售价(元/箱)之间的函数关系式(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?25:(14分)如图,在直角坐标系中,以点A(3,0)为圆心,以23为半径的圆与x 轴交于B,C 两点.与y 轴交于D.E 两点(1)求D 点坐标(2)若B,C,D 三点在抛物线y=ax 2+bx+c 上,求这个抛物线的解析式(3)若⊙A 的切线交x 轴正半轴于点M,交y 轴负半轴于点N,切点为P,∠OMN=300,试判断直线MN 是否经过所求抛物线的顶点?说明理由.。

成都七中外地生招生考试试题卷

成都七中外地生招生考试试题卷

成都七中外地生招生考试试题卷英语(考试时间:100分钟满分:100分)I. 选择题 (20%)1. Two days isn’t enough for me to finish the work. I need____day.A. a thirdB. the thirdC. the otherD. other 2. There arefour____and two____at the____.A. Johns, Marys, doctorsB. Johns, Marys, doctor’sC. John’s, Mary’s, doctor’sD. John, Mary, doctor’s3. ----I’m looking forward____taking a holiday in Hainan.----So am I. It’s great to be____holiday there.A. for, onB. to, atC. to, onD. for, at 4. Read the sentence carefully and you’ll see you’ve____a verb in it.A. lostB. goneC. missedD. left 5. The teacher did what shecould____that child.A. to helpB. helpingC. helpedD. helps 6. The sharks in the sea will ______ people.A. driveB. keepC. attackD. protect 7. There ____ a number of animals in the zoo. The number of them ____ two thousand.A. is, areB. are, isC. is, isD. are, are 8. The visitors ______ lions _____ meat.A. feed, onB. feed, toC. give, toD. eat, from 9. “Elevator” means ______.A. light in British EnglishB. light in American EnglishC. lift in British EnglishD. lift in American English 10. He’snever ridden the horse before, ______?A. is heB. isn’t heC. has heD. hasn’t he11. You’ll like it if you ______ on the sea.A. are surfingB. will surfC. surfedD. have surfed 12. Do you know _______?A. what he happenedB. what the matter is with himC. what happened to himD. what did he happened 13. He asks me______ to use the computer.A. whyB. ifC. whetherD. what 14. She _____ for ten hours at least. It was at nine that she fell asleep last night.A. sleptB. had sleptC. has sleptD. was sleeping 15. --- Whatwould you like to eat?--- I don’t mind. _______ --- whatever you’ve got.A. SomethingB. EverythingC. AnythingD. Nothing 16. I’m sorry you told him the secret. I wish you _____ him the secret. A. didn’t tell B. wouldn’t tell C. will not tell D. had not tell 17. --- Do you mind if I smoke here? --- _______.A. Pardon, I doB. Yes, not at allC. No, I do mindD. I’m sorry,but I do18. The camel was blind _____ the right eye and only ate the grass_____ the left side. A.on;in B.in;on C.in;at D.at;on19. Korea(朝鲜) is _____ Asia。

2017年四川省成都七中外地生自主招生物理试卷(含答案解析)

2017年四川省成都七中外地生自主招生物理试卷(含答案解析)

2017年四川省成都七中外地生自主招生物理试卷一、单项选择题:本题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项符合题目要求1.(3分)以下说法中正确的是()A.某同学走路上学的速度大约25m/sB.光在水中使播的速度大约25m/sC.高速路上汽车行映的速度大约25m/sD.高空中飞机飞行的速度大约25m/s2.(3分)以下现象中属于凝固现象的是()A.水结成冰B.洒在地面上的水逐渐变干C.水蒸气凝结成冰 D.卫生球日久变小3.(3分)如图所示,用吸管吸饮料,让饮料进入口中的力是()A.玻璃杯的重力B.饮料对吸管的浮力C.手握玻璃杯的力 D.大气压力4.(3分)一个小石块从空中的某一高度,由静止开始竖直下落,若不计空气阻力,从小石块开始下落,到刚落到地面的过程中,小石块的重力势能E p随着时间的变化图象可能是()A.B.C.D.5.(3分)如图所示,A在水面上方,B在水面下方,AC、BD垂直于水面,垂足分别是C和D,AB连线与水面相交与E点,若从A处射出一束激光,要使激光能够照射到B点,则射出的激光在水面上的入射位置是()A.E点 B.D点C.D与E之间的某一个点D.C与E之间的某一个点6.(3分)如图所示,金属块A通过轻绳系于木块C的下方,静止在水中;金属块B平放在木块D的上表面,静止在水面上。

已知长方体木块C和D密度、体积、形状均完全相同,密度是水密度的一半,它们的上表面均正好与水面相平;金属块A和B的体积、形状完全相同,它们各自的体积是单个木块体积的一半,则A、B的密度之比为()A.3:1 B.2:1 C.6:1 D.4:17.(3分)如图所示,一块长3cm、宽4cm的质量不计的矩形薄板ABCD可绕过A点的固定轴在纸面内无摩擦地自由转动,现过B点沿CB方向对板施加T=9N 的拉力作用,为使板保持静止,需要在板上的某一处施加另一个在纸面内的拉力F(未画出),其大小由F的作用位置和方向决定,在所有可能情况中,F的最小值为()A.4.5N B.7.5N C.7.2N D.9.0N8.(3分)如图所示,圆心为O的光滑半圆面放置于水平桌面上,圆面上静止放置一条匀质、柔软、不可伸长的细棉线。

四川省成都七中自主招生数学试卷(含答案)

四川省成都七中自主招生数学试卷(含答案)

四川省成都七中自主招生数学试卷副标题一、选择题(本大题共12小题,共60.0分)1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0,其中正确的个数是()A. 1个B. 2个C. 3个D. 4个2.如图,O是线段BC的中点,A、D、C到O点的距离相等.若∠ABC=30°,则∠ADC的度数是()A. 30°B. 60°C. 120°D. 150°3.如图,△ACB内接于⊙O,D为弧BC的中点,ED切⊙O于D,与AB的延长线相交于E,若AC=2,AB=6,ED+EB=6,那么AD=()A. 2B. 4C. 6D. 84.(课改)现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y 来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=-x2+4x上的概率为()A. 118B. 112C. 19D. 165.不等式组{48x−3≥−15x−3<−1的所有整数解的和是()A. -1B. 0C. 1D. 26.如果自然数a是一个完全平方数,那么与a之差最小且比a大的一个完全平方数是()A. a+1B. a2+1C. a2+2a+1D. a+2√a+17.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则这个正方形的面积为()A. 7+3√52B. 3+√52C. √5+12D. (1+√2)28.对于两个数,M=2008×20 092 009,N=2009×20 082 008.则()A. M=NB. M>NC. M<ND. 无法确定9.如图,已知∠A=∠B,AA1,PP1,BB1均垂直于A1B1,AA1=17,PP1=16,BB1=20,A1B1=12,则AP+PB等于()A. 12B. 13C. 14D. 1510.若实数abc满足a2+b2+c2=9,代数式(a-b)2+(b-c)2+(c-a)2的最大值是()A. 27B. 18C. 15D. 1211.成都七中学生网站是由成都七中四大学生组织共同管理的网站,该网站是成都七中历史上首次由四大学生组织共同合作建成的一个学生网站,其内容囊括了成都七中学生学习及生活的各个方面.某学生在输入网址“http:∥www.cdqzstu.com”中的“cdqzstu.com”时,不小心调换了两个字母的位置,则可能出现的错误种数是()A. 90B. 45C. 88D. 4412.已知四边形ABCD,从下列条件中:(1)AB∥CD;(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有()A. 4种B. 9种C. 13种D. 15种二、填空题(本大题共4小题,共16.0分)13.判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n= ______ (n是整数,且1≤n<7).14.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金______ 元.15.如果关于x的一元二次方程2x2-2x+3m-1=0有两个实数根x1,x2,且它们满足不等式x1x2x1+x2−3<1,则实数m的取值范围是______ .16. 黑、白两种颜色的正六边形地砖按如图所示的规律拼成若干个图案:则第n 个图案中有白色地砖______块.(用含n 的代数式表示)三、解答题(本大题共6小题,共24.0分)17. (1)先化简,再求值:5(x 2-2)-2(2x 2+4),其中x =-2;(2)求直线y =2x +1与抛物线y =3x 2+3x -1的交点坐标.18. 如图,⊙O 与直线PC 相切于点C ,直径AB ∥PC ,PA 交⊙O 于D ,BP 交⊙O 于E ,DE 交PC 于F .(1)求证:PF 2=EF •FD ;(2)当tan ∠APB =12,tan ∠ABE =13,AP =√2时,求PF 的长;(3)在(2)条件下,连接BD ,判断△ADB 是什么三角形?并证明你的结论.19. 已知:如图,直线y =−34x +3交x 轴于O 1,交y 轴于O 2,⊙O 2与x 轴相切于O点,交直线O 1O 2于P 点,以O 1为圆心,O 1P 为半径的圆交x 轴于A 、B 两点,PB 交⊙O 2于点F ,⊙O 1的弦BE =BO ,EF 的延长线交AB 于D ,连接PA 、PO . (1)求证:∠APO =∠BPO ; (2)求证:EF 是⊙O 2的切线;(3)EO 1的延长线交⊙O 1于C 点,若G 为BC 上一动点,以O 1G 为直径作⊙O 3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.20.如图,五边形ABCDE为一块土地的示意图.四边形AFDE为矩形,AE=130米,ED=100米,BC截∠F交AF、FD分别于点B、C,且BF=FC=10米.(1)现要在此土地上划出一块矩形土地NPME作为安置区,且点P在线段BC上,若设PM的长为x米,矩形NPME的面积为y平方米,求y与x的函数关系式,并求当x为何值时,安置区的面积y最大,最大面积为多少?(2)因三峡库区移民的需要,现要在此最大面积的安置区内安置30户移民农户,每户建房占地100平方米,政府给予每户4万元补助,安置区内除建房外的其余部分每平方米政府投入100元作为基础建设费,在五边形ABCDE这块土地上,除安置区外的部分每平方米政府投入200元作为设施施工费.为减轻政府的财政压力,决定鼓励一批非安置户到此安置区内建房,每户建房占地120平方米,但每户非安置户应向政府交纳土地使用费3万元.为保护环境,建房总面积不得超过安置区面积的50%.若除非安置户交纳的土地使用费外,政府另外投入资金150万元,请问能否将这30户移民农户全部安置?并说明理由.21.如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).(1)求点B的坐标;(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由.22.数独(sūdoku)是一种源自18世纪末的瑞士,后在美国发展、并在日本发扬光大的数学智力拼图游戏.拼图是九宫格(即3格宽×3格高)的正方形状,每一格又细分为一个九宫格.在每一个小九宫格中,分别填上1至9的数字,让整个大九宫格每一列、每一行的数字都不重复.下面是一个数独游戏,请完成该游戏.(您只需要完整地填出其中的5个小九宫格即可)(评分标准:完整地填出其中的5个小九宫格且5个均正确即可给满分.未填出5个不给分.若填出超过5个且无错给满分,若填出超过5个且有任何一处错误不给分.)答案和解析1.【答案】B【解析】解:∵抛物线的开口方向向下,∴a<0,∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0,∵抛物线对称轴在y轴右侧,∴对称轴为x=>0,又∵a<0,∴b>0,故abc<0;由图象可知:对称轴为x=<1,a<0,∴-b>2a,∴b+2a<0,由图象可知:当x=1时y>0,∴a+b+c>0;当x=-1时y<0,∴a-b+c<0.∴②、③正确.故选B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.考查二次函数y=ax2+bx+c系数符号的确定.2.【答案】D【解析】解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADC=150°.故选D.根据圆内接四边形的性质即可求出∠ADC的度数.本题考查的是圆内接四边形的性质:圆内接四边形的对角互补.3.【答案】B【解析】解:设AD与BC交于点F∵ED+EB=6∴DE2=BE•AE=BE(BE+AB)=BE2+BE•AB∴(DE+BE)(DE-BE)=BE•AB即6×(DE-BE)=BE×6∴DE=2BE∵DE2=BE2+BE•AB∴BE=2,DE=4连接BD,则∠EDB=∠EAD∵D为弧BC的中点∴∠DAC=∠BAD∴∠CBD=∠BDE∴BC∥DE∴BF:DE=AB:AE∴BF=3∵AD是∠BAC的平分线∴AB:BF=AC:CF∴CF=1∴BC=BF+CF=4∴BF•CF=AF•DF=3∵BF:ED=AF:AD=AF:(AF+DF)∴DF=1,AF=3∴AD=AF+DF=4.设AD与BC交于点F,由切线长定理知DE2=BE•AE=BE(BE+AB)=BE2+BE•AB,可求得DE=2BE.利用DE2=BE2+BE•AB求得,BE=2,DE=4,连接BD,由弦切角的性质知,∠EDB=∠EAD,得到BF:DE=AB:AE作为相等关系可求出BF=3,根据AD是∠BAC的平分线,由角的平分线定理得,AB:BF=AC:CF,由相交弦定理得,BF•CF=AF•DF=3,所以可求出DF=1,AF=3,从而求得AD的值.本题利用了切割线定理,切线长定理,弦切角的性质,圆周角定理,角的平分线定理,相交弦定理,平行线的判定和性质求解,综合性比较强.4.【答案】B【解析】解:点P的坐标共有36种可能,其中能落在抛物线y=-x2+4x上的共有(1,3)、(2,4)、(3,3)3种可能,其概率为.故选:B.因为掷骰子的概率一样,每次都有六种可能性,因此小莉和小明掷骰子各六次,P的取值有36种.可将x、y值一一代入找出满足抛物线的x、y,用满足条件的个数除以总的个数即可得出概率.本题综合考查函数图象上点的坐标特征与概率的确定.5.【答案】C【解析】解:由不等式①得由不等式②得x<2所以不等组的解集为不等式的整数解0,1,则所有整数解的和是1.故选C.首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.正确解出不等式的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】D【解析】解:∵自然数a是一个完全平方数,∴a的算术平方根是,∴比a的算术平方根大1的数是+1,∴这个平方数为:(+1)2=a+2+1.故选:D.当两个完全平方数是自然数时,其算术平方根是连续的话,这两个完全平方数的差最小.解此题的关键是能找出与a之差最小且比a大的一个完全平方数是紧挨着自然数后面的自然数:+1的平方.7.【答案】A【解析】解:根据图形和题意可得:(a+b)2=b(a+2b),其中a=1,则方程是(1+b)2=b(1+2b)解得:b=,所以正方形的面积为(1+)2=.故选A.从图中可以看出,正方形的边长=a+b,所以面积=(a+b)2,矩形的长和宽分别是a+2b,b,面积=b(a+2b),两图形面积相等,列出方程得=(a+b)2=b(a+2b),其中a=1,求b的值,即可求得正方形的面积.本题的关键是从两图形中,找到两图形的边长的值,然后利用面积相等列出等式求方程,解得b的值,从而求出边长,求面积.8.【答案】A【解析】解:根据数的分成和乘法分配律,可得M=2008×(20 090 000+2009)=2008×20 090 000+2008×2009=2008×2009×10000+2008×2009=2009×20 080 000+2008×2009,N=2009×(20 080 000+2008)=2009×20 080 000+2009×2008,所以M=N.故选:A.根据有理数大小比较的方法,以及乘法分配律可解.熟练运用乘法分配律进行数的计算,然后比较各部分即可.9.【答案】B【解析】解:如图,AA1,PP1,BB1均垂直于A1B1,∴AA1∥PP1∥BB1,过点P作PF⊥AA1,交AA1于点D,交BB1于点F,延长BP交AA1于点C,作CG⊥BB1,交BB1于点G,∴四边形DFB1A1,DPP1A1,FPP1B1,FDGC,CGB1A1是矩形,∴DA1=PP1=FB1=16,CG=A1B1=12,∵AA1∥BB1,∴∠B=∠ACB,∵∠A=∠B∴∠A=∠BCA,∴AP=CP,∵PF⊥AA1,∴点D是AC的中点,∵AA1=17,∴AD=CD=17-16=1,BF=20-16=4,FG=CD=1,BG=4+1=5,∴BP+PA=BP+PC=BC===13.故选B.如图,AA1,PP1,BB1均垂直于A1B1,过点P作PF⊥AA1,交AA1于点D,交BB1于点F,延长BP交AA1于点C,作CG⊥BB1,交BB1于点G,然后根据矩形和直角三角形的性质求解.本题通过作辅助线,构造矩形和直角三角形,利用矩形和直角三角形的性质和勾股定理求解.10.【答案】A【解析】解:∵a2+b2+c2=(a+b+c)2-2ab-2ac-2bc,∴-2ab-2ac-2bc=a2+b2+c2-(a+b+c)2①∵(a-b)2+(b-c)2+(c-a)2=2a2+2b2+2c2-2ab-2ac-2bc;又(a-b)2+(b-c)2+(c-a)2=3a2+3b2+3c2-(a+b+c)2=3(a2+b2+c2)-(a+b+c)2②①代入②,得3(a2+b2+c2)-(a+b+c)2=3×9-(a+b+c)2=27-(a+b+c)2,∵(a+b+c)2≥0,∴其值最小为0,故原式最大值为27.故选A.根据不等式的基本性质判断.本题主要考查了不等式a2+b2≥2ab.11.【答案】D【解析】解:“cdqzstu.com”中共有10个字母;若c与后面的字母分别调换,则有:10-1=9种调换方法;依此类推,调换方法共有:9+8+7+…+1=45种;由于10个字母中,有两个字母相同,因此当相同字母调换时,不会出现错误.因此出现错误的种数应该是:45-1=44种.故选D.“cdqzstu.com”中字母有10个.相同字母有2个.若第一个错误的字母是第一个字母c,那么c和它后面除c外任何一个字母调换后都可能出现错误,则错误的种类可能有8种.若第1个错误的字母是第二个字母d,排除和第一个字母已经计算过的错误后,可能出现的错误应该有8种,按照此种方法,错误的种类依次为:7,6,5,4,3,2,1;共有:16+7+6+5+4+3+2+1=44种.解答本题时需注意:相同字母调换后结果不会出现错误.12.【答案】B【解析】解:根据平行四边形的判定,符合四边形ABCD是平行四边形条件的有九种:(1)(2);(3)(4);(5)(6);(1)(3);(2)(4);(1)(5);(1)(6);(2)(5);(2)(6)共九种.故选B.平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定,任取两个进行推理.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.13.【答案】2【解析】解:∵和的时候,是尾数的5倍,能被7整除,任意一个正整数写成P=10a+b,b是P的个位数.根据已知结论,P是7的倍数等价于a+5b是7的倍数,而a+5b=a-2b+7b,a+5b和a-2b相差7的倍数,所以它们两个同时是7的倍数或者同时不是7的倍数.因此n=2符合要求.∴差的时候,应是尾数的2倍,∴n=2.故填2.根据题意,知方法一是去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.所以若改为求差,则应是尾数的2倍.因为要能够被7整除,根据方法一,即可看出和的时候,是尾数的5倍,则差的时候,应是尾数的2倍.14.【答案】3520【解析】解:若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,因而两种客车用共租8辆.设甲车有x辆,乙车有8-x辆,则40x+50(8-x)≥360,解得:x≤4,整数解为0、1、2、3、4.汽车的租金W=400x+480(8-x)即W=-80x+3840W的值随x的增大而减小,因而当x=4时,W最小.故取x=4,W的最小值是3520元.故答案为:3520.若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,但有一辆不能坐满.只租甲种客车正好坐满,这种方式一定最贵.因而两种客车用共租8辆.两种客车的载客量大于360,根据这个不等关系,就可以求出两种客车各自的数量,进而求出租金.本题是一次函数与不等式相结合的问题,能够通过条件得到两种客车共租8辆,是解决本题的关键.15.【答案】-1<m≤12【解析】解:根据一元二次方程根与系数的关系知,x1+x2=1,x1•x2=,代入不等式得<1,解得m>-1,又∵方程有两个实数根,∴△=b2-4ac≥0,即(-2)2-4×2×(3m-1)≥0,解得m≤,综合以上可知实数m的取值范围是-1<m≤.故本题答案为:-1<m≤.把两根之和与两根之积代入已知条件中,求得m的取值范围,再根据根的判别式求得m的取值范围.最后综合情况,求得m的取值范围.一元二次方程根与系数的关系为,x1+x2=-,x1•x2=,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.16.【答案】4n+2【解析】解:分析可得:第1个图案中有白色地砖4×1+2=6块.第2个图案中有白色地砖4×2+2=10块.…第n个图案中有白色地砖4n+2块.通过观察,前三个图案中白色地砖的块数分别为:6,10,14,所以会发现后面的图案比它前面的图案多4块白色地砖,可得第n个图案有4n+2块白色地砖.本题考查学生通过观察、归纳的能力.此题属于规律性题目.注意由特殊到一般的分析方法,此题的规律为:第n个图案有4n+2块白色地砖.17.【答案】解:(1)5(x2-2)-2(2x2+4)=5x2-10-4x2-8=x2-18=(-2)2-18=4-18=-14(2)把y=2x+1代入y=3x2+3x-1,可得3x2+x-2=0,解得x=23或x=-1,①当x=23时,y=2×23+1=43+1=213②当x=-1时,y=2×(-1)+1=-2+1=-1所以直线y=2x+1与抛物线y=3x2+3x-1的交点坐标是(23,213)、(-1,-1).【解析】(1)首先去掉括号,再合并同类项,然后把x=-2代入,求出算式5(x2-2)-2(2x2+4)的值是多少即可.(2)把y=2x+1代入y=3x 2+3x-1,求出x 的值是多少,进而求出y 的值,确定出直线y=2x+1与抛物线y=3x 2+3x-1的交点坐标即可.(1)此题主要考查了整式的化简求值问题,解答此题的关键是注意去括号时符号的变化.(2)此题还考查了直线与抛物线的交点坐标的求法,采用代入法即可.18.【答案】解:(1)∵AB ∥PC ,∴∠BPC =∠ABE =∠ADE .又∵∠PFE =∠DFP ,△PFE ∽△DFP ,∴PF :EF =DF :PF ,PF 2=EF •FD .(2)连接AE ,∵AB 为直径,∴AE ⊥BP .∵tan ∠APB =12=AE PE ,tan ∠ABE =13=AE BE ,令AE =a ,PE =2a ,BE =3a ,AP =√5a =√2,∴a =√105=AE ,PE =25√10,BE =3√105. ∵PC 为切线,∴PC 2=PE •PB =4.∴PC =2.∵FC 2=FE •FD =PF 2∴PF =FC =PC 2=1,∴PF =1.(3)△ADB 为等腰直角三角形.∵AB 为直径,∴∠ADB =90°.∵PE •PB =PA •PD ,∴PD =2√2BD =√BP 2−PD 2=√2=AD .∴△ADB 为等腰Rt △.【解析】(1)欲证PF 2=EF•FD ,可以证明△PFE ∽△DFP 得出;(2)求PF 的长,根据∠APB 的正切,需连接AE ,求出AE ,PE ,BE 的长,再根据PC 为切线,求出PC 的长,通过相似的性质,切线的性质得出PF=FC 即可; (3)判断△ADB 是什么三角形,根据圆周角定理得出∠ADB=90°,再求出AD ,DB ,AB 的长,可以得出△ADB 为等腰Rt △.乘积的形式通常可以转化为比例的形式,通过证明三角形相似得出,同时综合考查了三角函数,三角形的判断,切线的性质等.19.【答案】解:(1)连接O2F.∵O2P=O2F,O1P=O1B,∴∠O2PF=∠O2FP,∠O1PB=∠O1BP,∴∠O2FP=∠O1BP.∴O2F∥O1B,得∠OO2F=90°,∴∠OPB=1∠OO2F=45°.2又∵AB为直径,∴∠APB=90°,∴∠APO=∠BPO=45°.(2)延长ED交⊙O1于点H,连接PE.∵BO为切线,∴BO2=BF•BP.又∵BE=BO,∴BE2=BF•BP.而∠PBE=∠EBF,∴△PBE∽△EBF,∴∠BEF=∠BPE,∴BE=BH,有AB⊥ED.又由(1)知O2F∥O1B,∴O2F⊥DE,∴EF为⊙O2的切线.(3)MN的长度不变.过N作⊙O3的直径NK,连接MK.则∠K=∠MO1N=∠EO1D,且∠NMK=∠EDO1=90°,又∵NK=O1E,∴△NKM≌△EDO1,∴MN=ED.而OO1=4,OO2=3,∴O1O2=5,∴O1A=8.即AB=16,∵EF与圆O2相切,∴O2F⊥ED,则四边形OO2FD为矩形,∴O2F=OD,又圆O2的半径O2F=3,∴OD=3,∴AD=7,BD=9.ED2=AD•BD,∴ED=3√7.故MN的长度不会发生变化,其长度为3√7.【解析】(1)可通过度数来求两角相等.连接O2F,那么∠O2PF=∠O2FP=∠OBP,因此O2F∥AB,这样可得出圆O2的圆心角∠OO2F=90°.因此∠OPF=45°,那么∠APO=90°-45°=45°,因此两角相等.(2)由于(1)中得出了O2F∥AB,因此只要证得DE⊥AB,就能得出DE⊥O2F,也就得出了DE是圆O2的切线的结论,那么关键是证明DE⊥AB.可通过垂径定理来求.延长ED交⊙O1于点H,那么就要求出DE=DH或BE=BH,那么就要先求出∠BEH=∠BHE.连接PE,那么∠BHE=∠EPB,那么证∠EPB=∠DEB即可.可通过相似三角形BEF和BPE来求得,这两个三角形中,已知了一个公共角,我们再看夹这个角的两组对边是否成比例.由于BO2=BF•BP,而BO=BE,因此BE2=BF•BP,由此可得出两三角形相似,进而可根据前面分析的步骤得出本题的结论.(3)MN的长度不变.这是因为点G是BC上的一个动点,但的O1C长度是不变的,它等于⊙的半径8,另外∠BO1C的大小也是始终不变的,因为所有的⊙O3都是等圆,故弧MGN也都是相等的,故弦MN都是相等的,求MN的长,可通过构建全等三角形来求解,过N作⊙O3的直径NK,连接MK,那么三角形NKM和EDO1全等,那么只要求出DE的长即可,根据直线的解析式,可得出O1,O2的坐标,也就求出了OO1,OO2的值,也就能得出圆O1的半径的长,进而可求出AD,BD的长然后根据DE2=AD•DB即可得出MN的值.本题主要考查了圆与圆的位置关系,全等三角形,相似三角形的判定和性质以及一次函数等知识点的综合应用.图中边和角较多,因此搞清楚图中边和角的关系是解题的关键.20.【答案】解:(1)延长MP交AF于点H,则△BHP为等腰直角三角形.BH=PH=130-xDM=HF=10-BH=10-(130-x)=x-120则y=PM•EM=x•[100-(x-120)]=-x2+220x由0≤PH≤10得120≤x≤130因为抛物线y=-x2+220x的对称轴为直线x=110,开口向下.所以,在120≤x≤130内,当x=120时,y=-x2+220x取得最大值.其最大值为y=12000(㎡)(2)设有a户非安置户到安置区内建房,政府才能将30户移民农户全部安置.由题意,得30×100+120a≤12000×50%×10×0.02≤150+3a30×4+(12000-30×100-120a)×0.01+90+1002≤a≤25解得181721因为a为整数.所以,到安置区建房的非安置户至少有19户且最多有25户时,政府才能将30户移民农户全部安置;否则,政府就不能将30户移民农户全部安置.【解析】(1)要求矩形的面积就应该知道矩形的长和宽,可以延长MP交AF于点H,用PH表示出PM和PN,然后根据矩形的面积=长×宽,得出函数关系式,然后根据PH的取值范围和函数的性质,得出面积最大值.(2)本题的不等式关系为:非安置户的建房占地面积+安置户的建房占地面积≤安置区面积×50%;安置户的补助费+安置户的基础建设费+安置户的设施施工费≤150万元+非安置户缴纳的土地使用费.以此来列出不等式,求出自变量的取值范围.本题考查了二次函数和一元一次不等式的综合应用,读清题意,找准等量关系是解题的关键.21.【答案】解:(1)在Rt△OAB中,∵∠AOB=30°,∴OB =√3,过点B 作BD 垂直于x 轴,垂足为D ,则OD =32,BD =√32, ∴点B 的坐标为(32,√32).(1分)(2)将A (2,0)、B (32,√32)、O (0,0)三点的坐标代入y =ax 2+bx +c ,得{4a +2b +c =094a +32b +c =√32c =0(2分) 解方程组,有a =−2√33,b =4√33,c =0.(3分) ∴所求二次函数解析式是y =−2√33x 2+4√33x .(4分)(3)设存在点C (x ,−2√33x 2+4√33x )(其中0<x <32),使四边形ABCO 面积最大 ∵△OAB 面积为定值,∴只要△OBC 面积最大,四边形ABCO 面积就最大.(5分)过点C 作x 轴的垂线CE ,垂足为E ,交OB 于点F ,则S △OBC =S △OCF +S △BCF =12|CF |•|OE |+12|CF |•|ED |=12|CF |•|OD |=34|CF |,(6分)而|CF |=y C -y F =−2√33x 2+4√33x -√33x =-2√33x 2+√3x , ∴S △OBC =−√32x 2+3√34x .(7分) ∴当x =34时,△OBC 面积最大,最大面积为9√332.(8分) 此时,点C 坐标为(34,5√38),四边形ABCO 的面积为25√332.(9分) 【解析】(1)在Rt △OAB 中,由∠AOB=30°可以得到OB=,过点B 作BD 垂直于x 轴,垂足为D ,利用已知条件可以求出OD ,BD ,也就求出B 的坐标;(2)根据待定系数法把A ,B ,O 三点坐标代入函数解析式中就可以求出解析式;(3)设存在点C (x ,x 2+x ),使四边形ABCO 面积最大,而△OAB 面积为定值,只要△OBC 面积最大,四边形ABCO 面积就最大.过点C 作x 轴的垂线CE ,垂足为E ,交OB 于点F ,则S △OBC =S △OCF +S △BCF =|CF|•|OE|+|CF|•|ED|=|CF|•|OD|=|CF|,而|CF|=y C-y F=x2+x-x=-x2+x,这样可以得到S△OBC =x2+x,利用二次函数就可以求出△OBC面积最大值,也可以求出C的坐标.本题考查了待定系数法求二次函数解析式、图形变换、解直角三角形、利用二次函数探究不规则图形的面积最大值重要知识点,综合性强,能力要求极高.考查学生分类讨论,数形结合的数学思想方法.22.【答案】解:【解析】根据横列、竖列和方格的限制条件排除各个点不可能的数字,并从1-9将各个可能的数字用小字体逐个写进每个空白的格子.然后再进行审查即可.本题要根据已有横列和竖列的数字来划定要填的空的数的范围,然后再逐个进行试验,直到发现某一个数字在各个横列、竖列或方格中出现的次数仅一次时,这个数字就填写正确了.然后重复上面的步骤进行填写即可.第21页,共21页。

成都七中2017届考试数学答案

成都七中2017届考试数学答案

七中2014-2015学年下期 高一半期考试数学试卷(参考答案)考试时间:120分钟 总分:150分 命题人:世永 审题人:杜利超 吴雪一.选择题 C ABDB AADBC CB二、填空题13. 6 14. 22,1,2,2,n n n --=⎧⎨-≥⎩15. 1250 16. 1010三.解答题17、解:(1)由1cos sin 5ββ=-, 平方得2212cossin sin 255βββ=-+,则22242sin sin 0525ββ--=. ……4分 由(0,)βπ∈,得sin 0β>,从而43sin ,cos .55ββ==- 4tan .3β∴=- ……6分(2) 原式=cos 2cos sin 2sin ββββ- . 22(2cos 1)cos 2sin cos ββββ=--183163(1)()2()255255=-⨯--⨯⨯-117.125= ……12分 18.证明:(1)令,1x n y ==,得1(1)()(1)()2f n f n f f n +==,(1)1()2f n f n +∴=,∴数列{}()f n 是以12为首项,12为公比的等比数列。

……6分(2)由(1)得1()(),2n f n =1()(),2n n a nf n n n N *∴==∈ 则12n n S a a a =+++.231123122222n n n n nS --∴=+++++, ①① 21⨯得231112122222n n n n n S +-=++++ , ② ① -②得23111111222222n n n nS +=++++-.11122n n n+=-- 222n nnS +∴=-. ……12分 19.解:(1)()22cos sin()tan()tan()2242424x x x xf x a b πππ=⋅=+++-1tan tan 122()222221tan 1tan 22x x x x x x x+-=++⋅-+ 22cos sin 2cos 1222x x x=+-sin cos x x =+ ……4分(1)由1()sin cos 3f x x x =+=,平方得11sin 29x +=,8sin 2.9x ∴=- ……8分(2)由()()02f x f x π++=得,sin cos sin()cos()022x x x x ππ+++++=, 2cos 0x ∴=,又(0,)x π∈2x π∴=……10分但是当2x π=时,tan()24x π+无意义,所以不存在满足条件的实数.x ……12分 20.解:(1)由题意知,030.AED CBE BAE θ∠=∠=∠== 所以0cos30sin30cos30,4b BE AB a =⋅=⋅= 又6a b -=, 解得 6.a b == ……6分(2)1cos sin cos sin 2,2b BE AB a θθθθ=⋅=⋅=⋅ 1sin 2,2b aθ∴=由5243ππθ≤≤,得522123ππθ≤≤sin 21θ≤≤.11sin 2],22b a θ∴=∈A 规格:3038084=<,不符合条件; B 规格: 40216032=>,不符合条件;C 规格:3241[]72942=∈,符合条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中外地生招生考试数学试题考试时间:120分钟 满分:150分一、填空题(1-6题每题5分,7-12题每题7分,13-18题每题8分,共120分) 1、若0732=-+-b a ,则b a += .难度:★ 原理:“非负数和为零,则各加数均为零” 答案:73± 2、设b a ≠,且43322=+=+b b a a ,则b a ab 22+= . 难度:★★ 原理:一元二次方程根与系数的关系解析:由题意,b a 、为方程0432=-+x x 的两相异实根,则.43-=-=+ab b a , 进而得.12)3()4()(22=-⨯-=+=+a b ab b a ab3、如图,在长方体1111D C B A ABCD -中,已知4=AB ,,3=AD 21=AA ,则三棱锥DB A C 11的体积为 . 难度:★★★ 原理:棱锥的体积公式Sh V 31=方法:间接法 解析:观察图可得,三棱锥DB A C 11的体积为长方体1111D C B A ABCD -的体积减去4个三棱锥ABD A 1的体积.即8)2342131(4234=⨯⨯⨯⨯⨯-⨯⨯ 4、将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数4相差2的概率是 .难度:★ 原理:机会均等事件发生的概率 答案:31 5、抛物线224,2bx y ax y -=-=与坐标轴恰好有4个交点,这4个交点组成的筝形面积为12,则b a += .难度:★★ 原理:抛物线的轴对称性及筝形面积公式 解析:由题意作图.根据筝形面积为12,可得两抛物线 与横轴交点为(-2,0)和(2,0).联立两抛物线解析式得2242bx ax -=-,即6)(2=+x b a .故.23=+b a6、设251-=x ,则331x x -= .难度:★★ 原理:二次根式的化简及立方差、完全平方公式的应用 解析:由251-=x 得2511+-=x ,则12512511=++-=-x x故243)1()11)(1(122233==+-=++-=-xx x x x x x xxyOD 1 C 1 A BA 1B 1D C7、已知关于x 的方程032=--x x 的两实数根为1x 、2x ,则21112x x += . 难度:★★ 原理:一元二次方程根与系数的关系及方程、代数式的变形 解析:由方程032=--xx 变形得0232=--x x ,由韦达定理得,,232121-=⋅=+x x x x 故21112x x +=.343)2(222121-=-⨯=+x x x x8、化简)1)(3(25)4)(3)(2)(1()22(22+----++-+-a a a a a a a a = .难度:★★★ 原理:代数式的恒等变形及整体思想解析:原式)1)(3(25)]4)(2[()]3)(1[()22(22+---+⋅-+-+-=a a a a a a a a)1)(3(25)]82()32[()22(2222+----⋅---+-=a a a a a a a a)1)(3(25]24)2(11)2[(4)2(4)2(222222+--+----+-+-=a a a a a a a a a a )1)(3(45)2(152+---=a a a a )1)(3()32(152+---=a a a a15=9、已知n m 、为正整数,若424n m =,则m 的最小值为 .难度:★★ 原理:数的整除性,分解质因数解析:由322224⨯⨯⨯=,则n 能被6整除,所以n 最小为6,故m 的最小值为54. 10、如图,在边长为3的正△ABC 中,E D 、分别在边AB AC 、上,且AC AD 31=, AB AE 32=,CE BD 、相交于点F ,则F D A 、、所在圆的半径为 . 难度:★★★ 原理:圆的有关性质,三角形的全等 解析:由已知易证△ABD ≌△BCE ,则∠ADF=∠BEF ,从而得A 、E 、F 、D 四点共圆. 连结DE ,易得∠ADE=90○, 故AE 是圆的直径,半径为1.11、若y x ≠,且12,1222+=+=y y x x ,则66y x += .难度:★★ 原理:一元二次方程根与系数的关系及配方法DAB CE F解析:由题意,y x 、为方程0122=--m m 的两相异实根,则.1,2-==+xy y x 故1982)]32(2[2)])([(2)(222223323366=++⨯=++-+=-+=+y xy x y x y x y x y x 12、在△ABC 中,边BC 上的高为1,点D 为AC 的中点,则BD 的最小值为 . 难度:★★ 原理:平行线的有关性质提示:由作图发现不确定点A 的轨迹,从而得到AC 中点D 的轨迹. 答案:21. 13、方程3232222=++++x x x x 的所有实数解的和为 .难度:★★ 原理:换元法解根式方程 解析:由方程变形得0623)23(222=-+++++x x x x ,令m x x =++232,则原方程 为0622=-+m m ,即0)2)(32(=+-m m ,解得2,2321-==m m (舍去).则 49232=++x x ,即0432=-+x x .根据韦达定理,得该方程的实数根之和为-1. 14、若方程0122=--x x 的根都满足方程023=+++c bx ax x ,则c b a ++3= . 难度:★★★ 原理:方程的同解原理及高次方程降次求解解析:由0122=--x x 得122+=x x ,带入三次方程得0)1()2(2=++++c x b x a ,再由两方程同解得12112-=-+=+cb a ,得122-=--=c b c a ,,代入 3a +2b +c=3(-c -2)+(2c -1)+c=-3c -6+2c -1+c=-7方法二:根据方程的同解原理得x 3+ax 2+bx+c=(x 2-2x -1)(x -c ),展开对比系数得. 15、将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为 .难度:★★★ 原理:不定方程讨论求解解析:由设三种盒子的个数分别为a 、b 、c ,则由题意得10a +9b +6c =108.显然a 为3的整数倍,则a 可取值为3、6、9. 当a=3时,9b +6c =78,即3b +2c =26,此时b 为偶数,共有4种组合装法;当a=6时,9b +6c =48,即3b +2c =16,同理可得共有2种组合装法;当a=9时,9b +6c =18,即3b +2c =6,此时无整数解.综上所述,共有6种装法.16、如图,在圆心为O 的圆中,点C 、D 分别位于圆O 的直径AB 两侧,若△OCD 的面积是△BCD 的面积的两倍,又CD=CA ,则OCB ∠cos = .难度:★★★★ 原理:圆的有关知识综合应用解析:设CD 、OB 的交点为G ,则由△OCD 和△BCD 的面积关系 得GO =2GB . 延长CO 交AD 于点E ,易得CE ⊥AD ,则∠AEC = ∠ADB =90°,进而得EC ∥DB ,可得CO=2DB=4EO . 在Rt △OEA 中,令EO=1,则AE=15.在Rt △CEA 中,AC=102.又∠CAD =∠ABC =∠OCB ,故cos ∠OCB=cos ∠CAD=46. B CDA O BA C D17、设1≤n ≤100,若8n +1为完全平方数,则整数n 的个数为 . 难度:★★★ 原理:完全平方数、数的整除性及不等式性质解析:由题意,设8n +1=m 2(m 为正整数),则812-=m n .由1≤n ≤100,得9≤m 2≤801.显然m 为奇数,则奇数3≤m ≤27.故对应的整数n 的个数为13.18、从1,2,3,...,2017中任选k 个数,使得所选的k 个数中一定能找到能构成三角形边长的三个数(要求互不相等),则满足条件的k 的最小值是 .难度:★★★★★ 原理:三角形三边长关系及数论的知识 答案:17 解析:根据三角形三边长关系,从1,2,3,...,2017中找出下面的数:1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597.一共有16个.上述数中任选三个不能构成三角形,从剩下的数中任找一个数,一定能和上述16个数中某两个构成三角形. 二、解答题:19、已知曲线x y 2=与直线3+-=x y 相交于A 、B 两点,C 、D 两点在曲线xmy =(m >2)上,四边形ABCD 是正方形.(1)求m 的值;(2)若点P 在函数xmy =的图象上,且AP =BP ,求△ABP 的面积.难度:★★★★★ 原理:以函数为主体的综合知识应用详解:(1)联立⎪⎩⎪⎨⎧+-==32x y xy 得A (1,2)、B (2,1),如图. 设正方形ABCD 对角线的交点为G ,易得G (2,2), 则C (3,2),代入xmy =得m=6. (2)∵AP =BP ,∴点P 在线段AB 的垂直平分线y=x 上.联立⎪⎩⎪⎨⎧==xy x y 6得)6,6(P 或)6,6(--P .易得2=AB ,AB 的中点Q 坐标为)2323(,.当)6,6(P 时,22332)236(2)236()236(22-=-⋅=-+-=PQ .此时236)22332(22121-=-⋅⋅=⋅=∆PQ AB S ABP ; 当)6,6(--P 时,22332)236(2)236()236(22+=+⋅=+++=PQ .此时236)22332(22121+=+⋅⋅=⋅=∆PQ AB S ABP . 综上得△ABP 的面积为236±.PyABCD OxP Q20、已知关于x 的方程053222=-+-+q p px x ,其中p 、q 都是实数. (1) 若q =0时,方程有两个不同的实数根、x 12x ,且711121=+x x ,求实数p 的值. (2) 若方程有三个不同的实数根1x 、2x 、3x ,且0111321=++x x x ,求实数p 和q 的值. (3) 是否同时存在质数p 和整数q ,使得方程有四个不同的实数根1x 、2x 、3x 、4x ,且443214321)4(3x x x x x x x x +++=⋅⋅⋅若存在,求出所有满足条件的p 、q ;若不存在,请说明理由.难度:★★★★★★ 原理:以方程为主体的综合知识应用详解:(1)若q =0,则方程为053222=+-+p px x .因该方程有两个不同的实数根、x 12x , 可得2016)53(4)2(222-=+--=∆p p p >0,解得2p >45;p x x 221-=+,22135p x x -= 由711121=+x x ,得71352112211221=--=+=+p p x x x x x x ,解得p =5或31-.(注意0352≠-p ) 因为2p >45,所以p =5. (2)显然q >0.方程可写成q p px x ±=+-+53222.因该方程有三个不同的实数根, 即函数532221+-+=p px x y 与q y ±=2的图象有三个不同的交点,如图.由图可得,22234544)35(4p p p q p x -=--=--=,,即542-=p q .21x x 、是方程q p px x =+-+53222的两根,即0107222=+-+p px x .则p x x 221-=+,221710p x x -=,p x -=3.4032)107(4)2(222-=+--=∆p p p >0,解得2p >45. 由0111321=++x x x ,得0)107(51017102122232112=--=-+--=++pp p p p p x x x x x ,得22=p >45, 所以2±=p ,3542=-=p q .(3)存在,方程有四个不同的实数根1x 、2x 、3x 、4x ,由(2)知0<q <542-p . 设1x 、2x 是方程053222=-+-+q p px x 的两根,3x 、4x 是053222=++-+q p px x 的两根,则p x x 221-=+,q p x x -+-=53221;p x x 243-=+,q p x x ++-=53243.x 1Oy=q yxy=-qx 2x 3得p x x x x 44321-=+++,=4321x x x x )53)(53(22q p q p ++--+-)53)(53(22q p q p --+-= 所以4223)53)(53(p q p q p =--+-.由于p 是质数,则p ≥2. 因为q p +-532>q p --532>0,所以q p +-532>23p >2p . 分解22334443333133p p p p p p p p p ⨯=⨯=⨯=⨯=⨯=.分四种情况讨论:⎪⎩⎪⎨⎧=--=+-153353)1(242q p pq p 得0116324=+-p p ,此方程无解;⎪⎩⎪⎨⎧=--=+-35353)2(242q p pq p 得013624=+-p p ,此方程无解; ⎪⎩⎪⎨⎧=--=+-pq p p q p 35353)3(232得0103623=++-p p p , 即0)5)(2)(1(=--+p p p ,得521,,-=p ;⎪⎩⎪⎨⎧=--=+-222253353)4(pq p p q p 得52=p ,得5±=p .又p ≥2,则52,=p .所以存在满足条件的q p 、,当2=p 时,1=q ;当5=p 时,55=q .。

相关文档
最新文档