吉林市2019年中考数学模拟试卷及答案
2019年吉林省吉林市中考数学一模试卷 解析版
2019年吉林省吉林市中考数学一模试卷一.选择题(共6小题)1.下列计算结果等于0的是()A.(﹣1)+(﹣1)B.(﹣1)﹣(﹣1)C.(﹣1)×(﹣1)D.(﹣1)÷(﹣1)2.如图是一个水平放置的纸杯示意图,它的左视图是()A.B.C.D.3.计算(﹣x2y)3的结果是()A.﹣x5y3B.﹣x6y C.x6y3D.﹣x6y34.如图,直线AE,BF经过含30°角的三角板的两个顶点,若AE∥BF,∠CBF=20°.则∠CAE的度数为()A.50°B.60°C.70°D.80°5.如图,AB是⊙O的直径,AC=BC,若∠CBD=70°,则∠BAD的度数为()A.65°B.60°C.35°D.25°6.如图,菱形ABCD的边长为2,∠A=60°,点E是对角线BD的中点.点G是AB边上一动点,GE延长线交CD于点H,则GH长度可能为()A.1.5B.2.5C.3.5D.4.5二.填空题(共8小题)7.习近平总书记提出了未来5年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为.8.因式分解:a3﹣a=.9.计算﹣=.10.不等式组的解集是.11.如图,a,b是两根木条,用A,B两根钉子钉在墙上,其中木条a可以绕点A转动,木条b被固定不动.这一生活现象用你学过的数学知识解释为.12.如图,⊙O的半径为4,直线AB与⊙O相切于点A,AC平分∠OAB,交⊙O于点C.则的长为.13.如图,A(4,0),B(0,3),点C为AB中点,以点B为圆心,BC长为半径作圆弧,交线段OB于点D.则点D的坐标为.14.如图1,矩形纸片ABCD,AB=a,BC=b,满足.将此矩形纸片按下列顺序折叠,则图4中MN的长为(用含a,b的代数式表示).三.解答题(共12小题)15.先化简,再求值:,其中x=3.16.以绳测井.若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5米;如果将绳子折成四等份,一份绳长比井深多1尺.问绳长、井深各是多少尺?17.一个不透明的口袋中有四个小球,上面分别标有数字1,2,3,4,除所标数字不同外,其它完全相同.从中随机摸出一个小球,不放回,再随机摸出一个小球用画树状图(或列表)的方法,求两次摸出小球所标数字和小于5的概率,18.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:(1)△ADE≌△CBF;(2)AB=CD.19.如图是4×5的小正方形网格,△ABC的顶点都在格点上.按下列要求作图(所画△DEF的顶点都在格点上,并标注对应字母);(1)在图1中,画出△DEF,使△DEF与△ABC关于直线MN成轴对称;(2)在图2中,将△ABC绕某一格点O旋转得到△DEF,使△DEF与△ABC成中心对称,画出△DEF,并在图中标出旋转中心O.20.如图1是一辆吊车的实物图,图2是其工作示意图,其转动点A离地面BD的高度AH 为3.4m,AC是可以伸缩的起重臂,当AC长度为9m,张角∠HAC为138°时,求起重(参考数据:sin48°≈0.74,cos48°臂顶点C离地面BD的高度(结果保留小数点后一位).≈0.67,tan48°≈1.11)21.我市某校组织“学经典,用经典”知识竞赛,每班参加比赛的学生人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩“C级”的人数为;(2)请你将下表补充完整;平均数(分)中位数(分)众数(分)一班87.690二班87.6100(3)请你对这次两班成绩统计数据的结果进行分析(写出一条结论即可).22.如图,直线与x轴,y轴分别交于A,B两点,与反比例函数交于点C,点A的坐标为(3,0),CD⊥x轴于点D.(1)点B的坐标为;(2)若点B为AC的中点,求反比例函数的解析式;(3)在(2)条件下,以CD为边向右作正方形CDEF,EF交AC于点G,直接写出△CGF的周长与△ABO的周长的比.23.甲乙两个工厂同时加工一批机器零件.甲工厂先加工了两天后停止加工,维修设备,当维修完设备时,甲乙两厂加工的零件数相等,甲工厂再以原来的工作效率继续加工这批零件.甲乙两厂加工零件的数量y甲(件),y乙(件)与加工件的时间x(天)的函数图象如图所示,(1)乙工厂每天加工零件的数为件;(2)甲工厂维修设备的时间是多少天?(3)求甲维修设备后加工零件的数量y甲(件)与加工零件的时间x(天)的函数关系式,并写出自变量x的取值范围.24.如图1,在等腰△ABC中,AB=AC,AD为中线,将线段AC绕点A逆时针旋转90°,得到线段AE,连接BE交直线AD于点F,连接CF.(1)若∠BAC=30°,则∠FBC=°;(2)若∠BAC是钝角时,①请在图2中依题意补全图形,并标出对应字母;②探究图2中△BCF的形状,并说明理由;③若AB=5,BC=8,则EF=.25.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P,Q同时从点C出发,均以1cm/s的速度运动,其中点P沿CA向终点A运动;点Q 沿CB向终点B运动.过点P作PE∥BC,分别交AD,AB于点E,F,设动点Q运动的时间为t秒.(1)求DQ的长(用含t的代数式表示);(2)以点Q,D,F,E为顶点围成的图形面积为S,求S与t之间的函数关系式;(3)连接PQ,若点M为PQ中点,在整个运动过程中,直接写出点M运动的路径长.26.已知函数y1=2kx+k与函数,定义新函数y=y2﹣y1(1)若k=2,则新函数y=;(2)若新函数y的解析式为y=x2+bx﹣2,则k=,b=;(3)设新函数y顶点为(m,n).①当k为何值时,n有大值,并求出最大值;②求n与m的函数解析式;(4)请你探究:函数y1与新函数y分别经过定点B,A,函数的顶点为C,新函数y上存在一点D,使得以点A,B,C,D为顶点的四边形为平行四边形时,直接写出k的值.参考答案与试题解析一.选择题(共6小题)1.下列计算结果等于0的是()A.(﹣1)+(﹣1)B.(﹣1)﹣(﹣1)C.(﹣1)×(﹣1)D.(﹣1)÷(﹣1)【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=﹣2,不符合题意;B、原式=﹣1+1=0,符合题意;C、原式=1,不符合题意;D、原式=1,不符合题意,故选:B.2.如图是一个水平放置的纸杯示意图,它的左视图是()A.B.C.D.【分析】根据从左往右看水平放置的纸杯所得的图形进行判断即可.【解答】解:该纸杯的左视图为,故选:B.3.计算(﹣x2y)3的结果是()A.﹣x5y3B.﹣x6y C.x6y3D.﹣x6y3【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:(﹣x2y)3=﹣x6y3,故选:D.4.如图,直线AE,BF经过含30°角的三角板的两个顶点,若AE∥BF,∠CBF=20°.则∠CAE的度数为()A.50°B.60°C.70°D.80°【分析】由AE∥BF,利用“两直线平行,同旁内角互补”可得出∠CAE+∠BAC+∠ABC+∠CBF=180°,再代入∠ABC=30°,∠CBF=20°,∠BAC=60°,即可求出∠CAE 的度数.【解答】解:∵AE∥BF,∴∠BAE+∠ABF=180°,即∠CAE+∠BAC+∠ABC+∠CBF=180°.∵∠ABC=30°,∠CBF=20°,∠BAC=60°,∴∠CAE=180°﹣∠BAC﹣∠ABC﹣∠CBF=70°.故选:C.5.如图,AB是⊙O的直径,AC=BC,若∠CBD=70°,则∠BAD的度数为()A.65°B.60°C.35°D.25°【分析】先根据圆周角定理得到∠ADB=∠ACB=90°,则可判断△ACB为等腰直角三角形,所以∠ABC=45°,再计算出∠ABD,然后利用互余计算∠BAD的度数.【解答】解:∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵AC=BC,∴△ACB为等腰直角三角形,∴∠ABC=45°,∵∠ABD=∠CBD﹣∠ABC=70°﹣45°=25°,∴∠BAD=90°﹣25°=65°.故选:A.6.如图,菱形ABCD的边长为2,∠A=60°,点E是对角线BD的中点.点G是AB边上一动点,GE延长线交CD于点H,则GH长度可能为()A.1.5B.2.5C.3.5D.4.5【分析】确定GH的最大值和最小值后即可确定GH的长度的取值范围,从而可以确定正确的选项.【解答】解:过E点作MN⊥AB于点N,此时MN的长是GH的最小值,∵四边形ABCD是菱形,∴AB=AD,∵∠DAB=60°,∴△ABD是等边三角形,∴MN为△ABD的AB边上的高,∵AD=2,∴MN=,∴GH的最小值为,连接AC,此时AC是GH的最大值,AC=2AE=2MN=2,∴<MN<2,故选:B.二.填空题(共8小题)7.习近平总书记提出了未来5年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为 1.17×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:11 700 000=1.17×107,故答案为:1.17×107.8.因式分解:a3﹣a=a(a+1)(a﹣1).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)9.计算﹣=.【分析】先把各二次根式化简为最简二次根式,然后合并即可.【解答】解:原式=2﹣=﹣.故答案为10.不等式组的解集是﹣1<x≤3.【分析】先求出每一个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:,解不等式①得:x≤3,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤3,故答案为﹣1<x≤3.11.如图,a,b是两根木条,用A,B两根钉子钉在墙上,其中木条a可以绕点A转动,木条b被固定不动.这一生活现象用你学过的数学知识解释为两点确定一条直线(过所点有且只有一条直线:或过一点不能确定一条直线).【分析】根据“两点确定一条直线”的数学公理确定答案即可.【解答】解:这一生活现象用你学过的数学知识解释为:两点确定一条直线(过所点有且只有一条直线:或过一点不能确定一条直线),故答案为:两点确定一条直线(过所点有且只有一条直线:或过一点不能确定一条直线).12.如图,⊙O的半径为4,直线AB与⊙O相切于点A,AC平分∠OAB,交⊙O于点C.则的长为2π.【分析】由切线的性质和角平分线的定义得到∠OAC=45°,则∠AOC=90°,所以根据弧长公式解答即可.【解答】解:∵直线AB与⊙O相切于点A,∴∠OAB=90°.∵AC平分∠OAB,∴∠OAC=∠OAB=45°.∵OA=OC,∴∠OAC=∠OCA=45°,∴∠AOC=90°.∴的长为:=2π.故答案是:2π.13.如图,A(4,0),B(0,3),点C为AB中点,以点B为圆心,BC长为半径作圆弧,交线段OB于点D.则点D的坐标为(0,).【分析】先根据勾股定理计算AB的长,由同圆的半径相等可得BD的长,最后计算OD 的长,可得点D的坐标.【解答】解:∵A(4,0),B(0,3),∴OA=4,OB=3,由勾股定理得:AB==5,∵点C为AB中点,∴BC=AB==BD,∴OD=OB﹣BD=3﹣=∴D(0,);故答案为:.14.如图1,矩形纸片ABCD,AB=a,BC=b,满足.将此矩形纸片按下列顺序折叠,则图4中MN的长为2b﹣2a(用含a,b的代数式表示).【分析】根据折叠的性质得到A1F=a﹣b,EG=a﹣2(a﹣b)=b﹣a,根据相似三角形的性质得到=,依此可求MN的长.【解答】解:如图,由折叠的性质得到A1F=a﹣b,EG=a﹣2(a﹣b)=b﹣a,则=,解得MN=2b﹣2a.故答案为:2b﹣2a.三.解答题(共12小题)15.先化简,再求值:,其中x=3.【分析】先算括号内的减法,把除法变成乘法,算乘法,最后代入求出即可.【解答】解:=•=•=,当x=3时,原式==3.16.以绳测井.若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5米;如果将绳子折成四等份,一份绳长比井深多1尺.问绳长、井深各是多少尺?【分析】用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【解答】解:设井深为x尺,则绳长为:3(x+5),依题意得:3(x+5)=4(x+1).解得x=11,则4(x+1)=48尺.答:井深为11尺,绳长48尺.17.一个不透明的口袋中有四个小球,上面分别标有数字1,2,3,4,除所标数字不同外,其它完全相同.从中随机摸出一个小球,不放回,再随机摸出一个小球用画树状图(或列表)的方法,求两次摸出小球所标数字和小于5的概率,【分析】根据题意列出图表得出所有等情况数,找出两次摸出小球所标数字和小于5的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意列表如下:1234 1345235634574567从表中可以看出,所有等可能出现的结果共有12种.其中数字和小于5有4种则两次摸出小球所标数字和小于5的概率是=.18.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:(1)△ADE≌△CBF;(2)AB=CD.【分析】(1)根据平行线性质得出∠ADE=∠CBF,求出∠EAD=∠FCB=90°,根据AAS证出△ADE≌△CBF即可;(2)根据全等得出AD=BC,根据SAS证△ABD≌△CDB,根据全等三角形性质推出即可.【解答】证明:(1)∵AD∥BC,∴∠ADE=∠CBF,∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,在△ADE和△CBF中∴△ADE≌△CBF(AAS);(2)∵△ADE≌△CBF,∴AD=BC,在△ABD和△CDB中∴△ABD≌△CDB(SAS),∴AB=CD.19.如图是4×5的小正方形网格,△ABC的顶点都在格点上.按下列要求作图(所画△DEF的顶点都在格点上,并标注对应字母);(1)在图1中,画出△DEF,使△DEF与△ABC关于直线MN成轴对称;(2)在图2中,将△ABC绕某一格点O旋转得到△DEF,使△DEF与△ABC成中心对称,画出△DEF,并在图中标出旋转中心O.【分析】(1)利用轴对称的性质和网格特点画出A、B、C关于直线MN的对称点D、E、F即可;(2)为了在图2中画出△DEF,先找号对称中心O点,然后利用中心对称的性质画出A、B、C的对称点D、E、F即可.【解答】解:(1)如图1,△DEF为所作;(2)如图2,点O和△DEF为所作;20.如图1是一辆吊车的实物图,图2是其工作示意图,其转动点A离地面BD的高度AH 为3.4m,AC是可以伸缩的起重臂,当AC长度为9m,张角∠HAC为138°时,求起重(参考数据:sin48°≈0.74,cos48°臂顶点C离地面BD的高度(结果保留小数点后一位).≈0.67,tan48°≈1.11)【分析】作CE⊥BD于E,AF⊥CE于F,则四边形AHEF为矩形,得出EF=AH=3.4m,∠HAF=90°,求出∠CAF=48°,在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF 即可.【解答】解:过点C作CE⊥BD于E.过点A作AF⊥CE于F.∵矩形AHEF,AH=3.4,AC=9,∠CAH=138°.∴EF=AH=3.4,∠CAF=138°﹣90°=48°.在Rt△ACF中,CF=AC sin∠CAF=9×0.74=6.66≈6.7(m).∴CE=CF+EF=6.7+3.4=10.1(m),∴点C离地面的高度为10.1m.21.我市某校组织“学经典,用经典”知识竞赛,每班参加比赛的学生人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩“C级”的人数为;(2)请你将下表补充完整;平均数(分)中位数(分)众数(分)一班87.69090二班87.680100(3)请你对这次两班成绩统计数据的结果进行分析(写出一条结论即可).【分析】(1)根据每班参加比赛的学生人数相同和条形统计图中的数据,可以得到一班的人数,从而得到二班的总人数,然后即可得到此次竞赛中二班成绩“C级”的人数;(2)根据统计图中的数据,可以得到一班的众数和二班的中位数;(3)本题答案不唯一,只要合理即可.【解答】解:(1)(6+12+2+5)×36%=25×36%=9(人),答:此次竞赛中二班成绩“C级”的有9人;(2)由统计图可得,一班的众数为90,二班的中位数是80,故答案为:90,80;(3)从平均数和中位数的角度来比较,一班的成绩好(从平均数和众数的角度来比较,二班的成绩好;从B级以上(包括B级)的人数的角度来比较,一班的成绩好).22.如图,直线与x轴,y轴分别交于A,B两点,与反比例函数交于点C,点A的坐标为(3,0),CD⊥x轴于点D.(1)点B的坐标为;(2)若点B为AC的中点,求反比例函数的解析式;(3)在(2)条件下,以CD为边向右作正方形CDEF,EF交AC于点G,直接写出△CGF的周长与△ABO的周长的比.【分析】(1)把点A的坐标为(3,0)代入得,解方程即可得到结论;(2)根据三角形的中位线定理得到C(﹣3,2),由点C在上,于是得到结论;(3)根据正方形的性质得到GF=CD=3,根据平行线的性质得到∠FCG=∠BAO,根据相似三角形的性质即可得到结论.【解答】解:(1)把点A的坐标为(3,0)代入得,0=﹣+b,解得:b=1,∴点B的坐标为(0,1);(2)∵AB=BC,OB∥CD,∴OA=OD,CD=2OB,∵A(3,0),B(0,1),∴C(﹣3,2),∵点C在上,∴,∴y=﹣6,∴反比函数解析式为;(3)∵C(﹣3,2),∴CD=2,∵四边形CDEF是正方形,∴GF=CD=3,∵CF∥AD,∴∠FCG=∠BAO,∵∠F=∠AOB=90°,∴△CFG∽△AOB,∴△CGF的周长与△ABO的周长的比==.23.甲乙两个工厂同时加工一批机器零件.甲工厂先加工了两天后停止加工,维修设备,当维修完设备时,甲乙两厂加工的零件数相等,甲工厂再以原来的工作效率继续加工这批零件.甲乙两厂加工零件的数量y甲(件),y乙(件)与加工件的时间x(天)的函数图象如图所示,(1)乙工厂每天加工零件的数为20件;(2)甲工厂维修设备的时间是多少天?(3)求甲维修设备后加工零件的数量y甲(件)与加工零件的时间x(天)的函数关系式,并写出自变量x的取值范围.【分析】(1)根据乙工厂16天加工的件数和时间列式计算即可得解;(2)利用待定系数法求出甲工厂的函数解析式,再求出y=80时的x的值,然后减去2即可;(3)先求甲的工作效率为40件/天,再设y甲与x的函数关系式为y甲=40x+b,利用待定系数法求一次函数解析式解答.【解答】解:(1)160÷8=20(件),即乙工厂每天加工零件的数为20件;故答案为:20.(2)∵y甲=20x,∴当y=80时,x=4,∴4﹣2=2(天),∴甲工厂维修设备的时间为2天.(3)∵甲的工作效率为(件/天),∴设y甲=40x+b.∵过点(4,80),∴40×4+b=80,∴b=﹣80,∴y甲=40x﹣80(4≤x≤8).24.如图1,在等腰△ABC中,AB=AC,AD为中线,将线段AC绕点A逆时针旋转90°,得到线段AE,连接BE交直线AD于点F,连接CF.(1)若∠BAC=30°,则∠FBC=45°;(2)若∠BAC是钝角时,①请在图2中依题意补全图形,并标出对应字母;②探究图2中△BCF的形状,并说明理由;③若AB=5,BC=8,则EF=3.【分析】(1)利用等腰三角形的性质求出∠ABC,∠ABF即可解决问题.(2)①根据要求画出图形即可.②证明FB=FC,∠BFC=90°即可判断.③如图3中,作EH⊥DF交DF的延长线于H.利用全等三角形的性质证明EH=AD=3,再证明△EFH是等腰直角三角形即可解决问题.【解答】解:(1)如图1中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=(180°﹣30°)=75°,∵AE⊥AC,∴∠EAC=90°,∴∠BAE=30°+90°=120°,∵AB=AE,∴∠ABE=∠E=(180°﹣120°)=30°,∴∠FBC=∠ABC﹣∠ABF=75°﹣30°=45°.故答案为:45.(2)①图形如图2所示.②结论:△BCF是等腰直角三角形理由如下:如图2中,∵AB=AC,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线,∴FB=FC,又AB=AC,AF=AF,∴△ABF≌△ACF(SSS),∴∠1=∠2,由旋转可知AE=AC,又AB=AC,∴AB=AE,∴∠1=∠3,∴∠2=∠3.又∠4=∠5,∴∠CFE=∠CAE=90°即∠CFB=90°,又FB=FC,∴△BCF为等腰直角三角形.③如图3中,作EH⊥DF交DF的延长线于H.∵AB=AC=5,BD=CD=4,∴AD⊥BC,∴∠ADB=90°,∴AD===3,∵∠ADC=∠EAC=∠H=90°,∴∠DAC+∠ACD=90°,∠DAC+∠HAE=90°,∴∠ACD=∠HAE,∵AE=AC,∴△ADC≌△EHA(AAS),∴EH=AD=3,∵△BDF是等腰直角三角形,FD⊥BC,∴∠DFB=∠BFC=45°,∴∠EFH=∠DFB=45°,∵∠H=90°,∴∠EHF=∠HFE=45°,∴EH=FH=3,∴EF=EH=,故答案为:3.25.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P,Q同时从点C出发,均以1cm/s的速度运动,其中点P沿CA向终点A运动;点Q 沿CB向终点B运动.过点P作PE∥BC,分别交AD,AB于点E,F,设动点Q运动的时间为t秒.(1)求DQ的长(用含t的代数式表示);(2)以点Q,D,F,E为顶点围成的图形面积为S,求S与t之间的函数关系式;(3)连接PQ,若点M为PQ中点,在整个运动过程中,直接写出点M运动的路径长.【分析】(1)分当0≤t≤3时,当3<t≤5时,两种情形分别求解.(2)分三种情形:a.当0≤t≤3时,如图1.b.当3<t≤4时,如图2,c.当4<t≤5时,如图3,分别求解即可.(3)如图4中,在CB上取一点J,使得CJ=CA,连接AJ,作CR⊥AJ于R,RT∥BC 交AB于T.由题意点M的运动路径是C→R→T,求出CR,RT即可解决问题.【解答】解:(1)当0≤t≤3时,DQ=3﹣t;当3<t≤5时,DQ=t﹣3.(2)a.当0≤t≤3时,如图1,∵PC=t,AC=4,∴,,,∴.b.当3<t≤4时,如图2,∴.c.当4<t≤5时,如图3,∴.综上所述(3)点M运动的路径长为2+,如图4中,在CB上取一点J,使得CJ=CA,连接AJ,作CR⊥AJ于R,RT∥BC交AB 于T.由题意点M的运动路径是C→R→T,∵CA=CJ=4,CR⊥AJ,∠ACJ=90°,∴AJ=4,AR=RJ,∴CR=AJ=2,∵RT∥BJ,AR=RJ,∴AT=TB,∴RT=BJ=,∴点M的运动路径的长为2+.26.已知函数y1=2kx+k与函数,定义新函数y=y2﹣y1(1)若k=2,则新函数y=x2﹣6x+1;(2)若新函数y的解析式为y=x2+bx﹣2,则k=5,b=﹣12;(3)设新函数y顶点为(m,n).①当k为何值时,n有大值,并求出最大值;②求n与m的函数解析式;(4)请你探究:函数y1与新函数y分别经过定点B,A,函数的顶点为C,新函数y上存在一点D,使得以点A,B,C,D为顶点的四边形为平行四边形时,直接写出k的值.【分析】(1)将k=2代入函数y1=2kx+k中得出函数y1=4x+2,即可得出结论;(2)新函数y的解析式为y=x2﹣2(k+1)x+3﹣k,即可得出结论;(3)①先得出新函数y=(x﹣k﹣1)2﹣k2﹣3k+2,进而得出,即可得出结论;②在中消去k即可得出结论;(4)分分三种情况,利用平行四边形的对角线互相平分和中点坐标公式,求出点D的坐标,即可得出结论.【解答】解:(1)当k=2时,y1=2kx+k=4x+2,∵函数,定义新函数y=y2﹣y1,∴y=x2﹣2x+3﹣4x﹣2=x2﹣6x+1,故答案为:x2﹣6x+1;(2)函数y1=2kx+k与函数,定义新函数y=y2﹣y1,∴新函数y的解析式为y=x2﹣2x+3﹣2kx﹣k=x2﹣2(k+1)x+3﹣k,∵新函数y的解析式为y=x2+bx﹣2,∴b=﹣2(x+1),3﹣k=﹣2,∴k=5,b=﹣12,故答案为:5,﹣12;(3)①由(2)知,新函数y=x2﹣2(k+1)x+3﹣k=(x﹣k﹣1)2﹣k2﹣3k+2,∵新函数y顶点为(m,n),∴,∴,当时,;②由①知,,将k=m﹣1代入n=﹣k2﹣3k+2得:∴n=﹣m2﹣m+4;(4)∵函数y1=2kx+k=k(2x+1),当2x+1=0即x=﹣时,y=0,∴A(﹣,0),∵新函数y=x2﹣2(k+1)x+3﹣k=x2﹣2(k+1)x﹣(k+1)+4=x2﹣(k+1)(2x+1)+4,当2x+1=0,即x=﹣时,y=+4=,∴B(﹣,),∵函数=(x﹣1)2+2,∴C(1,2),设D(c,d),∵以点A,B,C,D为顶点的四边形为平行四边形,∴①当BC与AD为对角线时,(﹣+1)=(﹣+c),(+2)=(0+d),∴c=1,d=,∴D(1,),将点D坐标代入新函数y=x2﹣2(k+1)x+3﹣k得,1﹣2(k+1)+3﹣k=,∴k=﹣,②当AB与CD是对角线时,(﹣﹣)=(1+c),(+0)=(2+d),∴c=﹣2,d=,∴D(﹣2,),将点D坐标代入新函数y=x2﹣2(k+1)x+3﹣k得,4+4(k+1)+3﹣k =,∴k=﹣,③当AC与BD为对角线时,(﹣+1)=(﹣+c),(0+2)=(+d),∴c=1,d=﹣,∴D(1,﹣),将点D坐标代入新函数y=x2﹣2(k+1)x+3﹣k得,1﹣2(k+1)+3﹣k=﹣,∴k=,即满足条件的k的值为或﹣或﹣.。
精编2019级吉林省长春市中考数学模拟试卷(有标准答案)
吉林省长春市中考数学模拟试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)的相反数是()A. B.C.﹣4 D.42.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.a•a2=a2B.(a2)3=a6C.a2+a3=a6 D.a6÷a2=a34.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.126.(3分)如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是()A.7 B.8 C.12 D.137.(3分)如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)化简:﹣= .10.(3分)某种商品n千克的售价是m元,则这种商品8千克的售价是元.11.(3分)不解方程,判断方程2x2+3x﹣2=0的根的情况是.12.(3分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于A、B两点,点P (1,m)在△AOB的形内(不包含边界),则m的值可能是.(填一个即可)13.(3分)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是度.14.(3分)如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.16.(6分)如图是一副扑克牌的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.17.(6分)为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.(1)被调查的80名学生每天完成课外作业时间的中位数在组(填时间范围).(2)该校九年级共有800名学生,估计大约有名学生每天完成课外作业时间在120分钟以上(包括120分钟)18.(7分)如图,在▱ABCD中,O为AC的中点,过点O作EF⊥AC与边AD、BC分别相交于点E、F,求证:四边形AECF是菱形.19.(7分)某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?20.(7分)如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】21.(8分)【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM ≌△MGE.【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE的面积.22.(9分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B 市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.(3)求机场大巴与货车相遇地到机场C的路程.23.(10分)如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC 上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ绕PQ 的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).(1)用含x的代数式表示线段AP的长.(2)当点P在线段BA上运动时,求y与x之间的函数关系式.(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.:y=(x+k)(x﹣3)交x轴于点A、B 24.(12分)如图①,在平面直角坐标系中,抛物线C1(A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C上,连结PA、PC、AC,设△1ACP的面积为S.(1)求直线AC对应的函数表达式(用含k的式子表示).(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.吉林省长春市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)的相反数是()A. B.C.﹣4 D.4【解答】解:的相反数是,故选:B.2.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.3.(3分)下列运算正确的是()A.a•a2=a2B.(a2)3=a6C.a2+a3=a6 D.a6÷a2=a3【解答】解:A、原式=a3,错误;B、原式=a6,正确;C、原式不能合并,错误;D、原式=a4,错误,故选:B.4.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得,x>﹣1;由②得,x≤2,故此不等式组的解集为:﹣1<x≤2.在数轴上表示为:故选:A.5.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD 的面积是()A.6 B.8 C.10 D.12【解答】解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,∴△ABD的面积=AB•DE=×8×2=8.故选:B.6.(3分)如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是()A.7 B.8 C.12 D.13【解答】解:∵DE是AB的垂直平分线,∴AD=BD=5,又CD=3,由勾股定理得,AC==4,∴△ACD的周长=AC+CD+AD=12,故选:C.7.(3分)如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°【解答】解:∵∠B+∠D=180°,∴∠D=180°﹣130°=50°,∴∠AOC=2∠D=100°.故选:D.8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.B.C.D.【解答】解:∵OB=1,AB⊥OB,点A在函数y=﹣(x<0)的图象上,∴当x=﹣1时,y=2,∴A(﹣1,2).∵此矩形向右平移3个单位长度到A1B1O1C1的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数y=(x>0)的图象上,∴k=4,∴反比例函数的解析式为y=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,y=,∴P(3,).故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)化简:﹣= .【解答】解:原式=2﹣=.故答案为:.10.(3分)某种商品n千克的售价是m元,则这种商品8千克的售价是元.【解答】解:根据题意,得:,故答案为:.11.(3分)不解方程,判断方程2x2+3x﹣2=0的根的情况是有两个不相等的实数根.【解答】解:∵a=2,b=3,c=﹣2,∴△=b2﹣4ac=9+16=25>0,∴一元二次方程有两个不相等的实数根.故答案为:有两个不相等的实数根.12.(3分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x 轴、y 轴于A 、B 两点,点P (1,m )在△AOB 的形内(不包含边界),则m 的值可能是 1 .(填一个即可)【解答】解:∵直线y=﹣x+2分别交x 轴、y 轴于A 、B 两点, ∴A (4,0),B (0,2),∴当点P 在直线y=﹣x+2上时,﹣+2=m ,解得m=, ∵点P (1,m )在△AOB 的形内, ∴0<m <, ∴m 的值可以是1. 故答案为:1.13.(3分)如图,将△ABC 绕点A 按逆时针方向旋转100°,得到△AB 1C 1,若点B 1在线段BC 的延长线上,则∠BB 1C 1的大小是 80 度.【解答】解:由旋转的性质可知:∠B=∠AB 1C 1,AB=AB 1,∠BAB 1=100°. ∵AB=AB 1,∠BAB 1=100°, ∴∠B=∠BB 1A=40°. ∴∠AB 1C 1=40°.∴∠BB 1C 1=∠BB 1A+∠AB 1C 1=40°+40°=80°. 故答案为:80.14.(3分)如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为.【解答】解:抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的对称轴分别为直线x=3与直线x=﹣2,∵点A的横坐标为1,∴点C的横坐标为5,点B横坐标为﹣5,∴AC=4,AB=6,则==,故答案为:三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.【解答】解:原式=2b2+a2﹣b2﹣(a2+b2﹣2ab)=2b2+a2﹣b2﹣a2﹣b2+2ab=2ab,当a=﹣3,b=时,原式=2×(﹣3)×=﹣3.16.(6分)如图是一副扑克牌的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.【解答】解:画树状图得:∵共有12种等可能的结果,牌面上的数字都是偶数的有2种情况,∴P(牌面上数字都是偶数)==.17.(6分)为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.(1)被调查的80名学生每天完成课外作业时间的中位数在120~150 组(填时间范围).(2)该校九年级共有800名学生,估计大约有600 名学生每天完成课外作业时间在120分钟以上(包括120分钟)【解答】解:(1)被调查的80名学生每天完成课外作业时间的中位数在120~150.故答案为120~150.(2)校九年级共有800名学生,每天完成课外作业时间在120分钟以上的学生有800×=600,故答案为600.18.(7分)如图,在▱ABCD中,O为AC的中点,过点O作EF⊥AC与边AD、BC分别相交于点E、F,求证:四边形AECF是菱形.【解答】证明:∵四边形ABCD是平行四边形,∴BC∥AD,∴AE∥CF,∴∠OAE=∠OCF,∵点O是AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵EF与AC垂直,∴四边形AECF是菱形.19.(7分)某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?【解答】解:设原来每小时清雪x米,根据题意得:+=4,解得:x=800,经检验:x=800是分式方程的解.答:原来每小时清雪800米.20.(7分)如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】【解答】解:如图:在AB上取点D,过点D作DE⊥BC于点E,则DE=3.5,∵tan55°==1.42,∴BE==≈2.3(米),答:至少要离此树的根部B点2.3米才能安全通过.21.(8分)【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM ≌△MGE.【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE的面积.【解答】【发现问题】证明:∵△ADB是等腰直角三角形,F为斜边AB的中点,∴∠DFB=90°,DF=FA;∵△ACE是等腰直角三角形,G为斜边AC的中点,∴∠EGC=90°,AG=GE,∵点F、M、G分别为AB、BC、AC边的中点,∴FM∥AC,MG∥AB,∴四边形AFMG是平行四边形,∴FM=AG,MG=FA,∠BFM=∠BAC,∠BAC=∠MGC,∴DF=MG,∠DFM=∠MGE,FM=GE,在△DFM与△MGE中,,∴△DFM≌△MGE.【拓展探究】∵点F、M、G分别为AB、BC、AC边的中点,∴FM∥AC,MG∥AB,FM=AC=AG,MG=AB=AF,∠MGC=∠BAC=∠BFM,∴∠DFM=∠MGE,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∴tan∠1=tan∠3,即=,∴=,∵∠DFM=∠MGE,∴△DFM∽△MGE,∴=()2,在Rt△ADF中,DF===4,∴=()2=,∵△DFM的面积为a,∴S=a.△MGE22.(9分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B 市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.(3)求机场大巴与货车相遇地到机场C的路程.【解答】解:(1)60+20=80(km),80÷20×=(h).∴连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h.(2)设所求函数表达式为y=kx+b(k≠0),将点(0,60)、(,0)代入y=kx+b,得:,解得:,∴机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为y=﹣80x+60(0≤x≤).(3)设线段ED对应的函数表达式为y=mx+n(m≠0),将点(,0)、(,60)代入y=mx+n,得:,解得:,∴线段ED对应的函数表达式为y=60x﹣20(≤x≤).解方程组,得,∴机场大巴与货车相遇地到机场C的路程为km.23.(10分)如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC 上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ绕PQ 的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).(1)用含x的代数式表示线段AP的长.(2)当点P在线段BA上运动时,求y与x之间的函数关系式.(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.【解答】解:(1)当0<x≤1时,PA=5x,当1<x<5时,PA=5(x﹣1)=5x﹣5.(2)如图1中,当0<x≤时,重叠部分是四边形PBQB′.∵PQ⊥BC,AD⊥BC,∴PQ∥AD,∴==,∴==,∴PQ=4x,BQ=3x,由题意四边形PBQB′是平行四边形,∴y=BQ•PQ=12x2,如图2中,当<x≤1,重叠部分是五边形PBQMN.∵PN∥BD,∴=,∴PN=3(1﹣x),B′N=3x﹣3(1﹣x)=6x﹣3,易知MN=4(2x﹣1),∴y=12x2﹣•(6x﹣3)•4(2x﹣1)=﹣12x2+24x﹣6.综上所述,y=.(3)如图3中,当PA=B时,PB′是△ABD是中位线.∴AB′=DB′,此时CB′平分△ADC的面积,此时x=.如图4中,设AB′的延长线交BC于G.当DG=GC=4时,AB′平分△ADC的面积,∵PB′∥BG,∴=,∴=,∴x=.如图5中,连接DB′交AC于N,延长B′P交AD于T,作NM⊥PB′于M,NH⊥AD于H.由题意PA=(x﹣1),AT=x﹣1,TP=2(x﹣1),PB′=BQ=3+2(x﹣1)=2x+1,当AN=CN时,DB′平分△ADC的面积,∴可得AH=HD=2,HN=TM=2,∴B′M=TB′﹣MT=2(x﹣1)+2x+1﹣4=4x﹣5,MN=2﹣(x﹣1)=3﹣x,TD=4﹣(x﹣1)=5﹣x,∵MN∥TD,∴=,∴=,∴x=,综上所述,x=s或s或s时,经过点B′和△ADC一个顶点的直线平分△ADC的面积.24.(12分)如图①,在平面直角坐标系中,抛物线C1:y=(x+k)(x﹣3)交x轴于点A、B(A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C1上,连结PA、PC、AC,设△ACP的面积为S.(1)求直线AC对应的函数表达式(用含k的式子表示).(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.【解答】解:(1)在y=(x+k)(x﹣3)中,令y=0,可得A(3,0),B(﹣k,0),令x=0,可得C(0,﹣3k),设直线AC对应的函数表达式为:y=mx+n,将A(3,0),C(0,﹣3k)代入得:,解得:,∴直线AC对应的函数表达式为:y=kx﹣3k;(2)如图①,过点P作y轴的平行线交AC于点Q,交x轴于点M,过C作CN⊥PM于N,当x=2k时,y=(2k+k)(2k﹣3)=6k2﹣9k,∵点P、Q分别在抛物线C1、直线AC上,∴P(2k,6k2﹣9k)、Q(2k,2k2﹣3k),∴PQ=9k﹣6k2﹣(3k﹣2k2)=﹣4k2+6k,∴S△PAC =S△PQC+S△PQA=PQ•CN+PQ•AM=PQ•(CN+AM),=PQ,=(﹣4k2+6k),=﹣6(k﹣)2+,∴当k=时,△PAC面积的最大值是,此时,C1:y=(x+)(x﹣3)=x2﹣﹣;(3)∵点P在抛物线C1上,∴P(2k,6k2﹣9k),当k=1时,此时P(2,﹣3),当k=2时,P(4,6),把(2,﹣3)和(4,6)代入抛物线(虚线)C2:y=ax2+bx上得:,解得:,∴抛物线C2所对应的函数表达式为:y=x2﹣x;(4)如图②,由题意得:△ACO和△PEF都是直角三角形,且∠A OC=∠PFE=90°,∵点P在直线AC的下方,横坐标为2k的点P在抛物线C1上,∴P(2k,6k2﹣9k),且0<k<,∵A(3,0),C(0,﹣3k),∴OA=3,OC=3K,∴当△PEF与△ACO的相似比为时,存在两种情况:①当△PEF∽△CAO时,,∴=,∴PF=k,EF=1,∴E(3k,12k2﹣12k),∵EF=1,∴9k﹣6k2=12k﹣12k2+1,6k2﹣3k﹣1=0,k1=,k2=<0(舍),②当△PEF∽△ACO时,,∴,∴PF=1,EF=k,∴E(2k+1,6k2﹣4k﹣2),∴4k+2﹣6k2+k=9k﹣6k2,k=,综上所述,k的值为或.。
2019年吉林省吉林市中考二模数学试卷(解析版)
2019年吉林省吉林市中考二模数学试卷一、单项选择题(每小题2分,共12分)1.在0,﹣1,,π中,属于无理数的有()A.1个B.2个C.3个D.4个2.如图,将直角三角形ABC绕斜边AB所在直线旋转一周得到的几何体是()A.B.C.D.3.下列计算正确的是()A.a2+a3=a5B.a2•a4=a8C.a2÷a=a D.(a2b)3=a5b34.一元二次方程2x2﹣6x+5=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根5.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为9m,那么花圃的面积为()A.54πm2B.27πm2C.18πm2D.9πm26.如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6 B.2 C.3 D.二、填空题(每小题3分,共24分)7.=.8.不等式3x+1>﹣2的解集为.9.某微商平台有一商品,标价为a元,按标价5折再降价30元销售,则该商品售价为元.10.元代《算学启蒙》里有这样一道题:“良马日行二百四十里,弩马日行一百五十里,弩马先行十二日,问良马几何追及之?”设良马x天能追上弩马,可列方程为.11.如图,⊙O经过正五边形OABCD的顶点A,D,点E在优弧AD上,则∠E等于度.12.如图,等边△ABC中,点F,E分别在AB,BC上,把△BEF沿直线EF翻折,使点B 的对应点D恰好落在AC上.若∠AFD=90°,CD=1.则CE=.13.如图,在△ABC中,∠BAC=40°,将△ABC绕点A逆时针旋转,得到△ADE,点B的对应点D恰好落在线段AC的延长线上,连接BD.若∠BDE=90°,则∠ABC=度.14.我们规定能使等式成立的一对数(m,n)为“友好数对”.例如当m=2,n=﹣8时,能使等式成立,(2,﹣8)是“友好数对”.若(a,3)是“友好数对”,则a=.三、解答题15.(5分)小明解方程出现了错误,解答过程如下:方程两边都乘以x,得2﹣(x﹣1)=1(第一步)去括号,得2﹣x+1=1(第二步)移项,合并同类项,得﹣x=﹣2(第三步)解得x=2(第四步)∴原方程的解为x=2(第五步)(1)小明解答过程是从第步开始出错的,这一步正确的解答结果,此步的根据是.(2)小明的解答过程缺少步骤,此方程的解为.16.(5分)为了积极响应“3亿人上冰雪”号召,我市某中学组织初二420名学生到北大壶滑雪场开展冬令营活动.学校到某旅游公司租车,该公司现有A,B两种车型,若租用3辆A型车,5辆B型车,则空余15个座位;如果租用5辆A型车,3辆B型车,则有15个人没座位.求该公司A,B两种车型各有多少个座位.17.(5分)如图,三张“黑桃”扑克牌,背面完全相同将三张扑克牌背面朝上,洗匀后放在桌面上甲,乙两人进行摸牌游戏,甲先从中随机抽取一张,记下数字再放回洗匀,乙再从中随机抽取一张.(1)甲抽到“黑桃”,这一事件是事件(填“不可能“,“随机“,“必然”);(2)利用树状图或列表的方法,求甲乙两人抽到同一张扑克牌的概率.18.(5分)如图,四边形ABCD中,∠D=90°,AB=AC,BE⊥AC于点E,AE=AD.求证:AC平分∠DAB.四、解答题19.(7分)在边长为1个单位长度的小正方形组成的3×3的正方形网格图①、图②中,各画一个顶点在格点上的平行四边形,要求:每个平行四边形均为轴对称图形,每个平行四边形至少有一条边长为,所画的两个四边形不全等.20.(7分)某班数学活动小组测量吉林市“世纪之舟”的高度.他们制定了测量方案,并利用课余时间完成了实地测景,测量项目及数据如下表:请你根据活动小组测得的数据,求世纪之舟的高AB (结果保留小数点后一位). (参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.50)21.(7分)如图,在平面直角坐标系中,双曲线y=经过点A (6,1),过点A 作AB ⊥y 轴,垂足为点B ,点C 是双曲线第三象限上一点,连接AC ,BC .(1)求k 的值;(2)若△ABC 的面积为12,求直线AC 的解析式22.(7分)随着现代科技的发展,手机已经成为我们生活中不可缺少的一部分.为了解中学生在假期使用手机的情况(选项;A .与同学亲友聊天;B .学习;C .购物;D .游戏;E .其他),五一节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有人;(2)表中m的值为并补全条形统计图;(3)若该中学有800名学生,估计全校学生中利用手机购物和玩游戏的共有多少人?请你根据以上计算结果,给出中学生如何合理使用手机的一条建议.五、解答题(每小题8分.共16分)23.(8分)假期小颖决定到游泳馆游泳,游泳馆门票有两种:A种是每天购票进馆,没有优惠;B种是每月先购买贵宾卡,持贵宾卡购票每张可减少8元.设小颖游泳x次,y1(元)是按A种购票方案的费用,y2(元)是按B种购票方案的费用根据图中信息解答问题:(1)按A种方案购票,每张门票价格为元;(2)按B种方案购票,求y2与x的函数解析式;(3)如果小颖假期30天,每天都到游泳馆游泳一次,通过计算她选择哪种购票方案比较合算.24.(8分)如图,在直角三角形ABC中,∠ACB=90°,点D,E分别为AC,AB的中点,将△ABC沿AB翻折,得到△ABC',DE的延长线交BC'于点F.(1)判断△BEF的形状为;(2)当DE⊥BC'时,求证四边形ACBC'为正方形;(3)若AB=4,连接C'E,当C'E⊥DE时,直接写出DF的长.六、解答题(每小题10分,共20分)25.(10分)如图,在直角三角形ABC中,∠ABC=90°,AB=6cm,BC=8cm.动点P从点A出发,沿线段AB向终点B以1cm/s的速度运动,同时动点Q从点C出发沿线段CA以2cm/s的速度向终点A运动,以PQ,CQ为邻边作平行四边形PECQ.设平行四边形PECQ与直角三角形ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(t>0).(1)当点E落在线段BC上时,求t的值;(2)求S与t之间的函数关系式,并写出自变量t的取值范围;(3)当四边形PECQ为矩形时,直接写出t的值.26.(10分)我们规定抛物线y=ax2+bx+c(a≠0)与x轴有两个不同的交点A,B时,线段AB称为该抛物线的“横截弦”,其长度记为d.(1)已知抛物线y=2x2﹣x﹣3,则d=;(2)已知抛物线y=ax2+bx+2经过点A(1,0),当d=2时,求该抛物线所对应的函数解析式;(3)已知抛物线y=﹣x2+bx+c经过点A(1,0),与y轴交于点D.①抛物线恒存在“横截弦”,求c的取值范围;②求d关于c的函数解析式;③连接AD,BD,△ABD的面积为S.当1≤S≤10时,请直接写出c取值范围.参考答案一、单项选择题1.解:在实数0,﹣1,,π中,属于无理数的有,π共两个.故选:B.2.解:将直角三角形ABC绕斜边AB所在直线旋转一周得到的几何体是,故选:D.3.解:A.a2+a3,不是同类项,不能合并,A错误;B.a2•a4=a6,B错误;C.a2÷a=a,C正确;D.(a2b)3=a6b3,D错误;故选:C.4.解:△=(﹣6)2﹣4×2×5=﹣4<0,所以方程无实数根.故选:D.5.解:S扇形=(m2),故选:B.6.解:过点M作ME⊥OB于点E,由题意可得:OP是∠AOB的角平分线,则∠POB=×60°=30°,∴ME=OM=3.故选:C.二、填空题(每小题3分,共24分)7.解:=﹣2.故答案为:﹣2.8.解:3x+1>﹣2移项得,3x>﹣2﹣1,合并同类项得,3x>﹣3,即x>﹣1.故答案为x>﹣1.9.解:由题意可得,该商品的售价为:a×0.5﹣30=(0.5a﹣30)元,故答案为:(0.5a﹣30).10.解:根据题意,可得等量关系:弩马十二日路程+弩马x日路程=良马x天路程,所以列方程150×12+150x=240x,故答案为150×12+150x=240x.11.解:∵⊙O经过正五边形OABCD的顶点A,D,∴∠AOD=108°,∴∠E=AOD=54°,故答案为:54.12.解:∵把△BEF沿直线EF翻折,使点B的对应点D恰好落在AC上.若∠AFD=90°,∴∠BFE=∠EFD=45°,∵等边△ABC,∴∠B=∠C=60°,∴∠FEB=∠F ED=180°﹣45°﹣60°=75°,∴∠DEC=180°﹣75°﹣75°=30°,∴∠EDC=180°﹣30°﹣60°=90°,∵CD=1,∴CE=2,故答案时:213.解:由旋转的性质得:∠ADE=∠ABC,AD=AB,∴∠ADB=∠ABD=(180°﹣∠BAC)=(180°﹣40°)=70°,∵∠BDE=90°,∴∠ADE=∠BDE﹣∠ADB=20°,∴∠ABC=20°,故答案为:20.14.解:根据题意,可得:+=,∴+=+,∴+﹣=+﹣,∴+=,解得a=﹣.故答案为:﹣.三、解答题(每小题5分,共20分)15.解:(1)小明解答过程是从第一步开始出错的,这一步正确的解答结果2﹣(x﹣1)=x,此步的根据是等式的基本性质.(2)小明的解答过程缺少检验步骤,此方程的解为x=1.5.故答案为:(1)一;2﹣(x﹣1)=x;等式的基本性质;(2)检验;x=1.5 16.解:设公司A、B两种车型各有x个座位和y个座位,根据题意得:.解得:.答:公司A、B两种车型各有45个座位和60个座位.17.解:(1)甲抽到“黑桃”,这一事件是必然事件;故答案为:必然;(2)画树状图得:∵共有9种等可能的结果,甲乙两人抽到同一张扑克牌的有3种情况,∴两次两次抽取的卡片上数字之积是奇数的概率==.18.证明:∵BE⊥AC,∴∠AEB=∠D=90°,在Rt△ADC与Rt△AEB中,,∴Rt△ADC≌Rt△AEB(HL),∴∠DAC=∠BAC,∴AC平分∠DAB.四、解答题(每小题7分共28分)19.解:如图所示:.20.解:设BG=x米.在Rt△BFG中,∠β=45°,∴FG==x;在Rt△BEG中,∠α=27°,∴EG==2x,∴EF=EG﹣FG=x.∵EC⊥AC,ED⊥AC,EC=ED,∴四边形ECDF为矩形,同理,四边形ECAG为矩形.∴EF=CD,即x=50,AG=EC=1.5,∴AB=AG+BG=51.5.答:世纪之舟的高AB为51.5米.21.解:(1)∵双曲线y=,经过点A(6,1),∴=1,解得k=6;(2)设点C到AB的距离为h,∵点A的坐标为(6,1),AB⊥y轴,∴AB=6,∴S△ABC=×6•h=12,解得h=4,∵点A的纵坐标为1,∴点C的纵坐标为1﹣4=﹣3,∴=﹣3,解得x=﹣2,∴点C的坐标为(﹣2,﹣3),设直线AC的解析式为y=kx+b,则,解得,所以,直线AC的解析式为y=x﹣2.22.解:(1)5÷0.1=50(人),答:这次被调查的学生有50人.故答案为50;(2)m==0.2,n=0.2×50=10,p=0.4×50=20.条形统计图补充如下:故答案为0.2;(3)800×(0.1+0.4)=800×0.5=400(人),答:全校学生中利用手机购物或玩游戏的共有400人.建议:学生在假期里应该更加规范自己使用手机的情况,可以用于学习或其他有意义的事情.五、解答题(每小题8分.共16分)23.解:(1)由图可得,按A种方案购票,每张门票价格为:350÷10=35(元),故答案为:35;(2)贵宾卡的价格是:470﹣10×(35﹣8)=200(元),设y2与x的函数解析式是y2=kx+b,,得,即y2与x的函数解析式是y2=27x+200;(3)当按A种方式购票,30天需要花费:35×30=1050(元),按B种方式购票,30天需要花费:27×30+200=1010(元),∵1050>1010,∴小颖选择B种购票方案比较合算.24.解:(1)∵点D,E分别为AC,AB的中点,∴DE∥BC,∴∠BEF=∠ABC,∵将△ABC沿AB翻折,得到△ABC',∴∠ABC=∠ABC′,∴∠BEF=∠EBF,∴△BEF是等腰三角形;故答案为:等腰三角形;(2)∵将△ABC沿AB翻折,得到△ABC',∴∠C′=∠C=90°,AC=AC′,∵DE⊥BC',∴∠BFD=90°,∴∠C′=∠BFD,∴DF∥AC′,∵DE∥BC,∴∠CBC′=∠DFC′=90°,∴四边形ACBC′是矩形,∵AC=AC′,∴四边形ACBC′是正方形;(3)∵E为AB的中点,∴C′E=BE=AE=AB=2,∴∠EC′B=∠C′BE,过F作FH⊥BE,∵EF=BF,∴∠EFH=∠BFH,∴∠BFH+∠ABC=90°,∵C'E⊥DE,∴∠C′EF=90°,∴∠EC′F+∠EFC′=90°,∴∠C′FE=∠BFH=∠EFH,∵∠C′FE+∠EFH+∠BFH=180°,∴∠C′FE=∠FEH=60°,∴∠ADE=∠FEH=30°,∴EF=CE=,DE=AE=,∴DF=EF+DE=.六、解答题(每小题10分,共20分)25.解:(1)当点E落在线段BC上时,PQ∥BC,∴△APQ∽△ABC,∴=,∵∠AB C=90°,AB=6cm,BC=8cm,∴AC==10cm,∴=,解得:t=;(2)分情况讨论:①当0<t≤时,作PG⊥AC于G,如图1所示:则∠PGA=90°=∠ABC,∵∠A=∠A,∴△APG∽△ACB,∴=,即=,解得:PG=t,∴重叠部分图形的面积S=平行四边形PECQ的面积=2t×t═t2,即S=t2(0<t≤);②当<t≤5时,如图2所示:作PG⊥AC于G,CF⊥PE于F,则CF=PG,同①得:CF=PG=t,PH=10﹣t,∴EH=PE﹣PH=t﹣10,∴重叠部分图形的面积S=平行四边形PECQ的面积﹣△C EH的面积=2t×t﹣(t﹣10)×t=t2+4t,即S=t2+4t(<t≤5);③当5<t≤6时,Q到达A点停止不动,如图3所示:CE=AP=t,作PG⊥AC于G,同①得:PG=t,BH=t,∴CH=BC﹣BH=t,∴重叠部分图形的面积为S=平行四边形PECQ的面积﹣△CEH的面积=10×t﹣×t×t=﹣t2+8t,即S═﹣t2+8t(5<t≤6);(3)当四边形PECQ为矩形时,∠PQC=90°,∴∠PQA=90°=∠ABC,∵∠A=∠A,∴△APQ∽△ACB,∴=,即=,解得:t=.26.解:(1)令y=0,得2x2﹣x﹣3=0,解得,x1=﹣1,x2=,∴d=|x1﹣x2|=,故答案为:;(2)经过点A(1,0),d=2,∴抛物线与x轴另一个交点是(﹣1,0)或(3,0),将A(1,0)代入y=ax2+bx+2,得a+b=﹣2,将(﹣1,0)代入y=ax2+bx+2,得a﹣b=﹣2,将(3,0)代入y=ax2+bx+2,得9a+3b=﹣2,∴a=﹣2,b=0或a=,b=﹣,∴y=﹣2x2+2或y=x2﹣x+2;(3)将A(1,0)代入y=﹣x2+bx+c得b+c=1;∴y=﹣x2+(1﹣c)x+c,令y=0,得﹣x2+(1﹣c)x+c=0,x+x2=1﹣c,x1•x2=﹣c,1∵d=|x1﹣x2|=,①抛物线恒存在“横截弦”,∴△=(1﹣c)2+4c=c2+2c+1>0,∴c≠﹣1;②d==|c+1|,当c>﹣1时,d=c+1,当c<﹣1时,d=﹣c﹣1;③S=d|c|==,∵1≤S≤10,∴﹣5≤c≤﹣2或1≤c≤4;。
吉林省吉林市2019年中考数学模拟试卷(含答案)
2019年吉林省吉林市中考数学模拟试卷一.选择题(满分12分,每小题2分)1.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>02.下列各运算中,计算正确的是()A.(a﹣2)2=a2﹣4 B.(3a2)2=9a4C.a6÷a2=a3D.a3+a2=a53.如图所示几何体的左视图正确的是()A.B.C.D.4.若a<0,则不等式﹣ax+a<0的解集是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣15.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果=,AD=9,那么BC的长是()A.4 B.6 C.2D.36.如图,过⊙O上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D 的度数为()A.25°B.30°C.40°D.50°二.填空题(满分24分,每小题3分)7.十九大报告中指出,过去五年,我国国内生产总值从54万亿元增长到80万亿元,对世界经济增长贡献率超过30%,其中“80万亿元”用科学记数法表示为元.8.飞机无风时的航速为a千米/时,风速为20千米/时,若飞机顺风飞行3小时,再逆风飞行4小时,则两次行程总共飞行千米(用含a的式子表示).9.方程=的解是.10.若x+y=1,x﹣y=5,则xy=.11.如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则AC的长为.12.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.13.如图,在平面直角坐标系xOy中,已知点A(0,),B(﹣1,0),菱形ABCD的顶点C在x轴的正半轴上,其对角线BD的长为.14.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是.三.解答题(满分20分,每小题5分)15.先化简,再求值:,其中a=2.16.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.17.为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.18.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.四.解答题(满分28分,每小题7分)19.(7分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=5.5米,CD=3米,EF=0.4米,∠CDE=162°.(1)求∠MCD的度数;(2)求摄像头下端点F到地面AB的距离.(精确到百分位)(参考数据;sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)20.(7分)某校七年级举行一分钟投篮比赛,要求每班选出10名学生参赛,在规定时间内每人进球数不低于8个为优秀,冠、亚军在甲、乙两班中产生,图1、图2分别是甲、乙两个班的10名学生比赛的数据统计图(单位:个)根据以上信息,解答下列问题:(1)将下面的《1分钟投篮测试成绩统计表》补充完整:统计量班级平均数中位数方差优秀率甲班 6.5 3.4530%乙班 6 4.65(2)你认为冠军奖应发给哪个班?简要说明理由.21.(7分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?22.(7分)如图,在正方形ABCD中,点E在BC上,(1)将△ABE沿BC方向平移,使点B与点C重合,所得的像为△DCF,请画出所得的像;(2)将△ABE绕点A逆时针方向旋转90°,所得的像为△ADG,请画出所得的像;(3)试猜想直线DF与AG的位置关系,并说明理由.五.解答题(满分16分,每小题8分)23.(8分)阅读下列例题的解答过程:解方程:3(x﹣2)2+7(x﹣2)+4=0.解:设x﹣2=y,则原方程化为:3y2+7y+4=0.∵a =3,b =7,c =4,∴b 2﹣4ac =72﹣4×3×4=1. ∴y ==.∴y 1=﹣1,y 2=﹣.当y =﹣1时,x ﹣2=﹣1,∴x =1; 当y =﹣时,x ﹣2=﹣,∴x =. ∴原方程的解为:x 1=1,x 2=.(1)请仿照上面的例题解一元二次方程:2(x ﹣3)2﹣5(x ﹣3)﹣7=0; (2)若(a 2+b 2)(a 2+b 2﹣2)=3,求代数式a 2+b 2的值.24.(8分)如图,一次函数y =﹣x +5的图象与坐标轴交于A ,B 两点,与反比例函数y =的图象交于M ,N 两点,过点M 作MC ⊥y 轴于点C ,且CM =1,过点N 作ND ⊥x 轴于点D ,且DN =1.已知点P 是x 轴(除原点O 外)上一点. (1)直接写出M 、N 的坐标及k 的值;(2)将线段CP 绕点P 按顺时针或逆时针旋转90°得到线段PQ ,当点P 滑动时,点Q 能否在反比例函数的图象上?如果能,求出所有的点Q 的坐标;如果不能,请说明理由; (3)当点P 滑动时,是否存在反比例函数图象(第一象限的一支)上的点S ,使得以P 、S 、M 、N 四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S 的坐标;若不存在,请说明理由.六.解答题(满分20分,每小题10分)25.(10分)如图,在△ABC 中,∠ACB =90°,∠ABC =30°,△CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.26.(10分)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c 是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P 的坐标.参考答案一.选择题1.解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.2.解:A、(a﹣2)2=a2﹣4a+4,此选项错误;B、(3a2)2=9a4,此选项正确;C、a6÷a2=a4,此选项错误;D、a3与a2不是同类项,不能合并,此选项错误;故选:B.3.解:从几何体的左面看所得到的图形是:故选:A.4.解:﹣ax+a<0,﹣ax<﹣a,∵a<0,∴﹣a>0,∴x<1,故选:A.5.解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=∠BCD,又∠ADC=∠CDB,∴△ADC∽△CDB,∴=,=,∴=,即=,解得,CD=6,∴=,解得,BD=4,∴BC===2,故选:C.6.解:连接OC.∵OA=OC,∴∠A=∠OCA=25°.∴∠DOC=∠A+∠ACO=50°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=180°﹣90°﹣50°=40°.故选:C.二.填空题7.解:80万亿=80 000 000 000 000=8×1013.故答案为:8×1013.8.解:顺风飞行3小时的行程=(a+20)×3千米,逆风飞行4小时的行程=(a﹣20)×4千米,两次行程总和为:(a+20)×3+(a﹣20)×4=3a+60+4a﹣80=7a﹣20(千米).故答案为(7a﹣20).9.解:方程的两边同时乘以x(70﹣x),得:3(70﹣x)=4x解得x=30.检验:把x=30代入x(70﹣x)≠0∴原方程的解为:x=30.10.解:∵x+y=1,x﹣y=5,∴xy= [(x+y)2﹣(x﹣y)2]=﹣6,故答案为:﹣611.解:由作图可知,MN垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠ADB=∠C+∠DAC=60°,∵AB=BD,∴△ABD是等边三角形,∴BD=AD=DC,∵在△CDE中,∠C=30°,DC=AB=6,∠DEC=90°,∴CE=3,∴AC=6.12.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,。
吉林省吉林市2019-2020学年中考数学一模考试卷含解析
吉林省吉林市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是( ) A .y =﹣2x 2+1B .y =﹣2x 2﹣1C .y =﹣2(x+1)2D .y =﹣2(x ﹣1)22.在下列条件中,能够判定一个四边形是平行四边形的是( ) A .一组对边平行,另一组对边相等 B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线3.一副直角三角板如图放置,其中C DFE 90∠=∠=o ,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上若//DE CF ,则BDF ∠等于( )A .35°B .25°C .30°D .15°4.如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交 AB 于G ,连接DG ,现在有如下4个结论:①ADG V ≌FDG △;②2GB AG =;③∠GDE=45°;④DG=DE 在以上4个结论中,正确的共有()个A .1个B .2 个C .3 个D .4个5.下列说法不正确的是( )A .选举中,人们通常最关心的数据是众数B .从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C .甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定D .数据3,5,4,1,﹣2的中位数是46.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.若一组数据1、a 、2、3、4的平均数与中位数相同,则a 不可能...是下列选项中的( ) A .0B .2.5C .3D .58.下列计算正确的是( ) A .326⨯=B .3+25=C .()222-=- D .2+2=29.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)10.如图,将一副三角板如此摆放,使得BO 和CD 平行,则∠AOD 的度数为( )A .10°B .15°C .20°D .25°11.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( ) A .49B .112C .13D .1612.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知平面直角坐标系中的点A (2,﹣4)与点B 关于原点中心对称,则点B 的坐标为_____ 14.已知数据x 1,x 2,…,x n 的平均数是x ,则一组新数据x 1+8,x 2+8,…,x n +8的平均数是____.15.已知抛物线23y x mx =--与直线25y x m =-在22x -<…之间有且只有一个公共点,则m 的取值范围是__.16.估计无理数11在连续整数___与____之间.17.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .18.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则△ABC的面积等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.(6分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?21.(6分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.22.(8分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).23.(8分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.24.(10分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)25.(10分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)26.(12分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?27.(12分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm 0 1 2 3 4 5y/cm 6.0 4.8 4.5 6.0 7.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】根据“上加下减”的原则进行解答即可. 【详解】解:由“上加下减”的原则可知,把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是:y =﹣2x 2+1. 故选A . 【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键. 2.C 【解析】A 、错误.这个四边形有可能是等腰梯形.B 、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C 、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D 、错误.不满足三角形全等的条件,无法证明相等的一组对边平行. 故选C . 3.D 【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案. 【详解】解:由题意可得:∠EDF=30°,∠ABC=45°, ∵DE ∥CB ,∴∠BDE=∠ABC=45°, ∴∠BDF=45°BDF=45°-30°-30°-30°=15°=15°. 故选D . 【点睛】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE 的度数是解题关键. 4.C 【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF ,∠A=∠GFD=90°,于是根据“HL”判定△ADG ≌△FDG ,再由GF+GB=GA+GB=12,EB=EF ,△BGE 为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE=12ADC ∠=45〫,再抓住△BEF 是等腰三角形,而△GED 显然不是等腰三角形,判断④是错误的.【详解】由折叠可知,DF=DC=DA ,∠DFE=∠C=90°, ∴∠DFG=∠A=90°, ∴△ADG ≌△FDG ,①正确; ∵正方形边长是12, ∴BE=EC=EF=6,设AG=FG=x ,则EG=x+6,BG=12﹣x , 由勾股定理得:EG 2=BE 2+BG 2, 即:(x+6)2=62+(12﹣x )2, 解得:x=4∴AG=GF=4,BG=8,BG=2AG ,②正确; ∵△ADG ≌△FDG ,△DCE ≌△DFE , ∴∠ADG=∠FDG FDG,,∠FDE=∠CDE ∴∠GDE=12ADC ∠=45〫.③正确;BE=EF=6,△BEF 是等腰三角形,易知△GED 不是等腰三角形,④错误; ∴正确说法是①②③ 故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度. 5.D 【解析】试题分析:A 、选举中,人们通常最关心的数据为出现次数最多的数,所以A 选项的说法正确; B 、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B 选项的说法正确;C 、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定,所以C 选项的说法正确;D 、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D 选项的说法错误. 故选D .考点:随机事件发生的可能性(概率)的计算方法 6.B 【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7.C【解析】【详解】解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,∴a不可能是1.故选C.【点睛】本题考查中位数;算术平均数.8.A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】,正确;A、原式=23=6B 、原式不能合并,错误;C 、原式=()222-=,错误;D 、原式=22,错误. 故选A . 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 9.C 【解析】【分析】根据函数图象的性质判断系数k >0,则该函数图象经过第一、三象限,由函数图象与y 轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论. 【详解】∵一次函数y=kx ﹣1的图象的y 的值随x 值的增大而增大,∴k >0,A 、把点(﹣5,3)代入y=kx ﹣1得到:k=﹣45<0,不符合题意;B 、把点(1,﹣3)代入y=kx ﹣1得到:k=﹣2<0,不符合题意;C 、把点(2,2)代入y=kx ﹣1得到:k=32>0,符合题意; D 、把点(5,﹣1)代入y=kx ﹣1得到:k=0,不符合题意, 故选C .【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键.10.B 【解析】 【分析】根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答【详解】根据题意可知∠AOB=∠ABO=45°,∠DOC=30° ∵BO ∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°DOC=90°-45°-45°-45°-30°-30°-30°=15°=15° 故选B 【点睛】此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等 11.C【解析】 画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况, ∴两次抽取的卡片上的数字之积为正偶数的概率是:2163=. 故选C.【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件. 12.B 【解析】分析:本题是考察数轴上的点的大小的关系. 解析:由图知,b<0<a ,故①正确,因为b 点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a ,所以ab<0,故③错误,由①知a-b>a+b ,所以④正确.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.(﹣2,4) 【解析】 【分析】根据点P(x,y)关于原点对称的点为(-x,-y )即可得解. 【详解】解:∵点A (2,-4)与点B 关于原点中心对称, ∴点B 的坐标为:(-2,4). 故答案为:(-2,4). 【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键. 14.8x + 【解析】 【分析】根据数据x 1,x 2,…,x n 的平均数为x =1n(x 1+x 2+…+x n ),即可求出数据x 1+1,x 2+1,…,x n +1的平均数.【详解】数据x 1+1,x 2+1,…,x n +1的平均数=1n (x 1+1+x 2+1+…+x n +1)=1n(x 1+x 2+…+x n )+1=x +1. 故答案为x +1. 【点睛】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标. 15.517m -<…或843m =-. 【解析】 【分析】联立方程可得2(2)530x m x m -++-=,设2(2)53y x m x m =-++-,从而得出2(2)53y x m x m=-++-的图象在22x -<…上与x 轴只有一个交点,当△0=时,求出此时m 的值;当△0>时,要使在22x -<…之间有且只有一个公共点,则当x=-2时和x=2时y 的值异号,从而求出m 的取值范围; 【详解】联立2325y x mx y x m⎧=--⎨=-⎩可得:2(2)530x m x m -++-=,令2(2)53y x m x m =-++-,∴抛物线23y x mx =--与直线25y x m =-在22x -<…之间有且只有一个公共点,即2(2)53y x m x m =-++-的图象在22x -<…上与x 轴只有一个交点,当△0=时,即△2(2)4(53)0m m =+--=解得:843m =±, 当843m =+时,252322m x +==+>当843m =-时,25232m x +==-,满足题意,当△0>时,∴令2x =-,75y m =+,令2x =,33y m =-,(75)(33)0m m ∴+-<,∴517m -<<令2x =-代入20(2)53x m x m =-++- 解得:57m =-, 此方程的另外一个根为:237-,故57m =-也满足题意, 故m 的取值范围为:517m -<…或843m =-故答案为:517m -<…或843m =-. 【点睛】此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键. 16.3 4 【解析】 【分析】先找到与11相邻的平方数9和16,求出算术平方根即可解题. 【详解】解:∵91116<<, ∴3114<<,∴无理数11在连续整数3与4之间. 【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.17.1.【解析】试题分析:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=CD=12cm ,在Rt △ACB 中,AB=22AC BC +=22512+=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.18.1.【解析】【分析】根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.【详解】∵双曲线y=与正比例函数y=kx的图象交于A,B两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,∵S△AOC=×1=3,∴S△ABC=2S△AOC=1.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)1m.(1)1.5 m.【解析】【分析】(1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=221.6 1.2求出即可;(1) 分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.【详解】解:(1)在Rt△DEF中,由题意知ED=1.6 m,BD=1 m,DF==1.答:DF长为1m.(1)分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=1•sin35°≈1.2.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6•cos35°≈1.3.∴EN=EH+HN=1.3+1.2=1.45≈1.5m.答:E点离墙面AB的最远距离为1.5 m.【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。
2019-2020年吉林市初三中考数学第一次模拟试题【含答案】
2019-2020年吉林市初三中考数学第一次模拟试题【含答案】2019-2020年吉林市初三中考数学第一次模拟试题【含答案】一、选择题(本大题共10小题,共30.0分)1.给出四个实数,2,0,-1,其中无理数是()A. B. 2 C. 0 D.2.我国某国产手机使用了新一代移动SOC处理器麒麟980,麒麟980实现了基于Cortex-A76的开发商用,相较上一代处理器在表现上提升75%,在能效上提升58%,采用7nm制程工艺的手机芯片,在指甲盖大小的尺寸上塞进69亿个晶体管数据“69亿”用科学记数法表示为()A. B. C. D.3.如图是正方体的表面展开图,则与“2019”字相对的字是()A. 考B. 必C. 胜D.4.下列计算正确的是()A. B.C. D.5.九年级(15)班小姜同学所在小组的7名成员的中招体育成绩(单位:分)依次为70,65,63,68,64,68,69,则这组数据的众数与中位数分别是()A. 68分,68分B. 68分,65分C. 67分分D. 70分,65分6.某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.求甲、乙两种图书每本价格分别为多少元?我们设乙图书每本价格为x元,则可得方程()A. B.C. D.7.已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.8.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A. B. C. D.9.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(8,6),以A为圆心,任意长为半径画弧,分别交AC、AO于点M、N,再分别以M、N为圆心,大于MN长为半径画弧两弧交于点Q,作射线AQ交y轴于点D,则点D的坐标为()A. B. C. D.10.如图①,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动.设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图②所示,则图②中的b等于()A. B. C. 5 D. 4二、填空题(本大题共5小题,共15.0分)11.如果分式有意义,那么实数x的取值范围是______.12.已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为______.13.关于x的一元二次方程(a-1)x2-2x+1=0有实数根,则a的取值范围是______.14.如图,四边形ABCD为矩形,以A为圆心,AD为半径的弧交AB的延长线于点E,连接BD,若AD=2AB=4,则图中阴影部分的面积为______.15.如图,∠AOB=90°,点P为∠AOB内部一点,作射线OP,点M在射线OB上,且OM=,点M′与点M关于射线OP对称,且直线MM′与射线OA交于点N.当△ONM'为等腰三角形时,ON的长为______.三、计算题(本大题共1小题,共8.0分)16.先化简,再求值,其中a=2sin45°,b=四、解答题(本大题共7小题,共67.0分)17.2019年央视315晚会曝光了卫生不达标的“毒辣条”,“食品安全”受到全社会的广泛关注,“安全教育平台”也推出了“将毒食品拋出窗外”一课我校为了了解九年级家长和学生参“将毒食品抛出窗外”的情况,在我校九年级学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A仅学生自己参与;B.家长和学生一起参与;C仅家长自己参与;D.家长和学生都未参请根据图中提供的信息解答下列问题(1)在这次抽样调查中,共调查了______名学生(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数(3)根据抽样调查结果,估计我校九年级2000名学生中“家长和学生都未参与”的人数18.如图直线y1=-x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点(1)求k的值;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP,且AP把△ABC的面积分成1:2两部分,求此时点P 的坐标.19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为______时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为______.20.如图是某户外看台的截面图,长10m的看台AB与水平地面AP的夹角为35°,与AP平行的平台BC长为1.9m,点F是遮阳棚DE上端E正下方在地面上的一点,测得AF=2m,(参考数据:sin35°≈0.57,在挡风墙CD的点D处测得点E的仰角为26°,求遮阳棚DE的长.cos35°≈0.82,sin26°≈0.44,cos26°≈0.90)21.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?22.如图,△ABC与△CDE为等腰直角三角形,∠BAC=∠DEC=90°,连接AD,取AD中点P,连接BP,并延长到点M,使BP=PM,连接AM、EM、AE,将△CDE绕点C顺时针旋转.(1)如图①,当点D在BC上,E在AC上时,AE与AM的数量关系是______,∠MAE=______;(2)将△CDE绕点C顺时针旋转到如图②所示的位置,(1)中的结论是否仍然成立,若成立,请给出证明,若不成立,请说明理由;(3)若CD=BC,将△CDE由图①位置绕点C顺时针旋转α(0°<α<360°),当ME=CD时,请直接写出α的值.23.如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.答案和解析1.【答案】A【解析】解:A、=2,是无理数,故本选项符合题意;B、,2是有理数,不是无理数,故本选项不符合题意;C、0是有理数,不是无理数,故本选项不符合题意;D、-1是有理数,不是无理数,故本选项不符合题意;故选:A.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】B【解析】解:69亿=6.9×109,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n的值.3.【答案】C【解析】解:由图形可知,与“2019”字相对的字是“胜”.故选:C.由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.4.【答案】C【解析】解:A、a2?a3=a2+3=a5,故此选项错误;B、(a+b)(a-2b)=a?a-a?2b+b?a-b?2b=a2-2ab+ab-2b2=a2-ab-2b2.故此选项错误;C、(ab3)2=a2?(b3)2=a2b6,故此选项正确;D、5a-2a=(5-2)a=3a,故此选项错误.故选:C.根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.5.【答案】A【解析】解:中招体育成绩(单位:分)排序得:63,64,65,68,68,69,70;处在中间的是:68分,因此中位数是:68分;出现次数最多的数也是68分,因此众数是68分;故选:A.根据众数、中位数的意义,将这组数据从小到大排序后,处在中间位置的数是中位数,出现次数最多的数就是众数考查中位数、众数的意义和求法,准确理解中位数、众数的意义和求法是解决问题的前提.6.【答案】B【解析】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:-=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50.答:甲图书每本价格是50元,乙图书每本价格为20元.故选:B.可设乙图书每本价格为x元,则甲图书每本价格是2.5x元,利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案.此题主要考查了分式方程的应用,正确表示出图书的价格是解题关键.7.【答案】A【解析】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.。
2019年吉林省名校调研中考数学二模试卷含答案解析+【精选五套中考模拟卷】
2019年吉林省名校调研中考数学二模试卷含答案解析一、选择题,每小题3分,共18分1.-11的绝对值是()用5个完全相同的小正方体组成的如图的立体图形,它的左视图是(外面3.一元一次不等式2x-1W3的解集在数轴上表示为()A.111|>B.'''''L'»C.i i,i l i i、-3-2-10113-3-2-10123-3-2-1012VD.一―_____________________>-3-5-1012r4.下列计算一定正确的是()A.(a3)2=a5B.a3*a2=a5C.a10-j-a2=a6D.(2a)3=2a35.如图,在平面直角坐标系xOy中,半径为2的。
P的圆心P的坐标为(-3,0),将OP沿x轴正方向平移,使(DP与y轴相切,则平移的距离为()A.1B.1或5C.3D.5k k6.在平面直角坐标系xOy中,函数y=L(ki>0,x>0)、函数y=_l(k2<0, x<0)的图象分别经过"ABC 的顶点A、C,点B在y轴正半轴±,AD±x轴于点D,CE±x轴于点E,若|ki|:|k2|=9:4,则AD:CE的值为()A.4;9B.2:3C.3:2D.9:4二、填空题,每小题4分,共32分.7.计算:而_______•8.分解因式:2x2-8=______・9.某商场桔子每千克a元,苹果每千克b元,则购买3千克桔子和2千克苹果共需元(用含a,b的代表式表示)10.正五边形的每一个外角为______度.11.如图,AB〃CD,ZA=41°,ZC=32°,则ZAEC的大小为______度.12.如图,直线y=2mx+4m(m^O)与x轴,y轴分别交于A、B两点,以0A为边在x轴上方作等边△▲()(:,则左13.如图,在Z\ABC中,AB=AC,ZA=32°,以点C为圆心,BC长为半径作弧,交AB于点D,交AC于点E,连结BE,则ZABE的大小为度.14.点A(1,a)是抛物线y=J^x2上的点,以点A为一个顶点作边长为2的等边Z\ABC,使点B、C中至少有一个点在这条抛物线上,这样的ZiABC共有个.三、解答题,每小题5分,20分15.先化简,再求值:(x+3)2+(x+2)(x- 2)-2x,其中x=-—.316.小明参加某超市的翻笑脸抽奖活动,如图,四张笑脸背后分别对应价值50,100,100,200(单位:元)的代金券(1)随机翻一张笑脸,抽中100元代金券的概率为.(2)随机翻两张笑脸,且第一次翻过的笑脸第二次不再翻,用列表法或画树状图的方法求所获代金券总价值为300元的概率.17.列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?18.图1,图2均为正方形网格,每个小正方形的边长均为1,每个小正方形顶点叫做格点,AABC的顶点在格点上,按要求在图1,图2中以AB为边各画一个三角形,且另一顶点也在格点上(1)在图1中画出AABD,使其周长和面积与AABC的周长和面积分别相等;四、解答题,每小题7分,共14分19.双十一期间,某店铺推出的如图1的雪球夹销售火爆,其形状可近似的看成图2的图形,当雪球夹闭合时, 侧得ZA0B=28° , 0A=0B=14厘米,求这个雪球夹制作的雪球的直径AB 的长度.(结果精确到1厘米,参考数据: sin28° eO.47, cos28° ^0.88, tan28° ^O. 53, sinl4° ^0.24, cosl4° eO. 97, tanl4° ^0.25.)图1 图220.某中学为了了解初一年级学生数学学科的预习时间,在初一年级随机抽取了若干名学生进行调查,并把调 查结果绘制成如下的不完整的统计表和统计图:根据上面提供的信息回答下列问题:(1) 统计表中m 的值为,并补全频数分布直方图;(2) 预习时间的中位数落在第 组;(3) 估计该校初一年级400名学生中,数学学科预习时间少于10分钟的学生人数.组别预习时间X (分钟)频数10WxV5825WxV10m 310WxV1518415WxV2013合计50五、解答题,每小题8分共16分21.如图,将矩形ABCD 绕点A 顺时针旋转,得到矩形AB' C ,D ,,点C 的对应点C ,恰好落在CB 的延长线上, 边AB 交边C' D'于点E.(1) 求证:BC=BC ,;(2) 若 AB=2, BC=1,求 AE 的长.22.甲、乙两位同学住在同一小区,在同一中学读书,一天恰好在同一时间骑自行车沿同一线路上学,小区离学校有9km,甲以匀速行驶,花了30min到校,乙的行程信息如图中折线0-A-B-C所示,分别用y”形表示甲、乙在时间x(min)时的行程,请回答下列问题:(1)分别求出y“形关于x的函数解析式,并写出自变量x的取值范围(2)在图中画出函数yi的图象(3)甲,乙两人在途中有几次相遇?分别是出发后的多长时间相遇?CD1AB于点D,动点P从点A出发,沿AC以lcm/s的速度向终点C运动,点P不与点A,C重合,过点P作PQ±AC交折线AD-DC于点Q,以PQ为边向PQ右边作正方形PQMN,设正方形PQMN与AACD重叠部分图形的面积为S,点P运动的时间为t(s)(1)(2)(3)当M点在边CD上时,求t的值;用含t的代数式表示PQ的长;求S与t的函数解析式.24.如图,在平面直角坐标系中,抛物线y=-x2+3x与x轴交于0、A两点,与直线y=x交于0、B两点,点A、B的坐标分别为(3,0)、(2,2).点P在抛物线上,且不与点0、B重合,过点P作y轴的平行线交射线0B于点Q,以PQ为边作矩形PQMN,MN与点B始终在PQ同侧,且PN=1.设点P的横坐标为m(m>0),矩形PQMN的周长为C.(1)(2)(3)(4)用含m的代数式表示点P的坐标.求C与m之间的函数关系式.当矩形PQMN是正方形时,求m的值.直接写出矩形PQMN的边与抛物线有两个交点时m的取值范围.参考答案与试题解析一、选择题,每小题3分,共18分1. - 11的绝对值是( )【考点】绝对值.【分析】直接利用绝对值的意义求解即可.【解答】解:-11的绝对值是11,故选A,2.用5个完全相同的小正方体组成的如图的立体图形,它的左视图是( )/lE®【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得共两层,每层一个正方形.故选:C.3. 一元一次不等式2x - 1W3的解集在数轴上表示为() _________________A. -L —I --L —1~~1“ : B. 1 」 I _1__I _1 i > C. I 1 1 I [ I-3-2-10 1 % 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 12 V【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】求出不等式的解集,表示在数轴上即可.【解答】解:2x- 1W3,解得:xW2,表示在数轴上,如图所示:-----————-————i —— .-3 -2 -1 0 1 2 3故选B.4.下列计算一定正确的是( )A 、 (a 3) 2=a 5 B. a 3,a 2=a 5 C. a 10-ra 2=a 5 D. (2a ) 3=2a 3【考点】同底数幕的除法;同底数幕的乘法;幕的乘方与积的乘方.【分析】根据幕的乘方底数不变指数相乘,同底数幕的乘法底数不变指数相加;同底数幕的除法底数不变指数 相减;积的乘方等于乘方的积,可得答案.【解答】解:A 、幕的乘方底数不变指数相乘,故A 错误;B 、 同底数幕的乘法底数不变指数相加,故B 正确;C 、 同底数幕的除法底数不变指数相减,故C 错误;D 、 积的乘方等于乘方的积,故D 错误;故选:B.5.如图,在平面直角坐标系xOy中,半径为2的。
吉林省长春市2019年中考数学模拟试卷(2)含答案解析
吉林省长春市2019年中考数学模拟试卷(2)(解析版)一、选择题(本题共8个小题,每小题3分,共24分)1.﹣2019的绝对值是()A.2019 B.﹣2019 C.D.﹣【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣2019的绝对值是2007.故选:A.【点评】此题考查了绝对值,解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.据统计,2019年长春市中考的报名人数为58847人,58847这个数用科学记数法表示为()A.58.847×105B.5.8847×105C.5.8847×104D.0.58847×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:58847这个数用科学记数法表示为5.8847×104,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,由5块完全相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,其主视图是()A.B.C.D.【分析】由已知条件可知,主视图有2列,每列小正方数形数目分别为3,1,从而确定正确的选项.【解答】解:由分析得该组合体的主视图为:故选B.【点评】本题考查由三视图判断几何体及简单组合体的三视图的知识.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.4.计算(x2y)3的结果是()A.x6y3B.x5y3C.x5y D.x2y3【分析】根据积的乘方和幂的乘方法则求解.【解答】解:(x2y)3=(x2)3y3=x6y3,故选A.【点评】本题考查了积的乘方和幂的乘方,熟练掌握运算法则是解题的关键.5.已知关于x的一元二次方程x2+bx+1=0有两个不相等的实数根,则在下列选项中,b的值可以是()A.b=0 B.b=﹣1 C.b=﹣2 D.b=﹣3【分析】先利用判别式的意义得到b2>4,然后对各选项进行判断.【解答】解:△=b2﹣4>0,即b2>4,当b=0、﹣1、﹣2不满足条件,而b=﹣3满足条件.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.6.如图,若以平行四边形一边AB为直径的圆恰好与边CD相切于点D,则∠C的度数是()A.40°B.45°C.50°D.60°【分析】连接OD,如图,先利用切线的性质得OD⊥CD,再根据平行四边形的性质∠A=∠C,AB∥CD,则OD⊥AB,利用圆周角定理得到∠A=∠BOD=45°,从而得到∠C的度数.【解答】解:连接OD,如图,∵CD为切线,∴OD⊥CD,∵四边形ABCD为平行四边形,∴∠A=∠C,AB∥CD,∴OD⊥AB,∴∠BOD=90°,∴∠A=∠BOD=45°,∴∠C=45°.故选B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了平行四边形的性质.7.将含有30°角的直角三角板OAB如图放置在平面直角坐标中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,1)B.(1,﹣)C.(,﹣)D.(﹣,)【分析】求出旋转后OA与y轴夹角为45°,然后求出点A′的横坐标与纵坐标,从而得解.【解答】解:如图,∵三角板绕原点O顺时针旋转75°,∴旋转后OA与y轴夹角为45°,∵OA=2,∴OA′=2,∴点A′的横坐标为2×=,纵坐标为﹣2×=﹣,所以,点A′的坐标为(,﹣).故选:C.【点评】本题考查了坐标与图形变化﹣旋转,准确识图求出旋转后OA与y轴的夹角为45°是解题的关键.8.如图,在平面直角坐标系中,菱形OABC的顶点B在y轴正半轴上,顶点C在函数y=(x <0)的图象上.若对角线AC=6,OB=8,则k的值是()A.24 B.12 C.﹣12 D.﹣6【分析】先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.【解答】解:∵菱形的两条对角线的长分别是6和4,∴C(﹣3,4),∵点C在反比例函数y=的图象上,∴k=(﹣3)×4=﹣12.故选C.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定满足此函数的解析式.二、填空题(本大题共6小题,每小题3分,共18分)9.分解因式:a3﹣16a=a(a+4)(a﹣4).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a3﹣16a,=a(a2﹣16),=a(a+4)(a﹣4).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,难点在于需要进行二次分解.10.不等式组的解集是﹣2<x≤.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>﹣2,解不等式②得,x≤,所以不等式组的解集是﹣2<x≤.故答案为:﹣2<x≤.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).11.如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C的大小为56度.【分析】先根据平行线的性质得出∠CDE的度数,再根据三角形内角和定理,即可得到∠C 的度数.【解答】解:∵AB∥CD,∠B=34°,∴∠CDE=∠B=34°,又∵CE⊥BE,∴Rt△CDE中,∠C=90°﹣34°=56°,故答案为:56.【点评】本题主要考查了平行线的性质以及三角形内角和定理的运用,解题时注意:两直线平行,同位角相等.12.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.【点评】该题主要考查了平行线分线段成比例定理及其应用问题;解题的关键是准确找出图形中的对应线段,正确列出比例式求解、计算.13.如图,以点O为圆心的半圆经过点C,AB为直径,若AC=BC=,则图中阴影部分的面积是.【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.【解答】解:∵AB为直径,∴∠ACB=90°,∵AC=BC=,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S阴影部分=S扇形AOC==.故答案为:.【点评】本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.14.如图,线段AB的长为4,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形ACD和BCE,连结DE,则DE长的最小值是2.【分析】设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=x,CE=(4﹣x),根据勾股定理然后用配方法即可求解.【解答】解:设AC=x,BC=4﹣x,∵△CD,△BCE均为等腰直角三角形,∴CD=x,CE=(4﹣x),∵∠ACD=45°,∠BCE=45°,∴∠DCE=90°,∴DE2=CD2+CE2=x2+(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:2.故答案为:2【点评】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(2a﹣b)2﹣a(4a﹣3b),其中a=1,b=.【分析】原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=4a2﹣4ab+b2﹣4a2+3ab=b2﹣ab,当a=1,b=时,原式=3﹣.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则及公式是解本题的关键.16.(6分)在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为2;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.【分析】(1)由必然事件的定义可知:透明的袋子中装的都是黑球,从袋子中随机摸出一个球是黑球的事件为“必然事件”才能成立,所以m 的值即可求出;(2)列表得出所有等可能的情况数,找出两次摸到的球颜色相同的情况数,即可求出所求的概率. 【解答】解:(1)∵在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同,从袋子中拿走m 个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”, ∴透明的袋子中装的都是黑球, ∴m=2, 故答案为:2;(2)设红球分别为H 1、H 2,黑球分别为B 1、B 2,列表得:总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种, 所以两次摸到的球颜色相同的概率==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km ,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.【分析】设普通列车的速度为为xkm/h ,动车的平均速度为1.5xkm/h ,根据走过相同的路程360km ,坐动车所用的时间比坐普通列车所用的时间少1小时,列方程求解.【解答】解:设普通列车的速度为为xkm/h,动车的平均速度为1.5xkm/h,由题意得,﹣=1,解得:x=120,经检验,x=120是原分式方程的解,且符合题意.动车的平均速度=120×1.5=180km/h.答:该趟动车的平均速度为180km/h.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.18.(7分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查,样本容量是50;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【分析】(1)根据题目中的信息可知本次调查为抽样调查,也可以得到样本容量;(2)根据每周课外体育活动时间在6≤x<8小时的学生人数占24%,可以求得每周课外体育活动时间在6≤x<8小时的学生人数,从而可以求得2≤x<4的学生数,从而可以将条形统计图补充完整;(3)根据条形统计图可以得到这50名学生每周课外体育活动时间的平均数;(4)根据条形统计图,可以估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人),补全的频数分布直方图如右图所示,(3)由题意可得,=5,即这50名学生每周课外体育活动时间的平均数是5;(4)由题意可得,全校学生每周课外体育活动时间不少于6小时的学生有:1000×(人),即全校学生每周课外体育活动时间不少于6小时的学生有300人.【点评】本题考查频数分布直方图、样本、总体、样本容量、用样本估计总体、加权平均数,解题的关键是明确题意,找出所求问题需要的条件.19.(7分)如图,在▱ABCD中,AB<BC,以点A为圆心,AB长为半径作圆弧交AD于点F,再分别以点B、F为圆心,大于BF的一半长为半径作圆弧,两弧交于一点P,连结AP并延长交BC于点E,连结EF.(1)四边形ABEF是菱形(填“矩形”、“菱形”、“正方形”或“无法确定”)(直接填写结果),并证明你的结论.(2)AE、NF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为10,∠ADC=120°,(直接填写结果)【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明.(2)根据菱形的性质首先证明△AOB是含有30°的直角三角形,由此即可解决问题.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形∵AB=AF,∴四边形ABEF是菱形.故答案为菱形.(2)∵四边形ABEF是菱形,∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,∵AB=10,∴AB=2BO,∵∠AOB=90°∴∠BA0=30°,∠ABO=60°,∴AO=BO=5,∠ABC=2∠ABO=120°.故答案为10,120.【点评】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是全等三角形的证明,想到利用特殊三角形解决问题,属于中考常考题型.20.(7分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的仰角为32°,已知该建筑物高BC为208米,求此时航拍无人机与该建筑物的水平距离AD(精确到0.1米)【参考数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249】【分析】在首先证明△ABD是的等腰直角三角形,则BD=AD,然后在直角△ACD中,利用tan∠CAD=,即可得到关于AD的方程,解方程求得AD的长.【解答】解:∵∠DAB=45°,AD⊥BC,∴∠B=45°,∴∠B=∠BAD,∴BD=AD.∴CD=208﹣AD.在Rt△ADC中,∠ADC=90°,tan∠CAD=,∴AD•tan32°=CD,∴0.6249AD=208﹣AD,∴AD≈128.0.答:此时航拍无人机与该建筑物的水平距离AD约是128.0米.【点评】此题考查了仰角与俯角的知识.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.21.(8分)某景区的三个景点A、B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C;乙在甲出发20分钟后乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C:甲、乙两人同时到达景点C,甲、乙两人之间的距离y(米)与甲出发的时间x(分)之间的函数图象如图所示.(1)甲步行的速度为60米/分,观光车的速度为300米/分.(2)直接写出乙乘观光车时y与x之间的函数关系式.(3)求乙步行的速度.【分析】(1)根据速度=路程÷时间,可求出甲步行的速度;根据观光车的速度=路程÷时间+甲步行的速度,即可求出观光车的速度;(2)设乙乘观光车时y与x之间的函数关系式为y=kx+b(k≠0),分当20≤x≤25时及当25≤x≤30时两种情况,根据点的坐标利用待定系数法求出函数关系式;(3)观察图形,寻找乙的运动过程,设乙步行的速度为v米/分,根据甲、乙之间的距离=速度差×时间,即可得出关于v的一元一次方程,解之即可得出结论.【解答】解:(1)1200÷20=60(米/分),1200÷(25﹣20)+60=300(米/分).故答案为:60;300.(2)设乙乘观光车时y与x之间的函数关系式为y=kx+b(k≠0),当20≤x≤25时,将(20,1200)、(25,0)代入y=kx+b,得:,解得:,∴此时y=﹣24x+6000;当25≤x≤30时,将(25,0)、(30,1200)代入y=kx+b,得:,解得:,∴此时y=240x﹣6000.综上所述:乙乘观光车时y与x之间的函数关系式为y=.(3)由已知可得,甲出发30分钟时乙到达景点B,在景点B处停留30分钟,甲出发60分钟时他们相距60×30﹣1200=600(米).设乙步行的速度为v米/分,根据题意得:(90﹣60)(v﹣60)=600,解得:v=80.答:乙步行的速度为80米/分.【点评】本题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次方程,解题的关键是:(1)根据数量关系求出速度;(2)根据点的坐标,利用待定系数求出函数关系式;(3)根据甲、乙之间的距离=速度差×时间,列出关于v的一元一次方程.22.(9分)问题原型:如图①,点A、B分别在∠MON的边OM、ON上,连结AB,C、D、E分别为线段OA、OB、AB中点,连结CE、DE,易知四边形OCED是平行四边形.问题探究:如图②,点A、B分别在锐角∠MON的边OM,ON上,连结AB,C、D、E分别为线段OA、OB、AB中点,连结CE、DE,分别以OA、OB为斜边在∠MON外侧作等腰直角三角形△OAP、△OBQ,连结PE,QE,求证:△PCE≌△EDQ.拓展发现:如图③,点A、B分别在钝角∠MON的边OM、ON上,∠MON=150°,连结AB、C、D、E分别为线段OA、OB、AB中点,连结CE、DE,分别以OA、OB为斜边在∠MON外侧作等腰直角三角形△OAP、△OBQ,PC、QD的延长线交于点R,连结AR,BR,则∠ARB= 60°.【分析】问题探究:根据四边形ODEC是平行四边形,于是得到∠OCE=∠ODE,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论;拓展发现:连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,根据四边形的内角和得到∠CRD=30°,即可得到结论.【解答】解:问题探究:证明:∵四边形ODEC是平行四边形,∴∠OCE=∠ODE,∴∠ACE=∠BDE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO+∠EDO=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)拓展发现:∠ARB=60°,如图③,连接RO,CE,∵PR与QR分别是OA,OB的垂直平分线,∴AR=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°.故答案为:60°.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,等边三角形的判定和性质,线段垂直平分线的性质,熟练掌握等腰直角三角形的性质是解题的关键.23.(10分)如图,BD是正方形ABCD的对角线,BC=2,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,同时动点Q从点C出发,以相同的速度沿射线BC运动,当点P出发后,过点Q作QE⊥BD,交直线BD于点E,连结AP、AE、PE、QE,设运动时间为t(秒).(1)请直接写出动点P运动过程中,四边形APQD是什么四边形?(2)请判断AE,PE之间的数量关系和位置关系,并加以证明.(3)设△EPB的面积为y,求y与t之间的函数关系式.(4)直接写出△EPQ的面积是△EDQ面积的2倍时t的值.【分析】(1)由正方形的性质和已知条件得出∠ABE=∠EBQ=45°,AD∥BQ,AD=BC=2,BP=CQ,得出BC=AD=PQ,即可证出四边形APQD是平行四边形;(2)证出BE=QE,由SAS证明△AEB≌△EPQ,得出AE=PE,∠AEB=∠PEQ,得出∠AEP=∠BEQ=90°,即可得出AE⊥PE;(3)过E作EF⊥BC与F,BQ=t+2,EF=,得出y=××t,即可得出答案;(4)分两种情况:①当P在BC延长线上时,作PM⊥QE于M,由等腰直角三角形的性质和勾股定理得出PM=PQ=,BE=QE=BQ=(t+2),求出DE=BE﹣BD=,由三角形面积关系和面积公式得出方程,解方程即可;①当P在BC边上时,解法同①,此时DE=﹣t,由三角形面积关系和面积公式得出方程,解方程即可.【解答】解:(1)四边形APQD是平行四边形;理由如下:∵四边形ABCD是正方形,P、Q速度相同,∴∠ABE=∠EBQ=45°,AD∥BQ,AD=BC=2,BP=CQ,∴BC=AD=PQ,∴四边形APQD是平行四边形;(2)AE=PE,AE⊥PE;理由如下:∵EQ⊥BD,∴∠PQE=90°﹣45°=45°,∴∠ABE=∠EBQ=∠PQE=45°,∴BE=QE,在△AEB和△EPQ中,,∴△AEB≌△EPQ(SAS),∴AE=PE,∠AEB=∠PEQ,∴∠AEP=∠BEQ=90°,∴AE⊥PE;(3)过E作EF⊥BC于F,如图1所示:BQ=t+2,EF=,∴y=××t,即y=t2+t;(4)分两种情况:①当P在BC延长线上时,作PM⊥QE于M,如图2所示:∵PQ=2,∠BQE=45°,∴PM=PQ=,BE=QE=BQ=(t+2),∴DE=BE﹣BD=(t+2)﹣2=,∵△EPQ的面积积是△EDQ面积的2倍,∴×(t+2)×=2×(t﹣)×(t+2),解得:t=3或t=﹣2(舍去),∴t=3;①当P在BC边上时,解法同①,此时DE=﹣t,∵△EPQ的面积积是△EDQ面积的2倍,∴×(t+2)×=2×(﹣t)×(t+2),解得:t=1或t=﹣2(舍去),∴t=1;综上所述,△EPQ的面积是△EDQ面积的2倍时t的值为:1或3.【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积公式等知识;本题综合性强,有一定难度.24.(12分)如图①,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC所对应的函数表达式.(2)设点M(3,m),直接写出使得MN+MD的值最小时m的值.(3)若抛物线的对称轴与直线AC相交于点B、E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B、D、E、F为顶点的四边形能否为平行四边形?若能,求点E的坐标,若不能,请说明理由.(4)点P是图①中直线AC上方抛物线上的一个动点(不与A、C重合),过点P与x轴垂直的直线交AC于点Q,如图②,若线段PQ将△PAC分成两部分的面积比为1:3,直接写出点P的坐标.【分析】(1)将点A、C的坐标代入抛物线解析式可得出b、c的值,继而得出抛物线解析式,利用待定系数法可求出AC的函数解析式;(2)利用轴对称求最短路径的知识,找到N点关于直线x=3的对称点N′,连接N'D,N'D 与直线x=3的交点即是点M的位置,继而求出m的值.(3)设出点E的坐标,分情况讨论,①当点E在线段AC上时,点F在点E上方,②当点E 在线段AC(或CA)延长线上时,点F在点E下方,根据平行四边形的性质表示出F的坐标,将点F的坐标代入抛物线解析式可得出x的值,继而求出点E的坐标.(4)根据面积的比,可得(x P﹣x A):(x C﹣x P)=1:3,根据比例的性质,可得答案.【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3),可得:,解得:,故抛物线为y=﹣x2+2x+3,设直线AC解析式为y=kx+n,将点A(﹣1,0)、C(2,3)代入得:,解得:,故直线AC为y=x+1.(2)作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),可求出直线DN′的函数关系式为y=﹣x+,当M(3,m)在直线DN′上时,MN+MD的值最小,则m=﹣×3+=.(3)由(1)、(2)得D(1,4),B(1,2)点E在直线AC上,设E(x,x+1),①当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3解得,x=0或x=1(舍去),则点E的坐标为:(0,1).②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1),∵点F在抛物线上,∴x﹣1=﹣x2+2x+3,解得x=或x=,即点E的坐标为:(,)或(,)综上可得满足条件的点E为E(0,1)或(,)或(,);(4)S△APQ=AP•(x P﹣x A),S△CPQ=AP(x C﹣x P),S△APQ:S△CPQ=1:3,即(x P﹣x A):(x C﹣x P)=1:3,解得x=﹣,y=﹣x2+2x+3=,即P(﹣,);S△APQ:S△CPQ=3:1,即(x P﹣x A):(x C﹣x P)=3:1,解得x=,y=﹣x2+2x+3=,即P(,),综上所述:若线段PQ将△PAC分成两部分的面积比为1:3,点P的坐标是(﹣,)(,).【点评】本题考查了二次函数的综合题,涉及了待定系数法求函数解析式、轴对称求最短路径及平行四边形的性质,同学们注意培养自己解答综合题的能力,将所学知识融会贯通.。
吉林省2019年中考数学模拟试卷及答案
吉林省2019年中考数学模拟试卷及答案(全卷共120分,考试时间120分钟)第Ⅰ卷一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中,有且只有....一个是正确的)1. 据国家新闻出版广电总局电影局数据,2017年国庆中秋节假期全国城市影院电影票房约26亿元,总票房创下该档期新纪录,26亿用科学记数法表示正确的是A.26×108B.2.6×108 C.26×109 D.2.6×109 2.-sin60°的倒数为A .-2B .21C .-33D .-2333. 如右图所示是一个几何体的三视图,这个几何体的名称是A .圆柱体B .三棱锥C .球体D .圆锥体4.用反证法证明:如果AB ⊥CD ,AB ⊥EF ,那么CD ∥EF .证明该命题的第一个步骤是A .假设CD ∥EFB .假设AB ∥EFC .假设CD 和EF 不平行 D .假设AB 和EF 不平行5.关于x 的一元二次方程(a ﹣1)x 2+2x+1=0有两个实数根,则a 的取值范围为A .a ≤2B .a <2C .a <2且a ≠1D .a ≤2且a ≠16.矩形具有而平行四边形不一定...具有的性质是 A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角相等7.下列运算正确的是A .42=±B .236x x x ⋅=C .235+=D .236()x x =8.下列说法正确的是A .一个游戏的中奖概率是101,则做10次这样的游戏一定会中奖 B .多项式22x x -分解因式的结果为(2)(2)x x x +-C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .若甲组数据的方差S 2甲=0.1,乙组数据的方差S 2乙=0.2,则乙组数据比甲组数据稳定16题图 9.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =k x(k ≠0,x >0)上,若矩形ABCD 的面积为8,则k 的值为A .8B .3 3C .2 2D .4 10. 如图,在平行四边形ABCB 中,AC 、BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知△AEF 的面积为4,则△OBE 的面积为A .4B .8C .10D .12 第Ⅱ卷二、填空题(共6小题,每小题3分,共18分.)11. 因式分解:x 3-xy 2= 。
吉林市2019-2020学年中考数学经典试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则图中相似三角形共有( )A .1对B .2对C .3对D .4对2.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD ∆的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .3.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x 的值是( ).A .3-B .3C .2D .84.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表: 班级 参加人数 平均数 中位数 方差 甲 55 135 149 191 乙55135151110某同学分析上表后得出如下结论: ①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀); ③甲班成绩的波动比乙班大. 上述结论中,正确的是( ) A .①②B .②③C .①③D .①②③5.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④6.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AGGF的值是( )A .43B .54C .65D .767.如图所示,数轴上两点A ,B 分别表示实数a ,b ,则下列四个数中最大的一个数是( )A .aB .bC .1aD .1b8.一、单选题如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°9.设点()11A ,x y 和()22B ,x y 是反比例函数ky x=图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是 A .第一象限B .第二象限C .第三象限D .第四象限10.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若7,CD=1,则BE 的长是( )A .5B .6C .7D .8二、填空题(本题包括8个小题) 11.化简:4= .12.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.13.因式分解:3a 2-6a+3=________. 14.若a+b=5,ab=3,则a 2+b 2=_____.15.已知实数m ,n 满足23650m m +-=,23650n n +-=,且m n ≠,则n mm n+= . 16.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.17.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)18.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则BE :BC 的值为_________.三、解答题(本题包括8个小题)19.(6分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (时)之间的函数图象如下图所示.求甲组加工零件的数量y 与时间x 之间的函数关系式.求乙组加工零件总量a 的值.20.(6分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级(2)班参加球类活动人数情况统计表项目篮球足球乒乓球排球羽毛球人数 a 6 5 7 6八年级(2)班学生参加球类活动人数情况扇形统计图根据图中提供的信息,解答下列问题:a=,b=.该校八年级学生共有600人,则该年级参加足球活动的人数约人;该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21.(6分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k 的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.22.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE 交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.23.(8分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?24.(10分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?25.(10分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?26.(12分)解方程:252112xx x+--=1.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三对相似三角形.故选C.2.C【解析】【分析】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.【详解】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,∴矩形ABCD的面积为4×8=32,故选:C.【点睛】本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP面积变化情况是解题的关键,属于中考常考题型.3.D【解析】【分析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D.【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.4.D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故①②③正确,故选D.点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.C【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.4<8<1.9,所以8应在③段上.故选C考点:实数与数轴的关系6.C【解析】【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32a,∴FM=52a,∵AE∥FM,∴36552AG AE aGF FM a===,故选C.【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.7.D【解析】【详解】∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.∴1a <a<b<1b,故选D.8.A【解析】分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A.点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.9.A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数ky x=图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大, ∴根据反比例函数ky x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况: ①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限; ②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限; ③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限; ④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A . 10.B 【解析】 【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可. 【详解】解:∵半径OC 垂直于弦AB , ∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2, 解得,OA=4 ∴OD=OC-CD=3, ∵AO=OE,AD=DB, ∴BE=2OD=6 故选B 【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键 二、填空题(本题包括8个小题) 11.2 【解析】【分析】根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】∵22=4,∴【点睛】本题考查求算术平方根,熟记定义是关键.12.11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.13.3(a-1)2【解析】【分析】先提公因式,再套用完全平方公式.【详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.【点睛】考点:提公因式法与公式法的综合运用.14.1【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案为1.考点:完全平方公式.15.225 .【解析】试题分析:由m n ≠时,得到m ,n 是方程23650x x +-=的两个不等的根,根据根与系数的关系进行求解.试题解析:∵m n ≠时,则m ,n 是方程3x 2﹣6x ﹣5=0的两个不相等的根,∴2m n +=,53mn =-. ∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为225-. 考点:根与系数的关系.16.1【解析】【分析】根据弧长公式l =,可得r =,再将数据代入计算即可.【详解】 解:∵l =,∴r ===1.故答案为:1.【点睛】考查了弧长的计算,解答本题的关键是掌握弧长公式:l =(弧长为l ,圆心角度数为n ,圆的半径为r ). 17.12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为>18.1:4【解析】【分析】由S △BDE :S △CDE =1:3,得到BE 1CE 3=,于是得到 41BE BC =. 【详解】解::1:3BDE CDE S S ,= 两个三角形同高,底边之比等于面积比.13BE CE ∴=, :1:4.BE BC ∴=故答案为1:4.【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.三、解答题(本题包括8个小题)19.(1)y=60x ;(2)300【解析】【详解】(1)由题图可知,甲组的y 是x 的正比例函数.设甲组加工的零件数量y 与时间x 的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y 与时间x 之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.所以a-100100=24.8-2.82⨯,解得a=300. 20. (1)a =16,b =17.5(2)90(3)35 【解析】试题分析:(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为90;(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P (恰好选到一男一女)=1220=35.考点:列表法与树状图法;用样本估计总体;扇形统计图.21.(1)32(2)1(3)①②③【解析】【分析】(1)由抛物线与x轴只有一个交点,可知△=0;(2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;(3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.【详解】(1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=32,k≠0,∴k=32;(2)∵AB=2,抛物线对称轴为x=2,∴A、B点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k=1,(3)①∵当x=0时,y=3,∴二次函数图象与y轴的交点为(0,3),①正确;②∵抛物线的对称轴为x=2,∴抛物线的对称轴不变,②正确;③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,令k的系数为0,即x2﹣4x=0,解得:x1=0,x2=4,∴抛物线一定经过两个定点(0,3)和(4,3),③正确.综上可知:正确的结论有①②③.【点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.22.(1)(2)证明见解析【解析】【分析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.【详解】解:如图 1 中,在AB 上取一点M,使得BM=ME,连接ME.在Rt△ABE 中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴,∴x=(负根已经舍弃),∴AB=AC=(2+ )•,∴BC= AB= +1.作CQ⊥AC,交AF 的延长线于Q,∵ AD=AE ,AB=AC ,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23.(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y+=⎧⎨+=⎩,解得:6040 xy=⎧⎨=⎩,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×100100000=3辆、至少享有B型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.24.(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人.【解析】【分析】(1)根据条形统计图,求个部分数量的和即可;(2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.【详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查.(2)最喜欢足球活动的有10人,10=20%50,∴最喜欢足球活动的人占被调查人数的20%.(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)则全校学生中最喜欢篮球活动的人数约为2000×1850=720(人).【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.25.(1)一副乒乓球拍28 元,一副羽毛球拍60元(2)共320 元.【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,2116 32204x yx y+=⎧⎨+=⎩,解得:2860 xy=⎧⎨=⎩答:购买一副乒乓球拍28元,一副羽毛球拍60元. (2)5×28+3×60=320元答:购买5副乒乓球拍和3副羽毛球拍共320元.26.12 x=-【解析】【分析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解. 【详解】原方程变形为253 2121xx x-=--,方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),解得12x=-.检验:把12x=-代入(2x﹣1),(2x﹣1)≠0,∴12x=-是原方程的解,∴原方程的12x=-.【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列计算正确的是( )A .(a 2)3=a 6B .a 2+a 2=a 4C .(3a )•(2a )2=6aD .3a ﹣a =32.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .3.已知2是关于x 的方程x 2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或104.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )A .B .C .D .5.下列计算正确的是( )A .235+=B .a a a +=222C .(1)x y x xy +=+D .236()mn mn =6.如图1,在矩形ABCD 中,动点E 从A 出发,沿A→B→C 方向运动,当点E 到达点C 时停止运动,过点E 作EF ⊥AE 交CD 于点F ,设点E 运动路程为x ,CF =y ,如图2所表示的是y 与x 的函数关系的大致图象,给出下列结论:①a =3;②当CF =14时,点E 的运动路程为114或72或92,则下列判断正确的是( )A .①②都对B .①②都错C .①对②错D .①错②对 7.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=( )A .2:5B .2:3C .3:5D .3:28.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab9.如图,在△ABC 中,∠C=90°,∠B=30°,AD 是△ABC 的角平分线,DE ⊥AB,垂足为点E,DE=1,则BC= ( )A .3B .2C .3D .3+210.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与ABC △有交点,则k 的取值范围是( ).A .12k <<B .13k ≤≤C .14k ≤<D .14k ≤≤二、填空题(本题包括8个小题)11.已知a +b =1,那么a 2-b 2+2b =________.12.用半径为6cm ,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm .13.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.14.函数y=2+1-1x x 中自变量x 的取值范围是___________. 15.如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF16.已知A(x 1,y 1),B(x 2,y 2)都在反比例函数y =6x的图象上.若x 1x 2=﹣4,则y 1⋅y 2的值为______. 17.如图,在直角坐标系中,点A ,B 分别在x 轴,y 轴上,点A 的坐标为(﹣1,0),∠ABO=30°,线段PQ 的端点P 从点O 出发,沿△OBA 的边按O→B→A→O 运动一周,同时另一端点Q 随之在x 轴的非负半轴上运动,如果PQ=3,那么当点P 运动一周时,点Q 运动的总路程为__________.18.如图,矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,点D 落在点'D 处.则重叠部分AFC ∆的面积为______.三、解答题(本题包括8个小题)19.(6分)如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .求证:AB =DC ;试判断△OEF 的形状,并说明理由.20.(6分)如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan48 1.11︒≈,tan58 1.60︒≈.21.(6分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB 交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.22.(8分)如图,已知一次函数y=32x﹣3与反比例函数kyx=的图象相交于点A(4,n),与x轴相交于点B.填空:n的值为,k的值为;以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;考察反比函数kyx=的图象,当2y≥-时,请直接写出自变量x的取值范围.23.(8分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图) 24.(10分)如图,以△ABC 的边AB 为直径的⊙O 与边AC 相交于点D ,BC 是⊙O 的切线,E 为BC 的中点,连接AE 、DE .求证:DE 是⊙O 的切线;设△CDE 的面积为 S 1,四边形ABED 的面积为 S 1.若 S 1=5S 1,求tan ∠BAC 的值;在(1)的条件下,若AE =32,求⊙O 的半径长.25.(10分)吴京同学根据学习函数的经验,对一个新函数y =2545x x --+的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x 的取值范围是 .列表:x… ﹣2 ﹣1 0 1 2 3 4 5 6 … y … 517- m ﹣1 52- ﹣5 n ﹣1 12- 517- … 表中m = ,n = .描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy 中,描出上表中各对对应值为坐标的点(其中x 为横坐标,y 为纵坐标),并根据描出的点画出该函数的图象:观察所画出的函数图象,写出该函数的两条性质:① ;② .26.(12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【详解】A.(a2)3=a2×3=a6,故本选项正确;B.a2+a2=2a2,故本选项错误;C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;D.3a﹣a=2a,故本选项错误.故选A.【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.2.B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B .【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.3.B【解析】试题分析: ∵2是关于x 的方程x 2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x 2﹣8x+12=0,解得x 1=2,x 2=1.①当1是腰时,2是底边,此时周长=1+1+2=2;②当1是底边时,2是腰,2+2<1,不能构成三角形.所以它的周长是2.考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质. 4.A【解析】【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A 选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.5.C【解析】解:A 、不是同类二次根式,不能合并,故A 错误;B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .6.A【解析】【分析】由已知,AB=a ,AB+BC=5,当E 在BC 上时,如图,可得△ABE ∽△ECF ,继而根据相似三角形的性质可得y=﹣2155a x x a a ++-,根据二次函数的性质可得﹣215551·5223a a a a a +++⎛⎫+-= ⎪⎝⎭,由此可得a=3,继而可得y=﹣218533x x +-,把y=14代入解方程可求得x 1=72,x 2=92,由此可求得当E 在AB 上时,y=14时,x=114,据此即可作出判断. 【详解】解:由已知,AB=a ,AB+BC=5,当E 在BC 上时,如图,∵E 作EF ⊥AE ,∴△ABE ∽△ECF , ∴AB CE BE FC =, ∴5a x x a y-=-, ∴y=﹣2155a x x a a++-, ∴当x=522b a a +-=时,﹣215551·5223a a a a a +++⎛⎫+-= ⎪⎝⎭, 解得a 1=3,a 2=253(舍去), ∴y=﹣218533x x +-, 当y=14时,14=﹣218533x x +-, 解得x 1=72,x 2=92, 当E 在AB 上时,y=14时, x=3﹣14=114, 故①②正确,故选A .【点睛】本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图。
2019-2020学年吉林省吉林市中考数学检测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°2.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补3.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.13B.2C.24D.2234.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差5.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.16.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.7.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=35,其中正确结论的个数是( )A.0 B.1 C.2 D.38.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m9.如图所示的正方体的展开图是()A.B.C.D.10.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h二、填空题(本题包括8个小题)11.如图,a∥b,∠1=40°,∠2=80°,则∠3=度.12.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.13.规定一种新运算“*”:a*b=13a-14b,则方程x*2=1*x的解为________.14.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.15.如图,已知⊙P 的半径为2,圆心P 在抛物线y =12x 2﹣1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为_____.16.如图,在△ABC 中,AB≠AC .D,E 分别为边AB,AC 上的点.AC=3AD,AB=3AE,点F 为BC 边上一点,添加一个条件:______,可以使得△FDB 与△ADE 相似.(只需写出一个)17.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .18.若a+b=5,ab=3,则a 2+b 2=_____. 三、解答题(本题包括8个小题)19.(6分)如图,在ABC ∆中,点F 是BC 的中点,点E 是线段AB 的延长线上的一动点,连接EF ,过点C 作AB 的平行线CD ,与线段EF 的延长线交于点D ,连接CE 、BD .求证:四边形DBEC 是平行四边形.若120ABC ∠=︒,4AB BC ==,则在点E的运动过程中:①当BE =______时,四边形BECD 是矩形; ②当BE =______时,四边形BECD 是菱形.20.(6分)计算:131|132sin 60(2016)83π-︒︒⎛⎫+-+- ⎪⎝⎭.先化简,再求值:2344111x x x x x ++⎛⎫-+÷⎪++⎝⎭,其中22x =-. 21.(6分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.22.(8分)先化简,后求值:(1﹣11a +)÷(2221a aa a -++),其中a =1.23.(8分)如图,一次函数5y kx =+(k 为常数,且0k ≠)的图像与反比例函数8y x=-的图像交于()2,A b -,B 两点.求一次函数的表达式;若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.24.(10分)如图,在△ABC 中,AB=AC ,D 为BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,求证:DE=DF .25.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧 4散文10 0.25其他 6合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.26.(12分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.求证:AB=DC.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.2.C【解析】试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON 比∠MOQ 大,选项C 正确;由以上可得,∠MOQ 与∠MOP 不互补,选项D 错误.故答案选C .考点:角的度量. 3.C 【解析】试题分析:连结CD ,可得CD 为直径,在Rt △OCD 中,CD=6,OC=2,根据勾股定理求得OD=4所以tan ∠CDO=,由圆周角定理得,∠OBC=∠CDO ,则tan ∠OBC=,故答案选C .考点:圆周角定理;锐角三角函数的定义. 4.D 【解析】 【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 5.C【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误; ∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确; 其中正确的有2个,故选C .考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定. 6.C 【解析】 【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置. 【详解】A. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0, 满足ab<0, ∴a−b>0, ∴反比例函数y=a bx- 的图象过一、三象限, 所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0, 满足ab<0, ∴a−b<0, ∴反比例函数y=a bx-的图象过二、四象限, 所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0, 满足ab<0, ∴a−b>0, ∴反比例函数y=a bx-的图象过一、三象限, 所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0, 满足ab>0,与已知相矛盾 所以此选项不正确; 故选C.此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小 7.C 【解析】 【分析】由四边形ABCD 是正方形,得到AD=BC,90DAB ABC ∠=∠=︒, 根据全等三角形的性质得到∠P=∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据勾股定理求出5,AQ ==,DFO BAQ ∠=∠直接用余弦可求出. 【详解】详解:∵四边形ABCD 是正方形, ∴AD=BC,90DAB ABC ∠=∠=, ∵BP=CQ , ∴AP=BQ ,在△DAP 与△ABQ 中, AD ABDAP ABQ AP BQ =⎧⎪∠=∠⎨⎪=⎩,∴△DAP ≌△ABQ , ∴∠P=∠Q ,∵90Q QAB ∠+∠=, ∴90P QAB ∠+∠=, ∴90AOP ∠=, ∴AQ ⊥DP ; 故①正确;②无法证明,故错误. ∵BP=1,AB=3, ∴4BQ AP ==,5,AQ == ,DFO BAQ ∠=∠∴3cos cos .5AB DFO BAQ AQ ∠=∠== 故③正确, 故选C .考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.8.A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×32=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=153×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.9.A【解析】【分析】有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.【详解】把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.故选A【点睛】本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.10.C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h ;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C .二、填空题(本题包括8个小题) 11.120【解析】 【详解】如图,∵a ∥b ,∠2=80°,∴∠4=∠2=80°(两直线平行,同位角相等)∴∠3=∠1+∠4=40°+80°=120°.故答案为120°. 12.5 【解析】【详解】如图,过点O 作OC ⊥AB 的延长线于点C ,则AC=4,OC=2,在Rt △ACO 中,22224225AC OC +=+=, ∴sin ∠OAB=525OC OA ==. 5. 13.107【分析】根据题中的新定义化简所求方程,求出方程的解即可.【详解】根据题意得:13x-14×2=13×1-1x4,7 12x=56,解得:x=10 7,故答案为x=10 7.【点睛】此题的关键是掌握新运算规则,转化成一元一元一次方程,再解这个一元一次方程即可.14.1【解析】【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得ED DCDC FD=;即DC2=ED?FD,代入数据可得答案.【详解】根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有ED DCDC FD=,即DC2=ED×FD,代入数据可得DC2=31,DC=1,故答案为1.15.6,16,1)【解析】【分析】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.将P的纵坐标代入函数解析式,求P点坐标即可根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P 的纵坐标是1或-1.当y=1时,12x 1-1=1,解得当y=-1时,12 x 1-1=-1,方程无解 故P)或()【点睛】此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键.16.//DF AC 或BFD A ∠=∠【解析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.17.16【解析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:π·4=8180n ,解得360πn = 所以22360S ==16360360扇形π4πr π=n 18.1【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a 2+2ab+b 2=25,然后根据题意即可得解. 解:∵a+b=5,∴a 2+2ab+b 2=25,∵ab=3,∴a 2+b 2=1.故答案为1.考点:完全平方公式.三、解答题(本题包括8个小题)19. (1)、证明过程见解析;(2)、①、2;②、1.【解析】(1)、首先证明△BEF和△DCF全等,从而得出DC=BE,结合DC和AB平行得出平行四边形;(2)、①、根据矩形得出∠CEB=90°,结合∠ABC=120°得出∠CBE=60°,根据直角三角形的性质得出答案;②、根据菱形的性质以及∠ABC=120°得出△CBE是等边三角形,从而得出答案.【详解】(1)、证明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵点F是BC的中点,∴BF=CF,在△DCF和△EBF中,∠CDF=∠FEB,∠DCF=∠EBF,FC=BF,∴△EBF≌△DCF(AAS),∴DC=BE,∴四边形BECD是平行四边形;(2)、①BE=2;∵当四边形BECD是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=12BC=2,②BE=1,∵四边形BECD是菱形时,BE=EC,∵∠ABC=120°,∴∠CBE=60°,∴△CBE是等边三角形,∴BE=BC=1.【点睛】本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型.理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键.20.(1)1;(2)-1.【解析】【分析】(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置.【详解】(1)原式﹣1﹣﹣1﹣2=1.(2)原式=[31x+﹣(1)(1)1x xx+-+]•21(2)xx++=(2)(2)1x xx-+-+•21(2)xx++=22xx-+,当2时,原式-1.【点睛】本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.21.(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【解析】【分析】(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.【详解】解:(Ⅰ)本次接受随机抽样调查的学生人数为:48%=50(人), ∵1650×100=31%, ∴图①中m 的值为31.故答案为50、31;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有332+=3, ∴这组数据的中位数是3; 由条形统计图可得142103144165650x ⨯+⨯+⨯+⨯+⨯==3.1, ∴这组数据的平均数是3.1.(Ⅲ)1500×18%=410(人).答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.11a a +-,2. 【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】 解:原式=()()2111111a a a a a a -+⎛⎫-÷ ⎪++⎝⎭+()()2111a aa a a +=+- 11a a +=-, 当a =1时, 原式=3131+-=2. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.(1)152y x =+;(2)1或9. 【解析】试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k 、b 的值,即可得一次函数的解析式;(2)直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m ,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m 的值.试题解析:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得2582b k b =-+⎧⎪⎨-=⎪-⎩, 解得412b k =⎧⎪⎨=⎪⎩, 所以一次函数的表达式为y =12x +5. (2)将直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m.由8152y x y x m ⎧=-⎪⎪⎨⎪=+-⎪⎩得, 12x 2+(5-m)x +8=0.Δ=(5-m)2-4×12×8=0, 解得m =1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.24.答案见解析【解析】由于AB=AC ,那么∠B=∠C ,而DE ⊥AC ,DF ⊥AB 可知∠BFD=∠CED=90°,又D 是BC 中点,可知BD=CD ,利用AAS可证△BFD≌△CED,从而有DE=DF.25.(1)41(2)15%(3)16【解析】【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为×111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)=212=16.26.∵AC平分BCD BC∠,平分ABC∠,∴ACB DBC∠=∠在ABC与DCB中,{ABC DCBACB DBCBC BC∠=∠∠=∠=ABC∴DCB≌AB DC∴=.【解析】分析:根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.解答:证明:∵AC平分∠BCD,BC平分∠ABC,∴∠DBC=12∠ABC,∠ACB=12∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC 与△DCB 中,ABC DCB{BC BC ACB DBC∠=∠=∠=∠,∴△ABC ≌△DCB ,∴AB=DC .2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△A′B′C′是△ABC 以点O 为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC 的面积比是4:9,则OB′:OB 为( )A .2:3B .3:2C .4:5D .4:92.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A .B .C .D .3.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a ﹣b ,x ﹣y ,x+y ,a+b ,x 2﹣y 2,a 2﹣b 2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2因式分解,结果呈现的密码信息可能是( )A .我爱美B .宜晶游C .爱我宜昌D .美我宜昌4.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为( )A .3B .2C .23D .()123+ 5.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,﹣4),顶点C 在x 轴的正半轴上,函数y=k x(k <0)的图象经过点B ,则k 的值为( )A .﹣12B .﹣32C .32D .﹣366.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为( )A.0.86×104B.8.6×102C.8.6×103D.86×1027.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503y yx x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.15022503y yx x⎧-=⎪⎪⎨⎪-=⎪⎩8.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm9.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱的高BC=6 cm,圆锥的高CD=3 cm,则这个陀螺的表面积是()A.68π cm2B.74π cm2C.84π cm2D.100π cm210.二次函数2y x=的对称轴是()A.直线y1=B.直线x1=C.y轴D.x轴二、填空题(本题包括8个小题)11.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.12.如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=▲ °.13.如图,点,,D E F 分别在正三角形ABC 的三边上,且DEF ∆也是正三角形.若ABC ∆的边长为a ,DEF ∆的边长为b ,则AEF ∆的内切圆半径为__________.14.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.15.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下: ... -1 0 1 2 3 ......105212...则当5y <时,x 的取值范围是_________.16.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk=<的图象经过点C ,则k 的值为 .17.在△ABC中,点D在边BC上,BD=2CD,AB a=,AC b=,那么AD= .18.函数y=的自变量x的取值范围是_____.三、解答题(本题包括8个小题)19.(6分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.求证:△ACB≌△BDA;若∠ABC=36°,求∠CAO度数.20.(6分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?21.(6分)如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.22.(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?23.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:()1这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______; ()2将条形统计图补充完整;()3该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.24.(10分)从一幢建筑大楼的两个观察点A ,B 观察地面的花坛(点C ),测得俯角分别为15°和60°,如图,直线AB 与地面垂直,AB =50米,试求出点B 到点C 的距离.(结果保留根号)25.(10分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少? 请解答上述问题.26.(12分)先化简,再求值:2221()4244a aa a a a -÷--++,其中a 是方程a 2+a ﹣6=0的解. 参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.A 【解析】 【分析】根据位似的性质得△ABC ∽△A′B′C′,再根据相似三角形的性质进行求解即可得. 【详解】由位似变换的性质可知,A′B′∥AB ,A′C′∥AC , ∴△A′B′C′∽△ABC ,∵△A'B'C'与△ABC 的面积的比4:9, ∴△A'B'C'与△ABC 的相似比为2:3, ∴23OB OB '= , 故选A . 【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心. 2.C 【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可. 详解:从左边看竖直叠放2个正方形. 故选:C .点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项. 3.C 【解析】试题分析:(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2=(x 2﹣y 2)(a 2﹣b 2)=(x ﹣y )(x+y )(a ﹣b )(a+b ),因为x ﹣y ,x+y ,a+b ,a ﹣b 四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C . 考点:因式分解. 4.C 【解析】 【分析】过O 作OC ⊥AB ,交圆O 于点D ,连接OA ,由垂径定理得到C 为AB 的中点,再由折叠得到CD=OC ,求出OC 的长,在直角三角形AOC 中,利用勾股定理求出AC 的长,即可确定出AB 的长. 【详解】过O 作OC ⊥AB ,交圆O 于点D ,连接OA ,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:3,则3.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.5.B【解析】【详解】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=kx(k<0)的图象经过点B,∴﹣4=k8,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.6.C【解析】【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】数据8 600用科学记数法表示为8.6×103故选C.【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).7.A【解析】【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设甲的钱数为x,乙的钱数为y,依题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.C【解析】∵DG是AB边的垂直平分线,∴GA=GB,△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周长=AC+BC+AB=51cm,故选C.9.C【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:圆锥的计算;几何体的表面积.10.C【解析】【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).二、填空题(本题包括8个小题)11.1【解析】【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′=2286+=1cm.故答案为1.考点:平面展开-最短路径问题.12.1.【解析】试题分析:∵四边形OABC为平行四边形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四边形ABCD是圆的内接四边形,∴∠D+∠B=180°.又∠D=12∠AOC,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB)=31°-(1°+120°+1°+1°)=1°.故答案为1°.考点:①平行四边形的性质;②圆内接四边形的性质.13.3() 6a b-【解析】【分析】根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=12(AE+AF-EF)=12(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半。
2019届吉林长春中考模拟(三)数学试卷【含答案及解析】
18. 如图,在 Rt △ ABC中,∠ ACB=90°,CD是 AB边上的中线,过点 作 CE∥AB, BE,CE相交于点 E. 求证:四边形 BDCE是菱形.
B 作 BE∥ CD,过点 C
19. “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某市食品企业计划在
今年推出:海参干贝棕、板栗鲜肉粽、水晶蜜浅粽、咖喱牛肉粽(以下分别用
A、 B、C、 D
表示)四种口味的粽子.该企业为了解市民对这四种不同口味粽子的喜爱情况,在端午节
前派调查组到各社区调查,第一组抽取了某社区 10%的居民调查,并将调查情况绘制成如
下两幅不完整的统计图.
(1)这个社区的居民共有多少人?
(2)补全条形统计图.
(3)若该市有 20 万居民,请估计爱吃 C 种粽子的人数.
A.75°
B .105°
C .110°
D .120°
6. 如图, AD∥ BE∥ CF,直线l1 、l2 与这三条平行线分别交于点 A、 B、 C和点 D、 E、 F.若 AB=4.5,BC=3, EF=2,则 DE的长度是( )
A.
B .3 C .5 D .
7. 如图, OA, OB是⊙O的半径,且 OA⊥ OB,AO的延长线与弦 BC交于点 D,连结 AC.若 ∠B=25°,则∠A 的度数是( )
23. 如图,在平面直角坐标系中,抛物线 y=ax2+bx 与 x 轴交于 O、 A 两点,与直线 y=x 交 于点 B,点 A、 B 的坐标分别为( 3, 0)、( 2,2).点 P 在抛物线上,过点 P 作 y 轴的平 行线交射线 OB于点 Q,以 PQ为边向右作矩形 PQM,N 且 PN=1,设点 P 的横坐标为 m( m> 0, 且 m≠2). (1)求这条抛物线所对应的函数表达式. (2)求矩形 PQMN的周长 C 与 m之间的函数关系式. (3)当矩形 PQMN是正方形时,求 m的值.
【附5套中考模拟试卷】吉林省吉林市2019-2020学年中考数学模拟试题含解析
6.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是( )
A.∠EGD=58°B.GF=GHC.∠FHG=61°D.FG=FH
7.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()
23.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
(1)求抛物线的解析式;
(2)若PN:PM=1:4,求m的值;
(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+ 的最小值.
21.(6分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道 上确定点D,使CD与 垂直,测得CD的长等于21米,在 上点D的同侧取点A、B,使∠CAD=30 ,∠CBD=60 .求AB的长(精确到0.1米,参考数据: );已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
2.将二次函数 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是()
A形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为( )
2019年吉林省长春市中考数学模拟试卷(四)试卷试题及答案(Word版)-解析版
2019年吉林省长春市中考数学模拟试卷(四)一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2019•长春模拟)“天文单位”是天文学中测量距离的基本单位,1天文单位约等于149 600 000千米,149 600 000这个数用科学记数法表示为( ) A .1 549610⨯B .1 849610⨯C .51.49610⨯D .81.49610⨯2.(3分)(2019•长春模拟)如图,实数2-,2,x ,y 在数轴上的对应点分别为E ,F ,M ,N ,这四个数中绝对值最小的数对应的点是( )A .点EB .点FC .点MD .点N3.(3分)(2019•长春模拟)一个正方体的表面展开图如图所示,把它折成正方体后,与“考”字相对的字是( )A .预B .祝C .成D .功4.(3分)(2019•长春模拟)下列计算正确的是( ) A .33()ab a b =B .632a a a=C .1a ba b--=-+ D .222()a b a b +=+5.(3分)(2019•长春模拟)一元二次方程2460x x ++=根的判别式的值为( )A .8B .8-C .D .-6.(3分)(2019•长春模拟)如图,在ABC ∆中,AB AC =,过点C 的直线//EF AB .若30ACE ∠=︒,则B ∠的度数为( )A .30︒B .65︒C .75︒D .85︒7.(3分)(2019•长春模拟)如图,圆内接正方形ABCD ,在弧BC 上有一点E ,则t a n AEB ∠的值为( )A.1B C D8.(3分)(2019•长春模拟)如图,点A是函数2(0)y xx=-<在第二象限内图上一点,点B是函数4(0)y xx=>在第一象限内图象上一点,直线AB与y轴交于点,且AC BC=,连结OA,OB,则AOB∆的面积是()A.2B.3C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)(2013=.10.(3分)(2019•长春模拟)不式组2524x xx>⎧⎨+<⎩的解集为.11.(3分)(2019•长春模拟)已知正比例函数y kx=的图象向上平移三个单位长度后经过点(2,5)A-,则这个正比例函数的表达式为.12.(3分)(2019•长春模拟)如图,4个小正方形的边长都为1,则图中阴影部分图形的面积和是(结果保留)π13.(3分)(2019•长春模拟)如图,Rt ABC∆中,90ACB∠=︒,50A∠=︒,将其折叠,使点A落在边CB上A'处,折痕为CD,则A DB∠'的度数为.14.(3分)(2019•长春模拟)已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:则函数y ax bc =+不经过的象限是第 象限. 三、解答题(本大题共10小题,共78分15.(6分)(2019•长春模拟)先化简,再求值:241(1)33a a a -÷+--,其中2a =-.16.(6分)(2019•长春模拟)一个不透明盒子中放有三张除所标数字不同外其余均相同的卡片,卡片上分别标有数字1,2,3.从盒子中随机抽取一张卡片,记下数字后放回,再次随机抽取一张一记下数字,请用画树状图(或列表)的方法,求第二次抽取的数字大于第一次抽取的数字的概率.17.(6分)(2019•长春模拟)某服装厂接到一份加工3000件校的订单在实际投人生产之前,接到学校要求,需提前供货该服装厂决定提高加工效率,实际每天加工的件数是原计划的1.2倍,结果提前5天完工,求原计划每天加工校服的件数.18.(7分)(2019•长春模拟)如图,在ABC ∆中,AB AC =,AD 是BC 边上的中线,AE BE ⊥于点E ,且12BE BC =. 求证:AB 平分EAD ∠.19.(7分)(2019•长春模拟)如图,为解决市民停车难的问题,长春市交警部门在一段街路旁开辟了一个停车场(图中的矩形)MNPQ ,并划出了若干个停车位,每个车位都是长为5m ,宽为2.5m 的矩形,已知第一个车位的AD 边与停车场边缘MQ 成35︒角,据此,请你求出这个停车场的宽度MN 的值.(结果精确到到0.1)m 【参考数据:sin350.574︒=,cos350.819︒=,tan350.700︒=】20.(7分)(2019•长春模拟)某校学生会为了解本校九年级学生体育测试中跳小绳成绩的情况,随机抽取了该校九年级若干名学生,调查他们的跳小绳成绩x (次/分),按成绩分成(155)A x <,(155160)B x <…,(160165)C x <…,(165170D x <=…,(170)E x …五个等级.在本次调查中,男、女生的人数相同将所得数据绘制成如下的统计图:根据以上统计图提供的信息,解答下列问题:(1)本次调查中,男生的跳小绳成绩的中位数在 等级; (2)求本次调查中女生的跳小绳成绩为E 等级的人数;(3)若该校九年级共有男生400人,女生380人,估计该校九年级学生跳小绳成绩为C 等级的人数.21.(8分)(2019•长春模拟)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.(1)求小张骑自行车的速度;(2)求小张停留后再出发时y与x之间的函数表达式;(3)求小张与小李相遇时x的值.22.(9分)(2019•长春模拟)在ABC∆中,90ACB∠=︒,BE是AC边上的中线,点D在射线BC上.猜想:如图①,点D在BC边上,:2:3BD BC=,AD与BE相交于点P,过点A作//AF BC,交BE的延长线于点F,则APPD的值为.探究:如图②,点D在BC的延长线上,AD与BE的延长线交于点P,:1:2CD BC=,求AP PD的值.应用:在探究的条件下,若2CD=,6AC=,则BP=.23.(10分)(2019•长春模拟)如图,在矩形ABCD 中,8AB =,6BC =,点E 从点A 出发,以每秒4个单位长度的速度沿边AB 运动,到点B 停止,过点E 作//EF BD 交AD 于点F ,把FAE ∆绕点F 逆时针方向旋转得到FGH ∆,点G 落在线段EF 上,设点E 的运动时间为t (秒)(1)求EG 的长.(用含t 的代数式表示) (2)求点G 在ABD ∠的平分线上时BE 的长(3)设FGH ∆与ABD ∆重合部分图形的周长为y ,当点E 与点A 、B 均不重合时,求y 与t 之间的函数关系(4)在点E 运动的同时,点P 从点B 出发,以每秒9个单位长度的速度沿折线BD DC -运动,当点E 停止运动时,点P 也随之停止,直接写出点P 在直线GH 上时t 的值.24.(12分)(2019•长春模拟)在平面直角坐标系中,点A 是y 轴上一点,其坐标为(0,6),点B 在x 轴的正半轴上.点P ,Q 均在线段AB 上,点P 的横坐标为m ,点Q 的横坐标大于m ,在PQM ∆中,若//PM x 轴,//QM y 轴,则称PQM ∆为点P ,Q 的“肩三角形. (1)若点B 坐标为(4,0),且2m =,则点P ,B 的“肩三角形”的面积为 ; (2)当点P ,Q 的“肩三角形”是等腰三角形时,求点B 的坐标; (3)在(2)的条件下,作过O ,P ,B 三点的抛物线2y ax bx c =++①若M 点必为抛物线上一点,求点P ,Q 的“肩三角形”面积S 与m 之间的函数关系式,并写出自变量m 的取值范围.②当点P ,Q 的“肩三角形”面积为3,且抛物线2ax bx c =++与点P ,Q 的“肩三角形”恰有两个交点时,直接写出m 的取值范围.2019年吉林省长春市中考数学模拟试卷(四)参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2019•长春模拟)“天文单位”是天文学中测量距离的基本单位,1天文单位约等于149 600 000千米,149 600 000这个数用科学记数法表示为( ) A .1 549610⨯B .1 849610⨯C .51.49610⨯D .81.49610⨯【解答】解:149 600 000这个数用科学记数法表示为81.49610⨯. 故选:D .2.(3分)(2019•长春模拟)如图,实数2-,2,x ,y 在数轴上的对应点分别为E ,F ,M ,N ,这四个数中绝对值最小的数对应的点是( )A .点EB .点FC .点MD .点N【解答】解:实数2-,2,x ,y 在数轴上的对应点分别为E 、F 、M 、N , 则这四个数中绝对值最小的数对应的点是点M , 故选:C .3.(3分)(2019•长春模拟)一个正方体的表面展开图如图所示,把它折成正方体后,与“考”字相对的字是( )A .预B .祝C .成D .功【解答】解:这是一个正方体的平面展开图,共有六个面,把它折成正方体后,与“考”字相对的字是预. 故选:A .4.(3分)(2019•长春模拟)下列计算正确的是( ) A .33()ab a b =B .632a a a=C .1a ba b--=-+ D .222()a b a b +=+【解答】解:333()ab a b =,故选项A 错误,642a a a=,故选项B 错误, ()1a b a b a b a b---+==-++,故选项C 正确, 222()2a b a ab b +=++,故选项D 错误, 故选:C .5.(3分)(2019•长春模拟)一元二次方程2460x x ++=根的判别式的值为( )A .8B .8-C .D .-【解答】解:1a =,4b =,6c =,∴△2244468b ac =-=-⨯=-,故选:B .6.(3分)(2019•长春模拟)如图,在ABC ∆中,AB AC =,过点C 的直线//EF AB .若30ACE ∠=︒,则B ∠的度数为( )A .30︒B .65︒C .75︒D .85︒【解答】解://EF AB , ACE A ∴∠=∠, 30ACE ∠=︒, 30A ∴∠=, AB AC =, B ACB ∴∠=∠,1(18030)752B ∴∠=︒-︒=︒,故选:C .7.(3分)(2019•长春模拟)如图,圆内接正方形ABCD ,在弧BC 上有一点E ,则t a n AEB ∠的值为( )A .1B C D 【解答】解:连接AC , 四边形ABCD 是正方形, 45ACB ∴∠=︒, 45AEB ACB ∴∠=∠=︒, tan 1AEB ∴∠=,故选:A .8.(3分)(2019•长春模拟)如图,点A 是函数2(0)y x x =-<在第二象限内图上一点,点B 是函数4(0)y x x=>在第一象限内图象上一点,直线AB 与y 轴交于点,且AC BC =,连结OA ,OB ,则AOB ∆的面积是( )A .2B .3C .4D .5【解答】解:分别过A 、B 两点作AD x ⊥轴,BE x ⊥轴,垂足为D 、E , AC CB =, OD OE ∴=,设2(,)A a a-,则4(,)B a a ,故124121423222AOB AOD BOE ADBE S S S S a a a a a a a∆∆∆⎛⎫=--=+⨯-⨯-⨯= ⎪⎝⎭梯形.故选:B .二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)(2013=【解答】===10.(3分)(2019•长春模拟)不式组2524x xx >⎧⎨+<⎩的解集为 0x < .【解答】解:2524x x x >⎧⎨+<⎩①②,解①得:0x <, 解②得:2x <,则不等式的解集为:0x <. 故答案为:0x <.11.(3分)(2019•长春模拟)已知正比例函数y kx =的图象向上平移三个单位长度后经过点(2,5)A -,则这个正比例函数的表达式为 y x =- .【解答】解:正比例函数y kx =的图象向上平移三个单位长度后得到3y kx =+, 平移后的函数图象经过点(2,5)A -, 523k ∴=-+,解得1k =-,∴这个正比例函数的表达式为y x =-,故答案为y x =-.12.(3分)(2019•长春模拟)如图,4个小正方形的边长都为1,则图中阴影部分图形的面积和是38π(结果保留)π【解答】解:根据图示知,12180904545∠+∠=︒-︒-︒=︒, 180ABC ADC ∠+∠=︒,∴图中阴影部分的圆心角的和是909012135︒+︒-∠-∠=︒,∴阴影部分的面积应为:2135133608S ππ==. 故答案是:38π.13.(3分)(2019•长春模拟)如图,Rt ABC ∆中,90ACB ∠=︒,50A ∠=︒,将其折叠,使点A 落在边CB 上A '处,折痕为CD ,则A DB ∠'的度数为 10︒ .【解答】解:90ACB ∠=︒,50A ∠=︒, 905040B ∴∠=︒-︒=︒,折叠后点A 落在边CB 上A '处, 50CA D A ∴∠'=∠=︒,由三角形的外角性质得,504010A DB CA D B ∠'=∠'-∠=︒-︒=︒. 故答案为:10︒.14.(3分)(2019•长春模拟)已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:则函数y ax bc =+不经过的象限是第 三 象限.【解答】解:已知点(3,0)-,(0,3)(3,3)在2y ax bx c =++上,则有9303933a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得16123a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,106a =-<,302bc =>,∴函数y ax bc =+经过一二四象限,不经过第三象限,故答案为:三.三、解答题(本大题共10小题,共78分15.(6分)(2019•长春模拟)先化简,再求值:241(1)33a a a -÷+--,其中2a =-.【解答】解:原式(2)(2)332a a a a a +--=--2a =+,当2a =时, 原式22=+=.16.(6分)(2019•长春模拟)一个不透明盒子中放有三张除所标数字不同外其余均相同的卡片,卡片上分别标有数字1,2,3.从盒子中随机抽取一张卡片,记下数字后放回,再次随机抽取一张一记下数字,请用画树状图(或列表)的方法,求第二次抽取的数字大于第一次抽取的数字的概率. 【解答】解:画树状图得:共有9种等可能的结果,其中第二次抽取的数字大于第一次抽取的数字的有3种结果,∴第二次抽取的数字大于第一次抽取的数字的概率为3193=. 17.(6分)(2019•长春模拟)某服装厂接到一份加工3000件校的订单在实际投人生产之前,接到学校要求,需提前供货该服装厂决定提高加工效率,实际每天加工的件数是原计划的1.2倍,结果提前5天完工,求原计划每天加工校服的件数.【解答】解:设原计划每天加工校服x 件,则实际每天加工校服1.2x 件, 依题意,得:3000300051.2x x-=, 解得:100x =,经检验,100x =是所列分式方程的解,且符合题意. 答:原计划每天加工校服100件.18.(7分)(2019•长春模拟)如图,在ABC ∆中,AB AC =,AD 是BC 边上的中线,AE BE ⊥于点E ,且12BE BC =. 求证:AB 平分EAD ∠.【解答】证明:AB AC =,AD 是BC 边上的中线,12BD BC ∴=,AD BC ⊥, 12BE BC =, BD BE ∴=, AE BE ⊥, AB ∴平分EAD ∠.19.(7分)(2019•长春模拟)如图,为解决市民停车难的问题,长春市交警部门在一段街路旁开辟了一个停车场(图中的矩形)MNPQ ,并划出了若干个停车位,每个车位都是长为5m ,宽为2.5m 的矩形,已知第一个车位的AD 边与停车场边缘MQ 成35︒角,据此,请你求出这个停车场的宽度MN 的值.(结果精确到到0.1)m 【参考数据:sin350.574︒=,cos350.819︒=,tan350.700︒=】【解答】解:四边形MNPQ 和四边形ABCD 是矩形, 90M N BAD ∴∠=∠=∠=︒,在Rt AMD ∆中, 2.5AD =,35ADM ∠=︒, sin AMADM AD∴∠=, sin sin35 2.50.574 1.435AM AD ADM AD ∴=⨯∠=⨯︒=⨯=, 90ADM DAM BAN DAM ∠+∠=∠+∠=︒, 35BAN ADM ∴∠=∠=︒,在Rt ABN ∆中,5AB =,35BAN ∠=︒, cos ANBAN AB∴∠=, cos cos3550.819 4.095AN AB BAN AB ∴=⨯∠=⨯︒=⨯=,1.435 4.095 5.53 5.5()MN AM AN m ∴=+=+=≈;答:这个停车场的宽度MN 约为5.5m .20.(7分)(2019•长春模拟)某校学生会为了解本校九年级学生体育测试中跳小绳成绩的情况,随机抽取了该校九年级若干名学生,调查他们的跳小绳成绩x (次/分),按成绩分成(155)A x <,(155160)B x <…,(160165)C x <…,(165170D x <=…,(170)E x …五个等级.在本次调查中,男、女生的人数相同将所得数据绘制成如下的统计图:根据以上统计图提供的信息,解答下列问题:(1)本次调查中,男生的跳小绳成绩的中位数在 C 等级; (2)求本次调查中女生的跳小绳成绩为E 等级的人数;(3)若该校九年级共有男生400人,女生380人,估计该校九年级学生跳小绳成绩为C 等级的人数.【解答】解:(1)男生跳绳数据的总个数为412108640++++=,∴中位数为第20、21个数据的平均数,而第20、21个数据均落在C组,则男生的跳小绳成绩的中位数在C组,故答案为:C.(2)本次调查中女生的跳小绳成绩为E等级的人数为:40(117.5%37.5%25%15%)2⨯----=(人);(3)估计该校九年级学生跳小绳成绩为C等级的人数为1040038025%19540⨯+⨯=(人).21.(8分)(2019•长春模拟)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.(1)求小张骑自行车的速度;(2)求小张停留后再出发时y与x之间的函数表达式;(3)求小张与小李相遇时x的值.【解答】解:(1)由题意得:240012003004-=(米/分),答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:(10,0)B,设直线AB的解析式为:y kx b=+,把(6,1200)A和(10,0)B代入得:100 61200k bk b+=⎧⎨+=⎩,解得:3001200kb=-⎧⎨=⎩,∴小张停留后再出发时y 与x 之间的函数表达式;3003000y x =-+;(3)小李骑摩托车所用的时间:24003800=, (6,0)C ,(9,2400)D ,同理得:CD 的解析式为:8004800y x =-, 则80048003003000x x -=-+, 7811x =, 答:小张与小李相遇时x 的值是7811分.22.(9分)(2019•长春模拟)在ABC ∆中,90ACB ∠=︒,BE 是AC 边上的中线,点D 在射线BC 上.猜想:如图①,点D 在BC 边上,:2:3BD BC =,AD 与BE 相交于点P ,过点A 作//AF BC ,交BE 的延长线于点F ,则AP PD 的值为 32. 探究:如图②,点D 在BC 的延长线上,AD 与BE 的延长线交于点P ,:1:2CD BC =,求APPD的值.应用:在探究的条件下,若2CD =,6AC =,则BP = .【解答】解:猜想:如图①BE 是AC 边上的中线,AE CE ∴=, //AF BC ,AEF CEB ∴∆∆∽,∴1BC AE EFAF CE BE===, :2:3BD BC =, :2:3BD AF ∴=, //AF BD ,APF DPB ∴∆∆∽,∴32AP AF PD BD ==; 探究:过点A 作作//AF BC ,交BE 的延长线于点F ,如图②, 设DC k =,则2BC k =, //AF BC , AEF CEB ∴∆∆∽,∴1BC AEAF CE==,即2AF BC k ==, //AF BD ,APF DPB ∴∆∆∽,∴2233AP AF k PD BD k ===; 应用:132CE AC ==,24BC CD ==,在Rt BCE ∆中,5BE =, 210BF BE ∴==, //AF BD ,APF DPB ∴∆∆∽,∴23PF AP BP PD ==, 3310655BP BF ∴==⨯=.故答案为32,6.23.(10分)(2019•长春模拟)如图,在矩形ABCD 中,8AB =,6BC =,点E 从点A 出发,以每秒4个单位长度的速度沿边AB 运动,到点B 停止,过点E 作//EF BD 交AD 于点F ,把FAE ∆绕点F 逆时针方向旋转得到FGH ∆,点G 落在线段EF 上,设点E 的运动时间为t (秒)(1)求EG 的长.(用含t 的代数式表示) (2)求点G 在ABD ∠的平分线上时BE 的长(3)设FGH ∆与ABD ∆重合部分图形的周长为y ,当点E 与点A 、B 均不重合时,求y 与t 之间的函数关系(4)在点E 运动的同时,点P 从点B 出发,以每秒9个单位长度的速度沿折线BD DC -运动,当点E 停止运动时,点P 也随之停止,直接写出点P 在直线GH 上时t 的值.【解答】解:(1)如图1中,在Rt ABD ∆中,90A ∠=︒,8AB =,6AD =,10BD ∴==,//EF BD ,AEF ABD ∴∆∆∽,∴AE AF EFAB AD BD ==, ∴48610t AF EF==, 3AF t ∴=,5EF t =, 3AF FG t ==, 2EG EF FG t ∴=-=.(2)如图2中,作FN BD ⊥于N ,GK AB ⊥于K ,GH 交BD 于M ,连接BG .由GKE FAE ∆∆∽,DFN DBA ∆∆∽,可得65GK t =,4(63)5FN GM t ==-,BG 平分ABD ∠, GK GM ∴=,∴64(63)55t t =-, 43t ∴=, 43t ∴=时,点G 在ABD ∠的平分线上. (3)①如图3中,作AM BD ⊥于M ,交EF 于N .易知245AM =,125AN t =,当点H 在BD 上时,AN GH AM +=,∴1224455t t +=, 34t ∴=, 当304t <<时,重叠部分是GFH ∆,此时FGH ∆的周长为12y t =. ②当324t <…时,如图4中,重叠部分是四边形FGMN .四边形FGMN 的周长y FG GF FH MN HM NH ==+++--32412241252412123612[4()][4()][4()]4555545555t t t t t t t t =+--------=+. 综上所述312(0)412363(2)554t t y t t ⎧<<⎪⎪=⎨⎪+<⎪⎩….(4)如图5中,作FN BD ⊥于N ,设GH 交BD 于M 交CD 于K .易知63DF t =-,3(63)5DN t =-,33(63)5DM MN DN t t =+=+-, 553[3(63)]445DK DM t t ==+-. 由题意3910[3(63)]5t t t =-+-或53910[3(63)]45t t t -=+-. 解得3251t s =或2915s . 3251t s ∴=或2915s 时,点P 在直线GH 上. 24.(12分)(2019•长春模拟)在平面直角坐标系中,点A 是y 轴上一点,其坐标为(0,6),点B 在x 轴的正半轴上.点P ,Q 均在线段AB 上,点P 的横坐标为m ,点Q 的横坐标大于m ,在PQM ∆中,若//PM x 轴,//QM y 轴,则称PQM ∆为点P ,Q 的“肩三角形.(1)若点B 坐标为(4,0),且2m =,则点P ,B 的“肩三角形”的面积为 1 ;(2)当点P ,Q 的“肩三角形”是等腰三角形时,求点B 的坐标;(3)在(2)的条件下,作过O ,P ,B 三点的抛物线2y ax bx c =++ ①若M 点必为抛物线上一点,求点P ,Q 的“肩三角形”面积S 与m 之间的函数关系式,并写出自变量m 的取值范围.②当点P ,Q 的“肩三角形”面积为3,且抛物线2ax bx c =++与点P ,Q 的“肩三角形”恰有两个交点时,直接写出m 的取值范围.【解答】解:(1)如图1,(0,6)A ,(4,0)B ,∴直线AB 解析式为362y x =-+2m =(2,3)P ∴//PM x 轴,//QM y 轴,(4,3)M ∴,90PMB ∠=︒2PM ∴=,3BM =∴点P ,B 的“肩三角形” PBM ∆的面积1123322PM BM ==⨯⨯=;(2)如图2,根据题意,得MP MQ =,90PMQ ∠=︒, 45MPQ ∴∠=︒,45ABO ∴∠=︒,6OB OA ∴==,∴点B 的坐标为(6,0);(3)如图3,①首先,确定自变量取值范围为03m <<, 由(2)易得,线段AB 的表达式为6y x =-, ∴点P 的坐标为(,6)m m -,抛物线2y ax bx c =++经过O ,B 两点, ∴抛物线的对称轴为直线3x =,∴点M 的坐标为(6,6)m m --,(6)62PM m m m ∴=--=-,22211(62)2121822S PM m m m ==⨯-=-+; ②当点P 在对称轴左侧,即3m <时,点P ,Q 的“肩三角形”面积为3, 由①得:2212183m m -+=,解得:3m =当点P 在对称轴上或对称轴右侧,即3m …时,PM =(M m ∴6)m -,(Q m +6)m - 抛物线2ax bx c =++与点P ,Q 的“肩三角形”恰有两个交点∴360m m ⎧⎪⎨-⎪⎩……,解得:36m -剟综上所述,m的取值范围为:3m =36m -剟。
吉林省吉林市2019-2020学年中考数学模拟试题(1)含解析
吉林省吉林市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧»BC的长是( )A .2πB .3π C .4π D .6π 2.下列各式中,正确的是( ) A .﹣(x ﹣y )=﹣x ﹣y B .﹣(﹣2)﹣1=12C .﹣x x y y -=-D .3882÷= 3.-4的相反数是( ) A .14B .14-C .4D .-44.据调查,某班20为女同学所穿鞋子的尺码如表所示, 尺码(码) 34 35 36 37 38 人数251021则鞋子尺码的众数和中位数分别是( ) A .35码,35码B .35码,36码C .36码,35码D .36码,36码5.如果实数a=11,且a 在数轴上对应点的位置如图所示,其中正确的是( ) A . B . C . D .6.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB 绕点O 顺时针旋转90°得到△A′OB′,则A 点运动的路径¼'AA 的长为( )A.πB.2πC.4πD.8π7.已知反比例函数y=8kx-的图象位于第一、第三象限,则k的取值范围是()A.k>8 B.k≥8C.k≤8D.k<88.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为A.1801801(150%)x x-=+B.1801801(150%)x x-=+C.1801801(150%)x x-=-D.1801801(150%)x x-=-9.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.1210.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=kx(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20B.8≤k≤20C.5≤k≤8D.9≤k≤20 11.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°12.﹣23的绝对值是()A.﹣322B.﹣23C.23D.322二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:sin30°﹣(﹣3)0=_____.14.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.15.计算tan 260°﹣2sin30°﹣2cos45°的结果为_____.16.标号分别为1,2,3,4,……,n 的n 张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n 可以是_____. 17.分解因式:24xy x =____18.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是__________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,一次函数y=2x ﹣4的图象与反比例函数y=kx的图象交于A 、B 两点,且点A 的横坐标为1.(1)求反比例函数的解析式;(2)点P 是x 轴上一动点,△ABP 的面积为8,求P 点坐标.20.(6分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.21.(6分)如图,直线y=﹣x+3分别与x 轴、y 交于点B 、C ;抛物线y=x 2+bx+c 经过点B 、C ,与x 轴的另一个交点为点A (点A 在点B 的左侧),对称轴为l 1,顶点为D .(1)求抛物线y=x2+bx+c的解析式.(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.①结合函数的图象,求x3的取值范围;②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.22.(8分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)23.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.24.(10分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.25.(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.队别平均分中位数方差合格率优秀率七年级 6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a、b的值;(2)直接写出表中的m、n的值;(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.26.(12分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)27.(12分)在如图的正方形网格中,每一个小正方形的边长均为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C 的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;(2)把△ABC 绕坐标原点O 顺时针旋转90°得到△A1B1C1,画出△A1B1C1,写出点B1的坐标;(3)以坐标原点O 为位似中心,相似比为2,把△A1B1C1 放大为原来的2 倍,得到△A2B2C2画出△A2B2C2,使它与△AB1C1在位似中心的同侧;请在x 轴上求作一点P,使△PBB1 的周长最小,并写出点P 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为601180π⨯=13π.故选B.点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.2.B【解析】【分析】A.括号前是负号去括号都变号;B负次方就是该数次方后的倒数,再根据前面两个负号为正;C. 两个负号为正;D.三次根号和二次根号的算法.【详解】A选项,﹣(x﹣y)=﹣x+y,故A错误;B选项,﹣(﹣2)﹣1=12,故B正确;C选项,﹣x xy y-=,故C错误;D=2÷2=,故D错误.【点睛】本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.3.C【解析】【分析】根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.4.D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.故选D.【点睛】考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.5.C【解析】.详解:49 911,4 <<Q由被开方数越大算术平方根越大,<<即7 3,2 <<故选C.的大小. 6.B【解析】试题分析:∵每个小正方形的边长都为1,∴OA=4,∵将△AOB绕点O顺时针旋转90°得到△A′OB′,∴∠AOA′=90°,∴A点运动的路径¼'AA的长为:904180π⨯=2π.故选B.考点:弧长的计算;旋转的性质.7.A【解析】【分析】本题考查反比例函数的图象和性质,由k-8>0即可解得答案.【详解】∵反比例函数y=8kx-的图象位于第一、第三象限,∴k-8>0,解得k>8,故选A.【点睛】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.8.A【解析】【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:180x ﹣180150%x +()=1. 故选A . 【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键. 9.C 【解析】 【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值. 【详解】 ∵x+2y=5, ∴2x+4y=10, 则2x+4y+1=10+1=1. 故选C . 【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型. 10.A 【解析】若反比例函数与三角形交于A(4,5),则k=20;若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故520k ≤≤. 故选A.11.B 【解析】解:∵OC 平分∠AOB ,∴∠AOC=∠BOC=12∠AOB=35°,∵CD ∥OB ,∴∠BOC=∠C=35°,故选B . 12.C 【解析】 【分析】根据负数的绝对值是它的相反数,可得答案.【详解】│-322│=322,A错误;│-23│=23,B错误;│322│=322,D错误;│2│=2,故选C.【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1 2【解析】【分析】sin30°=12,a0=1(a≠0)【详解】解:原式=12-1=-1 2故答案为:-1 2 .【点睛】本题考查了30°的角的正弦值和非零数的零次幂.熟记是关键.14.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB ,∴∠OCB=∠OBC=65°,∵四边形ABCD 是圆内接四边形, ∴∠D+∠ABC=180°, ∴∠D=115°, 故答案为:115°. 【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件. 15.1 【解析】 【分析】分别算三角函数,再化简即可. 【详解】解:原式=2-2×12×2=1. 【点睛】本题考查掌握简单三角函数值,较基础. 16.奇数. 【解析】 【分析】根据概率的意义,分n 是偶数和奇数两种情况分析即可. 【详解】若n 为偶数,则奇数与偶数个数相等,即摸得奇数号标签的概率为0.5, 若n 为奇数,则奇数比偶数多一个,此时摸得奇数号标签的概率大于0.5, 故答案为:奇数. 【点睛】本题考查概率公式,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=. 17.x(y+2)(y-2) 【解析】 【分析】原式提取x ,再利用平方差公式分解即可.【详解】原式=x(y2-4)=x(y+2)(y-2),故答案为x(y+2)(y-2).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.38.【解析】【分析】根据合数定义,用合数的个数除以数的总数即为所求的概率.【详解】∵在1,2,3,4,5,6,7,8这八个数中,合数有4、6、8这3个,∴这个数恰好是合数的概率是38.故答案为:38.【点睛】本题考查了概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn;找到合数的个数是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=6x;(2)(4,0)或(0,0)【解析】【分析】(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用△ABP的面积为8,可求P点坐标.【详解】解:(1)把x=1代入y=2x﹣4,可得y=2×1﹣4=2,∴A(1,2),把(1,2)代入y=kx,可得k=1×2=6,∴反比例函数的解析式为y=6x;(2)根据题意可得:2x﹣4=,解得x1=1,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴点B的坐标为(﹣1,﹣6).设直线AB与x轴交于点C,y=2x﹣4中,令y=0,则x=2,即C(2,0),设P点坐标为(x,0),则×|x﹣2|×(2+6)=8,解得x=4或0,∴点P的坐标为(4,0)或(0,0).【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。
【附5套中考模拟试卷】吉林省吉林市2019-2020学年中考数学四模考试卷含解析
吉林省吉林市2019-2020学年中考数学四模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( )A .﹣2B .﹣1C .1D .22.抛物线y =mx 2﹣8x ﹣8和x 轴有交点,则m 的取值范围是( )A .m >﹣2B .m≥﹣2C .m≥﹣2且m≠0D .m >﹣2且m≠03.如图,AB 是O e 的直径,CD 是O e 的弦,连接AD ,AC ,BD ,则DAB ∠与C ∠的数量关系为( )A .DABC ∠=∠B .2DABC ∠=∠ C .90DAB C ∠+∠=︒D .180DAB C ∠+∠=︒ 4.下列因式分解正确的是( )A .x 2+9=(x+3)2B .a 2+2a+4=(a+2)2C .a 3-4a 2=a 2(a-4)D .1-4x 2=(1+4x )(1-4x )5.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( ) A .10%x =330B .(1﹣10%)x =330C .(1﹣10%)2x =330D .(1+10%)x =3306.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是( )A .B .C .D .7.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=8.设0<k <2,关于x 的一次函数y=(k-2)x+2,当1≤x≤2时,y 的最小值是( )A .2k-2B .k-1C .kD .k+19.“射击运动员射击一次,命中靶心”这个事件是( )A .确定事件B .必然事件C .不可能事件D .不确定事件10.如图,是一个工件的三视图,则此工件的全面积是( )A .60πcm 2B .90πcm 2C .96πcm 2D .120πcm 211.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )A .12B .25C .35D .71812.等腰三角形的一个外角是100°,则它的顶角的度数为( )A .80°B .80°或50°C .20°D .80°或20°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知二次函数的图象开口向上,且经过原点,试写出一个符合上述条件的二次函数的解析式:_____.(只需写出一个)14.正六边形的每个内角等于______________°.15.已知图中的两个三角形全等,则∠1等于____________.16.一个圆锥的侧面展开图是半径为8 cm、圆心角为120°的扇形,则此圆锥底面圆的半径为________.17.如图,已知等边△ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF、BE相交于点P,当点E从点A运动到点C时,点P经过点的路径长为__.18.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且﹣1<x1<0,对称轴x=1.如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中所有结论正确的是______(填写番号).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC 的三个顶点都在格点上,且直线m、n互相垂直.(1)画出△ABC关于直线n的对称图形△A′B′C′;(2)直线m上存在一点P,使△APB的周长最小;①在直线m上作出该点P;(保留画图痕迹)②△APB的周长的最小值为.(直接写出结果)20.(6分)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60°方向,C点在B点北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(3≈1.732,2≈1.414,结果精确到0.01米)21.(6分)问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=42,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.22.(8分)如图,点是线段的中点,,.求证:.23.(8分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O 是菱形ABCD 的对角线交点,AB =5,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.(1)在AB 边上取点E ,使AE =4,连接OA ,OE ;(2)在BC 边上取点F ,使BF =______,连接OF ;(3)在CD 边上取点G ,使CG =______,连接OG ;(4)在DA 边上取点H ,使DH =______,连接OH .由于AE =______+______=______+______=______+______=______.可证S △AOE =S 四边形EOFB =S 四边形FOGC =S 四边形GOHD =S △HOA .24.(10分)如图,矩形OABC 摆放在平面直角坐标系xOy 中,点A 在x 轴上,点C 在y 轴上,8 ,6OA OC ==.(1)求直线AC 的表达式;(2)若直线y x b =+与矩形OABC 有公共点,求b 的取值范围;(3)直线: 10l y kx =+与矩形OABC 没有公共点,直接写出k 的取值范围.25.(10分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.(1)测试不合格人数的中位数是 .(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图.26.(12分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.27.(12分)先化简,再求值:2569122x xx x-+⎛⎫-÷⎪++⎝⎭,其中x=-5参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选C.【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.2.C【解析】【分析】根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.【详解】解:∵抛物线288y mx x =--和x 轴有交点, 20(8)4(8)0m m ≠⎧∴⎨--⋅-⎩… , 解得:m 2≥﹣且m 0≠.故选C .【点睛】本题考查了抛物线与x 轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当240b ac ∆=-≥时,抛物线与x 轴有交点是解题的关键.3.C【解析】【分析】首先根据圆周角定理可知∠B=∠C ,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.【详解】解:∵AB 是O e 的直径,∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C ,∴∠DAB+∠C=90°.故选C.【点睛】本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键. 4.C【解析】【分析】试题分析:A 、B 无法进行因式分解;C 正确;D 、原式=(1+2x )(1-2x )故选C ,考点:因式分解【详解】请在此输入详解!5.D【解析】解:设上个月卖出x 双,根据题意得:(1+10%)x=1.故选D .6.A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转. 详解:A 、上面小下面大,侧面是曲面,故本选项正确;B 、上面大下面小,侧面是曲面,故本选项错误;C 、是一个圆台,故本选项错误;D 、下面小上面大侧面是曲面,故本选项错误;故选A .点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.7.B【解析】【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为xcm ,得出方程:(80+2x )(50+2x )=5400,整理后得:2653500x x +-=故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.8.A【解析】【分析】先根据0<k <1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【详解】∵0<k <1,∴k-1<0,∴此函数是减函数,∵1≤x≤1,∴当x=1时,y 最小=1(k-1)+1=1k-1.故选A .【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.9.D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.10.C【解析】【分析】先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.【详解】圆锥的底面圆的直径为12cm,高为8cm,所以圆锥的母线长,所以此工件的全面积=π⋅62+12⋅2π⋅6⋅10=96π(cm2).故答案选C.【点睛】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.11.A【解析】分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为451= 902.故选A.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.12.D【解析】【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y=x2等【解析】分析:根据二次函数的图象开口向上知道a>1,又二次函数的图象过原点,可以得到c=1,所以解析式满足a>1,c=1即可.详解:∵二次函数的图象开口向上,∴a>1.∵二次函数的图象过原点,∴c=1.故解析式满足a>1,c=1即可,如y=x2.故答案为y=x2(答案不唯一).点睛:本题是开放性试题,考查了二次函数的性质,二次函数图象上点的坐标特征,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易出错.本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想.14.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.15.58°【解析】如图,∠2=180°−50°−72°=58°,∵两个三角形全等,∴∠1=∠2=58°.故答案为58°.16.cm【解析】试题分析:把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=cm.考点:圆锥侧面展开扇形与底面圆之间的关系17.43π.【解析】【分析】由等边三角形的性质证明△AEB≌△CFA可以得出∠APB=120°,点P的路径是一段弧,由弧线长公式就可以得出结论.【详解】:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,{AB ACBAE ACF AE CF=∠=∠=,∴△ABE≌△CAF(SAS),∴∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP ,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°-∠APE=120°.∴当AE=CF 时,点P 的路径是一段弧,且∠AOB=120°,又∵AB=6,∴,点P 的路径是=,. 【点睛】 本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,弧线长公式的运用,解题的关键是证明三角形全等.18.③④⑤【解析】【分析】根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题.【详解】解:由图象可得,抛物线开口向下,则a<0,抛物线与y 轴交于正半轴,则c>0,对称轴在y 轴右侧,则与a 的符号相反,故b>0.∴a <0,b >0,c >0,∴abc <0,故①错误,当x=-1时,y=a-b+c <0,得b >a+c ,故②错误,∵二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于(x 1,0),且-1<x 1<0,对称轴x=1,∴x=2时的函数值与x=0的函数值相等,∴x=2时,y=4a+2b+c >0,故③正确,∵x=-1时,y=a-b+c <0,-2b a=1, ∴2a-2b+2c <0,b=-2a ,∴-b-2b+2c <0,∴2c <3b ,故④正确,由图象可知,x=1时,y 取得最大值,此时y=a+b+c ,∴a+b+c >am 2+bm+c (m≠1),∴a+b >am 2+bm∴a+b>m(am+b),故⑤正确,故答案为:③④⑤.【点睛】本题考查二次函数图象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)①详见解析;②1032.【解析】【分析】(1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;(2)①作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;②由△ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,△APB的周长有最小值.【详解】解:(1)如图△A′B′C′为所求图形.(2)①如图:点P为所求点.②∵△ABP的周长=AB+AP+BP=AB+AP+B''P∴当AP与PB''共线时,△APB的周长有最小值.∴△APB的周长的最小值102102【点睛】本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质.20.AD=38.28米.【解析】【分析】过点B作BE⊥DA,BF⊥DC,垂足分别为E、F,已知AD=AE+ED,则分别求得AE、DE的长即可求得AD的长.【详解】过点B作BE⊥DA,BF⊥DC,垂足分别为E,F,由题意知,AD⊥CD∴四边形BFDE为矩形∴BF=ED在Rt△ABE中,AE=AB•cos∠EAB在Rt△BCF中,BF=BC•cos∠FBC∴AD=AE+BF=20•cos60°+40•cos45°=20×12+40×22=10+202=10+20×1.414=38.28(米).即AD=38.28米.【点睛】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.22.详见解析【解析】【分析】利用证明即可解决问题.【详解】证明:∵是线段的中点∴∵∴在和中,∴≌∴【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型.23. (1)见解析;(2)3;(3)2;(4)1,EB 、BF ;FC 、CG ;GD 、DH ;HA【解析】【分析】利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH=HA ,进一步求得S △AOE =S 四边形EOFB =S 四边形FOGC =S 四边形GOHD =S △HOA .即可.【详解】(1)在AB 边上取点E ,使AE =4,连接OA ,OE ;(2)在BC 边上取点F ,使BF =3,连接OF ;(3)在CD 边上取点G ,使CG =2,连接OG ;(4)在DA 边上取点H ,使DH =1,连接OH .由于AE =EB +BF =FC +CG =GD +DH =HA .可证S △AOE =S 四边形EOFB =S 四边形FOGC =S 四边形GOHD =S △HOA .故答案为:3,2,1;EB 、BF ;FC 、CG ;GD 、DH ;HA .【点睛】此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.24.(1)364y x =-+;(2)86b -≤≤;(3)12k >- 【解析】【分析】(1)由条件可求得A 、C 的坐标,利用待定系数法可求得直线AC 的表达式;(2)结合图形,当直线平移到过C 、A 时与矩形有一个公共点,则可求得b 的取值范围;(3)由题意可知直线l 过(0,10),结合图象可知当直线过B 点时与矩形有一个公共点,结合图象可求得k 的取值范围.【详解】解:(1) 8 , 6OA OC ==Q ()()8,0 , 0,6A C ∴,设直线AC 表达式为y kx b =+,806k b b +=⎧∴⎨=⎩,解得346k b ⎧=-⎪⎨⎪=⎩ ∴直线AC 表达式为364y x =-+; (2) Q 直线 y x b =+可以看到是由直线y x =平移得到,∴当直线 y x b =+过A C 、时,直线与矩形OABC 有一个公共点,如图1,当过点A 时,代入可得08b =+,解得8b =-.当过点C 时,可得6b =∴直线 y x b =+与矩形OABC 有公共点时,b 的取值范围为86b -≤≤;(3) 10y kx =+Q ,∴直线l 过()0, 10D ,且()8, 6B ,如图2,直线l 绕点D 旋转,当直线过点B 时,与矩形OABC 有一个公共点,逆时针旋转到与y 轴重合时与矩形OABC 有公共点,当过点B 时,代入可得6810k =+,解得12k =- ∴直线l :10y kx =+与矩形OABC 没有公共点时k 的取值范围为12k >-【点睛】本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC 有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(1)1;(2)这两次测试的平均增长率为20%;(3)55%.【解析】【分析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x ,由第二次、第四次测试合格人数,即可得出关于x 的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.【详解】解:(1)将四次测试结果排序,得:30,40,50,60,∴测试不合格人数的中位数是(40+50)÷2=1.故答案为1;(2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),∴第四次测试合格人数为1×2﹣18=72(人).设这两次测试的平均增长率为x ,根据题意得:50(1+x )2=72,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去),∴这两次测试的平均增长率为20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%, 1﹣1%=55%.补全条形统计图与扇形统计图如解图所示.【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据.26.证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==Q 则可证明ABC ADE ≅V V ,因此可得.BC DE =试题解析:1=2∠∠Q ,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC V 和ADE V 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅V V .BC DE ∴=考点:三角形全等的判定.27.13x -,-18【解析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算. 详解:2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭()23223x x x x -+=⨯+- 13x =-. 当5x =-时,原式18=-. 点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
2019年吉林省中考数学模拟试题及参考答案.doc
2019年吉林省中考模拟试题数学试卷一、单项选择题(每小题2分,共12分)1.在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣42.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.3.下列计算正确的是()A.a2+a3=a5 B.(2a)2=4a C.a2•a3=a5 D.(a2)3=a54.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6 B.﹣3 C.3 D.65.如图,OB、OC是∠ABC、∠ACB的角平分线,∠BOC=120°,则∠A=()A.60°B.120°C.110° D.40°6.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.5二、填空题(每小题3分,共24分)7.2017年端午节全国景区接待游客总人数8260万人,这个数用科学记数法可表示为人.8.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.9.分解因式:x2﹣(x﹣3)2=.10.在数学课上,老师要求同学们利用一副三角板任作两条平行线.小明的作法如下:如图,(1)任取两点A,B,画直线AB.(2)分别过点A,B作直线AB的两条直线AC,BD;则直线AC、BD即为所求.老师说:“小明的作法正确.”请回答:小明的作图依据是.11.正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD 上,P为AE的中点,连接PG,则PG的长为.12.如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)13.直线y=3x﹣1与直线y=x﹣k的交点在第四象限,k的取值范围是.14.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(每小题5分,共20分)15.(5分)解不等式组:16.(5分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.17.(5分)小华和小军做摸球游戏:A袋装有编号为1,2,3的三个小球,B袋装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都相同.从两个袋子中分别随机摸出一个小球,若B袋摸出小球的编号与A袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由.18.(5分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.四、解答题(每小题7分,共28分)19.(7分)某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是元,众数是元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.20.(7分)等边△ABC的边长为2,P是平面内任意一点,△PAB、△PBC、△PAC 均为等腰三角形.(1)请用尺规作图的方法作出所有满足条件的点P(不写做法,保留作图痕迹,用P1,P2,P3…表示);(2)直接写出∠PAB的度数;(3)在满足条件的所有点P中任取2点,则这两点距离的最小值是,最大值是.21.(7分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)22.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.五、解答题(每小题8分,共16分)23.(8分)如图,已知四边形ABCD是矩形,对角线AC,BD交于点O,CE∥BD,DE∥AC,CE与DE交于点E,请探索DC与OE的位置关系,并说明理由.24.(8分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 分才乘上缆车,缆车的平均速度为180米/分.设小亮出发x 分后行走的路程为y 米.图中的折线表示小亮在整个行走过程中y随x 的变化关系.(1)小亮行走的总路程是米,他途中休息了分.(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度.(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?六、解答题(每小题10分,共20分)25.(10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE ∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.26.(10分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案:一、1.B2.C3.C4.B5.A6.D二、7.8.26×1078.50°9.3(2x﹣3)10.同位角相等,两直线平行(答案不唯一).11.12.15.313.<k<114.+或1三、解答题(每小题5分,共20分)15.(5分)解:(1)∵解不等式①得:x<﹣1,解不等式②得:x <﹣10, ∴不等式组的解集为x <﹣10;16.(5分)解:设甲种车辆一次运土x 立方米,乙种车辆一次运土y 立方米, 由题意得,,解得:.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米. 17.(5分)解:不公平, 画树状图得:∵共有9种等可能的结果,数字的差为偶数的有4种情况,∴P (小华胜)=,P (小军胜)=, ∵≠,∴这个游戏对双方不公平.18.(5分)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∵BE=DF ,∴AB +BE=CD +DF ,即AE=CF , ∵AB ∥CD , ∴AE ∥CF ,∴∠E=∠F ,∠OAE=∠OCF , 在△AOE 和△COF 中,,∴△AOE ≌△COF (ASA ), ∴OE=OF .四、解答题(每小题7分,共28分)19.(7分)解:(1)共有25个员工,中位数是第13个数,则中位数是3400元;3000出现了11次,出现的次数最多,则众数是3000.故答案为3400;3000;(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45000元的影响,只有3个人的工资达到了6276元,不恰当;20.(7分)解:(1)如图所示满足条件的点P有10个.(2)∠PAB=15°或30°或60°或75°或120°或150°.(3)在RT△P1BH中,∵BH=1,∠HBP1=30°,∴BP1=,∴最小值P1P2=BP2﹣BP1=AB﹣BP1=2﹣,∴最大值P5P10=P5H+HC+CP10=2HC+AC=2+2,故答案为:,2﹣;2+2.21.(7分)解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.22.(7分)解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴函数y=的表达式为y=,∴E(2,1),F(﹣1,﹣2);(2)过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=.五、解答题(每小题8分,共16分)23.(8分)如图,已知四边形ABCD是矩形,对角线AC,BD交于点O,CE∥BD,DE∥AC,CE与DE交于点E,请探索DC与OE的位置关系,并说明理由.【解答】解:OE⊥DC,理由如下:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=AC,OD=BD,AC=BD,∴OC=OD,∴四边形OCED是菱形,∴OE⊥DC.24.(8分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 分才乘上缆车,缆车的平均速度为180米/分.设小亮出发x 分后行走的路程为y 米.图中的折线表示小亮在整个行走过程中y随x 的变化关系.(1)小亮行走的总路程是3600米,他途中休息了20分.(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度.(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?【解答】解:(1)根据图象知:小亮行走的总路程是3600米,他途中休息了20分钟.故答案为3600,20;…(2分)(2)小亮休息前的速度为:(米/分)…(4分)小亮休息后的速度为:(米/分)…(6分)(3)小颖所用时间:(分)…(8分)小亮比小颖迟到80﹣50﹣10=20(分)…(9分)∴小颖到达终点时,小亮离缆车终点的路程为:20×55=1100(米)…(10分)六、解答题(每小题10分,共20分)25.(10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE ∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.【解答】(1)证明:如图1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形.(2)结论:成立.理由如下:如图2中,过点M作MG∥DE交CE于G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四边形ABDE是平行四边形.(3)①如图3中,取线段HC的中点I,连接MI,∵BM=MC,∴MI是△BHC的中位线,∴MI∥BH,MI=BH,∵BH⊥AC,且BH=AM.∴MI=AM,MI⊥AC,∴∠CAM=30°.②设DH=x,则AH=x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四边形ABDE是平行四边形,∴DF∥AB,∴=,∴=,解得x=1+或1﹣(舍弃),∴DH=1+.26.(10分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x +m 经过点M (1,0),∴0=2×1+m ,解得m=﹣2,∴y=2x ﹣2, 则,得ax 2+(a ﹣2)x ﹣2a +2=0,∴(x ﹣1)(ax +2a ﹣2)=0,解得x=1或x=﹣2,∴N 点坐标为(﹣2,﹣6),∵a <b ,即a <﹣2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a=﹣1时,抛物线的解析式为:y=﹣x 2﹣x +2=﹣(x ﹣)2+, 有, ﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y=﹣2x +t ,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林市2019年中考数学模拟试卷及答案(全卷共120分,考试时间120分钟)第Ⅰ卷一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中,有且只有....一个是正确的)1. 据国家新闻出版广电总局电影局数据,2017年国庆中秋节假期全国城市影院电影票房约26亿元,总票房创下该档期新纪录,26亿用科学记数法表示正确的是A.26×108B.2.6×108 C.26×109 D.2.6×109 2.-sin60°的倒数为A .-2B .21C .-33D .-2333. 如右图所示是一个几何体的三视图,这个几何体的名称是A .圆柱体B .三棱锥C .球体D .圆锥体4.用反证法证明:如果AB ⊥CD ,AB ⊥EF ,那么CD ∥EF .证明该命题的第一个步骤是A .假设CD ∥EFB .假设AB ∥EFC .假设CD 和EF 不平行 D .假设AB 和EF 不平行5.关于x 的一元二次方程(a ﹣1)x 2+2x+1=0有两个实数根,则a 的取值范围为A .a ≤2B .a <2C .a <2且a ≠1D .a ≤2且a ≠16.矩形具有而平行四边形不一定...具有的性质是 A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角相等7.下列运算正确的是A 2=±B .236x x x ⋅=CD .236()x x =8.下列说法正确的是A .一个游戏的中奖概率是101,则做10次这样的游戏一定会中奖 B .多项式22x x -分解因式的结果为(2)(2)x x x +-C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .若甲组数据的方差S 2甲=0.1,乙组数据的方差S 2乙=0.2,则乙组数据比甲组数据稳定9.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =k x(k ≠0,x >0)上,若矩形ABCD 的面积为8,则k 的值为A .8B .3 3C .2 2D .4 10. 如图,在平行四边形ABCB 中,AC 、BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知△AEF 的面积为4,则△OBE 的面积为A .4B .8C .10D .12 第Ⅱ卷二、填空题(共6小题,每小题3分,共18分.)11. 因式分解:x 3-xy 2= 。
12x 的取值范围是__________________.13.把0.70945四舍五入精确到百分位是 .14. 在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外不相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为31,则随机摸出一个红球的概率为_______________. 15.如图,在四边形ABCD 中,E 、F分别是AB 、AD 的中点,若EF=4,BC=10,CD=6,则tanC= .16.如图,将矩形ABCD 绕点A 旋转至矩形AB C D '''位置,此时AC 的中点恰好与D 点重合,AB '交CD 于点E .若DE =1,则矩形ABCD 的面积为 .三、解答题(共4小题,每小题8分,32分)17. (8分)44422-+-a a a ÷a a a 222+--3. 18.(8分)有这样一道题“求的值,其中a=2018.“小马虎”不小心把a=2018错抄成a=2008,但他的计算结果却是正确的,请说明原因.19.某学校通过层层选拔,最终在甲、乙两名同学中选拔一人参加“中国灯谜大会”,在相同测试条件下,两人4次测试成绩(单位:分)如下:甲:78,87,81,84,75 乙:84,79,90,80,72回答下列问题:(1)甲成绩的平均数是 ,乙成绩的平均数是 ;(2)经计算知2甲S =18,2乙S =35.2.你认为选拔 参加比赛更合适;(填甲或乙)(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到两个人的成绩都不小于80分的概率.(用画树状图或列表法解答)20. (本题满分8分)如图,在□ABCD 中,对角线AC 与BD 相交于点O ,BE ∥AC , CE ∥BD ,△ABO 是等边三角形,试判断四边形BECO 的形状,并给出证明.四、解答题(4小题,每小题10分,共40分)21. 如图,已知⊙O 是△ABC 的外接圆,AB =BC ,AD 是BC边上的高,AE 是⊙O 的直径,过点E 作⊙O 的切线交AB 的延长线于点F .(1)求证:AC ·BC =AD ·AE ;(2)若tan F =2,FB =1,求线段CD 的长.22.如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10m ,到达B点,在B 处测得树顶C 的仰角高度为60°(A 、B 、D 三点在同一直线上)。
请你根据他们测量数据计算这棵树CD 的高度(结果精确到0.1m )。
A(参考数据:2≈1.414,3≈1.732)23. 如图,在△ABC中,AB=AC,2∠=,点D是BC的中点,DE AB EAα⊥于点.⊥于点,DF AC F (1)EDB∠=_________°;(用含α的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转1802α︒-,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式表示线段BM CN、与BC之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路.24. (10分)定义:若抛物线L2:y=mx2+nx(m≠0)与抛物线L1:y=ax2+bx(a≠0)的开口大小相同,方向相反,且抛物线L2经过L1的顶点,我们称抛物线L2为L1的“友好抛物线”。
(1) 若L1的表达式为y=x2−2x,求L1的“友好抛物线”的表达式;(2) 已知抛物线L2:y=mx2+nx为L1:y=ax2+bx的“友好抛物线”。
求证:抛物线L1也是L2的“友好抛物线”;(3) 平面上有点P(1,0),Q(3,0),抛物线L2:y=mx2+nx为L1:y=ax2的“友好抛物线”,且抛物线L2的顶点在第一象限,纵坐标为2,当抛物线L2与线段PQ没有公共点时,求a的取值范围。
参 考 答 案第Ⅰ卷一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中,有且只有....一个是正确的)1.D2.D3.A4.C5.D6.B7.D8.C9.D 10.D第Ⅱ卷二、填空题(共6小题,每小题3分,共18分.)11. x(x+y)(x-y) 12. 1x ≥ 13. 0.71 14. 41 15.34 16. 33 三、解答题(共4小题,每小题8分,32分) 17.解:44422-+-a a a ÷a a a 222+--3=)2)(2()2(2+--a a a ·2)2(-+a a a -3=a -3. 18.解: =﹣…………6分=1 …………8分∴算式的值与a 无关即可,∴“小马虎”不小心把a=2017错抄成a=2007,但他的计算结果却是正确的.………8分19.解:(1)81,81----------------------------------------------------------2分(2)甲-----------------------------------------------------------------------3分(3)列表如下:列表正确--------------------------------------------------5分由上表可知,从甲、乙两人5次成绩中各随机抽取一次成绩有25种等可能结果,其中抽到两个人的成绩都不小于80分的结果有9种.-----------------------------------------------6分所以抽到两个人的成绩都不小于80分的概率为259=P .----------8分 20.证明:四边形ABCD 是平行四边形,,是等边三角形,,, 又,四边形BECO 是平行四边形,…………………………………………4分 又BO=CO ,四边形BECO 是菱形.…………………………………………………8分四、解答题(4小题,每小题10分,共40分)21.(1)证明:连接BE∵AE 是直径,∴∠EBA =90°=∠ADC ……………………1分∵BA ⌒=BA ⌒,∴∠BEA =∠C ,∴△BEA ∽△ADC ……………………2分 ∴ACAE AD AB =, ∴AC ·AB =AD ·AE ……………………3分 又∵AB =BC , ∴AC ·BC =AD ·AE ……………………4分(2)∵FE 与⊙O 相切于点E ,∴∠FEA =90°∵tanF =2,FB =1,∴BE =2, ……………………5分∵∠F +∠FEB =∠AEB +∠FEB =90°∴∠AEB =∠F ,∴AB =4 ……………………6分∴BC =AB =4,设DC =x ,则AD =2x ,BD =4-x在Rt △ABD 中,BD 2+AD 2=AB 2即(4-x )2+(2x )2=16 ……………………7分解得,x 1=58,x 2=0(舍去) ∴CD =58 …………………………………9分 22. 解:由题意可知:CD ⊥AD ,设CD=x m在Rt △BCD 中,x CBD CD BD BD CD CBD 33tan tan =∠=⇒=∠在Rt △ACD 中,x ACD AD AD CD A 3tan tan =∠=⇒=∠ 又∵AD=AB +BD ,∴x x 33103+= 解得:7.835≈=x23.(本小题满分7分) (1) EDB α∠= ……………………………………………1分(2)①补全图形正确 ……………………………………2分②数量关系:DM DN =…………………………………3分∵,AB AC BD DC ==∴DA 平分BAC ∠∵DE AB E ⊥于点,DF AC F ⊥于点∴DE DF = , MED NFD ∠=∠ ……………………4分∵2A α∠=∴1802EDF α∠=︒-∵1802MDN α∠=︒-∴MDE NDF ∠=∠∴MDE NDF △≌△ ……………………5分∴DM DN =③数量关系:sin BM CN BC α+=⋅……………………6分证明思路:a.由MDE NDF △≌△可得EM FN =b. 由AB AC =可得B C ∠=∠,进而通过BDE CDF △≌△,可得BE CF =进而得到2BE BM CN =+c.过BDE Rt △可得sin BE BDα=,最终得到sin BM CN BC α+=⋅ ……………8分 24. (1)依题意,可设L 1的“友好抛物线”的表达式为:y =−x 2+bx ,∵L 1:y =x 2−2x =(x −1)2−1,∴L 1的顶点为(1,−1),∵y =−x 2+bx 过点(1,−1),∴−1=−12+b ,即b =0.∴L 1的“友好抛物线”为:y =−x 2.(2)L 2:y =mx 2+nx 的顶点为(−n 2m ,−n 24m ),L 1:y =ax 2+bx 的顶点为(−b 2a ,−b 24a ),∵L2为L1的“友好抛物线”,∴m=−a.∵L2过L1的顶点,∴−b24a=m×(−b2a)2+n×(−b2a).化简得:bn=0.把x=−n2m代入y=ax2+bx,得y═a×(−n2m)2+b×(−n2m)=−n24m−bn2m=−n24m.∴抛物线L1经过L2的顶点。