数字电路基础 ppt课件
合集下载
数字电子技术基础全套ppt课件
输出方程
Y ( A Q ( 1 Q 2 ) ( A Q 1 Q 2 ) ) A Q 1 Q 2 A Q 1 Q 2
③计算、 列状态转
换表
Y 输A 入Q 1 Q 2 现A Q 态1 Q 2
A Q2 Q1
次
Q2*
态
Q1*
00 0
01
00 1
10
01 0
11
QQ102*1*AQ01 1 Q1
双向移位寄存器
2片74LS194A接成8位双向移位寄存器
用双向移位寄存器74LS194组成节日彩灯控制电路
1k
LED 发光 二极管
Q=0时 LED亮
+5V
RD Q0 DIR D0
Q1
Q2
Q3 S1
74LS194
S0
D1 D2 D3 DIL CLK +5V
RD Q0 DIR D0
Q1
Q2
Q3 S1
二.一般掌握的内容:
(1)同步、异步的概念,电路现态、次态、有效 状态、无效状态、有效循环、无效循环、自启动的 概念,寄存的概念;
(2)同步时序逻辑电路设计方法。
6.1 概述
一、组合电路与时序电路的区别
1. 组合电路: 电路的输出只与电路的输入有关, 与电路的前一时刻的状态无关。
2. 时序电路:
电路在某一给定时刻的输出
1 0 Q2
0 1
0 1
10 1
00
11 0
01
11 1
10
输出
Y
0 0 0 1 1 0 0 0
Q Q2*1*D D21A Q1 Q1 Q2
YA Q 1 Q 2A Q 1 Q 2
转换条件
Y ( A Q ( 1 Q 2 ) ( A Q 1 Q 2 ) ) A Q 1 Q 2 A Q 1 Q 2
③计算、 列状态转
换表
Y 输A 入Q 1 Q 2 现A Q 态1 Q 2
A Q2 Q1
次
Q2*
态
Q1*
00 0
01
00 1
10
01 0
11
QQ102*1*AQ01 1 Q1
双向移位寄存器
2片74LS194A接成8位双向移位寄存器
用双向移位寄存器74LS194组成节日彩灯控制电路
1k
LED 发光 二极管
Q=0时 LED亮
+5V
RD Q0 DIR D0
Q1
Q2
Q3 S1
74LS194
S0
D1 D2 D3 DIL CLK +5V
RD Q0 DIR D0
Q1
Q2
Q3 S1
二.一般掌握的内容:
(1)同步、异步的概念,电路现态、次态、有效 状态、无效状态、有效循环、无效循环、自启动的 概念,寄存的概念;
(2)同步时序逻辑电路设计方法。
6.1 概述
一、组合电路与时序电路的区别
1. 组合电路: 电路的输出只与电路的输入有关, 与电路的前一时刻的状态无关。
2. 时序电路:
电路在某一给定时刻的输出
1 0 Q2
0 1
0 1
10 1
00
11 0
01
11 1
10
输出
Y
0 0 0 1 1 0 0 0
Q Q2*1*D D21A Q1 Q1 Q2
YA Q 1 Q 2A Q 1 Q 2
转换条件
《数字电路说课》课件
数字电路设计方法
单击此处添加文本具体内容
GENERAL WORK REPORT FOR FOREIGN
硬件描述语言
硬件描述语言(HDL)是一种用于描述数字电 路和系统的语言,它能够描述电路的结构、行 为和功能。常见的硬件描述语言包括Verilog 和VHDL。
HDL的主要优点是能够在高抽象层次上描述电 路,使得设计者能够更加关注电路的逻辑和行 为,而不是具体的实现细节。这有助于提高设 计的可重用性和可维护性。
数字电路说课
单击此处添加文本具体内容
GENERAL WORK REPORT FOR FOREIGN
CONTENTS
目录
1
WORKREVIEW
数字电路概述
2
UNDERWORK
数字电路基础知识
4
FUTUREOUTLOO K
数字电路的实现与 测试
5
Байду номын сангаас
UNDERWORK
数字电路的故障诊 断与排除
3
WORKHARVEST
数字电路基础知识
单击此处添加文本具体内容
GENERAL WORK REPORT FOR FOREIGN
逻辑门电路
总结词
逻辑门电路是数字电路的基本组成部 分,用于实现逻辑运算。
详细描述
逻辑门电路有与门、或门、非门等基本 类型,它们通过输入和输出的逻辑关系 实现逻辑运算,是构成复杂数字电路的 基础。
03
随着数字电路功能的日益复杂,设计与验证的难度越来越大,
需要更高效的设计与验证方法。
数字电路的未来展望
数字电路将继续在材料、工艺、设计方 法等方面取得创新突破,推动集成电路 技术的不断发展。
数字电路基础课件ppt
详细描述
首先,需要明确数字逻辑功能,并选择合适的硬件描述语言(如VHDL或Verilog)编写程序。然后,使用EDA工具进行综合和布局布线,生成可编程的配置文件。最后,将配置文件下载到FPGA或CPLD中实现设计的逻辑功能。
05
数字电路的测试与调试
输入输出测试
时序测试
负载测试
仿真测试
01
02
03
04
检查电路的输入和输出是否符合设计要求,验证电路的功能是否正常。
测试电路中各个逻辑门之间的信号传输是否符合时序要求,确保电路的时序逻辑正确。
测试电路在不同负载条件下的性能表现,验证电路的稳定性和可靠性。
利用仿真软件模拟电路的工作过程,发现潜在的设计缺陷和错误。
将电路划分为若干个部分,分别进行调试,逐步排查问题所在。
总结词
应用领域与趋势
详细描述
数字电路广泛应用于计算机、通信、控制等领域。随着技术的发展,数字电路的设计和制造工艺不断进步,集成电路的规模越来越大,数字电路的应用前景十分广阔。
总结词:差异比较
详细描述:数字电路和模拟电路在处理信号的方式、电路结构和功能等方面存在显著差异。模拟电路处理的是连续变化的信号,而数字电路处理的是离散的二进制信号。此外,数字电路具有更高的抗干扰能力和稳定性。
数字电路设计基础
总结词
详细描述
总结词ቤተ መጻሕፍቲ ባይዱ
详细描述
组合逻辑电路是数字电路中最基本的电路,其设计主要基于逻辑代数和真值表。
组合逻辑电路由逻辑门电路组成,其输出仅取决于当前输入,不涉及任何记忆元件。常见的组合逻辑电路有加法器、比较器、编码器、译码器等。
组合逻辑电路的设计步骤包括定义逻辑问题、列出真值表、化简表达式、选择合适的门电路实现等。
数字电路ppt课件
数字电路PPT课件
目录
• 数字电路概述 • 数字电路基础知识 • 数字电路设计 • 数字电路的测试与验证 • 数字电路的优化与改进 • 数字电路的未来发展
01
数字电路概述
定义与特点
定义
数字电路是处理离散的二进制信 号的电路,这些信号通常表示为 高电平(逻辑1)和低电平(逻辑 0)。
特点
数字电路具有高可靠性、高稳定 性、易于大规模集成等优点,广 泛应用于计算机、通信、控制等 领域。
光数字电路的发展需要解决光子器件 的集成度和可靠性问题,以及光信号 的稳定性和可控制性问题。
光数字电路利用光波导、光调制器和 光探测器等光子器件实现信号的传输 和处理,可应用于高速通信、并行计 算等领域。
THANKS
感谢观看
确保其正常工作。
故障诊断
故障定位
通过测试和分析,确定故障发生的位置和原 因。
故障排除
针对故障模式,采取相应的措施排除故障, 恢复数字电路的正常工作。
故障模式识别
根据故障的表现形式,识别出故障的模式。
故障预防
通过分析和总结,预防类似故障的再次发生 。
可靠性分析
可靠性评估
对数字电路的可靠性进行评估,包括 平均无故障时间、失效率等指标。
02
数字电路基础知识
逻辑门电路
与门
实现逻辑与运算,当输入都为 高电平时,输出为高电平。
或门
实现逻辑或运算,当输入中至 少有一个为高电平时,输出为 高电平。
非门
实现逻辑非运算,当输入为高 电平时,输出为低电平;当输 入为低电平时,输出为高电平 。
异或门
当两个输入不同时,输出为高 电平;当两个输入相同时,输
可重构电路设计
目录
• 数字电路概述 • 数字电路基础知识 • 数字电路设计 • 数字电路的测试与验证 • 数字电路的优化与改进 • 数字电路的未来发展
01
数字电路概述
定义与特点
定义
数字电路是处理离散的二进制信 号的电路,这些信号通常表示为 高电平(逻辑1)和低电平(逻辑 0)。
特点
数字电路具有高可靠性、高稳定 性、易于大规模集成等优点,广 泛应用于计算机、通信、控制等 领域。
光数字电路的发展需要解决光子器件 的集成度和可靠性问题,以及光信号 的稳定性和可控制性问题。
光数字电路利用光波导、光调制器和 光探测器等光子器件实现信号的传输 和处理,可应用于高速通信、并行计 算等领域。
THANKS
感谢观看
确保其正常工作。
故障诊断
故障定位
通过测试和分析,确定故障发生的位置和原 因。
故障排除
针对故障模式,采取相应的措施排除故障, 恢复数字电路的正常工作。
故障模式识别
根据故障的表现形式,识别出故障的模式。
故障预防
通过分析和总结,预防类似故障的再次发生 。
可靠性分析
可靠性评估
对数字电路的可靠性进行评估,包括 平均无故障时间、失效率等指标。
02
数字电路基础知识
逻辑门电路
与门
实现逻辑与运算,当输入都为 高电平时,输出为高电平。
或门
实现逻辑或运算,当输入中至 少有一个为高电平时,输出为 高电平。
非门
实现逻辑非运算,当输入为高 电平时,输出为低电平;当输 入为低电平时,输出为高电平 。
异或门
当两个输入不同时,输出为高 电平;当两个输入相同时,输
可重构电路设计
《数字电路技术》PPT课件
精选课件ppt
(1-2)
模拟信号: 正弦波信号 u
锯齿波信号
u
精选课件ppt
t t
(1-3)
研究模拟信号时,我们注重电路 输入、输出信号间的大小、相位关系。 相应的电子电路就是模拟电路,包括 交直流放大器、滤波器、信号发生器 等。
在模拟电路中,晶体管一般工作 在放大状态。
精选课件ppt
(1-4)
精选课件ppt
(1-11)
每四位2进 十六进制与二进制之间的转换: 制数对应
一位16进 制数
(0101 1001)B= [027+1 26+0 25+1 24
+1 23+0 22+0 21+1 20]D
= [(023+1 22+0 21+1 20) 161
+(1 23+0 22+0 21+1 20) 160]D =(59)H
(10011100101101001000)O=
(10 011 100 101 101 001 000)D =
( 2 3 4 5 5 1 0 )O
=(2345510)O
精选课件ppt
(1-14)
(4)十进制与二进制之间的转换:
(N)D Ki 2i i0
两边除二,余第0位K0
(N 2) Di 1Ki 2i1K 20
精选课件ppt
(1-19)
在BCD码中,用四位二进制数表示 0~9十个数码。四位二进制数最多可以 表示16个字符,因此0~9十个字符与这 16中组合之间可以有多种情况,不同的 对应便形成了一种编码。这里主要介绍:
8421码 5421码
2421码 余3码
数字电路基础(全部课件)
②如果一个N进制数M包含n位整数和m位小数,即 (an-1 an-2 … a1 a0 ·a-1 a-2 … a-m)2
则该数的权展开式为: (M)2 = an-1×Nn-1 + an-2 ×Nn-2 + … +a1×N1+ a0 ×N0
+a-1 ×N-1+a-2 ×N-2+… +a-m×N-m ③由权展开式很容易将一个N进制数转换为十进制数。
事物往往存在两种对立的状态,在逻辑代数中可以抽 象地表示为 0 和 1 ,称为逻辑0状态和逻辑1状态。
逻辑代数中的变量称为逻辑变量,用大写字母表示。 逻辑变量的取值只有两种,即逻辑0和逻辑1,0 和 1 称为 逻辑常量,并不表示数量的大小,而是表示两种对立的逻 辑状态。
1.3.1 基本逻辑运算
1、与逻辑(与运算)
2、二进制
数码为:0、1;基数是2。 运算规律:逢二进一,即:1+1=10。 二进制数的权展开式: 如:(101.01)2= 1×22 +0×21+1×20+0×2-1+1 ×2
-2 =(5.25)10
各数位的权是2的幂
二进制数只有0和1两个数码,它的每一位都可以用电子元 件来实现,且运算规则简单,相应的运算电路也容易实现。
(3)对组成数字电路的元器件的精度要求不高, 只要在工作时能够可靠地区分0和1两种状态即可。
2、数字电路的分类
(1)按集成度分类:数字电路可分为小规模(SSI,每 片数十器件)、中规模(MSI,每片数百器件)、大规模 (LSI,每片数千器件)和超大规模(VLSI,每片器件数 目大于1万)数字集成电路。集成电路从应用的角度又可 分为通用型和专用型两大类型。
A
B
B
E
Y
E
Y
A接通、B断开,灯亮。
A、B都接通,灯亮。
则该数的权展开式为: (M)2 = an-1×Nn-1 + an-2 ×Nn-2 + … +a1×N1+ a0 ×N0
+a-1 ×N-1+a-2 ×N-2+… +a-m×N-m ③由权展开式很容易将一个N进制数转换为十进制数。
事物往往存在两种对立的状态,在逻辑代数中可以抽 象地表示为 0 和 1 ,称为逻辑0状态和逻辑1状态。
逻辑代数中的变量称为逻辑变量,用大写字母表示。 逻辑变量的取值只有两种,即逻辑0和逻辑1,0 和 1 称为 逻辑常量,并不表示数量的大小,而是表示两种对立的逻 辑状态。
1.3.1 基本逻辑运算
1、与逻辑(与运算)
2、二进制
数码为:0、1;基数是2。 运算规律:逢二进一,即:1+1=10。 二进制数的权展开式: 如:(101.01)2= 1×22 +0×21+1×20+0×2-1+1 ×2
-2 =(5.25)10
各数位的权是2的幂
二进制数只有0和1两个数码,它的每一位都可以用电子元 件来实现,且运算规则简单,相应的运算电路也容易实现。
(3)对组成数字电路的元器件的精度要求不高, 只要在工作时能够可靠地区分0和1两种状态即可。
2、数字电路的分类
(1)按集成度分类:数字电路可分为小规模(SSI,每 片数十器件)、中规模(MSI,每片数百器件)、大规模 (LSI,每片数千器件)和超大规模(VLSI,每片器件数 目大于1万)数字集成电路。集成电路从应用的角度又可 分为通用型和专用型两大类型。
A
B
B
E
Y
E
Y
A接通、B断开,灯亮。
A、B都接通,灯亮。
《数字电子技术基础》PPT1第1章 数字电路基础
1、数字电路与模拟电路比较
三、数字电路
1、数字电路与模拟电路比较
三、数字电路
2、数字电路的特点 (1)设计简单,便于集成。 (2)抗干扰能力强,可靠高:高低电平范围、整形电路去 除噪声和干扰、差错控制技术(奇偶校验)。 (3)功能强大:不仅数值运算,而且能够进行逻辑判断与 运算。在控制系统中是不可缺少的。 (4)信息存储方便:相对较小空间能存储几十亿位。 (5)可编程:使繁琐的电路设计工作变得简单快捷。
二、数字信号的表示法
1、高低电平与正、负逻辑体制 数字信号有两种逻辑体制:
正逻辑体制规定:高电平为逻辑1,低电平为逻辑0。 负逻辑体制规定:低电平为逻辑1,高电平为逻辑0。
下图为采用正逻辑体制所表示的逻辑信号:
逻辑1
逻辑1
逻辑0
逻辑0
逻辑0
二、数字信号的表示法
2、数字波形的两种类型
数字信号的传输波形可分为脉冲型和电平型 ▪ 电平型数字信号则是以一个时间节拍内信号是高电平
缺点:自然界大多数物理量是模拟量,需要模数转换和 数模转换等,增加了系统的复杂性。
三、数字电路
3、数字集成电路 ◆按照数字电路集成度的不同,逻辑电路通常分为SSI、
MSI、LSI、VLSI及至UFra bibliotekSI、GSI等。
数字集成电路按集成度分类
1.2 数制与BCD码
一、几种常用的数制
1.十进制(Decimal):计数规律:逢十进一、借一当十 2.二进制(Binary):计数规律:逢十进一、借一当十 3.十六进制(Hexadecimal)与八进制(Octal)
第一章 数字电路基础
1.1 数字电路的基本概念 1.2 数制 1.3 二进制算术运算 1.4 编码
三、数字电路
1、数字电路与模拟电路比较
三、数字电路
2、数字电路的特点 (1)设计简单,便于集成。 (2)抗干扰能力强,可靠高:高低电平范围、整形电路去 除噪声和干扰、差错控制技术(奇偶校验)。 (3)功能强大:不仅数值运算,而且能够进行逻辑判断与 运算。在控制系统中是不可缺少的。 (4)信息存储方便:相对较小空间能存储几十亿位。 (5)可编程:使繁琐的电路设计工作变得简单快捷。
二、数字信号的表示法
1、高低电平与正、负逻辑体制 数字信号有两种逻辑体制:
正逻辑体制规定:高电平为逻辑1,低电平为逻辑0。 负逻辑体制规定:低电平为逻辑1,高电平为逻辑0。
下图为采用正逻辑体制所表示的逻辑信号:
逻辑1
逻辑1
逻辑0
逻辑0
逻辑0
二、数字信号的表示法
2、数字波形的两种类型
数字信号的传输波形可分为脉冲型和电平型 ▪ 电平型数字信号则是以一个时间节拍内信号是高电平
缺点:自然界大多数物理量是模拟量,需要模数转换和 数模转换等,增加了系统的复杂性。
三、数字电路
3、数字集成电路 ◆按照数字电路集成度的不同,逻辑电路通常分为SSI、
MSI、LSI、VLSI及至UFra bibliotekSI、GSI等。
数字集成电路按集成度分类
1.2 数制与BCD码
一、几种常用的数制
1.十进制(Decimal):计数规律:逢十进一、借一当十 2.二进制(Binary):计数规律:逢十进一、借一当十 3.十六进制(Hexadecimal)与八进制(Octal)
第一章 数字电路基础
1.1 数字电路的基本概念 1.2 数制 1.3 二进制算术运算 1.4 编码
数字逻辑电路大全PPT课件(2024版)
第6页/共48页
Rb1 4kΩ
Rc 2 1.6kΩ
Vc 2
1
+VCC( +5V) Rc4 130Ω
3
T2 4
1
3
A
31
2T2
D Vo
B
T1
C
Ve 2
1
3
2T 3
Re2
1kΩ
输入级
中间级
输出级
第7页/共48页
2.TTL与非门的逻辑关系
(1)输入全为高电平3.6V时。
T2、T3导通,VB1=0.7×3=2.1(V ),
列。 6 . 74AS 系 列 —— 为 先 进 肖 特 基 系
列, 它是74S系列的后继产品。 7.74ALS系列——为先进低 功耗肖特基系列, 是74LS系列的后继产品。
第30页/共48页
2.3
一、 NMOS门电路 1.NMOS非门
MOS逻辑门电路
VDD (+12V)
VDD (+12V)
VDD (+12V)
0.4V
高 电 平 噪 声 容 限 第1V5页NH/共=48V页OH ( min ) - VON = 2.4V-2.0V =
四、TTL与非门的带负载能力
1.输入低电平电流IIL与输入高电平电流IIH (1)输入低电平电流IIL——是指当门电路的输入端
接低电平时,从门电路输入端流出的电流。
& Vo G0
呈 现 高 阻 , 称 为 高 阻 态 , 或 禁 止 态+V。CC
Rc2
Rc4
Rb1
Vc2 1
3
T2 4
A
&
B
L
EN
数字电路基础—数字电路的分类(电子技术课件)
三、数字电路的分类
• 根据电路结构不同分 分立元件电路
将晶体管、电阻、电容等元器件用导线 在线路板上连接起来的电路。
• 根据半导体的导电类型不同分 双极型数字集成电路
以双极型晶体管作为基本器件 例如 TTL
集成电路
将上述元器件和导线通过半导体制造工 艺做在一块硅片上而成为一个不可分割 的整体电路。
单极型数字集成电路
高集成度的数字逻辑系统 例如:各种型号的单片机,即在一片硅片上集成一 个完整的微型计算机
逻辑部件 包括:计数器、 译码器、编码器、数据选择器、 寄存器、算术运算器、比较器、转换电路等
大规模集成电路 100 ~ 1000 门/片或 1000 数字逻辑系统
LSI
~100000 个元件/片
包括:中央控制器、存储器门/片或大于
VLSI
10 万个元件/片
以单极型晶体管作为基本器件 例如 CMOS
三、数字电路的分类
• 根据集成密度不同分
集成电路分类
集成度
电路规模与范围
小规模集成电路 1 ~ 10 门/片或10 ~ 100 逻辑单元电路
SSI
个元件/片
包括:逻辑门电路、集成触发器
中规模集成电路 MSI
10 ~ 100 门/片或 100 ~ 1000 个元件/片
• 根据电路结构不同分 分立元件电路
将晶体管、电阻、电容等元器件用导线 在线路板上连接起来的电路。
• 根据半导体的导电类型不同分 双极型数字集成电路
以双极型晶体管作为基本器件 例如 TTL
集成电路
将上述元器件和导线通过半导体制造工 艺做在一块硅片上而成为一个不可分割 的整体电路。
单极型数字集成电路
高集成度的数字逻辑系统 例如:各种型号的单片机,即在一片硅片上集成一 个完整的微型计算机
逻辑部件 包括:计数器、 译码器、编码器、数据选择器、 寄存器、算术运算器、比较器、转换电路等
大规模集成电路 100 ~ 1000 门/片或 1000 数字逻辑系统
LSI
~100000 个元件/片
包括:中央控制器、存储器门/片或大于
VLSI
10 万个元件/片
以单极型晶体管作为基本器件 例如 CMOS
三、数字电路的分类
• 根据集成密度不同分
集成电路分类
集成度
电路规模与范围
小规模集成电路 1 ~ 10 门/片或10 ~ 100 逻辑单元电路
SSI
个元件/片
包括:逻辑门电路、集成触发器
中规模集成电路 MSI
10 ~ 100 门/片或 100 ~ 1000 个元件/片
数字电子技术基础ppt课件
R
vo K合------vo=0, 输出低电平
vi
K
只要能判
可用三极管 代替
断高低电 平即可
在数字电路中,一般用高电平代表1、低 电平代表0,即所谓的正逻辑系统。
2.2.2 二极管与门
VCC
A
D1
FY
B
D2
二极管与门
A
B
【 】 内容 回顾
AB Y 00 0 01 0 100 11 1
&
Y
2.2.2 二极管或门
一般TTL门的扇出系数为10。
三、输入端负载特性
输入端 “1”,“0”?
A
ui
RP
R1 b1
c1
T1
D1
•
R2
•
T2
•
R3
VCC
•
R4
T4 D2
•
Y
T5
•
简化电路
R1
VCC
ui
A ui
T1
be
RP
2
be 0
RP
5
RP较小时
ui
RP RP R1
(Vcc Von )
当RP<<R1时, ui ∝ RP
•
R4
T4 D2
•
Y
T5
•
TTL非门的内部结构
•
R1
R2
A
b1 c1
T1
•
T2
D1
•
R3
VCC
•
R4
T4 D2
•
Y
T5
•
前级输出为 高电平时
•
R2
R4
VCC
T4 D2
课件数字电路.ppt
将开关接通记作1,断开记作0;灯亮记作1,灯 灭记作0。可以作出如下表格来描述与逻辑关系:
功能表
开关 A 开关 B 灯 Y
A
断开 断开
灭
0
断开 闭合
灭
0
1
闭合 断开
灭
1
闭合 闭合 亮
BY
00 真 10 值
00 表
11
两个开关均接通时,灯才会 Y=A•B
亮。逻辑表达式为:
实现与逻辑的电路称为与门。
对偶定理:如果两个逻辑式相等,则它们的对偶 式也相等。
利用对偶规则,可以使要证明及要记忆的公 式数目减少一半。
逻辑函数及其表示方法
逻辑函数
如果以逻辑变量作为输入,以运算结果作为 输出,当输入变量的取值确定之后,输出的取值 便随之而定。输出与输入之间的函数关系称为逻 辑函数。Y=F(A,B,C,…)
反演定理 对于任何一个逻辑表达式Y,如果将表达式中
的所有“·”换成“+”,“+”换成“·”,“0” 换成“1”,“1”换成“0”,原变量换成反变量, 反变量换成原变量,那么所得到的表达式就是函 数Y的反函数Y′(或称补函数)。这个规则称为反 演定理。
对偶定理
对于任何一个逻辑表达式Y,如果将表达式 中的所有“·”换成“+”,“+”换成“·”,“0” 换成“1”,“1”换成“0”,而变量保持不变,则 可得到的一个新的函数表达式 YD, YD称为Y的对偶 式。
基本公式
0-1
律:
A A
0 A 1 A
A 1 1 A 0 0
互补律: A A 1 A A 0
分别令A=0及 A=1代入这些 公式,即可证 明它们的正确 性。
重叠律: A A A A A A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (1)输出信号取自RC电路的电阻R两端。即
•
VO=VR
• (2)电路的时间常数应远小于输入的矩形脉冲的宽度。即
•
τ <<tw
• 通常,当 τ≤ 1/5 tw 是,可认为满足上述条件。
•
•二、RC积分电路
•RC积分电路也是一种常见的波形变换电路,它可以把矩形波变换成 三角波。
•电路构成如图:
R
•
隔时间。
0.9Um
Um
tw
0.1Um
tr
tf
• 三、数字信号
• 通常把脉冲的出现或消失用1和0来表示,这样一串脉 冲就变成由一串脉冲1和0组成的数码,这种信号称为 数字信号。
• 注:(1)、数字信号的0和1并不表示数量的大小,而 是代表电路的工作状态;
•
(2)、正逻辑:逻辑1为高电平,逻辑0为低
电平;
•(2)十进制数转换为二进制
•方法:除2取余逆序排列。 例如: (215)10=( ? )2
最低位
2 215 2 107 余1 2 53 余1 2 26 余1 2 13 余0
2 6 余1 2 3 余0 2 1 余1
0 余1 最高位 ∴ (215)10=(11010111)2
•(3)二进制数转换为十六进制数
+
•
vi
•
-
vo
C
•电路应具有如下条件:
•(1)输出信号取自RC电路的电容C两端。即
•
VO=VC
•(2)电路的时间常数应远大于输入的矩形脉冲的宽度。即
•
τ >>tw
•通常,当τ≥ 3 tw 时,可认为满足上述条件。
第三节 数制与码制
一、数制
数制:选取一定的进位规则,用多位数码来表示某个数的值。
1、 十进制 特点:有十个数码:0、1、2、3、4、5、6、7、8、9
数字电路基础
知识目标
了解数字电路特点及应用,熟知脉冲波形的五个主要参数;
掌握微分电路、积分电路的功能和电路构成条件;
熟知二进制、十六进制的表示方法,会进行数制间的转换。 熟知8421、5421、余3码的表示形式;
理解与门、或门、与非门、异或门的逻辑功能,熟知其图形 符号;
能对TTL非门电路的工作原理进行简要分析,了ห้องสมุดไป่ตู้TTL反相 器的基本特性。了解TTL与非门、异或门、集电极开路门、 三态门的功能及典型应用;
通过实验,初步掌握基本集成电路的逻辑 功能测试方法。
第一节 数字电路概述
一、数字电路的特点
(1)、电路结构简单,稳定可靠。数字电路只要能区 别高电平和低电平就可以,对元件的精度要求不高,因 此有利于实现数字电路集成化。
(2)、数字信号在传输时采用高、低电平二值信号, 因此数字电路抗干扰能力强,不易受外界干扰。
写法:(D)10——Decimal
或
n1
(D)10 Di 10i
im
基数:10
进位:逢十进一
2、 二进制
特点:有两个数码:0、1 写法:(B)2——Binary 或
n1
(B)2 Bi 2i im
基数:2
进位:逢二进一
3、十六进制 特点:有十六个数码:0、1、2、…、9、A、B、C、D、 E、F写法:(H)16——Hexadecimal 或 例如:(349)16=3×162+4×161+9×160=(841)10 (3AB.11)16=3×162+A×161+B×160+1×16-1+1×16-2
了解常用COMS门电路的基本工作原理,掌握COMS门电路 的使用常识;
会应用公式法和卡诺图法对逻辑函数进行化简。
技能目标
初步具有使用示波器观察脉冲波形并读出 主要参数的能力;
会查阅数字集成电路手册,能根据逻辑功 能选用和代换集成门电路;
掌握TTL和COMS 集成电路引脚识读方法, 掌握其使用常识;
•方法:将二进制数的整数部分自左向右每4位分为一组,最 后不足4位的,高位用零补足;小数部分自右向左每4位分为 一组,最后不足4位在右面补零。再把每四位二进制数对应 的十六进制数写出即可。
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1
(3)、数字电路不仅能完成数值运算,还可以进行逻 辑运算和判断。
(4)、数字电路中元件处于开关状态,功耗较小。
二、脉冲信号
脉冲信号是指持续时间极短的电压或电流信号。
各参数的含义:(1)脉冲幅度Um:脉冲从起始值到峰值之间的变化 幅度;
(2)脉冲前沿时间tr:脉冲从0.1Um变到0.9Um所需要的时间; (3)脉冲后沿时间tf:脉冲从0.9Um变到0.1Um所需要的时间; (4)脉冲宽度tW:脉冲前沿0.5Um到脉冲后沿0.5Um 之间的时间; (5)脉冲周期T:对于周期性脉冲,相邻两脉冲波对应点之间的间
=(0001 0010 0011A.11100 1011 1111)2
(4)十六进制数转换为二进制数
•方法:将每个十六进制数用四位二进制数表示,然后按十六进 制数的排序将四位二进制数排列好,就可得到相应的二进制数。
例:将十六进制数(7E6AD)16转化为二进制。 解: (7E6AD)16=(0111 1110 0110 1101) 例:将十六进制数(123A。CBF)16转化为二进制。 解: (123A.CBF)16
=(939.0664)10 基数:16
进位:逢十六进一 4、不同数制的转换
(1)二进制数转换为十进制
方法:把二进制数按权展开,再把每一位的位植相加, 即可得到相应的十进制数。 例如:(101.101)2=1×22+0×21+1×20+1×2-1+0×22+1×2-3
=4+0+1+1/2+0+1/8=(5.625)10
•
(3)、负逻辑:逻辑1为低电平,逻辑0为高
电平。
第二节RC电路的应用
•
用电阻R和电容C构成的电路叫RC电路,在数字电路中最常用的是RC微
分电路和RC积分电路。
•
一、 RC微分电路
•
RC微分电路是一种常见的波形变换电路,能够将矩形脉冲变换成尖脉冲。
• 电路构成如图:
c
•
+
•
vi
R
vo
•
-
• 电路应具有如下条件:
0 1 2 3 4 7 6 7
1 0 0 0 8 1 0 0 1 9 1 0 1 0 1 0 ( A ) 1 0 1 1 1 1 ( B ) 1 1 0 0 1 2 ( C ) 1 1 0 1 1 3 ( D ) 1 1 1 0 1 4 ( E ) 1 1 1 1 1 5 ( F )
例:(0101 1110. 1011 0010)2=(5E.B2 )16 5 E B2