对应分析
多元统计分析——对应分析
多元统计分析——对应分析多元统计分析是指在研究中同时考虑两个或多个自变量对因变量的影响,并通过统计方法进行分析。
对应分析是多元统计分析的一种方法,用于确定两个或多个分类变量之间的关联性。
对应分析可以帮助人们理解变量之间的相关性,并提供用于可视化和解释数据的工具。
在本文中,我们将详细介绍对应分析的概念、原理、应用以及一些重要的注意事项。
对应分析的应用非常广泛。
它可以用于数据挖掘、市场研究、生态学、社会科学等领域。
在市场研究中,对应分析可以用于确定消费者对产品的喜好和需求,帮助企业调整产品定位和市场战略。
在生态学中,对应分析可以用于研究不同物种之间的相互作用,并帮助我们了解生态系统的结构和动态。
在社会科学中,对应分析可以用于研究不同社会群体之间的关系,例如分析不同年龄段人群的消费行为和购买偏好。
然而,对应分析也需要注意一些重要的事项。
首先,对应分析是一种描述性的分析方法,不能确定因果关系。
其次,对应分析对数据的分布假设了一定的要求,例如对称分布、线性关系等。
如果数据的分布不满足这些假设,结果可能会不准确。
最后,对应分析通常在两个分类变量之间进行,而不适用于连续变量或混合类型的变量。
在总结中,对应分析是多元统计分析的一种方法,用于确定两个或多个分类变量之间的关联性。
它可以帮助我们理解变量之间的相关性,并提供用于可视化和解释数据的工具。
对应分析有着广泛的应用领域,但也需要注意一些重要的事项。
通过理解对应分析的原理和应用,我们可以更好地利用这一方法来分析和解释数据。
对应分析
p12 / p1. p22 / p2. p n 2 / pn .
p1 p / p1. p 2 p / p 2. pnp / pn.
pij n pij E ( ) = ∑ . pi. = p. j , j = 1,2,, p pi. i =1 pi.
因为原始变量的数量等级可能不同,所以为了尽 量减少各变量尺度差异,将行轮廓中的(各列元素) 均除以其期望的平方根.得矩阵D(R)
32 6
15 1
62 8
11 1
40 8
58 6
35 10
58 67
21 23
70 95
17 25
70 71
62 89
83 91
American European Japanese Large Medium Small Family Sporty Work 1 Income 2 Incomes Own Rent Married Married with Kids Single
变量的叉积矩阵
∑ R = (X* )′X* ( p × p)
样品的叉积矩阵
∑ Q = X* ( X* )′ ( n × n)
显而易见,变量和样品的叉积矩阵的阶数不同,一般来说, 显而易见,变量和样品的叉积矩阵的阶数不同,一般来说, 他们的非零特征根也不一样,那么能否将观测值做变换. 他们的非零特征根也不一样,那么能否将观测值做变换.
含义 雪糕 纯水 碳酸饮料 果汁饮料 保健食品 空调 洗衣机 毛毯
代码 Feel1 Feel2 Feel3 Feel4 Feel5 Feel6 Feel7 Feel8
含义 清爽 甘甜 欢快 纯净 安闲 个性 兴奋 高档
name1
product1 product2 product3 product4 product5 product6 product7 product8 feel1 feel2 feel3 feel4 feel5 feel6 feel7 feel8 50 508 55 109 34 11 30 2 368 217 19 142 16 2 4 3
多元统计分析-对应分析
03
列联表检验的零假设是两变量 X和Y 相互独立,计算一个卡方统计量,与列联表中频数取值 和零假设下期望取值之差有关,当卡方 很大时否定零假设。
BA
患慢性支 未患慢性 气管炎 支气管炎
吸烟
43
162
不吸烟
13
121
为了探讨吸烟与慢性支气管炎有无关系, 调查了339人,情况如表所示:
设想有两个随机变量A,B:A:1表示吸 烟,
对应分析
对应分析基本步骤: 建立列联表
利用对应图解释结 果。
1
2
3
一.获取对应分析 数据 确定研究目的, 选择对应分析 所需数据,应 该包括的背景 资料。
对应分析
4
5
二、对应分析 的原理
01
由于R型因子分析和 02
设原始数据矩阵为:
Q型因子分析是反映
一个整体的不同侧面,
R型因子分析是从列
来讨论(对变量),
k
特征根。
Zu k
设 1 2…
三、对应图u 1u 11u 21 A和l(0Bu <的p 1 i<非m零in特(n征,p根)),为其矩相阵应 u 2u 12u 22 的特征u p 向2量为
v 1 v 1 1v 2 1 v n 1 v 2 v 1 2 v 2 2 v n 2
我们知道因子载荷矩阵的含义是原始变量与公共因子之间的 相关系数,所以如果我们构造一个平面直角坐标系,将第一 公共因子的载荷与第二个公共因子的载荷看成平面上的点, 在坐标系中绘制散点图,则构成对应图。
Q型因子分析是从行
来讨论(对样品),
因此 在的
他们之
联 x系1。1
间
存在
x12
内
对应分析
p
∑ x1k=X1*
k=1
x21 x22 ⋯ x2 p
p
∑ x2k=X2*
k=1
⋮⋮
⋮
⋮
p
xn1 xn2 ⋯ xnp
∑ xnk= Xn*
k =1 np
∑ ∑ X*1 X*2 ⋯ X*p
xlk=X **=T
l=1 k=1
p11 p12 ⋯ p1 p
P1*
p21 p22 ⋯ p2 p
p2*
⋮⋮
⋮
⋮
pn1 pn2 ⋯ pnp
设有 n 个样品,每个样品观测 p 个指标,原始数据阵为
[ ] x11 x12 ⋯ x1p
X= x21 x22 ⋯ x2 p
⋮⋮
⋮
xn1 xn2 ⋯ xnp
x11 x12 ⋯ x1 p x21 x22 ⋯ x2 p
p
∑ x1k=X1*
k=1 p
∑ x2k=X2*
k=1
⋮⋮
⋮
⋮
其中,
n
∑ X*j= xij i=1
对应分析
可见 λk 也是ZZ’的特征根,相应的特征向量是 Zu k
因此将原始数据矩阵X变换成矩阵Z,则变量和 样品的协差阵分别可表示为 A = Z ′Z 和B=ZZ′ ,A和 B具有相同的非零特征值,相应的特征向量有很密 切的关系。 这样就可以用相同的因子轴去同时表示变量 和样品,把变量和样品同时反映在具有相同坐标 轴的因子平面上。
= ∑ z ak z aj
a =1
n
pak − pa. p.k xak − xa. x.k = z ak = pa. p.k xa. x.k
令Z为zij所组成的矩阵,则 A = Z′Z
p1 j 称 p. j
p2 j p. j
L
pnj x1 j = p. j x. j
L
第i个行变量的期望:
E( pij p. j )=∑
j =1 p
pij p. j
. p. j = pi.
因为原始变量的数量等级可能不同,所以为了尽量 减少各变量尺度差异,将列形象中的各行元素均除以 其期望的平方根。得矩阵D(Q)
p11 p.1 p1. p21 D (Q ) = p.1 p2. M p n1 p.1 pn. p12 p.2 p1. p22 p.2 p2. M pn 2 p.2 pn.
X ⋅ X*
*
′
x11 − x1 x21 − x1 L xn1 − x1 x11 − x1 x12 − x2 L x1p − xp x12 − x2 x22 − x2 L xn2 − x2 x21 − x1 x22 − x2 L x2 p − xp = × M M M M M M x − x x − x L x − x x −x x − x L x − x np p n1 1 n2 2 np p 1p p 2 p p
对应分析
对应分析法一、简介对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,是一种多元统计分析技术,主要分析定性数据的方法,也是强有力的数据图示化技术。
对应分析是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。
交互表的信息以图形的方式展示。
主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系,适用于两个或多个定类变量。
对应分析是由法国人Benzenci于1970年提出的,起初在法国和日本最为流行,然后引入到美国。
对应分析法是在R型和Q型因子分析的基础上发展起来的一种多元统计分析方法,因此对应分析又称为R-Q型因子分析。
在因子分析中,如果研究的对象是样品,则需采用Q型因子分析;如果研究的对象是变量,则需采用R型因子分析。
但是,这两种分析方法往往是相互对立的,必须分别对样品和变量进行处理。
因此,因子分析对于分析样品的属性和样品之间的内在联系,就比较困难,因为样品的属性是变值,而样品却是固定的。
于是就产生了对应分析法。
对应分析就克服了上述缺点,它综合了R型和Q型因子分析的优点,并将它们统一起来使得由R型的分析结果很容易得到Q型的分析结果,这就克服了Q 型分析计算量大的困难;更重要的是可以把变量和样品的载荷反映在相同的公因子轴上,这样就把变量和样品联系起来便于解释和推断。
对应分析数据的典型格式是列联表或交叉频数表。
常表示不同背景的消费者对若干产品或产品的属性的选择频率。
背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析;多个变量间——多元对应分析。
对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。
对应分析、典型相关分析、定性数据分析
应用领域的拓展
对应分析的应用领域 拓展
随着数据科学和商业智能的不断 发展,对应分析的应用领域将不 断拓展,如市场细分、消费者行 为分析、社交网络分析等,对应 分析将为这些领域提供更有效的 分析和预测工具。
典型相关分析的应用 领域拓展
典型相关分析作为一种重要的多 元统计分析方法,其应用领域也 将不断拓展,如生物信息学、环 境科学、金融风险管理等,典型 相关分析将为这些领域提供更准 确的数据分析和预测工具。
典型相关分析
能够揭示两组变量之间的关联,但需要较大的样本量, 且对异常值敏感。
定性数据分析
能够挖掘数据中的模式和规律,但主观性强,需要经 验丰富的分析师进行操作。
05
对应分析、典型相关分析、定性数据分析的 未来发展
CHAPTER
新方法的出现
对应分析的新方法
随着数据科学和统计学的不断发展,对应分析的新方法将不断涌现,如基于机器学习的对应分析方法、网络分析方法 等,这些新方法将为对应分析提供更强大的工具和更广泛的应用领域。
心理学研究
在心理学研究中,对应分析可用于揭示人类行为和心理状态之间的关系。
例如,它可以用于研究不同性格类型或心理状态的人在不同情境下的行
为反应。
02 典型相关分析
CHAPTER
典型相关分析的定义
典型相关分析是一种多元统计分析方 法,用于研究两组变量之间的相关关 系。
它通过寻找两组变量之间的典型相关 变量,来解释两组变量之间的相互关 系。
市场调研
在市场调研中,定性数据分析可用于深入了解消费者需求、 态度和行为,为产品定位和市场策略提供依据。
01
社会学研究
在社会学研究中,定性数据分析常用于 探究社会现象、文化差异和群体行为等, 以揭示社会结构和动态。
对应分析
STATA中对应分析应用
Syntax for predict:
predict [type] newvar [if] [in] [, statistic ] statistic description fit fitted values; the default rowscore(#) row score for dimension # colscore(#) column score for dimension #
STATA中对应分析应用
二元对应分析之后的统计量和作图
command description cabiplot biplot of row and column points caprojection CA dimension projection plot estat coordinates display row and column coordinates estat distances display chi-squared distances between row and column profiles estat inertia display inertia contributions of the individual cells estat loadings display correlations of profiles and axes("loadings") estat profiles display row and column profiles + estat summarize estimation sample summary(not available after camat.) estat table display fitted correspondence table screeplot plot singular values + predict fitted values, row coordinates, or column
对应分析
对应分析对应分析的基本思想对应分析( Correspondence Analysis )又称为相应分析,是由法国统计学家于1970提出的,是在R型和Q型因子分析基础上,发展起来的一种多元相依的变量统计分析技术。
它通过分析由定性变量构成的交互汇总表来揭示变量间的关系。
当以变量的一系列类别以及这些类别的分布图来描述变量之间的联系时,使用这一分析技术可以揭示同一变量的各个类别之间的差异以及不同变量各个类别之间的对应关系。
对应分析方法是通过对交互表的频数分析来确定变量及其类别之间的关系。
例如,在分析顾客对不同品牌商品的偏好时,可以将商品与顾客的性别、收入水平、职业等进行交叉汇总,汇总表中的每一项数字都代表着某一类顾客喜欢某一品牌的人数,这一人数也就是这类顾客与这一品牌的“对应”点,代表着不同特点的顾客与品牌之间的联系。
通过对应分析,可以把品牌、顾客特点以及它们之间的联系同时反映在一个二维或三维的分布图上,顾客认为比较相似的品牌在图上的分布就会彼此靠近在一起。
根据顾客特点与每一品牌之间的距离,就可以判断它们之间关系的密切程度。
在对应分析中,每个变量的类别差异是通过直观图上的分值距离来表示。
这个距离并不是我们通常所说的距离,而是经过加权的距离,在加权的过程中,以卡方值的差异表现出来。
因此,对应分析的基础是将卡方值转变为可度量的距离。
卡方值是由累计交叉汇总表中每一交互组的实际频数与期望频数的差值计算得出。
如果卡方值是负值,就说明这一单元中实际发生频数低于期望频数。
每一单元格(每个行变量类别与列变量类别在表中的交叉点)频数的期望值取决于它在行分布中所占比例和列分布中所占比例。
如果某一单元格的卡方值是正值,而且数值很大,就说明这一单元格对应的行变量与列变量有很强的对应关系,这两个类别在图上的距离就会很近。
反之,若为负值,则在图上的距离就会远。
总之,对应分析是通过对定性变量构成的交互表进行分析,将定性变量的数据转变成可度量的分值,减少维度并做出分值分布图。
对应分析-PPT课件
d i a g, p ,, p 其中 D 。 r 1 p 2 p
列轮廓矩阵
, cq p11 p1 p21 p1 p p1 p1 p12 p2 p22 p2 pp2 p2 p1q pq p2 q pq p pq pq
列轮廓矩阵为
0 . 2 3 9 0 3 7 1 1 . C P D c 0 . 2 2 1 0 . 1 7 0 0 . 1 9 9 0 . 3 6 6 0 . 2 2 6 0 . 2 0 9 0 . 1 8 8 0 . 3 6 7 0 . 2 0 1 0 . 2 4 5 0 . 1 3 6 0 . 3 6 6 0 . 2 0 4 0 . 2 9 4 0 . 0 9 7 0 . 3 2 7 0 . 2 4 9 0 . 3 2 7
二、对应矩阵
q q p p n n n i j i j i j p , p p , p p 这里, i 。 j i i j j i j n n n j 1 j 1 i 1 i 1
显然有
p p
i1 i j 1
p
q
j
1 。
q
j 1
n ij 为第 i 行的频数之
1 , 2 , ,p 和, i ; n j
p
n
i 1
q
p
ij
为第 j 列的频数之和,
p q
n n n j 1 , 2 , ,q ;n i j i j为所有类别组
i 1 j 1 i 1j 1
合的频数总和。
对应分析
对应分析(correspondence analysis)是用于寻求列 联表的行和列之间联系的一种低维图形表示法,它 可以从直觉上揭示出同一分类变量的各个类别之间 的差异,以及不同分类变量各个类别之间的对应关 系。 对应分析是由法国人Benzecri于1970年提出的,起 初在法国和日本最为流行,然后引入美国。 在对应分析中,列联表的每一行对应(通常是二维) 图中的一点,每一列也对应同一图中的一点。本质 上,这些点都是列联表的各行各列向一个二维欧式 空间的投影,这种投影最大限度地保持了各行(或 各列)之间的关系。
对应分析
对应分析是1970年法国巴黎科学院统计研究室的
Bezecri教授首先提出的,1977年引入国内。对应分析是在
因子分析的基础上发展起来的一种新的因子分析方法。
找出代表性指标,进 行地质成因解释 R—型 研究指标 因子分析 Q—型 研究样品 方法 找出代表性样品,进 行地质作用解释 特征值
因子分析的优点
1、降维,即化多为少,以少代多; 2、浓缩,即把多个指标的分散信息集中到少数几个主因子上;
3、分割,即把具有复杂相关关系的指标分割成各个不同特征的独立类型。
因子分析的缺点
1、割裂 即把R—型与Q—型截然分开,割断了指标与样品间的联系,损
失了一些指标的信息; 2、局限 即对Q—型因子分析,当N很大时,求逆、求特征值都很困难,
1 1
k
p
确定主因子数 K(K=2,3)一般取 K= 2 或 3 即可。
(3)计算因子载荷矩阵; F1 F2 FK x1 u11 1 , u12 2 , , u1k k
x2 u21 1 , u22 2 , , u2 k k F x p u p1 1 , u p 2 2 , , u pk k
p
.l
i.
p l .
i 1
p
p
pi k p. i p k pi l p i.p l . . p p.k pi. p. i. l
i l
Zi kZ
i 1
即: BN N Z N P Z PN
A与B之间存在着简单的对应关系,即认为从Xij 到 Zij 的变换对指标和样品是对等的
x Pi. Pij i. T j 1
第九章 对应分析
应用多元统计分析第九章对应分析对应分析又称相应分析,于1970年由法国统计学家J.P.Beozecri提出的.它是在R型和Q型因子分析基础上发展起来的多元统计分析方法,故也称为R-Q型因子分析.因子分析方法是用少数几个公共因子去提取研究对象的绝大部分信息,既减少了因子的数目,又把握住了研究对象的相互关系.在因子分析中根据研究对象的不同,分为R型和Q型,如果研究变量间的相互关系时采用R型因子分析;如果研究样品间相互关系时采用Q型因子分析.无论是R型或Q型都未能很好地揭示变量和样品间的双重关系.另方面在处理实际问题中,样本的大小经常是比变量个数多得多.当样品个数n很大(如n>100),进行Q型因子分析时,计算n阶方阵的特征值和特征向量对于微型计算机的容量和速度都是难以胜任的.还有进行数据处理时,为了将数量级相差很大的变量进行比较,常常先对变量作标准化处理,然而这种标准化处理对于变量和样品是非对等的,这给寻找R型和Q型之间的联系带来一定的困难.第九章什么是对应分析对应分析方法是在因子分析的基础上发展起来的,它对原始数据采用适当的标度方法.把R型和Q型分析结合起来,同时得到两方面的结果---在同一因子平面上对变量和样品一块进行分类,从而揭示所研究的样品和变量间的内在联系.对应分析由R 型因子分析的结果,可以很容易地得到Q 型因子分析的结果,这不仅克服样品量大时作Q 型因子分析所带来计算上的困难,且把R 型和Q 型因子分析统一起来,把样品点和变量点同时反映到相同的因子轴上,这就便于我们对研究的对象进行解释和推断. 第九章 对应分析的基本思想由于R 型因子分析和Q 型分析都是反映一个整体的不同侧面,因而它们之间一定存在内在的联系. 对应分析就是通过一个变换后的过渡矩阵Z 将二者有机地结合起来.具体地说,首先给出变量间的协差阵R S =Z'Z 和样品间的协差阵Q S =ZZ' ,由于Z'Z 和ZZ'有相同的非零特征根,记为12...m λλλ≥≥≥,如果R S 的特征根i λ对应的特征向量为i v ,则Q S 的特征根i λ对应的特征向量i u Zv =由此可以很方便地由R 型因子分析而得到Q 型因子分析的结果.对应分析的基本思想由A 的特征根和特征向量即可写出R 型因子分析的因子载荷阵(记为R A )和Q 型因子分析的因子载荷阵(记为Q A ).§9.1 什么是对应分析基本思想由于A和B具有相同的非零特征根,而这些特征根又正是各个公共因子的方差,因此可以用相同的因子轴同时表示变量点和样品点,即把变量点和样品点同时反映在具有相同坐标轴的因子平面上,以便对变量点和样品点一起考虑进行分类.第十章典型相关分析相关分析是研究多个变量与多个变量之间的相关关系.如研究两个随机变量之间的相关关系可用简单相关系数表示;研究一个随机变量与多个随机变量之间的相关关系可用全相关系数表示.1936年Hotelling首先将相关分析推广到研究多个随机变量与多个随机变量之间的相关关系,故而产生了典型相关分析,广义相关系数等一些有用的方法.第十章什么是典型相关分析在实际问题中,经常遇到要研究一部分变量和另一部分变量之间的相关关系,例如:在工业中,考察原料的主要质量指标(1,.....,p X X ) 与产品的主要质量指标(1,.....,p Y Y )间的相关性;在经济学中,研究主要肉类的价格与销售量之间的相关性; 在地质学中,为研究岩石形成的成因关系,考察岩石的化学成份与其周围围岩化学成份的相关性;在气象学中为分析预报24小时后天气的可靠程度,研究当天和前一天气象因子间的相关关系;第十章 什么是典型相关分析在教育学中,研究学生在高考的各科成绩与高二年级各主科成绩间的相关关系;在婚姻的研究中,考察小伙子对追求姑娘的主要指标与姑娘想往的小伙子的主要尺度之间的相关关系;在医学中,研究患某种疾病病人的各种症状程度与用科学方法检查的一些结果之间的相关关系;在体育学中,研究运动员的体力测试指标与运动能力指标之间的相关关系等.第十章 什么是典型相关分析一般地,假设有一组变量1,.....,p X X 与另一组变量1,.....,p Y Y (也可以记为1,....,p p q X X ++),我们要研究这两组变量的相关关系,如何给两组变量之间的相关性以数量的描述,这就是本章研究的典型相关分析.当p=q=1时,就是研究两个变量X 与Y 之间的相关关系.简单相关系数是最常见的度量.其定义为第十章 什么是典型相关分析当p ≥ 1 ,q=1时(或 q ≥ 1 , p =1) 设 则称为Y 与(X1,…,Xp) 的全相关系数.其实Y 对X 的回归为1(|)()()Y YX XX X E Y X x def x μμϕ-=+∑∑-且 并称R 为全相关系数 .第十章 什么是典型相关分析当p,q>1时,利用主成分分析的思想,可以把多个变量与多个变量之间的相关化为两个新变量之间的相关.也就是求α=(α1,…, αp ) '和β =(β1,…, βq ) ' , 使得新变量:V = α1X 1+…+αp X p = α 'X1~(,),0XX XY p YX YY X N Y μσ+∑∑⎛⎫⎛⎫∑∑=> ⎪ ⎪∑⎝⎭⎝⎭1/21YX XX XY YY R σ-⎛⎫∑∑∑= ⎪⎝⎭(,())Y x Rρϕ=W = β1Y 1+…+ βq Y q = β 'Y 之间有最大可能的相关,基于这个思想就产生了典型相关分析(Canonical correlatinal analysis).第十章 总体典型相关设X=(X1,...,Xp )及Y=(Y1,...,Yq)为随机向量(不妨设p ≤q),记随机向量Z 的协差阵为 其中Σ11是X 的协差阵,Σ22是Y 的协差阵,Σ12=Σ’21是X,Y 的协差阵. 第十章 总体典型相关我们用X 和Y 的线性组合V=a X 和W=b Y 之间的相关来研究X 和Y 之间的相关.我们希望找到a 和b,使ρ(V,W) 最大.由相关系数的定义:又已知⎪⎭⎫ ⎝⎛∑∑∑∑=∑22211211第十章总体典型相关故有对任给常数c1,c2,d1,d2,显然有ρ(c1V+d1, c2W+d2)=ρ(V,W)即使得相关系数最大的V=a'X和W=b'X并不唯一.故加附加约束条件 Var(V)=a'Σ11a=1,Var(W)=b'Σ22b=1.问题化为在约束条件Var(V)= 1,Var(W)=1下,求a和b,使得ρ(V,W)= a'Σ12b达最大 .第十章样本典型相关设总体Z=(X1,...,X p,Y1,…,Y q )’.在实际问题中,总体的均值E(Z)= 和协差阵D(Z)= 通常是未知的,因而无法求得总体的典型相关变量和典型相关系数.首先需要根据观测到的样本资料阵对其进行估计.已知总体Z的n个样品:第十章 样本典型相关样本资料阵为若假定Z ~N(μ,∑),则协差阵 的最大似然估 计为第十章 样本典型相关我们从协差阵 的最大似然估计S*(或样本协差阵S)出发,按上节的方法可以导出样本典型相关变量和样本典型相关系数.还可以证明样本典型相关变量和样本典型相关系数是总体典型相关变量和样本典型相关系数的极大似然估计.也可以从样本相关阵R 出发来导出样本典型相关变量和样本典型相关系数.第十章 样本典型相关典型相关系数的显著性检验:总体Z 的两组变量X=(X 1,...,X p )’和Y =(Y 1, …,Y q )’如果不相()()()()1(1,2,...,)t t t p q X Z t n Y +⨯⎛⎫== ⎪⎝⎭'()()11()()nt t t Z Z Z Z def Sn ∧=∑=--∑关,即COV(X,Y )=∑12=0,以上有关两组变量典型相关的讨论就毫无意义.故在讨论两组变量间相关关系之前,应首先对以下假设H 0作统计检验.(1) 检验H 0 : ∑12=0 (即λ1=0)设总体Z ~N p+q (μ,∑).用似然比方法可导出检验H 0的似然比统计量为(A ,A 11,A 22为离差阵)第十章 样本典型相关典型相关系数的显著性检验 (2)检验H 0(i): λi =0 (i =2,...,p )当否定H 0时,表明X,Y 相关,进而可得出至少第一个典型相关系数λ1≠ 0.相应的第一对典型相关变量V 1,W 1可能已经提取了两组变量相关关系的绝大部分信息.在实际问题中,经常迂到需要研究两组多重相关变量间的相互依赖关系,并研究用一组变量(常称为自变量或预测变量)去预测另一组变量(常称为因变量或响应变量),除了最小二乘准则下的经典多元线性回归分析(MLR),提取自变量组主成分的主成分回归分析(PCR)等方11221122||||||A S A A S S Λ==⨯⨯法外,还有近年发展起来的偏最小二乘(PLS)回归方法.第十一章什么是偏最小二乘回归偏最小二乘回归提供一种多对多线性回归建模的方法,特别当两组变量的个数很多,且都存在多重相关性,而观测数据的数量(样本量)又较少时,用偏最小二乘回归建立的模型具有传统的经典回归分析等方法所没有的优点。
对应分析
对应分析对应分析的基本思想对应分析(Correspondence Analysis)又称为相应分析,是由法国统计学家于1970提出的,是在R型和Q型因子分析基础上,发展起来的一种多元相依的变量统计分析技术。
它通过分析由定性变量构成的交互汇总表来揭示变量间的关系。
当以变量的一系列类别以及这些类别的分布图来描述变量之间的联系时,使用这一分析技术可以揭示同一变量的各个类别之间的差异以及不同变量各个类别之间的对应关系。
汇总表中分值,1(点))2.主成分(principal components):通过主成分分析,可以在以两个主成分为坐标的空间中,标出行轮廓或列轮廓,或同时标出行、列轮廓,从而探索它们之间的关系。
这种近似的表示行轮廓和列轮廓的图形叫对应图。
3.惯量(inertials)和特征值(eigenvalues):惯量是度量行轮廓和列轮廓的变差的统计量。
总惯量表示轮廓点的全部变差,作图用的前两个维度分别对应于两个主惯量(principal inertias),表示在坐标方向上的变差;主惯量就是对行轮廓和列轮廓作主成分分析时得到的特征值,特征值的平方根叫奇异值(singular values)。
4.卡方(Chi-square)、似然比卡方(likelihood ratio Chi-square)、曼图—汉斯泽鲁卡方(Mantel-Haenszel Chi-square)、法系数(phi-coefficient)、列联系数(contingency coefficient),这些均是检验对应分析显着性或近似效果的统计量。
实例分析[例11-1]某公司进行一次市场调查,得到轿车特征与一些用户特征的数据。
如有:轿车大小(大、中、小)、轿车类型(家用型、跑车、商用车)、收入(一份收入、双份收入)、状态(已婚、已婚有孩子、未婚、未婚有孩子)、房子(租房、买房)等数据。
现请分析它们之间的联系。
以下是spss11.0作出的对应图:从对应图可以推断出下面一些结论:1.已婚有孩子、家用车和中型车相关性较大。
对应分析
对应分析
对应分析适用于:两个大类(可以看做一个行和一个列)中每个大类的细分指标的相关关系研究。
例如有A和B两大类,A中有A1-A5五个类型,B中有B1-B5五个类型。
研究这些细分类型的相关关系。
首先做卡方检验(行列相关性分析,当P<0.05时,说明行和列中的指标有相关性),然后进行对应分析。
一、进行卡方检验,检验分组之间的相关性。
通过卡方检验,P<0.05。
说明这两组数据间有相关性。
二、对应分析
有两组变量,分别设为行和列;再定义范围,每组有几个小变量就是它的范围。
三、对应分析的卡方检验
通过卡方检验,P<0.05。
说明这两组数据间有相关性
四、分析图
五、结论
1、靠近原点的没有意义。
2、在同一个象限的,趋势相同的,说明有相关性。
3、第四象限:眼深色比其他眼睛颜色而言,头发出现深色和黑色的比例高。
4、第三象限:头发金色比其他颜色而言,眼睛出现浅色和蓝色的比例高。
最优尺度分析
最优尺度分析是对应分析的升级版,适用于:多个大类(大于等与3个大类)中每个大类的细分指标的相关关系研究。
例如有A、B 和C三大类,A中有A1-A5五个类型,B中有B1-B5五个类型,C中有C1-C5五个类型,类型间的相互关系。
对应分析
2.对应分析和Q型因子分析结合起来 进行的统计分析,它从R型因子分析出发,而直接获 得Q型因子分析,简化了计算量。 (2)根据R型和Q型因子分析的内在联系,将指标和样 品同时反应到坐标轴上,便于对问题的分析。比如将 图形上临近的一些样品点则表示他们的关系密切归为 一类,同样临近的一些变量点则表示他们的关系密切 归为一类,而且属于同一类型的样品点,可用临近的 变量点来表征。 (3)对应分析概括起来可以提供三方面的信息,即指 标间的信息,样品间的关系,指标与样品之间的关系。
3.对应分析的基本思想
对应是通过一个过渡矩阵Z将R型分析和Q型分析有机 地结合起来。具体地,首先给出变量的协差阵A=Z’Z 和样本点的协差阵B=ZZ‘。由于二者有相同的特征根, 因此可以通过R型因子分析的载荷矩阵得到Q型因子 的载荷矩阵。 由于A和B有相同的非零特征根,而这些特征跟有是 各个公因子的方差,因此可以用相同的因子轴同时表 示变量点和样品点,即把变量点和样品点同时反映在 具有相同坐标轴的因子平面上,以便对变量点和样品 点一起考虑进行分类。
多元统计分析
第七章 对应分析
一、什么是对应分析
1.什么是对应分析 对应分析是一种在R型和Q型因子分析基础上发展起来的一种多元统
计方法,对应分析又称相应分析。
对应分析概念首先由法国统计学家J.P.Beozecri在1970年提出。
多元统计分析
2.对应分析的作用(一)
因子分析可以用较少的几个公共因子去提取研究对象的 绝大部分信息,即可以减少因子的数目,有把握了研究 对象之间的相互关系。但是因子分析根据研究对象的不 同又分为R型因子分析和Q型因子分析。即对指标(变 量)做因子分析和对样本作因子分析是分开进行的,这 样做往往会漏掉一些指标与样品的信息。 另外,在处理实际问题中,样本的个数远远大于变量个 数,比如有100个样品,每个样品测10项指标,要作Q 型因子分析,计算100*100阶相似矩阵的特征根和特征 向量,一般的计算是难以胜任的。
对应分析
对应分析(Correspondence Analysis)在进行数据分析时,经常要研究两个定性变量(品质变量)之间的相关关系。
我们曾经介绍过使用列联表和卡方检验来检验两个品质变量之间相关性的方法,但是该方法存在一定的局限性。
卡方检验只能对两个变量之间是否存在相关性进行检验,而无法衡量两个品质型变量各水平之间的内在联系。
例如,汽车按产品类型可以分豪华型、商务型、节能型、耐用型,按销售区域可分为华北区、华南区、华中区、华东区、西南区、西北区、东北区。
利用卡方检验,只能检验销售地区与对型的偏好之间是否相关,但无法知道不同地区的消费者到底比较偏好哪种车型。
对应分析方法(Correspondence Analysis)又称相应分析、关联分析,是一种多元相依变量统计分析技术,是对两个定性变量(因素)的多种水平之间的对应性进行研究,通过分析由定性变量构成的交互汇总数据来解释变量之间的内在联系。
同时,使用这种分析技术还可以揭示同一变量的各个类别之间的差异以及不同变量各个类别之间的对应关系。
特别是当分类变量的层级数比较大时,对应分析可以将列联表中众多的行和列的关系在低维的空间中表示出来。
而且,变量划分的类别越多,这种方法的优势就越明显。
对应分析以两变量的交叉列联表为研究对象,利用“降维”的方法,通过图形的方式,直观揭示变量不同类别之间的联系,特别适合于多分类定性变量的研究。
对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
它最大特点是能把众多的样品和众多的变量同时作到同一张图上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。
另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。
该统计研究技术在市场细分、产品定位、品牌形象以及满意度研究等领域得到了广泛的运用。
对应分析
对应分析对应分析是指在进行某种事物或情况时,通过对应关系的分析来进行推理、研究或解决问题的方法。
在不涉及AI和人工智能的情况下,对应分析可以应用于各种领域和问题,例如产品定位、市场调研、销售策略等等。
下面将简要介绍对应分析的相关概念和应用。
对应分析是一种基于对应关系的研究方法。
对应关系是指在两个事物、情况或变量之间存在一种相互联系或相互影响的关系。
通过对这种关系进行分析,可以揭示隐藏在数据背后的规律和趋势,帮助人们做出决策和解决问题。
在实际应用中,对应分析可以用于产品定位。
产品定位是指将一种产品或服务与目标市场中其他产品或服务区分开来,使其在市场中具有独特的竞争优势。
通过对目标市场中其他产品的特点和消费者需求进行对应分析,可以找到产品定位的破局点,从而设计出能够满足消费者需求并有竞争力的产品。
另外,对应分析也可以用于市场调研。
市场调研是指通过各种研究方法和技术,对市场中的消费者需求、竞争对手、市场环境等进行调查和分析,为企业的决策提供可靠的数据支持。
通过对消费者需求与产品特点、价格、品牌等进行对应分析,可以了解到消费者的购买动机和购买偏好,进而制定有针对性的市场策略。
此外,对应分析还可以应用于销售策略。
销售策略是指企业通过制定一系列销售计划和策略,以实现销售目标的过程。
通过对销售数据、市场需求和竞争对手等因素进行对应分析,可以找出市场中的机会和挑战,为销售策略的制定提供指导。
总而言之,对应分析是一种揭示数据背后规律和趋势的方法。
通过对数据和情况之间的对应关系进行分析,可以帮助人们做出决策和解决问题。
在产品定位、市场调研和销售策略等方面,对应分析都有重要的应用价值。
对应分析不仅能够帮助企业了解市场需求和消费者偏好,还可以为企业的决策提供科学依据。
对应分析
日常分析中,经常会做的是研究变量间的关系,对于分类变量,常用的方法是卡方检验、Logistic模型等,但是对于分类变量很多,或者分类变量的类别很多时,用上述方法除了就会非常复杂,并且结果解释起来也不够直观,此时,可以使用对应分析加以分析。
对应分析也称为关联分析,是一种多元统计分析技术,目的在于揭示变量之间或变量各类别之间相互关系的多元统计分析方法,主要特点是可以将众多变量同时呈现在一张图表上,因此也是一种数据图示化技术。
根据分析资料的类型不同,对应分析根据数据资料的不同,分为1.定性资料:基于频数的对应分析2.连续性资料:基于均值的对应分析在定性资料中,对两个分类变量进行的对应分析称为简单对应分析,对两个以上的分类变量进行的对应分析称为多重对应分析。
要注意,对应分析并没有涉及统计检验,只是通过数据变换与计算,得出每个变量在图中的坐标,并加以图表展现,因此对应分析是一种描述性统计方法。
由于对应分析特别适合分类变量、定性数据的分析,加之其在图形展示上的优势,因此在市场分析领域应用很广。
一、对应分析的基本思想由于对应分析最大优势是直观的图形展示,因此确定对应分析图中的坐标值,是该分析方法的主要工作。
对应分析的基本思想是在一个两变量列联表的基础上提取信息,将变量内部各水平之间的联系以及变量与变量之间的联系通过坐标值反映在一张二维或三维的散点图上,并使关系紧密的类别点聚集在一起,而关系疏远的类别点距离较远。
那么如何确定坐标值呢?做法如下:首先计算两变量列联表的概率矩阵P,并据此确定数据点坐标,在变量的类别较多时,数据点所在空间维数必然较高。
由于高维空间比较抽象,且高维空间中的数据点很难直观地表示出来,因此最直接的解决方法便是降维。
对应分析采用类似因子分析的方式分别对行变量类别和列变量类别实施降维,并以因子载荷为坐标,将行列变量的多个分类点直观地表示在对应分布图中,实现了定性变量各类别间差异的量化。
通过观察对应分布图中各数据点的远近就能判断各类别之间联系的强弱。
《多元统计分析讲义》第七章对应分析
*
XXX
*
目录 上页 下页 返回 结束
§7.2 对应分析的基本理论
7.2.2 对应分析的基本理论 经过以上数据变换,在引入加权距离函数之后,或是 对行剖面集的各点进行式(7.8)的变换,对列剖面的各 点进行类似变换之后,就可以直接计算属性变量各状 态之间的距离,通过距离的大小来反映各状态之间的 接近程度,同类型的状态之间距离应当较短,而不同 类型的状态之间的距离应当较长,据此可以对各种状 态进行分类以简化数据结构。但是,这样做不能对两 个属性变量同时进行分析,因此不计算距离,代之求 协方差矩阵,进行因子分析,提取主因子,用主因子 所定义的坐标轴作为参照系,对两个变量的各状态进 行分析。
*
XXX
*
目录 上页 下页 返回 结束
§7.4对应分析的上机实现
打开GSS93 subset.sav数据,对变量Degree与变量Race进行对 应分析,依次点选Analyze→Data Reduction→Correspondence Analysis…进入Correspondence Analysis对话框。数据集中所 有的变量名(标签)均已出现左边的窗口中,将Degree变量 选入右侧行变量(Row)的小窗口中,此时该窗口显示的Degree 变量形如:Degree(? ?),同时,其下方的Define Range按钮被 击活,点击该按钮,进入Define Row Range对话框,在该对 话框中需要确定Degree变量的取值范围,此处我们不研究缺 失值,最小值(minimum value)与最大值(maximum value)处分 别填上0和4,按右侧的update(更新)按钮,可以看到Degree的 取值0—4已出现在Category Constraints框架左侧的窗口中,该 框架的作用是对Degree的各状态加以限定条件的,保持默认 值none不变,即对Degree的取值不加以限定条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.对应分析对应分析表(A correspondence table)是一个两维表(two-way table),表中的单元包含行变量和列表量之间对应测度的一些信息。
所谓的对应测度(The measure of correspondence),可以表明行变量或列变量之间的近似程度(similarity)、密切关系(affinity)、复杂关系(confusion)、关联程度(association)或交互作用(interaction)。
交叉列联表(a crosstabulation)是对应分析表中最普通的一种类型,该表中的单元格包含频数(计数)。
利用SPSS中的列联表分析也可以得到交叉列联表,但是交叉列联表并不总是能够清晰地刻画出行变量和列变量之间的本质关系。
当我们所感兴趣的变量是名义变量(没有内在的次序或秩序)同时还包含很多类型时,这种问题尤其突出。
一个有关职业和早餐谷类食品的交叉列联表,也许能够告诉我们观测单元频数和期望频数是否存在显著差异,但是它很难识别出从事何种职业的人们喜欢哪种类似的早餐食品,同时也很难对早餐口味进行归类。
利用多维空间图形,对应分析可以分析两个名义变量之间的关系。
这种图形称为对应分析图,是利用计算出来的行变量和列变量得分而绘制的。
变量中相似的类型在图形中比较接近,因此通过这种方法可以很容易看出某个变量的哪些类型和其它类型相似,也可以分析出行变量和列变量的哪些类型存在相关性。
SPSS的对应分析方法还容许用辅助点(supplementary points)对根据活动点定义出的空间进行拟合。
如果没有办法根据类型的得分排序,或者这种排序与我们的直觉不相符,那么可以设定某些类型的得分相同,实际上就是对类型的次序设定限定条件。
比如说,我们预期变量“吸烟行为”有四个类型:不吸烟、少量吸烟、适度吸烟和大量吸烟,每一类型都有对应于次序的得分,但是对应分析对这四个类型进行排序时,可以限定适度吸烟和大量吸烟的得分相同。
利用距离来进行对应分析依赖于我们所使用的正态化方法。
对应分析可用来分析一个变量类型之间的差异,同时也可以分析变量(行变量和列变量)之间的差异。
在默认的正态化方法下下,SPSS的对应分析主要用来研究行变量与列变量之间的差异(。
对应分析算法可以进行各种类型的分析。
标准的对应分析以行变量和列变量为中心并且分析这两个变量之间的开方距离。
但是也有其它的中心选项,利用欧式距离,并且以低维空间的矩阵作为代表。
正态化过程将惯量分布到行变量和列变量得分上,不管采用哪种类型的正态化方法,对应分析的某些输出结果,比如奇异值(the singular values)、每个维度的惯量(the inertia per dimension)和贡献度(contributions)并不发生变化。
但是行变量得分、列变量得分和它们的方差却受到正态化方法的影响。
对应分析有多种分散惯量的方法,最常用的方法是将惯量仅仅分散到行得分或列得分上,或者将它对称分散到行得分或者列得分上。
对应分析有下面四种正态化方法:1、行主成分法(Row principal):在行主成分正态化过程中,行点之间的欧氏距离(Euclidean distances)近似于对应分析表中行变量之间的开方距离,行得分是列得分的加权平均,列得分要进行标准化,使得其平方距离的加权和为1(质心)。
由于主成分正态化方法对行类型距离取最大值,如果我们仅仅对行变量各类型之间的差距感兴趣,那么就应该使用这种方法;2、列主成分法(Column principal):在另外一个方面,列点之间的欧氏距离(Euclidean distances)近似于对应分析表中行变量之间的开方距离,此时列得分是行得分的加权平均,行得分要进行标准化,使得其平方距离的加权和为1(质心)。
列成分正态化方法对列类型距离取最大值,如果我们仅对列变量各类型之间的差距感兴趣,那么就应该使用这种方法;3、对称法(Symmetrical):行变量和列变量可以按照一视同仁的方法来处理,这种对称正态化方法将相同的惯量分布到行得分和列得分上。
需要注意的时,此时行点距离或者列点距离与开方距离都不存在近似相等关系,如果我们对两组变量间的差异性或者近似性感兴趣,通常使用这种方法;使用这种方法时,通常还要绘制二维图。
4、主成分法(Principal):第四个选项是主成分正态化(principal normalization),利用这种方法在进行对应分析时,惯量要被分散两次,一次是分散到行得分上,另外一次是分散到列得分上。
如果我们仅对行点之间的距离和列点之间的距离感兴趣,但是并不关心行点和列点之间的关系时,可以使用这种方法。
使用主成分正态化方法时,绘制二维图就不合适了,因此我们使用主成分正态化方法时,就不能选择输出二维图。
例1 吸烟行为与工作类型的关系前面的分析中已经提到过,对应分析的主要目标是利用对应表显示行变量和列变量之间的关系。
本例中使用的数据来自Greenacre(1984),利用他假设的数据来分析职员类型和吸烟之间的关系。
下表是数据中使用的变量名、变量标签和变量标签值:其中变量staff最后一个类型(National Average)和smoke的最后两个类型(No Alcohol 和Alcohol)在分析中作为辅助(supplementary)类型。
打开SPSS中tutorial\sample files文件夹中的smoking.sav .数据文件中的个案以计数值进行了加权,因此在分析之前要以变量count为权数,对个案进行加权,点击Data→Weight Cases...,进入加权个案对话框;选择变量count,移入Weight cases by下Frequency Variable文本框中,点击OK按钮,完成个案的加权;首先使用行主成分正态化的方法来进行对应分析,点击Analyze→Data Reduction→Correspondence Analysis...,进入对应分析对话框;从左侧变量列表框中选择Staff Group为行变量,移入Row Variable方框中,点击Define 按钮,进入定义行变量范围对话框;在minimum value后键入1,maximum value后键入5,设定行变量的类型数为5个,点击Update后再键入Continue按钮,回到对应分析对话框;选定Smoking为列变量,移入Column Variable方框中,点击Define Range按钮,也进入定义行变量范围对话框;在minimum value后键入1,maximum value后键入4,设定列变量的类型数为4个,点击Update后再键入Continue按钮,回到对应分析对话框点击Statistics ,进入对应分析统计量对话框;增加Row profiles 、Column profiles 、Permutations of the correspondence table 以及Confidence Statistics for 下的Row points 和Column points 这几个选项,点击Continue 按钮,回到对应分析对话框,点击OK 按钮,输出对应分析结果。
对应表(correspondence table)显示列变量smoking behavior 和行变量staff group 的分布,也就是说表中每一行对应一类职员,每一列对应一种吸烟行为。
行边际总和(The marginal row totals)显示该公司的高级职员有51人,低级职员有88人,他们的人数远远多于管理人员和秘书;但是高级管理人员(Sr Managers)和低级管理人员(Jr Managers)的吸烟行为的分布,与高级职员和低级职员的情况是非常相似的。
观察列边际总和(column totals),发现不吸烟的人数(nonsmokers)和适度吸烟的人(medium smokers)大体相等。
但是考虑到吸烟行为以后,各种职员是否有某种共同点?工作类型和吸烟行为是否存在某种关系?要回答这些问题还要进行下面的分析。
在理想状态下,对应分析应该在尽可能低的维度中反映出行变量和列变量中的关系。
但是看看上面综述表(Summary)中的最大维度数,可以了解每一维度的相对重要性。
分别将(活动的,active rows)行变量数和(活动的,active columns)列变量数减去1,取它们的最小值,就得到最大维度数(即()min 1,1r c --)。
比如本例中真正进入分析过程的行变量有5个类型,列变量有四个类型,因此本例最多有3个维度(()min 51,413--=)。
从综述表中可以看到第一维度的惯量(inertia ,测度数据变动程度的统计量)最大;第二维度的惯量与第一维度的惯量正交,而且它尽量解释剩下的变动;同样第三维度的惯量也和第二维度正交。
每一维度尽可能对总惯量进行分解,将每一维度的惯量和总惯量进行对比就可以知道每一维度的重要性。
比如本例中第一维度的惯量占总体的87.8%(0.075/0.085),而第二维度仅占11.8%(0.010/0.085)。
如果对应分析结果中有q 个维度,但是前p 个维度已经能显示总惯量的绝大部分,此时我们不需要再关注那个最大维度。
比如本例前两个维度的惯量加起来已占总惯量的99.6%,第三维度仅占总惯量的0.4%,因此两个维度就已足够了。
可以将奇异值(The singular values)理解为行得分和列得分之间的相关系数,它们近似于相关分析中的佩尔森相关系数。
对每个维度来说,奇异值的平方就是特征值(eigenvalue),也就等于惯量inertia ,因此奇异值也是测度每一维度重要性的统计量。
对应分析可以输出很多图形,分析它们可以知道变量类型之间和变量之间潜在的关系。
上面显示的是行得分与列得分在二维空间中的散点图。
解释这个图形比较简单,图中行/列点接近的点,它们的近似程度当然大于那些行/列点较远的点。
第一维度(横坐标)方向,Senior Employees 与Junior Employees 这两个行点之间的距离较远,因此第一维度分离出高级雇员和低级雇员这两个类型;第二维度(纵坐标)方向,Managers 与Employees 、Secretaries 列点之间的距离较大,管理人员和其他类型工作人员在这个维度中被分离出来;使用对称正态化方法很容易观察到工作类型与吸烟之间的关系。
比如从上图中看到Managers 与Heavy smoking 的点较近,管理人员的烟瘾可能都比较大;Senior Employees 与None smoking 比较接近,高级雇员可能不怎么吸烟;Junior Employees 与Medium smoking 或Light smoking 距离较小,低级雇员吸烟不多,他们也有可能适度吸烟;Secretaries 和吸烟行为的距离都较远,从事秘书工作的人没有呈现出特定的吸烟行为(当然他们远离Heavysmoking,不会是瘾君子)。