高考数学考纲解读与热点难点突破专题14空间中的平行与垂直教学案文(含解析)

合集下载

2019年高考数学考纲解读与热点难点突破专题14空间中的平行与垂直教学案理含解析20190330247

2019年高考数学考纲解读与热点难点突破专题14空间中的平行与垂直教学案理含解析20190330247

空间中的平行与垂直【2019年高考考纲解读】1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面平行和垂直的判定定理与性质定理对命题的真假进行判断,属于基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系的交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中档.【重点、难点剖析】1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.平行关系的转化两平面平行问题常常可以转化为直线与平面的平行,而直线与平面平行又可转化为直线与直线平行,所以要注意转化思想的应用,以下为三种平行关系的转化示意图.3.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.4.垂直关系的转化与平行关系之间的转化类似,它们之间的转化如下示意图.在垂直的相关定理中,要特别注意记忆面面垂直的性质定理:两个平面垂直,在一个平面内垂直于它们交线的直线必垂直于另一个平面,当题目中有面面垂直的条件时,一般都要用此定理进行转化.【题型示例】题型一空间中点线面位置关系的判断(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题.(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.【例1】[2018·全国卷Ⅱ]在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为( )A.15B.56C.55D.22【解析】方法1:如图(1),在长方体ABCD­A1B1C1D1的一侧补上一个相同的长方体A′B′BA­A1′B1′B1A1.连接B1B′,由长方体性质可知,B1B′∥AD1,所以∠DB1B′为异面直线AD1与DB1所成的角或其补角.连接DB′,由题意,得DB′=12++2=5,B ′B1=12+32=2,DB 1=12+12+32= 5.在△DB′B1中,由余弦定理,得DB′2=B′B21+DB21-2B′B1·DB1·cos∠DB1B′,即5=4+5-2×25cos∠DB1B′,∴ cos∠DB1B′=5 5.故选C.方法2:如图(2),分别以DA,DC,DD1所在直线为x,y,z轴建立空间直角坐标系.【答案】C【方法技巧】判断空间位置关系的两种方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.【变式探究】在正方体ABCD-A1B1C1D1中,棱所在直线与直线BA1是异面直线的条数为( )A.4 B.5 C.6 D.7解析:在正方体ABCD -A 1B 1C 1D 1中,直线CD ,C 1D 1,C 1C ,D 1D ,B 1C 1,AD ,共有6条直线与直线BA 1是异面直线,故选C.答案:C【举一反三】设l ,m ,n 为三条不同的直线,α为一个平面,则下列命题中正确的个数是( )①若l ⊥α,则l 与α相交;②若m ⊂α,n ⊂α,l ⊥m ,l ⊥n ,则l ⊥α;③若l ∥m ,m ∥n ,l ⊥α,则n ⊥α;④若l ∥m ,m ⊥α,n ⊥α,则l ∥n .A .1B .2C .3D .4解析:对于①,若l ⊥α,则l 与α不可能平行,l 也不可能在α内,所以l 与α相交,①正确;对于②,若m ⊂α,n ⊂α,l ⊥m ,l ⊥n ,则有可能是l ⊂α,故②错误;对于③,若l ∥m ,m ∥n ,则l ∥n ,又l ⊥α,所以n ⊥α,故③正确;对于④,因为m ⊥α,n ⊥α,所以m ∥n ,又l ∥m ,所以l ∥n ,故④正确,选C.答案:C【变式探究】【2017江苏,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .(第15题)ADB C EF【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD , EF AD ⊥,所以EF AB .又因为EF ⊄平面ABC , AB ⊂平面ABC ,所以EF ∥平面ABC .【变式探究】【2016高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析【解析】证明:(1)在直三棱柱中,11//AC AC在三角形ABC 中,因为D,E 分别为AB,BC 的中点.所以//DE AC ,于是11//DE AC又因为DE ⊄平面平面11AC F所以直线DE//平面11AC F(2)在直三棱柱中, 因为11AC ⊂平面111A B C ,所以111AA ⊥A C 又因为所以11AC ⊥平面11ABB A因为1B D ⊂平面11ABB A ,所以111AC B D ⊥ 又因为所以因为直线,所以1B DE 平面 【举一反三】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.答案 D【变式探究】如图,在直三棱柱ABC -A ′B ′C ′中,AB =AA ′=AC =2,∠BAC =2π3,点D ,E 分别是BC ,A ′B ′的中点.(1)求证:DE ∥平面ACC ′A ′;(2)求二面角B ′-AD -C ′的余弦值.【解析】(1)证明:取AC 的中点F ,连接DF ,A ′F ,则DF ∥AB ,又A ′E ∥AB ,所以DF ∥A ′E ,又因为DF =12AB ,A ′E =12AB , 所以DF =AE ,所以四边形DFA ′E 是平行四边形,所以ED ∥A ′F ,又A ′F ⊂平面ACC ′A ′,所以ED ∥平面ACC ′A ′.(2)在平面ABC 中,以过点A 且垂直于AC 的直线为x 轴,直线AC 为y 轴,AA ′为z 轴,建立空间直角坐标系A -xyz .所以点A (0,0,0),B (3,-1,0),C (0,2,0),B ′(3,-1,2),C ′(0,2,2),D ⎝⎛⎭⎪⎫32,12,0. 所以AD →=⎝ ⎛⎭⎪⎫32,12,0,AB ′→=(3,-1,2),AC ′→=(0,2,2). 设平面B ′AD 的法向量为m =(x ,y ,z ),则由m ·AD →=0和m ·AB ′→=0,得 ⎩⎪⎨⎪⎧ 32x +12y =0,3x -y +2z =0,取m =(1,-3,-3).同理,可取平面C ′AD 的法向量n =(1,-3,3).设二面角B ′-AD -C ′的平面角为θ,易知0<θ<π2,则cos θ=|m ·n ||m ||n |=17. 【变式探究】设α,β,γ是三个不重合的平面,l 是直线,给出下列四个命题:①若α⊥β,l ⊥β,则l ∥α;②若l ⊥α,l ∥β,则α⊥β;③若l 上有两点到α的距离相等,则l ∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是________.【解析】由线线、线面、面面平行与垂直的判定与性质定理逐个判断,真命题为②④.【答案】②④【规律方法】这类题为高考常考题型,其实质为多项选择.主要考查空间中线面之间的位置关系,要求熟悉有关公理、定理及推论,并具备较好的空间想象能力,做到不漏选、多选、错选.【变式探究】如图,三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.解析 连接DN ,作DN 的中点O ,连接MO ,OC .在△AND 中.M 为AD 的中点,则OM 綉12AN .所以异面直线AN ,CM 所成角为∠CMO ,在△ABC 中,AB =AC =3,BC =2,则AN =22,∴OM = 2.在△ACD 中,同理可知CM =22,在△BCD 中,DN =22,在Rt△ONC 中,ON =2,CN =1∴OC = 3.在△CMO 中,由余弦定理cos∠CMO =|MC |2+|MO |2-|OC |22|MC |·|MO |=8+2-32×22×2=78. 答案 78【变式探究】(1)已知直线l ,m 与平面α,β,l ⊂α,m ⊂β,则下列命题中正确的是( )A .若l ∥m ,则必有α∥βB .若l ⊥m ,则必有α⊥βC .若l ⊥β,则必有α⊥βD.若α⊥β,则必有m⊥α答案 C解析对于选项A,平面α和平面β还有可能相交,所以选项A错误;对于选项B,平面α和平面β还有可能相交且不垂直或平行,所以选项B错误;对于选项C,因为l⊂α,l⊥β,所以α⊥β,所以选项C 正确;对于选项D,直线m可能和平面α平行或相交,所以选项D错误.(2)如图,平面α⊥平面β,α∩β=l,A,C是α内不同的两点,B,D是β内不同的两点,且A,B,C,D∉直线l,M,N分别是线段AB,CD的中点.下列判断正确的是( )A.当CD=2AB时,M,N两点不可能重合B.M,N两点可能重合,但此时直线AC与l不可能相交C.当AB与CD相交,直线AC平行于l时,直线BD可以与l相交D.当AB,CD是异面直线时,直线MN可能与l平行答案 B解析由于直线CD的两个端点都可以动,所以M,N两点可能重合,此时两条直线AB,CD共面,由于两条线段互相平分,所以四边形ACBD是平行四边形,因此AC∥BD,而BD⊂β,AC⊄B,所以由线面平行的判定定理可得AC∥β,又因为AC⊂α,α∩β=l,所以由线面平行的性质定理可得AC∥l,故选B.【感悟提升】解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.【变式探究】(1)已知直线a,b,平面α,β,γ,下列命题正确的是( )A.若α⊥γ,β⊥γ,α∩β=a,则a⊥γB.若α∩β=a,α∩γ=b,β∩γ=c,则a∥b∥cC.若α∩β=a,b∥a,则b∥αD.若α⊥β,α∩β=a,b∥α,则b∥a答案 A解析A中,若α⊥γ,β⊥γ,α∩β=a,则a⊥γ,该说法正确;B中,若α∩β=a,α∩γ=b,β∩γ=c,在三棱锥P-ABC中,令平面α,β,γ分别为平面PAB,PAC,PBC,交线a,b,c为PA,PB,PC,不满足a∥b∥c,该说法错误;C中,若α∩β=a,b∥a,有可能b⊂α,不满足b∥α,该说法错误;D中,若α⊥β,α∩β=a,b∥α,正方体ABCD-A1B1C1D1中,取平面α,β为平面ABCD,ADD1A1,直线b为A1C1,满足b∥α,不满足b∥a,该说法错误.(2)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是A.l与l1,l2都相交B.l与l1,l2都不相交C.l至少与l1,l2中的一条相交D.l至多与l1,l2中的一条相交答案 C解析方法一如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故D不正确,故选C.方法二因为l分别与l1,l2共面,故l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l与l1,l2都不相交,则l∥l1,l∥l2,从而l1∥l2,与l1,l2是异面直线矛盾,故l至少与l1,l2中的一条相交,故选C.题型二空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定定理、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.【例2】[2018·北京卷]如图,在四棱锥P­ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA =PD,E,F分别为AD,PB的中点.(1)求证:PE ⊥BC ;(2)求证:平面PAB ⊥平面PCD ;(3)求证:EF ∥平面PCD .证明:(1)因为PA =PD ,E 为AD 的中点,所以PE ⊥AD .因为底面ABCD 为矩形,所以BC ∥AD .所以PE ⊥BC .(2)因为底面ABCD 为矩形,所以AB ⊥AD .又因为平面PAD ⊥平面ABCD ,所以AB ⊥平面PAD ,所以AB ⊥PD .又因为PA ⊥PD ,所以PD ⊥平面PAB .所以平面PAB ⊥平面PCD .(3)如图,取PC 的中点G ,连接FG ,DG .因为F ,G 分别为PB ,PC 的中点,所以FG ∥BC ,FG =12BC . 因为四边形ABCD 为矩形,且E 为AD 的中点,所以DE ∥BC ,DE =12BC . 所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形.所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD ,所以EF ∥平面PCD .【方法技巧】1.证明线线平行的4种常用方法(1)利用平行公理,即证两直线同时和第三条直线平行;(2)利用平行四边形进行平行转换;(3)利用三角形的中位线定理证线线平行;(4)利用线面平行、面面平行的性质定理进行平行转换.2.证明线线垂直的3种常用方法(1)利用等腰三角形底边中线即高线的性质;(2)勾股定理;(3)若M 是PC 的中点,求三棱锥M ­ACD 的体积.(1)证明 ∵AB ∥DC ,且AB ⊄平面PCD ,CD ⊂平面PCD .∴AB ∥平面PCD .(2)证明 在直角梯形ABCD 中,过C 作CE ⊥AB 于点E ,则四边形ADCE 为矩形∴AE =DC =1,又AB =2,∴BE =1,在Rt△BEC 中,∠ABC =45°,∴CE =BE =1,CB =2,∴AD =CE =1,则AC =AD 2+DC 2=2,∴AC 2+BC 2=AB 2,∴BC ⊥AC ,又∵PA ⊥平面ABCD ,∴PA ⊥BC PA ∩AC =A ,∴BC ⊥平面PAC(3)解 ∵M 是PC 中点,∴M 到面ADC 的距离是P 到面ADC 距离的一半V M ­ACD =13S △ACD ·12PA =13×⎝ ⎛⎭⎪⎫12×1×1×12=112.【变式探究】(1)如图,三棱柱ABC -A 1B 1C 1的各棱长均为2,AA 1⊥平面ABC ,E ,F 分别为棱A 1B 1,BC 的中点.①求证:直线BE ∥平面A 1FC 1;②平面A 1FC 1与直线AB 交于点M ,指出点M 的位置,说明理由,并求三棱锥B -EFM 的体积.①证明 取A 1C 1的中点G ,连接EG ,FG ,∵点E 为A 1B 1的中点,∴EG ∥B 1C 1且EG =12B 1C 1, ∵F 为BC 中点,∴BF ∥B 1C 1且BF =12B 1C 1, 所以BF ∥EG 且BF =EG .所以四边形BFGE 是平行四边形,所以BE ∥FG ,又BE ⊄平面A 1FC 1,FG ⊂平面A 1FC 1,所以直线BE ∥平面A 1FC 1.②解 M 为棱AB 的中点.理由如下:因为AC ∥A 1C 1,AC ⊄平面A 1FC 1,A 1C 1⊂平面A 1FC 1,所以直线AC ∥平面A 1FC 1,又平面A 1FC 1∩平面ABC =FM ,所以AC ∥FM .又F 为棱BC 的中点,所以M 为棱AB 的中点.△BFM 的面积S △BFM =14S △ABC =14×12×2×2×sin 60°=34, 所以三棱锥B -EFM 的体积V B -EFM =V E -BFM =13×34×2=36. (2)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的菱形,PD ⊥平面ABCD ,∠BAD =60°,PD =2a ,O为AC与BD的交点,E为棱PB上一点.①证明:平面EAC⊥平面PBD;②若PD∥平面EAC,三棱锥P-EAD的体积为183,求a的值.①证明因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC.又四边形ABCD为菱形,所以AC⊥BD,又PD∩BD=D,PD,BD⊂平面PBD,所以AC⊥平面PBD.又AC⊂平面EAC,所以平面EAC⊥平面PBD.②解连接OE.因为PD∥平面EAC,平面EAC∩平面PBD=OE,所以PD∥OE.又AC∩BD=O,所以O是BD的中点,所以E是PB的中点.因为四边形ABCD是菱形,且∠BAD=60°,所以取AD的中点H,连接BH,可知BH⊥AD,又因为PD⊥平面ABCD,BH⊂平面ABCD,所以PD⊥BH.又PD∩AD=D,PD,AD⊂平面PAD,所以BH⊥平面PAD.由于AB=a,所以BH=32a.因此点E到平面PAD的距离d =12BH =12×32a =34a , 所以V P -EAD =V E -PAD =13S △PAD ×d =13×12×a ×2a ×34a =312a 3=18 3. 解得a =6.【感悟提升】垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证明线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质,即要证线线垂直,只需证明一条直线垂直于另一条直线所在的平面即可,l ⊥α,a ⊂α⇒l ⊥a .【变式探究】如图,在四棱锥P -ABCD 中,∠ADB =90°,CB =CD ,点E 为棱PB 的中点.(1)若PB =PD ,求证:PC ⊥BD ;(2)求证:CE ∥平面PAD .证明 (1)取BD 的中点O ,连接CO ,PO ,因为CD =CB ,所以△CBD 为等腰三角形,所以BD ⊥CO .因为PB =PD ,所以△PBD 为等腰三角形,所以BD ⊥PO .又PO ∩CO =O ,PO ,CO ⊂平面PCO ,所以BD ⊥平面PCO .因为PC ⊂平面PCO ,所以PC ⊥BD .(2)由E 为PB 的中点,连接EO ,则EO ∥PD ,又EO ⊄平面PAD ,PD ⊂平面PAD ,所以EO ∥平面PAD .由∠ADB =90°及BD ⊥CO ,可得CO ∥AD ,又CO ⊄平面PAD ,AD ⊂平面PAD ,所以CO ∥平面PAD .又CO ∩EO =O ,CO ,EO ⊂平面COE ,所以平面CEO ∥平面PAD ,而CE ⊂平面CEO ,所以CE ∥平面PAD .题型三 平面图形的翻折问题1.画好两图:翻折之前的平面图形与翻折之后形成的几何体的直观图.2.把握关系:即比较翻折前后的图形,准确把握平面图形翻折前后的线线关系,哪些平行与垂直的关系不变,哪些平行与垂直的关系发生变化,这是准确把握几何体的结构特征,进行空间线面关系逻辑推理的基础.3.准确定量:即根据平面图形翻折的要求,把平面图形中的相关数量转化为空间几何体的数字特征,这是准确进行计算的基础.例3、[2018·全国卷Ⅰ]如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q ­ABP 的体积. 【解析】(1)证明:由已知可得,∠BAC =90°,即BA ⊥AC .又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)解:由已知可得,DC =CM =AB =3,DA =3 2.又BP =DQ =23DA , 所以BP =2 2.如图,过点Q 作QE ⊥AC ,垂足为E ,则QE 綊13DC . 由已知及(1)可得,DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ­ABP 的体积为VQ ­ABP =13×S △ABP ×QE =13×12×3×22sin 45°×1=1.【方法技巧】平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.【变式探究】如图1,已知菱形AECD 的对角线AC ,DE 交于点F ,点E 为AB 中点.将△ADE 沿线段DE 折起到△PDE 的位置,如图2所示.(1)求证:DE ⊥平面PCF ;(2)求证:平面PBC ⊥平面PCF ;(3)在线段PD ,BC 上是否分别存在点M ,N ,使得平面CFM ∥平面PEN ?若存在,请指出点M ,N 的位置,并证明;若不存在,请说明理由.(1)证明 折叠前,因为四边形AECD 为菱形,所以AC ⊥DE ,所以折叠后,DE ⊥PF ,DE ⊥CF ,又PF ∩CF =F ,PF ,CF ⊂平面PCF ,所以DE ⊥平面PCF .(2)证明 因为四边形AECD 为菱形,所以DC ∥AE ,DC =AE .又点E 为AB 的中点,所以DC ∥EB ,DC =EB ,所以四边形DEBC 为平行四边形,所以CB ∥DE .又由(1)得,DE ⊥平面PCF ,所以CB ⊥平面PCF .因为CB ⊂平面PBC ,所以平面PBC ⊥平面PCF .(3)解 存在满足条件的点M ,N ,且M ,N 分别是PD 和BC 的中点.如图,分别取PD 和BC 的中点M ,N .连接EN ,PN ,MF ,CM .因为四边形DEBC 为平行四边形,所以EF ∥CN ,EF =12BC =CN , 所以四边形ENCF 为平行四边形,所以FC ∥EN .在△PDE 中,M ,F 分别为PD ,DE 的中点,所以MF ∥PE .又EN ,PE ⊂平面PEN ,PE ∩EN =E ,MF ,CF ⊂平面CFM ,MF ∩CF =F ,所以平面CFM ∥平面PEN .【感悟提升】(1)折叠问题中不变的数量和位置关系是解题的突破口.(2)存在探索性问题可先假设存在,然后在此前提下进行逻辑推理,得出矛盾则否定假设,否则给出肯定结论.【变式探究】如图,在△PBE 中,AB ⊥PE ,D 是AE 的中点,C 是线段BE 上的一点,且AC =5,AB =AP =12AE=2,将△PBA 沿AB 折起使得二面角P -AB -E 是直二面角.(1)求证:CD ∥平面PAB ;(2)求三棱锥E -PAC 的体积.(1)证明 因为12AE =2,所以AE =4, 又AB =2,AB ⊥PE ,所以BE =AB 2+AE 2=22+42=25,又因为AC =5=12BE , 所以AC 是Rt△ABE 的斜边BE 上的中线,所以C 是BE 的中点,又因为D 是AE 的中点,所以CD 是Rt△ABE 的中位线,所以CD ∥AB ,又因为CD ⊄平面PAB ,AB ⊂平面PAB ,所以CD ∥平面PAB .【变式探究】如图1,矩形ABCD 中,AB =12,AD =6,E 、F 分别为CD 、AB 边上的点,且DE =3,BF =4,将△BCE 沿BE 折起至△PBE 的位置(如图2 所示),连接AP 、PF ,其中PF =2 5.(1)求证:PF ⊥平面ABED ;(2)求点A 到平面PBE 的距离.解析:(1)证明:由翻折不变性可知PB =BC =6,PE =CE =9,在△PBF 中,PF 2+BF 2=20+16=36=PB 2,所以PF ⊥BF .在题图1中,利用勾股定理,得 EF =62+-3-2=61, 在△PEF 中,EF 2+PF 2=61+20=81=PE 2,∴PF ⊥EF .又∵BF ∩EF =F ,BF ⊂平面ABED ,EF ⊂平面ABED ,∴PF ⊥平面ABED .(2)由(1)知PF ⊥平面ABED ,∴PF 为三棱锥P -ABE 的高.设点A 到平面PBE 的距离为h ,V A -PBE =V p -ABE ,即13×12×6×9×h =13×12×12×6×25, ∴h =853, 即点A 到平面PBE 的距离为853.。

《垂直与平行》数学教案设计

《垂直与平行》数学教案设计

《垂直与平行》數學教案設計标题:《垂直与平行》數學教案設計一、教学目标:1. 知识目标:让学生理解并掌握垂直和平行的概念,以及它们在实际生活中的应用。

2. 技能目标:通过观察和实践,提高学生的空间观念和逻辑思维能力。

3. 情感态度目标:培养学生认真观察、积极思考的学习态度,激发他们对数学的兴趣。

二、教学重点和难点:1. 教学重点:理解和掌握垂直和平行的概念,以及如何判断两条直线是否垂直或平行。

2. 教学难点:理解垂直和平行的关系,以及在复杂图形中识别垂直和平行的线段。

三、教学过程:(一)导入新课教师可以展示一些生活中常见的垂直和平行的例子,如电线杆和电线、铁路轨道等,引导学生初步感知垂直和平行的存在。

(二)新知学习1. 垂直的概念:如果两条直线相交成90度角,那么这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,交点叫做垂足。

2. 平行的概念:在同一平面内,不相交的两条直线叫做平行线。

(三)实践活动让学生用尺子和铅笔在纸上画出垂直和平行的线段,并进行相互交流和讨论。

(四)巩固练习设计一些关于垂直和平行的题目,让学生进行解答,以检验他们是否真正掌握了这一知识点。

(五)课堂小结总结本节课所学的内容,强调垂直和平行的概念及其在生活中应用的重要性。

四、作业布置:设计一些含有垂直和平行元素的图形,让学生找出所有的垂直和平行线段。

五、教学反思:通过这节课的教学,我意识到理论知识和实践操作相结合的教学方式能够更好地帮助学生理解和掌握知识点。

同时,我也意识到需要更加注重培养学生的观察能力和思考能力,使他们在遇到问题时能够独立思考,找到解决问题的方法。

《平行与垂直》教案

《平行与垂直》教案

《平行与垂直》教案《平行与垂直》教案「篇一」一、教学目标:1.知识与技能:(1)使学生明确可以根据方向和距离两个条件确定物体的位置。

(2)通过学习使学生了解有关定向知识。

2.过程与方法目标:培养学生多种的学习方式。

3.情感态度与价值观目标:通过学习,体会数学与日常生活的密切联系。

二、教学重点:能根据任意方向和距离确定物体的位置。

三、教学难点:对任意角度具体方向的准确描述。

四、教学课时:1课时五、教学准备:多媒体课件主题图六、教学过程:(一)、设置情景1、出示情境图。

如果你是赛手,你将从大本营向什么方向行进?你是怎样确定方向的?2、小组讨论:运用以前学过的知识得到大致方向。

①训练加方向标的意识:加个方向标有什么好处?②突出以大本营为观测点:为什么把方向标画在大本营?(二)、探究任意方向和距离确定物体的位置。

质疑:1、知道吐鲁番在大本营的东北方向就可以出发了吗?2、如果这时就出发可能会发生什么情况?小组讨论:沿什么方向走就能保证赛手更准确、更快的找到目标:地。

研究时,可以用上你手头的工具。

吐鲁番在大本营东偏北30度练一练:你说我摆,为小动物安家。

(课前剪好小图片,课上动手操作。

)例:我把熊猫的家安在偏,的方向上。

例:我把熊猫的家安在西偏北30°的方向上,熊猫摆在哪?讨论:为什么猴子的家在西偏南30°,而小兔家在南偏西30°的方向?解决问题,寻找得出距离的方法。

如果你的赛车每小时行进200千米,你要走几小时能到达考察地?图上没有直接标距离,你有什么办法解决它呢?仔细观察地图,你发现了什么?小组试一试解决。

吐鲁番在大本营东偏北30°。

(三)、教学例11出示例1。

教师:东偏北是什么意思?东偏北30°表示什么?起点到终点的这一条线段表示什么?如果我这样叙述:1号检查站在北偏东60°,距离起点大约1千米的地方。

那1号检查站改画在什么位置上?(让学生发现这两种说法所表达的意思是否一样。

关于平行与垂直教案(精选范文4篇)

关于平行与垂直教案(精选范文4篇)

关于平行与垂直教案(精选范文4篇)垂直,是指一条线与另一条线相交并成直角,这两条直线相互垂直。

通常用符号“⊥”表示。

设有两个向量a和b,a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0 。

对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决相关的,以下是为大家整理的关于平行与垂直教案4篇, 供大家参考选择。

平行与垂直教案4篇【篇一】平行与垂直教案第四单元平行四边形和梯形第____课时总序第____个教案编写时间:____年____月____日执行时间:____年____月____日【篇二】平行与垂直教案垂直与平行教学内容:人教版《义务教育课程标准试验教科书·数学》四年级上册64~65页的内容。

教学目标:1.引导学生通过视察、探讨感知生活中的垂直与平行的现象。

2.协助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步相识垂线和平行线。

3.造就学生的空间观念及空间想象实力,引导学生树立合作探究的学习意识。

4、在分析、比拟、综合的视察与思维中渗透分类的思想方法。

教学重点:正确理解“相交”“相互平行”“相互垂直”等概念,开展学生的空间想象实力。

教学难点:相交现象的正确理解〔尤其是对看似不相交而事实上是相交现象的理解〕教学过程:一、画图感知,探究两条直线的位置关系同学们,前面我们相识的直线,知道了直线的特点是可以向两端无限延长,这节课咱们接着探究和直线有关的学问!首先教师向学生出示一个魔方,说怎么玩?生:把一样颜色的方块转到同一个平面上。

然后教师又拿出一张白纸,我们把这张白纸看成一个平面,闭上眼睛想象在这个平面上出现了一条直线,又出现了一条直线,你想象的这两条直线是什么样儿呢?睁开眼睛!把他们用直尺和彩色笔画在纸上!〔生画直线,师巡察〕二、视察分类,了解平行的特征师:好多同学都已经画完坐端正了,你们都画完了吗?好!刚刚教师收集了几幅作品,我们贴黑板上吧!师:你们看,同学们的想象真丰富,我们在同一个平面内想象两条直线,竟然出现了这么多不同的样子,真不简洁!师:细致看看,能不能给他们分分类呢?好!为了大家表达起来便利,咱们给他们编上号,一起来吧!师:下面请你把分类的状况写在练习本上,用序号表示〔小组合作完成〕〔起先吧!〕师:都分好了吗?谁情愿到前面来分给大家看看!给大家说说你分的理由!1、教学相交师:这个同学把黑板上的分成了两类!对于这样的分发你有没有不同的想法?这个同学的观点认为4号是穿插的,你们认为呢?为什么?谁能再说说理由?大家说能再画长一些吗?〔能〕师小结:也就是说这幅作品把穿插的局部没画出来,它穿插了吗?〔穿插了〕嗯!它看似不穿插实际却是穿插了的!此时此刻我们可以把它放到哪一类?〔穿插的一类〕师总结:好!大家看,我们把黑板上的作品分成了两类,这一类是两条直线相互穿插了,这一类就是相交〔板书:相交〕2、教学相互平行师:那这一类相交了吗?是不是因为这两条直线画的太短了呢?那是为什么?你从哪儿看出来再画也不会相交呢?师:也就是说这边的宽窄和这边儿的宽窄一样,对吗?那你用什么方法证明这两边的宽窄一样呢?〔用尺子量〕谁情愿上来量?这一幅谁来量?师:这两个同学量了这边儿是3厘米,这边儿也是3厘米,这幅这边是2厘米,这边儿也是2厘米,把它们画的再长些,这两条直线会相交吗?为什么?谁能再说说理由!师小结:也就是说这两条直线之间必需一样宽窄!那么像这样在同一平面内的两条直线画的再长、再长也不会相交。

平行与垂直教案 3篇

平行与垂直教案 3篇

平行与垂直教案3篇一、三维目标1、知识与技能目标:掌握平行线与垂直线的概念,能准确作出判断,会动手画出平行线与垂直线。

2、过程与方法目标:通过独立思考、小组交流合作、动手操作,提高学生的总结归纳、小组协作、解决实际问题的能力。

3、情感态度与价值观目标:感受数学的魅力,激发学生学习数学的兴趣,在解决实际问题体会到成功的喜悦。

二、教学重难点教学重点:理解平行与垂直等概念,会进行判断;教学难点:理解平行与垂直的本质特征三、教学过程1、创设情境,导入新知教师带领学生回忆直线的相关内容,提问学生:我们生活中常见的直线都有哪些学生仔细思考,回答教师问题,同时教师在多媒体上展示多张生活中常见的直线,如栏杆,电线,筷子等等,提问学生:它们在位置上有什么关系呢学生对于平行的能回答它们朝着相同的方向,相交的能回答朝着不同的方向。

从而引入本节课学习的内容:平行与垂直。

2、师生合作,探究新知首先,教师让学生用直尺在纸上任意画出两条直线,提问学生:仔细观察任意两条直线在位置上有什么关系呢一共都有哪些情况接下来教师讲授,我们发现两条直线有相交和不相交的情况,我们知道直线是可以无限延长的,那么没有相交的直线再画长一些它们会相交吗如果不相交它们还会相交吗我们生活中有这种不相交的例子吗请学生回答并板书总结。

之后教师讲解在同一个平面不相交的两条直线叫做平行线,也可以说这两条直线互相平行,如直线a与直线b平行,记作a//b,读作a平行于b。

结合平行直线的概念,提问学生:直线相交有什么哪些情况呢引导学生用三角尺对直线夹角进行测量,我们生活中有这样的例子吗学生用三角板对4个夹角进行测量,发现有60°和120°,有4个角相等,即4个角都是90度。

教师讲授特殊情况,两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另外一条直线的垂线,两条垂线的交点叫做垂足。

如a与b互相垂直,记作a⊥b,读作a垂直于b。

3、实践练习,巩固新知.............................................4、引导反思,全课小结...................................................5、布置作业,课后延伸平行与垂直教案·21.引导学生通过观察、讨论感知生活中的垂直与平行的现象。

2019年全国高考理科数学考纲解读与热点难点突破专题14 空间中的平行与垂直(教学案)

2019年全国高考理科数学考纲解读与热点难点突破专题14 空间中的平行与垂直(教学案)

2019年全国高考理科数学考纲解读与热点难点突破专题14 空间中的平行与垂直(教学案)【2019年高考考纲解读】1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面平行和垂直的判定定理与性质定理对命题的真假进行判断,属于基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系的交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中档.【重点、难点剖析】1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.平行关系的转化两平面平行问题常常可以转化为直线与平面的平行,而直线与平面平行又可转化为直线与直线平行,所以要注意转化思想的应用,以下为三种平行关系的转化示意图.3.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.4.垂直关系的转化与平行关系之间的转化类似,它们之间的转化如下示意图.在垂直的相关定理中,要特别注意记忆面面垂直的性质定理:两个平面垂直,在一个平面内垂直于它们交线的直线必垂直于另一个平面,当题目中有面面垂直的条件时,一般都要用此定理进行转化.【题型示例】题型一 空间中点线面位置关系的判断(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题.(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.【例1】[2018·全国卷Ⅱ]在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22【解析】方法1:如图(1),在长方体ABCD ­A 1B 1C 1D 1的一侧补上一个相同的长方体A ′B ′BA ­A 1′B 1′B 1A 1.连接B 1B ′,由长方体性质可知,B 1B ′∥AD 1,所以∠DB 1B ′为异面直线AD 1与DB 1所成的角或其补角.连接DB ′,由题意,得DB ′=12+1+12=5, B ′B 1=12+32=2, DB 1=12+12+32= 5.在△DB ′B 1中,由余弦定理,得DB ′2=B ′B 21+DB 21-2B ′B 1·DB 1·cos ∠DB 1B ′,即5=4+5-2×25cos∠DB1B′,∴cos∠DB1B′=5 5.故选C.方法2:如图(2),分别以DA,DC,DD1所在直线为x,y,z轴建立空间直角坐标系.【答案】C【方法技巧】判断空间位置关系的两种方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.【变式探究】在正方体ABCD-A1B1C1D1中,棱所在直线与直线BA1是异面直线的条数为()A.4 B.5 C.6 D.7解析:在正方体ABCD -A 1B 1C 1D 1中,直线CD ,C 1D 1,C 1C ,D 1D ,B 1C 1,AD ,共有6条直线与直线BA 1是异面直线,故选C.答案:C【举一反三】设l ,m ,n 为三条不同的直线,α为一个平面,则下列命题中正确的个数是( )①若l ⊥α,则l 与α相交;②若m ⊂α,n ⊂α,l ⊥m ,l ⊥n ,则l ⊥α;③若l ∥m ,m ∥n ,l ⊥α,则n ⊥α;④若l ∥m ,m ⊥α,n ⊥α,则l ∥n .A .1B .2C .3D .4解析:对于①,若l ⊥α,则l 与α不可能平行,l 也不可能在α内,所以l 与α相交,①正确;对于②,若m ⊂α,n ⊂α,l ⊥m ,l ⊥n ,则有可能是l ⊂α,故②错误;对于③,若l ∥m ,m ∥n ,则l ∥n ,又l ⊥α,所以n ⊥α,故③正确;对于④,因为m ⊥α,n ⊥α,所以m ∥n ,又l ∥m ,所以l ∥n ,故④正确,选C. 答案:C【变式探究】【2017江苏,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .【答案】(1)见解析(2)见解析(第15题)ADB C EF【解析】证明:(1)在平面ABD 内,因为AB ⊥AD , EF AD ⊥,所以EF AB .又因为EF ⊄平面ABC , AB ⊂平面ABC ,所以EF ∥平面ABC .【变式探究】【2016高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析【解析】证明:(1)在直三棱柱中,11//AC AC在三角形ABC 中,因为D,E 分别为AB,BC 的中点.所以//DE AC ,于是11//DE AC又因为DE ⊄平面平面11AC F所以直线DE//平面11AC F(2)在直三棱柱中, 因为11AC ⊂平面111A B C ,所以111AA ⊥A C又因为所以11AC ⊥平面11ABB A因为1B D ⊂平面11ABB A ,所以111AC B D ⊥又因为所以因为直线,所以1B DE 平面 【举一反三】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.答案 D【变式探究】如图,在直三棱柱ABC -A ′B ′C ′中,AB =AA ′=AC =2,∠BAC =2π3,点D ,E 分别是BC ,A ′B ′的中点.(1)求证:DE ∥平面ACC ′A ′;(2)求二面角B ′-AD -C ′的余弦值.【解析】(1)证明:取AC 的中点F ,连接DF ,A ′F ,则DF ∥AB ,又A ′E ∥AB ,所以DF ∥A ′E ,又因为DF =12AB ,A ′E =12AB , 所以DF =AE ,所以四边形DF A ′E 是平行四边形,所以ED ∥A ′F ,又A ′F ⊂平面ACC ′A ′,所以ED ∥平面ACC ′A ′.(2)在平面ABC 中,以过点A 且垂直于AC 的直线为x 轴,直线AC 为y 轴,AA ′为z 轴,建立空间直角坐标系A -xyz .所以点A (0,0,0),B (3,-1,0),C (0,2,0),B ′(3,-1,2),C ′(0,2,2),D ⎝⎛⎭⎫32,12,0. 所以AD →=⎝⎛⎭⎫32,12,0,AB ′→=(3,-1,2),AC ′→=(0,2,2). 设平面B ′AD 的法向量为m =(x ,y ,z ),则由m ·AD →=0和m ·AB ′→=0,得 ⎩⎪⎨⎪⎧32x +12y =0,3x -y +2z =0,取m =(1,-3,-3). 同理,可取平面C ′AD 的法向量n =(1,-3,3).设二面角B ′-AD -C ′的平面角为θ,易知0<θ<π2,则cos θ=|m ·n ||m ||n |=17. 【变式探究】设α,β,γ是三个不重合的平面,l 是直线,给出下列四个命题:①若α⊥β,l ⊥β,则l ∥α;②若l ⊥α,l ∥β,则α⊥β;③若l 上有两点到α的距离相等,则l ∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是________.【解析】由线线、线面、面面平行与垂直的判定与性质定理逐个判断,真命题为②④.【答案】②④【规律方法】这类题为高考常考题型,其实质为多项选择.主要考查空间中线面之间的位置关系,要求熟悉有关公理、定理及推论,并具备较好的空间想象能力,做到不漏选、多选、错选.【变式探究】如图,三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.解析 连接DN ,作DN 的中点O ,连接MO ,OC .在△AND 中.M 为AD 的中点,则OM 綉12AN .所以异面直线AN ,CM 所成角为∠CMO ,在△ABC 中,AB =AC =3,BC =2,则AN =22,∴OM = 2.在△ACD 中,同理可知CM =22,在△BCD 中,DN =22,在Rt △ONC 中,ON =2,CN =1∴OC = 3.在△CMO中,由余弦定理cos ∠CMO =|MC |2+|MO |2-|OC |22|MC |·|MO |=8+2-32×22×2=78. 答案 78【变式探究】(1)已知直线l ,m 与平面α,β,l ⊂α,m ⊂β,则下列命题中正确的是( )A .若l ∥m ,则必有α∥βB .若l ⊥m ,则必有α⊥βC .若l ⊥β,则必有α⊥βD.若α⊥β,则必有m⊥α答案 C解析对于选项A,平面α和平面β还有可能相交,所以选项A错误;对于选项B,平面α和平面β还有可能相交且不垂直或平行,所以选项B错误;对于选项C,因为l⊂α,l⊥β,所以α⊥β,所以选项C正确;对于选项D,直线m可能和平面α平行或相交,所以选项D错误.(2)如图,平面α⊥平面β,α∩β=l,A,C是α内不同的两点,B,D是β内不同的两点,且A,B,C,D∉直线l,M,N分别是线段AB,CD的中点.下列判断正确的是()A.当CD=2AB时,M,N两点不可能重合B.M,N两点可能重合,但此时直线AC与l不可能相交C.当AB与CD相交,直线AC平行于l时,直线BD可以与l相交D.当AB,CD是异面直线时,直线MN可能与l平行答案 B解析由于直线CD的两个端点都可以动,所以M,N两点可能重合,此时两条直线AB,CD共面,由于两条线段互相平分,所以四边形ACBD是平行四边形,因此AC∥BD,而BD⊂β,AC⊄B,所以由线面平行的判定定理可得AC∥β,又因为AC⊂α,α∩β=l,所以由线面平行的性质定理可得AC∥l,故选B.【感悟提升】解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.【变式探究】(1)已知直线a,b,平面α,β,γ,下列命题正确的是()A.若α⊥γ,β⊥γ,α∩β=a,则a⊥γB.若α∩β=a,α∩γ=b,β∩γ=c,则a∥b∥cC.若α∩β=a,b∥a,则b∥αD.若α⊥β,α∩β=a,b∥α,则b∥a答案 A解析A中,若α⊥γ,β⊥γ,α∩β=a,则a⊥γ,该说法正确;B中,若α∩β=a,α∩γ=b,β∩γ=c,在三棱锥P-ABC中,令平面α,β,γ分别为平面P AB,P AC,PBC,交线a,b,c为P A,PB,PC,不满足a∥b∥c,该说法错误;C中,若α∩β=a,b∥a,有可能b⊂α,不满足b∥α,该说法错误;D中,若α⊥β,α∩β=a,b∥α,正方体ABCD-A1B1C1D1中,取平面α,β为平面ABCD,ADD1A1,直线b为A1C1,满足b∥α,不满足b∥a,该说法错误.(2)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是A.l与l1,l2都相交B.l与l1,l2都不相交C.l至少与l1,l2中的一条相交D.l至多与l1,l2中的一条相交答案 C解析方法一如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故D不正确,故选C.方法二因为l分别与l1,l2共面,故l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l与l1,l2都不相交,则l∥l1,l∥l2,从而l1∥l2,与l1,l2是异面直线矛盾,故l至少与l1,l2中的一条相交,故选C.题型二空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定定理、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.【例2】[2018·北京卷]如图,在四棱锥P­ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(1)求证:PE ⊥BC ;(2)求证:平面PAB ⊥平面PCD ;(3)求证:EF ∥平面PCD .证明:(1)因为PA =PD ,E 为AD 的中点,所以PE ⊥AD .因为底面ABCD 为矩形,所以BC ∥AD .所以PE ⊥BC .(2)因为底面ABCD 为矩形,所以AB ⊥AD .又因为平面PAD ⊥平面ABCD ,所以AB ⊥平面PAD ,所以AB ⊥PD .又因为PA ⊥PD ,所以PD ⊥平面PAB .所以平面PAB ⊥平面PCD .(3)如图,取PC 的中点G ,连接FG ,DG .因为F ,G 分别为PB ,PC 的中点,所以FG ∥BC ,FG =12BC . 因为四边形ABCD 为矩形,且E 为AD 的中点,所以DE ∥BC ,DE =12BC . 所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形.所以EF ∥DG .又因为EF⊄平面PCD,DG⊂平面PCD,所以EF∥平面PCD.【方法技巧】1.证明线线平行的4种常用方法(1)利用平行公理,即证两直线同时和第三条直线平行;(2)利用平行四边形进行平行转换;(3)利用三角形的中位线定理证线线平行;(4)利用线面平行、面面平行的性质定理进行平行转换.2.证明线线垂直的3种常用方法(1)利用等腰三角形底边中线即高线的性质;(2)勾股定理;(3)若M是PC的中点,求三棱锥M -ACD的体积.(1)证明∵AB∥DC,且AB⊄平面PCD,CD⊂平面PCD.∴AB∥平面PCD.(2)证明在直角梯形ABCD中,过C作CE⊥AB于点E,则四边形ADCE为矩形∴AE=DC=1,又AB=2,∴BE=1,在Rt△BEC中,∠ABC=45°,∴CE=BE=1,CB=2,∴AD=CE=1,则AC=AD2+DC2=2,∴AC2+BC2=AB2,∴BC⊥AC,又∵P A⊥平面ABCD,∴P A⊥BCP A∩AC=A,∴BC⊥平面P AC(3)解∵M是PC中点,∴M到面ADC的距离是P到面ADC距离的一半V M -ACD=13S△ACD·12P A=13×⎝⎛⎭⎫12×1×1×12=112.【变式探究】(1)如图,三棱柱ABC-A1B1C1的各棱长均为2,AA1⊥平面ABC,E,F分别为棱A1B1,BC 的中点.①求证:直线BE ∥平面A 1FC 1;②平面A 1FC 1与直线AB 交于点M ,指出点M 的位置,说明理由,并求三棱锥B -EFM 的体积. ①证明 取A 1C 1的中点G ,连接EG ,FG ,∵点E 为A 1B 1的中点,∴EG ∥B 1C 1且EG =12B 1C 1, ∵F 为BC 中点,∴BF ∥B 1C 1且BF =12B 1C 1, 所以BF ∥EG 且BF =EG .所以四边形BFGE 是平行四边形,所以BE ∥FG ,又BE ⊄平面A 1FC 1,FG ⊂平面A 1FC 1,所以直线BE ∥平面A 1FC 1.②解 M 为棱AB 的中点.理由如下:因为AC ∥A 1C 1,AC ⊄平面A 1FC 1,A 1C 1⊂平面A 1FC 1,所以直线AC ∥平面A 1FC 1,又平面A 1FC 1∩平面ABC =FM ,所以AC ∥FM .又F 为棱BC 的中点,所以M 为棱AB 的中点.△BFM 的面积S △BFM =14S △ABC =14×12×2×2×sin 60°=34, 所以三棱锥B -EFM 的体积V B -EFM =V E -BFM =13×34×2=36.(2)如图,在四棱锥P-ABCD中,底面ABCD是边长为a的菱形,PD⊥平面ABCD,∠BAD=60°,PD=2a,O为AC与BD的交点,E为棱PB上一点.①证明:平面EAC⊥平面PBD;②若PD∥平面EAC,三棱锥P-EAD的体积为183,求a的值.①证明因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC.又四边形ABCD为菱形,所以AC⊥BD,又PD∩BD=D,PD,BD⊂平面PBD,所以AC⊥平面PBD.又AC⊂平面EAC,所以平面EAC⊥平面PBD.②解连接OE.因为PD∥平面EAC,平面EAC∩平面PBD=OE,所以PD∥OE.又AC∩BD=O,所以O是BD的中点,所以E是PB的中点.因为四边形ABCD是菱形,且∠BAD=60°,所以取AD的中点H,连接BH,可知BH⊥AD,又因为PD⊥平面ABCD,BH⊂平面ABCD,所以PD⊥BH.又PD∩AD=D,PD,AD⊂平面P AD,所以BH⊥平面P AD.由于AB=a,所以BH=3 2a.因此点E 到平面P AD 的距离d =12BH =12×32a =34a , 所以V P -EAD =V E -P AD =13S △P AD ×d =13×12×a ×2a ×34a =312a 3=18 3. 解得a =6.【感悟提升】垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证明线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质,即要证线线垂直,只需证明一条直线垂直于另一条直线所在的平面即可,l ⊥α,a ⊂α⇒l ⊥a .【变式探究】如图,在四棱锥P -ABCD 中,∠ADB =90°,CB =CD ,点E 为棱PB 的中点.(1)若PB =PD ,求证:PC ⊥BD ;(2)求证:CE ∥平面P AD .证明 (1)取BD 的中点O ,连接CO ,PO ,因为CD =CB ,所以△CBD 为等腰三角形,所以BD ⊥CO .因为PB =PD ,所以△PBD 为等腰三角形,所以BD ⊥PO .又PO ∩CO =O ,PO ,CO ⊂平面PCO ,所以BD ⊥平面PCO .因为PC ⊂平面PCO ,所以PC ⊥BD .(2)由E 为PB 的中点,连接EO ,则EO ∥PD ,又EO ⊄平面P AD ,PD ⊂平面P AD ,所以EO ∥平面P AD .由∠ADB =90°及BD ⊥CO ,可得CO ∥AD ,又CO ⊄平面P AD ,AD ⊂平面P AD ,所以CO ∥平面P AD .又CO ∩EO =O ,CO ,EO ⊂平面COE ,所以平面CEO ∥平面P AD ,而CE ⊂平面CEO ,所以CE ∥平面P AD .题型三 平面图形的翻折问题1.画好两图:翻折之前的平面图形与翻折之后形成的几何体的直观图.2.把握关系:即比较翻折前后的图形,准确把握平面图形翻折前后的线线关系,哪些平行与垂直的关系不变,哪些平行与垂直的关系发生变化,这是准确把握几何体的结构特征,进行空间线面关系逻辑推理的基础.3.准确定量:即根据平面图形翻折的要求,把平面图形中的相关数量转化为空间几何体的数字特征,这是准确进行计算的基础.例3、[2018·全国卷Ⅰ]如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q ­ABP 的体积. 【解析】(1)证明:由已知可得,∠BAC =90°,即BA ⊥AC .又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)解:由已知可得,DC =CM =AB =3,DA =3 2.又BP =DQ =23DA ,所以BP =2 2.如图,过点Q 作QE ⊥AC ,垂足为E ,则QE 綊13DC . 由已知及(1)可得,DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ­ABP 的体积为VQ ­ABP =13×S △ABP ×QE =13×12×3×22sin 45°×1=1. 【方法技巧】平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.【变式探究】如图1,已知菱形AECD 的对角线AC ,DE 交于点F ,点E 为AB 中点.将△ADE 沿线段DE 折起到△PDE 的位置,如图2所示.(1)求证:DE ⊥平面PCF ;(2)求证:平面PBC ⊥平面PCF ;(3)在线段PD ,BC 上是否分别存在点M ,N ,使得平面CFM ∥平面PEN ?若存在,请指出点M ,N 的位置,并证明;若不存在,请说明理由.(1)证明 折叠前,因为四边形AECD 为菱形,所以AC ⊥DE ,所以折叠后,DE ⊥PF ,DE ⊥CF ,又PF ∩CF =F ,PF ,CF ⊂平面PCF ,所以DE ⊥平面PCF .(2)证明 因为四边形AECD 为菱形,所以DC ∥AE ,DC =AE .又点E 为AB 的中点,所以DC ∥EB ,DC =EB ,所以四边形DEBC 为平行四边形,所以CB ∥DE .又由(1)得,DE ⊥平面PCF ,所以CB ⊥平面PCF .因为CB ⊂平面PBC ,所以平面PBC ⊥平面PCF .(3)解 存在满足条件的点M ,N ,且M ,N 分别是PD 和BC 的中点.如图,分别取PD 和BC 的中点M ,N .连接EN ,PN ,MF ,CM .因为四边形DEBC 为平行四边形,所以EF ∥CN ,EF =12BC =CN , 所以四边形ENCF 为平行四边形,所以FC ∥EN .在△PDE 中,M ,F 分别为PD ,DE 的中点,所以MF ∥PE .又EN ,PE ⊂平面PEN ,PE ∩EN =E ,MF ,CF ⊂平面CFM ,MF ∩CF =F ,所以平面CFM ∥平面PEN .【感悟提升】(1)折叠问题中不变的数量和位置关系是解题的突破口.(2)存在探索性问题可先假设存在,然后在此前提下进行逻辑推理,得出矛盾则否定假设,否则给出肯定结论.【变式探究】如图,在△PBE 中,AB ⊥PE ,D 是AE 的中点,C 是线段BE 上的一点,且AC =5,AB =AP =12AE =2,将△PBA 沿AB 折起使得二面角P -AB -E 是直二面角.(1)求证:CD ∥平面P AB ;(2)求三棱锥E -P AC 的体积.(1)证明 因为12AE =2,所以AE =4, 又AB =2,AB ⊥PE ,所以BE =AB 2+AE 2=22+42=25,又因为AC =5=12BE , 所以AC 是Rt △ABE 的斜边BE 上的中线,所以C 是BE 的中点,又因为D 是AE 的中点,所以CD 是Rt △ABE 的中位线,所以CD ∥AB ,又因为CD ⊄平面P AB ,AB ⊂平面P AB ,所以CD ∥平面P AB .【变式探究】如图1,矩形ABCD 中,AB =12,AD =6,E 、F 分别为CD 、AB 边上的点,且DE =3,BF =4,将△BCE 沿BE 折起至△PBE 的位置(如图2 所示),连接AP 、PF ,其中PF =2 5.(1)求证:PF ⊥平面ABED ;(2)求点A 到平面PBE 的距离.解析:(1)证明:由翻折不变性可知PB =BC =6,PE =CE =9,在△PBF 中,PF 2+BF 2=20+16=36=PB 2,所以PF ⊥BF .在题图1中,利用勾股定理,得EF =62+-3-2=61,在△PEF 中,EF 2+PF 2=61+20=81=PE 2,∴PF ⊥EF .又∵BF ∩EF =F ,BF ⊂平面ABED ,EF ⊂平面ABED ,∴PF ⊥平面ABED .学_科网(2)由(1)知PF ⊥平面ABED ,∴PF 为三棱锥P -ABE 的高.设点A 到平面PBE 的距离为h ,V A -PBE =V p -ABE ,即13×12×6×9×h =13×12×12×6×25, ∴h =853, 即点A 到平面PBE 的距离为853.。

空间中的平行与垂直教案

空间中的平行与垂直教案

空间中的平行与垂直教案第一章:认识平行与垂直1.1 学习目标:让学生理解平行与垂直的概念,并能识别和判断空间中的平行与垂直关系。

1.2 教学内容:平行:两条直线在同一平面内,永不相交的现象称为平行。

垂直:两条直线相交成直角的关系称为垂直。

1.3 教学活动:教师通过PPT展示图片,引导学生观察并识别平行与垂直的关系。

学生分组讨论,分享各自对平行与垂直的理解。

教师进行讲解,明确平行与垂直的定义和特点。

1.4 练习与巩固:教师设计一些练习题,让学生判断给定的直线关系是平行还是垂直。

学生独立完成练习题,教师进行解答和反馈。

第二章:平行与垂直的性质与判定2.1 学习目标:让学生掌握平行与垂直的性质与判定方法,并能够运用到实际问题中。

2.2 教学内容:平行性质:同一平面内,如果两条直线都与第三条直线平行,这两条直线也互相平行。

垂直性质:如果两条直线相交成直角,这两条直线互相垂直。

2.3 教学活动:教师通过PPT展示图片和实例,引导学生理解和掌握平行与垂直的性质。

学生进行小组讨论,通过实际操作验证平行与垂直的性质。

2.4 练习与巩固:教师设计一些练习题,让学生运用平行与垂直的性质进行解答。

学生独立完成练习题,教师进行解答和反馈。

第三章:平行与垂直的应用3.1 学习目标:让学生能够运用平行与垂直的知识解决实际问题,提高空间想象力。

3.2 教学内容:应用场景:在日常生活中,平行与垂直关系广泛应用于建筑设计、绘画、交通规划等领域。

3.3 教学活动:教师展示一些实际问题,如建筑设计中的平行与垂直应用,引导学生思考和解答。

学生分组讨论,分享各自的应用实例和解决方案。

教师进行讲解,强调平行与垂直在实际问题中的重要性。

3.4 练习与巩固:教师设计一些应用题,让学生运用平行与垂直的知识进行解答。

学生独立完成练习题,教师进行解答和反馈。

第四章:平行与垂直的综合练习4.1 学习目标:让学生综合运用平行与垂直的知识,提高解决问题的能力。

《平行与垂直》教案(平行与垂直优质课教案)

《平行与垂直》教案(平行与垂直优质课教案)

《平行与垂直》教案(平行与垂直优质课教案)•课程介绍与目标•平行线性质及判定方法•垂直线性质及判定方法目录•平行与垂直在生活中的应用•典型例题分析与解答技巧•学生自主练习与互动环节•总结回顾与拓展延伸课程介绍与目标平行与垂直概念引入0102教学目标与要求知识目标掌握平行与垂直的定义、性质及判定方法。

能力目标能够运用平行与垂直的知识解决实际问题,如证明线段相等、角相等等。

情感态度与价值观培养学生观察、思考、归纳、总结的能力,以及严谨、认真的学习态度。

课程安排与时间课程安排时间安排平行线性质及判定方法平行线定义及性质平行线定义平行线的性质判定两直线平行方法内错角相等法同位角相等法两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

同旁内角互补法平行线间距离公式垂直线性质及判定方法垂直线定义及性质定义性质垂直是相交的一种特殊情况,两条直线垂直时,它们之间的夹角为90度,且垂足是唯一的。

判定两直线垂直方法方法一01方法二02方法三03垂线段最短原理原理内容应用场景平行与垂直在生活中的应用建筑设计中应用垂直线在建筑设计中用于创造立体感和层次感。

例如,在建筑立面设计中,垂直线条可以突出建筑的高度和挺拔感,增强视觉效果。

道路交通标志识别其他生活场景应用平行与垂直在美术设计中也有广泛应用。

例如,在绘画、摄影等艺术作品中,艺术家可以利用平行与垂直的构图原则来创造和谐、平衡的美感。

在工程制图中,平行与垂直是基本的绘图原则。

例如,在机械制图、建筑制图等领域中,工程师需要使用平行线和垂直线来绘制精确的图纸,以确保工程的准确性和可行性。

在地理学和地质学中,平行与垂直也有重要应用。

例如,地质学家可以使用地层中的平行线和垂直线来判断地层的走向、倾斜角度等地质特征。

典型例题分析与解答技巧理解定义和性质图形分析排除法030201判断题和选择题答题技巧计算题和证明题解题思路明确已知和未知画图辅助逐步推导易错难点和注意事项避免将平行线和垂线混淆,特别是在复杂的图形中。

《平行与垂直》教案

《平行与垂直》教案

《平行与垂直》教案一、教学目标:知识与技能:1. 学生能够理解平行和垂直的概念,并能够识别生活中的平行和垂直现象。

2. 学生能够运用平行和垂直的知识解决实际问题。

过程与方法:1. 学生通过观察、操作、交流等活动,培养观察能力和动手能力。

2. 学生通过合作探究,培养团队协作能力和问题解决能力。

情感态度与价值观:1. 学生培养对数学的兴趣和好奇心。

2. 学生培养积极主动参与学习的习惯。

二、教学内容:1. 平行和垂直的概念及特征。

2. 生活中的平行和垂直现象。

3. 运用平行和垂直的知识解决实际问题。

三、教学重点与难点:重点:1. 平行和垂直的概念及特征。

2. 生活中的平行和垂直现象。

难点:1. 运用平行和垂直的知识解决实际问题。

四、教学方法:观察法、操作法、交流法、合作探究法。

五、教学准备:1. 教学PPT。

2. 教学素材(图片、实物等)。

3. 学生活动材料。

六、教学过程:1. 导入:通过生活实例引入平行和垂直的概念,激发学生的兴趣。

2. 新课导入:介绍平行和垂直的定义及特征。

3. 实例分析:分析生活中的平行和垂直现象,让学生感受数学与生活的联系。

4. 实践操作:学生动手操作,体验平行和垂直的性质。

5. 合作探究:学生分组讨论,探究平行和垂直在生活中的应用。

6. 总结提升:教师引导学生总结本节课所学内容。

7. 练习巩固:布置课后练习,巩固所学知识。

七、课后反思:教师在课后对自己的教学进行反思,了解学生的学习情况,针对存在的问题进行调整教学策略。

八、作业设计:1. 观察生活中的平行和垂直现象,并进行记录。

2. 运用所学知识解决实际问题。

九、评价方式:1. 课堂表现:观察学生在课堂上的参与程度、发言情况等。

2. 课后练习:检查学生的作业完成情况,了解学生的掌握程度。

3. 实践应用:评估学生在实际生活中的应用能力。

十、教学拓展:1. 邀请相关领域的专家进行讲座,加深学生对平行和垂直知识的理解。

2. 组织实践活动,让学生亲身体验平行和垂直在生活中的应用。

《平行与垂直》教案

《平行与垂直》教案

《平行与垂直》教案一、教学目标:知识与技能:1. 让学生通过观察、操作、交流等活动,理解平行和垂直的概念。

2. 培养学生运用数学知识解决实际问题的能力。

过程与方法:1. 让学生通过自主探究、合作交流的方式,掌握平行和垂直的判断方法。

2. 培养学生运用几何知识进行图形分析的能力。

情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神。

2. 培养学生学会与他人合作,培养团队意识。

二、教学重点与难点:重点:1. 平行和垂直的概念及判断方法。

2. 运用平行和垂直的知识解决实际问题。

难点:1. 理解平行和垂直的内在联系。

2. 运用几何知识进行图形分析。

三、教学准备:教师准备:1. 教学课件或黑板。

2. 几何图形道具。

学生准备:1. 课本及相关学习材料。

2. 铅笔、橡皮、几何图形绘制工具。

四、教学过程:环节一:导入新课1. 利用生活中的实例引入平行和垂直的概念。

2. 引导学生观察实例中的图形,发现平行和垂直的特征。

环节二:自主探究1. 学生自主尝试绘制平行线和垂线。

2. 学生分享自己的绘制方法及心得。

环节三:合作交流环节四:巩固练习1. 学生独立完成练习题,巩固平行和垂直的知识。

2. 教师讲解答案,解析解题思路。

环节五:拓展应用1. 学生运用平行和垂直的知识解决实际问题。

2. 学生分享自己的解题过程和心得。

五、课后反思:本节课通过观察、操作、交流等活动,使学生掌握了平行和垂直的概念及判断方法。

在教学过程中,注意引导学生运用几何知识解决实际问题,培养学生的动手操作能力和团队协作精神。

但在教学过程中,也发现部分学生对平行和垂直的内在联系理解不够深入,需要在今后的教学中加强引导和讲解。

六、教学评价:1. 通过课堂表现、练习完成情况和小测验等方式评估学生对平行和垂直概念的理解和运用能力。

2. 关注学生在合作交流中的参与程度,培养其团队合作和沟通能力。

3. 鼓励学生提出问题、分享心得,激发其数学探究兴趣和自主学习能力。

空间的平行与垂直(教学案)-2019年高考理数二轮复习精品资料+Word版含解析+

空间的平行与垂直(教学案)-2019年高考理数二轮复习精品资料+Word版含解析+

1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以客观题形式考查有关线面平行、垂直等位置关系的命题真假判断或充要条件判断等.3.以多面体或旋转体为载体(棱锥、棱柱为主)命制空间线面平行、垂直各种位置关系的证明题或探索性问题,以大题形式呈现.1.点、线、面的位置关系(1)平面的基本性质名称图形文字语言符号语言公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内⎭⎪⎬⎪⎫A∈lB∈lA∈αB∈α⇒l⊂α公理2过不在一条直线上的三点有且只有一个平面若A、B、C三点不共线,则A、B、C在同一平面α内且α是唯一的.公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.平面α与β不重合,若P∈α,且P∈β,则α∩β=a,且P∈a(2)平行公理、等角定理公理4:若a∥c,b∥c,则a∥b.等角定理:若OA∥O1A1,OB∥O1B1,则∠AOB=∠A1O1B1或∠AOB+∠A1O1B1=180°. 2.直线、平面的平行与垂直定理名称文字语言图形语言符号语言线面平行的判定定理平面外一条直线与平面内的一条直线平行,则这条直线与此平面平行⎭⎪⎬⎪⎫a⊄αb⊂αa∥b⇒a∥α线面平行的性质定理一条直线与一个平面平行,则过这条直线的任何一个平面与此平面的交线与该直线平行a∥α,a⊂β,α∩β=b,⇒a∥b面面平行的判定定理如果一个平面内有两条相交的直线都平行于另一个平面,那么这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β面面平行的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β且γ∩α=a且γ∩β=b⇒a∥b线面垂直的判定定理一条直线和一个平面内的两条相交直线都垂直,则该直线与此平面垂直a⊂α,b⊂α,a∩b=A,l⊥a,l⊥b⇒l⊥α线面垂直的性质定理垂直于同一平面的两条直线平行a⊥α,b⊥α⇒a∥b面面垂直的判定定理一个平面过另一个平面的垂线,则这两个平面垂直a⊥α,a⊂β,⇒α⊥β面面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直α⊥β,b∈β,α∩β=a,b⊥a⇒b⊥α3.熟练掌握常见几何体(柱、锥、台、球)的几何特征,明确各种几何体的直观图与三视图特征及相关面积体积的计算公式,熟练掌握线线、线面、面面平行与垂直等位置关系的判定与性质定理及公理,熟练进行线线、线面、面面平行与垂直关系的相互转化是解答相关几何题的基础.【误区警示】1.应用线面、面面平行与垂直的判定定理、性质定理时,必须按照定理的要求找足条件.2.作辅助线(面)是立体几何证题中常用技巧,作图时要依据题设条件和待求(证)结论之间的关系结合有关定理作图.注意线线、线面、面面平行与垂直关系的相互转化.3.若a 、b 、c 代表直线或平面,△代表平行或垂直,在形如⎭⎪⎬⎪⎫a △b a △c ⇒b △c 的命题中,要切实弄清有哪些是成立的,有哪些是不成立的.例如a 、b 、c 中有两个为平面,一条为直线,命题⎭⎪⎬⎪⎫a ⊥αa ⊥β⇒α∥β是成立的.⎭⎪⎬⎪⎫a ∥αa ∥β⇒α∥β是不成立的. 由得,所以,故.因此,直线与平面所成的角的正弦值是.方法二:(Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:因此由得.由得.所以平面. (Ⅱ)设直线与平面所成的角为.由(Ⅰ)可知设平面的法向量. 由即可取.所以.因此,直线与平面所成的角的正弦值是.【变式探究】【2017江苏,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD , EF AD ⊥,所以EF AB P .又因为EF ⊄平面ABC , AB ⊂平面ABC ,所以EF ∥平面ABC.(第15题)ADBC EF(2)因为平面ABD ⊥平面BCD , 平面ABD ⋂平面BCD =BD ,BC ⊂平面BCD , BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥ AD . 又AB ⊥AD ,, AB ⊂平面ABC , BC ⊂平面ABC ,所以AD ⊥平面ABC ,又因为AC ⊂平面ABC , 所以AD ⊥AC.【变式探究】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析 【解析】证明:(1)在直三棱柱中,11//AC AC在三角形ABC 中,因为D,E 分别为AB,BC 的中点. 所以//DE AC ,于是11//DE AC 又因为DE ⊄平面平面11AC F所以直线DE//平面11AC F (2)在直三棱柱中,因为11AC ⊂平面111A B C ,所以111AA ⊥A C又因为所以11AC ⊥平面11ABB A因为1B D ⊂平面11ABB A ,所以111AC B D ⊥ 又因为所以因为直线,所以1B DE平面【变式探究】如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.证明 (1)由题意知,E 为B 1C 的中点,又D 为AB 1的中点,因此DE ∥AC .又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C , 所以DE ∥平面AA 1C 1C .(2)因为棱柱ABC -A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AC ⊂平面ABC ,所以AC ⊥CC 1.又因为AC ⊥BC ,CC 1⊂平面BCC 1B 1,BC ⊂平面BCC 1B 1,BC ∩CC 1=C , 所以AC ⊥平面BCC 1B 1. 又因为BC 1⊂平面BCC 1B 1, 所以BC 1⊥AC . 因为BC =CC 1,所以矩形BCC 1B 1是正方形, 因此BC 1⊥B 1C .因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C , 所以BC 1⊥平面B 1AC . 又因为AB 1⊂平面B 1AC , 所以BC 1⊥AB 1.【举一反三】如图,菱形ABCD 的对角线AC 与BD 交于点O ,,点,E F 分别在,AD CD 上,,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)29525. 【解析】(Ⅰ)由已知得AC BD ⊥,AD CD =,又由AE CF =得AE CFAD CD=,故AC EF ∥. 因此EF HD ⊥,从而EF D H '⊥.由5AB =,6AC =得.由EF AC ∥得.所以1OH =,.于是,故D H OH '⊥. 又D H EF '⊥,而,所以.(Ⅱ)如图,以H 为坐标原点,HF u u u r的方向为x 轴正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,,()0,5,0B -,()3,1,0C -,()0,0,3D ',,,.设是平面ABD '的法向量,则,即,所以可取.设是平面ACD '的法向量,则0AC AD ⎧⋅=⎪⎨'⋅=⎪⎩u u u ru u u u rn n ,即,所以可取.于是,.因此二面角B D A C '--的正弦值是29525. 【变式探究】如图,已知△ABC ,D 是AB的中点,沿直线CD 将△ACD 翻折成△A ′CD ,所成二面角A ′-CD-B 的平面角为α,则( )A .∠A ′DB ≤α B .∠A ′DB ≥αC .∠A ′CB ≤αD .∠A ′CB ≥α解析 极限思想:若α=π,则∠A ′CB <π,排除D ;若α=0,如图,则∠A ′DB ,∠A ′CB 都可以大于0,排除A ,C.故选B.答案 B高频考点三平面图形的折叠问题例3、(2018年全国I卷理数)如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.可得.则为平面ABFD 的法向量.设DP 与平面ABFD 所成角为,则.所以DP 与平面ABFD 所成角的正弦值为.【变式探究】如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.【解析】 (1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF .由此得EF ⊥HD ,故EF ⊥HD ′,所以AC ⊥HD ′. (2)由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 所以OH =1,D ′H =DH =3.于是OD ′2+OH 2=(22)2+12=9=D ′H 2, 故OD ′⊥OH .由(1)知,AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H , 所以AC ⊥平面BHD ′,于是AC ⊥OD ′.又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC . 又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′-ABCFE 的体积V =13×694×22=2322.【方法技巧】平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形. 【变式探究】如图1,在正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,BD 与EF 交于点H ,点G ,R 分别在线段DH ,HB 上,且DG GH =BRRH .将△AED ,△CFD ,△BEF 分别沿DE ,DF ,EF 折起,使点A ,B ,C 重合于点P ,如图2所示.(1)求证:GR ⊥平面PEF ;(2)若正方形ABCD 的边长为4,求三棱锥P -DEF 的内切球的半径. 解析:(1)证明:在正方形ABCD 中,∠A ,∠B ,∠C 为直角. ∴在三棱锥P -DEF 中,PE ,PF ,PD 两两垂直. ∴PD ⊥平面PEF . ∵DG GH =BR RH ,即DG GH =PRRH,∴在△PDH 中,RG ∥PD . ∴GR ⊥平面PEF . (2)正方形ABCD 边长为4.由题意知,PE =PF =2,PD =4,EF =22,DF =2 5. ∴S △PEF =2,S △DPF =S △DPE =4. S △DEF =12×22×252-22=6.设三棱锥P -DEF 内切球的半径为r ,则三棱锥的体积V P -DEF =13×12×2×2×4=13(S △PEF +2S △DPF +S △DEF )·r ,解得r =12.∴三棱锥P -DEF 的内切球的半径为12.1. (2018年浙江卷)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值. 【答案】(Ⅰ)见解析 (Ⅱ)【解析】 方法一: (Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.由得,所以,故.因此,直线与平面所成的角的正弦值是.2. (2018年北京卷)如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.3. (2018年江苏卷)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.(2)因为Q为BC的中点,所以,因此,.设n=(x,y,z)为平面AQC1的一个法向量,则即不妨取,设直线CC1与平面AQC1所成角为,则,所以直线CC1与平面AQC1所成角的正弦值为.4. (2018年江苏卷)在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.1.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A B C D解析:B选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;C选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;D选项中,AB∥NQ,且AB⊄平面MNQ,NQ⊂平面MNQ,则AB∥平面MNQ.故选A.答案:A2.(2017·山东卷)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明:(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM.又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.3.【2017江苏,15】如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E 与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD , EF AD ⊥,所以EF AB P .又因为EF ⊄平面ABC , AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD ⋂平面BCD =BD ,BC ⊂平面BCD , BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥ AD . 又AB ⊥AD ,, AB ⊂平面ABC , BC ⊂平面ABC ,所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.1.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 【答案】C 【解析】由题意知,.故选C .(第15题)ADBC EF2.【2016高考新课标2理数】 ,αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,那么αβ⊥. (2)如果,那么m n ⊥. (3)如果,那么//m β.(4)如果,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④ 【解析】对于①,,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则//n c ,因为,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的有②③④.3.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12【解析】ABC △中,因为,所以. 由余弦定理可得,所以23AC =.设AD x =,则023x <<,.在ABD ∆中,由余弦定理可得.故.在PBD ∆中,,.由余弦定理可得,所以.由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).过P 作直线BD 的垂线,垂足为O .设PO d =,则,即,解得.而△BCD 的面积.当平面PBD ⊥平面BDC 时:四面体PBCD 的体积.观察上式,易得,当且仅当=23x x -,即=3x 时取等号,同时我们可以发现当=3x 时,取得最小值,故当=3x 时,四面体PBCD 的体积最大,为1.24.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,则m 、n 所成角的正弦值为(A)32 (B )22 (C)33 (D)13【答案】A【解析】如图,设平面11CB D I 平面ABCD ='m ,平面11CB D I 平面11ABB A ='n ,因为α∥平面11CB D ,所以,则,m n 所成的角等于','m n 所成的角.过1D 作11D E B C ∥,交AD 的延长线于点E,连接CE ,则CE 为'm .连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11B F 为'n .连接BD ,则,则','m n 所成的角即为1,A B BD 所成的角,为60︒,故,m n 所成角的正弦值为32,选A.5.【2016高考新课标3理数】在封闭的直三棱柱内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为,故选B .6.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.【答案】2【解析】由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,因此所求四棱锥的体积.故答案为2.1.【2015高考浙江,理8】如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤【答案】B.【解析】设ADC θ∠=,设2AB =,则由题意,在空间图形中,设A B t '=,在A CB '∆中,,在空间图形中,过A '作AN DC ⊥,过B 作BM DC ⊥,垂足分别为N ,M , 过N 作//NP MB ,连结A P ',∴NP DC ⊥,则A NP '∠就是二面角A CD B '--的平面角,∴A NP α'∠=, 在Rt A ND '∆中,,,同理,,,故,显然BP ⊥面A NP ',故BP A P '⊥, 在Rt A BP '∆中,,在A NP '∆中,,∵210sin θ>,22cos0sinθθ≥,∴(当2πθ=时取等号),∵α,,而cos y x =在[0,]π上为递减函数,∴A DB α'≤∠,故选B.【考点定位】立体几何中的动态问题2.【2015高考湖南,理10】某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)( )A.89πB.169πC.34(21)π-D.312(21)π-【答案】A.【解析】分析题意可知,问题等价于圆锥的内接长方体的体积的最大值,设长方体体的长,宽,高分别为x ,y ,h ,长方体上底面截圆锥的截面半径为a ,则,如下图所示,圆锥的轴截面如图所示,则可知,而长方体的体积,当且仅当y x =,时,等号成立,此时利用率为,故选A.【考点定位】1.圆锥的内接长方体;2.基本不等式求最值.3.【2015高考福建,理7】若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α 的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】若l m ⊥,因为m 垂直于平面α,则//l α或l α⊂;若//l α,又m 垂直于平面α,则l m ⊥,所以“l m ⊥ ”是“//l α 的必要不充分条件,故选B .4.【2015高考四川,理14】如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点。

2020版高考数学第八单元立体几何课时4空间中的平行关系教案文(含解析)新人教A版

2020版高考数学第八单元立体几何课时4空间中的平行关系教案文(含解析)新人教A版

空间中的平行关系1.了解空间直线与平面平行、平面与平面平行的定义.2.掌握判断空间直线与平面平行、平面与平面平行的方法,能正确判断空间直线与平面平行、平面与平面平行.3.能正确运用“空间直线与平面平行”“平面与平面平行”进行逻辑推理.知识梳理1.直线与平面平行的判定(1)定义:直线和平面没有任何公共点;(2)判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.符号表示:bα,a⊂α,a∥b⇒b∥α.2.直线与平面平行的性质如果一条直线与一个平面平行,那么过该直线的任一平面与此平面的交线与该直线平行.符号表示:a∥α,a⊂β,α∩β=b⇒a∥b.3.两个平面平行的判定(1)判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.符号表示:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.(2)垂直于同一直线的两个平面平行.4.两个平面平行的性质(1)两个平面平行,其中一个平面内的直线平行于另一个平面.符号表示:α∥β,a⊂α,则a∥β.(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.符号表示:α∥β,α∩γ=a,β∩γ=b,则a∥b.1.判断两平面平行的常用结论C D(1)垂直于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行.2.与平面平行有关的几个常用结论(1)夹在两个平行平面之间的平行线段长度相等;(2)经过平面外一点有且只有一个平面与已知平面平行;(3)两条直线被第三个平面所截,截得的对应线段成比例;(4)同一条直线与两平行平面所成的角相等.热身练习1.下列说法正确的是(D)A .若直线 l 平行于平面 α 内的无数条直线,则 l ∥αB .若直线 a 在平面 α 外,则 a ∥αC .若直线 a ∥b ,b ⊂ α ,则 a ∥αD .若直线 a α ,b ⊂ α 且 a ∥b ,那么直线 a ∥αA 中缺少 l 在平面 α 外这一条件;直线在平面 α 外包括直线与平面相交和与平面平行两种情况,故 B 错; 中缺少 a 不在平面 α 内这一条件; 满足线面平行的三个条件,故选 D.2.直线 a ∥平面 α ,直线 b ⊂ α ,则 a 与 b 的位置关系是(D)A .a ∥bB .a ⊥bC .a ,b 异面D .a ∥b 或 a 与 b 异面直线 a ∥平面 α ,直线 b ⊂ α ,所以 a 与 b 无公共点,所以 a 与 b 平行或异面,选 D.3.下列命题错误的是(C)A .若一个平面内有两条相交直线都平行于另一个平面,则这两个平面平行B .垂直于同一直线的两平面平行C .平行于同一直线的两平面平行D .平行于同一平面的两平面平行A ,B 是两个平面平行的两个判定定理,正确;C 错误,D 正确,故选 C.α4.下列命题中不正确的是(D)A.两个平面平行,其中一个平面内的直线必平行于另一个平面B.两个平行平面同时和第三个平面相交,其交线一定平行C.一直线与两平行平面中的一个相交,这条直线必与另一个相交D.一直线与两平行平面中的一个平行,这条直线必与另一个平行A,B是两个平面平行的性质,正确;C正确,可用反证法进行证明;D错误,这一直线还可能在另一个平面内.故选D.5.(2015·北京卷)设α,β是两个不同的平面,m是直线且mα,“m∥β”是“α∥β”的(B)A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥βα∥β;当α∥β时,内任一直线与β平行,因为mα,所以m∥β.综上知,“m∥β”是“α∥β”的必要而不充分条件.直线与平面平行的判断(2017·浙江卷节选)如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.证明:CE∥平面PAB.在高考中,立体几何解答题常常设置两问,第(1)问常证明线面的位置关系,第(2)常考查与体积、距离等有关的计算.两问的条件常常是一同叙述,因此,在处理第(1)问时,要根据证明的要求,对条件要进行适当的筛选.这同时也考查了考生对信息的综合分析和处理的能力.如图,设PA的中点为F,连接EF,FB.所以EF∥AD且EF=AD.又因为BC∥AD,BC=AD,因为E,F分别为PD,PA的中点,1212所以EF∥BC且EF=BC,所以四边形BCEF为平行四边形,所以CE∥BF.因为BF平面PAB,CE平面PAB,所以CE∥平面PAB.(1)证线面平行的常用方法:①利用线面平行的判定定理,转化为证线线平行.②利用面面平行的性质定理,转化为证面面平行.(2)利用判定定理时,要注意强调:(ⅰ)一条线在平面外;(ⅱ)一条线在平面内;(ⅲ)平面外的直线与平面内的直线平行.(3)证线线平行是证线面平行的基础,要注意如下结论的运用:①三线平行公理;②平面几何中的结论:如三角形的中位线定理、平行四边形的性质等.1.(2015·山东卷节选)如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC 的中点.求证:BD∥平面FGH.(方法一)如图,连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,则O为CD的中点.又H为BC的中点,所以OH∥BD.又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.(方法二)在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形,可得BE∥HF.又BE平面FGH,HF平面FGH,所以BE∥平面FGH.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH⊂平面FGH,AB⊄平面FGH,所以AB∥平面FGH.又AB∩BE=B,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.平面与平面平行的判定(2015·四川卷节选)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论.(1)点F,G,H的位置如图所示.(2)平面 BEG ∥平面 ACH .证明如下:因为 ABCD -EFGH 为正方体,所以 BC ∥FG ,BC =FG .又 FG ∥EH ,FG =EH ,所以 BC ∥EH ,BC =EH ,于是四边形 BCHE 为平行四边形,所以 BE ∥CH .又 CH ⊂ 平面 ACH ,BE ⊄平面 ACH ,所以 BE ∥平面 ACH .同理 BG ∥平面 ACH .又 BE ∩BG =B ,所以平面 BEG ∥平面 ACH .证面面平行的基本方法是利用面面平行的判定定理,即转化为证线面平行.2.如图,已知ABC -A 1B 1C 1 是正三棱柱,E ,F 分别是 AC ,A 1C 1 的中点.求证:平面 AB 1F ∥平面 BEC 1.因为 E ,F 分别是 AC ,A 1C 1 的中点,所以 AE =FC 1. 又因为 AE ∥FC 1,所以四边形 AEC 1F 是平行四边形,所以 AF ∥EC 1. 因为 EC 1⊂ 平面 BEC 1,AF ⊄平面 BEC 1, 所以 AF ∥平面 BEC 1.连接 EF .因为 EF ∥BB 1,EF =BB 1, 所以四边形 BB 1FE 是平行四边形,所以 B 1F ∥BE ,B 1F ⊄平面 BEC 1,BE ⊂ 平面 BEC 1, 所以 B 1F ∥平面 BEC 1.因为 AF ,B 1F 是平面 AB 1F 内的相交直线, 所以平面 AB 1F ∥平面 BEC 1.线面平行、面面平行的性质的应用(2015·安徽卷节选)如图所示,在多面体 A 1B 1D 1DCBA 中,四边形 AA 1B 1B ,ADD 1A 1,ABCD均为正方形,E 为 B 1D 1 的中点,过 A 1,D ,E 的平面交 CD 1 于 F .证明:EF ∥B 1C .由正方形的性质可知 A 1B 1∥AB ∥DC ,且 A 1B 1=AB =DC ,所以四边形 A 1B 1CD 为平行四边形,从而 B 1C ∥A 1D .又 A 1D ⊂ 平面 A 1DE ,B 1C ⊄平面 A 1DE ,于是 B 1C ∥平面 A 1DE .又 B 1C ⊂ 平面 B 1CD 1,平面 A 1DE ∩平面 B 1CD 1=EF , 所以 EF ∥B 1C .(1)证线线平行,常利用线面平行、面面平行的性质定理.(2)线面平行、面面平行转化为线线平行,都是通过“辅助平面”完成的.3.(2018·石家庄一模节选)已知四棱锥 P -ABCD ,底面 ABCD 为正方形,且 PA ⊥底面ABCD ,过 AB 的平面与侧面 PCD 的交线为 EF ,且满足 △S PEF ∶S 四边形 CDEF =1∶3(△S PEF 表示△PEF的面积).证明: PB ∥平面 ACE .由题意知四边形 ABCD 为正方形,所以 AB ∥CD ,又 CD ⊂ 平面 PCD ,AB ⊄平面 PCD ,所以 AB ∥平面 PCD .又 AB ⊂ 平面 ABFE ,平面 ABFE ∩平面 PCD =EF ,所以 EF ∥AB ,又 AB ∥CD ,所以 EF ∥CD .由 △S PEF ∶S 四边形 CDEF =1∶3 知 E ,F 分别为 PC ,PD 的中点,连接BD交AC于G,则G为BD的中点.在△PBD中,EG为中位线,所以EG∥PB.因为EG∥PB,EG平面ACE,PB平面ACE,所以PB∥平面ACE.1.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”、再到“面面平行”,而在应用性质定理时,其顺序恰好相反,但必须注意,转化方向的确定必须根据题目的条件和问题的特点而定.三种平行关系转化的示意图为:2.线面平行的判定定理中,要特别注意“平面外的一条直线”与“平面内的一条直线”,两者缺一不可;面面平行的判定定理中,要特别注意“两条相交直线”这一条件.3.解决有关平行问题时,要注意常用结论的总结和应用,以下是一些常用结论,在解决有关选择题、填空题时可直接引用.(1)经过平面外一点有且只有一个平面和已知平面平行.(2)两个平面平行,其中一个平面内的直线必平行于另一个平面.(3)已知平面外的两条平行线中的一条平行于这个平面,则另一条也平行于这个平面.(4)如果一条直线与两个平行平面中的一个相交,那么它与另一个也相交.(5)一条直线垂直于两个平行平面中的一个平面,必垂直于另一个平面.(6)夹在两个平行平面间的平行线段相等.(7)两平行平面间的距离处处相等.(8)平行于同一条直线的两条直线平行.(9)平行于同一个平面的两个平面平行.(10)平行于同一直线的两个平面平行或相交.(11)平行于同一个平面的两条直线平行、相交或异面.。

空间中的平行与垂直教案

空间中的平行与垂直教案

空间中的平行与垂直教案一、教学目标1. 让学生理解平行和垂直的概念,能够识别和判断空间中的平行线和垂直线。

2. 培养学生运用数学知识解决实际问题的能力。

3. 培养学生的观察能力、动手能力和合作意识。

二、教学重点与难点1. 教学重点:让学生掌握平行和垂直的概念,学会用直尺和三角板判断空间中的平行线和垂直线。

2. 教学难点:如何让学生理解并在实际操作中判断平行和垂直。

三、教学准备1. 教具:直尺、三角板、多媒体设备。

2. 学具:每人一套直尺、三角板、练习纸。

四、教学过程1. 导入:通过多媒体展示生活中常见的平行和垂直现象,引导学生关注空间中的平行和垂直。

2. 新课导入:介绍平行和垂直的概念,让学生尝试判断一些图片中的线段是否平行或垂直。

3. 讲解与示范:使用直尺和三角板,演示如何判断空间中的平行线和垂直线。

4. 练习:学生分组练习,用直尺和三角板判断给出的线段是否平行或垂直。

5. 总结:教师引导学生总结平行和垂直的判断方法,并提醒注意事项。

五、作业布置1. 请学生运用所学知识,回家后观察家里的家具布置,判断家具之间的位置关系,并画出来。

2. 完成练习册的相关练习题。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及在学习过程中的合作意识。

2. 练习完成情况评价:检查学生练习册的完成情况,关注学生对平行和垂直概念的理解和应用。

3. 作业完成情况评价:评价学生作业的准确性、整洁度以及创新性,了解学生对家庭环境的观察和思考。

七、教学拓展1. 引导学生思考:在实际生活中,还有哪些场景会用到平行和垂直的知识?2. 介绍相关的数学游戏或活动,让学生在游戏中巩固平行和垂直的概念。

八、教学反思1. 总结本节课的优点和不足,思考如何改进教学方法,提高学生的学习效果。

2. 针对学生的不同需求,制定个性化的辅导计划,帮助学生巩固平行和垂直的知识。

九、课后服务1. 为学生提供课后辅导,解答学生在练习过程中遇到的问题。

空间中的平行与垂直教案

空间中的平行与垂直教案

直线与平面的平行与垂直教案高级中学数学组肖蕾教材分析本节选自2011新课标高考总复习,属于人教版《普通高中课程标准实验教科书•数学(A版)》必修2的内容。

本节课主要复习直线与平面、平面与平面平行及垂直的判定、性质定理及其简单应用。

线、面的垂直关系是空间位置关系中的核心内容之一,是线面关系中特殊而且重要的一种位置关系,是平面内平行、垂直关系的拓展,是学生进一步研究空间距离和夹角的基础,在教材中起到了承上启下的作用。

同时,线、面垂直关系的转化,能较好的培养和提高学生的转化意识和能力,对学生的空间想象能力的提高有举足轻重的作用。

学情分析本节课是12月下旬上,学生越临近高考越患得患失,太注重结果,忽视过程,心态急躁,急功近利,毛手毛脚,不知所措,并且由于我所任课班级学生是非重点校的学生,生源弱,基本功差,学生已经学习了直线、平面垂直的判定及其性质,复习了直线、平面平行的判定及其性质,对空间概念有一定的基础。

但是,在考试中真拿满分的只有几个人,具体暴露的问题挺多,绝大多数的同学都出现“会而不对,对而不全”解题不规范的情况,另外改卷过程中发现各种不同书写错误,引发教师进一步探究,但评讲试卷时要全盘考虑不便展开,同时学生的抽象概括能力、空间想象力还有待提高,转化意识还有待加强考纲分析《2013年普通高等学校招生全国统一考试数学(理科)考试大纲的说明》中要求:了解空间直线和平面的位置关系,理解直线和平面垂直的判定定理和性质定理;了解平面与平面的位置关系,掌握两个平面垂直的判定定理和性质定理。

同时,考纲指出:能以立体几何的定义、公理和定理为出发点,认识和理解空间中的线面平行、垂直的有关性质与判定定理。

能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题。

高考命题分析近年来,立体几何高考命题形式比较稳定,题目难易适中,常常立足于棱柱、棱锥和正方体。

客观题中,多考查平行与垂直有关的命题真假的判断,在解答题中多考查线线、线面、面面平行及垂直的证明。

《平行与垂直》教学设计

《平行与垂直》教学设计

《平行与垂直》教学设计《平行与垂直》教学设计(精选13篇)作为一无名无私奉献的教育工作者,通常需要准备好一份教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。

我们应该怎么写教学设计呢?下面是店铺收集整理的《平行与垂直》教学设计,欢迎阅读,希望大家能够喜欢。

《平行与垂直》教学设计篇1教学目标:1、引导学生通过观察、讨论、感知生活中的垂直与平行的现象。

2、帮助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步感知垂线和平行线。

3、培养学生的空间观念及空间想象能力,引导学生具有合作探究的学习意识。

教学重点、难点:理解平行与垂直的概念。

教学过程:一、创设情境,引入新课谈话:今天与往日不同,因为我们班来了好多老师,让我们以热烈掌声欢迎他们。

(拍手,不小心手中的两支彩笔跌落在地。

) 哎呀,我的彩笔,我的两支彩笔掉地上了。

哎,你们猜猜这两支彩笔落在地上会是什么情况?一生试猜,举。

二、分类探究,掌握特征(一)、动手操作,探索关系1、师:下面,用两条线代表两支彩笔,将你猜想到的可能出现的情况用彩笔画在纸上,每张纸只能画一种情况。

(巡视)2、展示画法,一次分类a、师:刚才你们当中有代表性的作品贴在了黑板上,这么多画法,看的我眼花缭乱,你们能给它们分分类吗?为了叙述的方便,我们先给这些作品编上号。

b、师:现在请同学们认真观察、动脑思考,你准备按什么标准分类,分成几类。

生思考后两人一组讨论交流。

c、哪个小组说说你们的想法,其他小组要注意倾听。

(根据学生的回答重新黏贴)3、想象直线,二次分类a、师:同学们,生活中很多物体所表示的都是线段,如刚落地的彩笔,而今天,我们要研究的是直线,大家都知道,线段是直线的一部分,如果把两支彩笔想象成两条直线,又该如何分类呢?与刚才的线段分类一样吗?b、学生思考,并重新分类。

c、小结:那说明两条直线只有两种位置关系,不相交和相交。

现在,将你所画的想象成直线,是相交的举起来,是不相交的举起来。

平行与垂直教案 3篇

平行与垂直教案  3篇

平行与垂直教案3篇平行与垂直教案 1教学目标垂直与平行教案1.引导学生通过观察、讨论感知生活中的垂直与平行的现象。

2.帮助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步认识垂线和平行线。

3.培养学生的空间观念及空间想象能力,引导学生树立合作探究的学习意识。

教学重点:正确理解相交互相平行互相垂直等概念,发展学生的空间想象能力。

教学难点相交现象的正确理解(尤其是对看似不相交而实际上是相交现象的理解)。

教学过程一、导入导入:同学们,今天我们老见一位老朋友,(画直线)大家认识它吗直线有哪些特征看来大家对直线都很熟悉,今天我们继续研究和直线有关的知识。

二、新授1、出示一张白纸(1)同学们拿出一张白纸,摸一摸这个面。

现在同学们闭上眼睛,想象一下,这个面变大了,又变大了,变得无限大,在这个面上出现了一条直线,又出现了一条直线,你能想象这两条直线的位置关系是怎样的吗睁开眼睛吧,把你想象到的两条直线画在纸上吧。

(通过想象、操作,初步建立了垂线与平行线的表象同一个平面内、两条直线,同时培养了学生的空间观念及空间想象能力。

)(2)同学们画完了吗你们画的一样吗同桌互相看看,举起手来给老师看看,哦,真的不一样,同学们的想象力可真丰富。

想出这么多的样子,哪个同学愿意把你的作品展示给大家看看。

(贴图片)(3)这么多的图片,你能给他们分分类吗小组交流一下。

(小组讨论、交流)(4)指生汇报,并说说你的分类理由。

学生可能出现以下几种情况:分为两类:交叉的一类,不交叉的一类;分为三类:交叉的.一类,快要交叉的一类,不交叉的一类;当学生说出第一种情况时,教师适时引导,你们说的交叉是说两条直线碰在一块儿了,这种现象在数学上称为相交。

师:哪个小组和他们的分类情况不一样呢生说出第二种。

师:还有不同的分法吗生说出第三种。

师:对于他们小组的第二种分法,你们有什么想法吗教师引导:同学们,直线的特征是什么呢生:可以向两端无限延伸。

师:那也就是说这些直线都可以再延长。

高中数学高考二轮复习空间中的平行与垂直关系教案

高中数学高考二轮复习空间中的平行与垂直关系教案

突破点11 空间中的平行与垂直关系(1)或平面内的一条直线与平面外的一条直线.(2)异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,所以空间中两条直线垂直可能为异面垂直或相交垂直.(3)求异面直线所成角的一般步骤为:①找出(或作出)适合题设的角——用平移法;②求——转化为在三角形中求解;③结论——由②所求得的角或其补角即为所求.(1)(2)经过平面外一点有且只有一个平面与已知平面平行.(3)如果两个平面分别平行于第三个平面,那么这两个平面互相平行.(4)两个平面平行,则其中一个平面内的任意一条直线平行于另一个平面.(1)②线面平行的性质定理;③面面平行的性质定理;④线面垂直的性质定理.(2)证明线面平行的方法:①寻找线线平行,利用线面平行的判定定理;②寻找面面平行,利用面面平行的性质.(3)证明线面垂直的方法:①线面垂直的定义,需要说明直线与平面内的所有直线都垂直;②线面垂直的判定定理;③面面垂直的性质定理.(4)证明面面垂直的方法:①定义法,即证明两个平面所成的二面角为直二面角;②面面垂直的判定定理,即证明一个平面经过另一个平面的一条垂线.回访1 异面直线的性质1.(2016·全国乙卷)平面α过正方体ABCD ­A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A.32B.22C.33D.13A 设平面CB 1D 1∩平面ABCD =m 1.∵平面α∥平面CB 1D 1,∴m 1∥m .又平面ABCD ∥平面A 1B 1C 1D 1,且平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥m 1.∴B 1D 1∥m .∵平面ABB 1A 1∥平面DCC 1D 1,且平面CB 1D 1∩平面DCC 1D 1=CD 1,同理可证CD 1∥n .因此直线m 与n 所成的角即直线B 1D 1与CD 1所成的角.在正方体ABCD ­A1B 1C 1D 1中,△CB 1D 1是正三角形,故直线B 1D 1与CD 1所成角为60°,其正弦值为32.] 2.(2015·广东高考)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交D 由直线l 1和l 2是异面直线可知l 1与l 2不平行,故l 1,l 2中至少有一条与l 相交.] 回访2 面面平行的性质与线面位置关系的判断3.(2013·全国卷Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l D 根据所给的已知条件作图,如图所示.由图可知α与β相交,且交线平行于l ,故选D.] 4.(2016·全国甲卷)α,β是两个平面,m ,n 是两条直线,有下列四个命题:①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.②如果m ⊥α,n ∥α,那么m ⊥n .③如果α∥β,m ⊂α,那么m ∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)②③④对于①,α,β可以平行,也可以相交但不垂直,故错误.对于②,由线面平行的性质定理知存在直线l⊂α,n∥l,又m⊥α,所以m⊥l,所以m ⊥n,故正确.对于③,因为α∥β,所以α,β没有公共点.又m⊂α,所以m,β没有公共点,由线面平行的定义可知m∥β,故正确.对于④,因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n 与α所成的角和n与β所成的角相等,所以m与α所成的角和n与β所成的角相等,故正确.]现了相关判定定理和性质定理的考查,同时也考查了学生的空间想象能力及转化与化归的思想.(1)(2016·兰州三模)α,β是两平面,AB,CD是两条线段,已知α∩β=EF,AB⊥α于点B,CD⊥α于点D,若增加一个条件,就能得出BD⊥EF.现有下列条件:①AC⊥β;②AC与α,β所成的角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的序号是________.【导学号:85952040】①③若AC⊥β,且EF⊂β,则AC⊥EF,又AB⊥α,且EF⊂α,则AB⊥EF,AB和AC是平面ACDB上的两条相交直线,则EF⊥平面ACDB,则EF⊥BD,①可以成为增加的条件;AC与α,β所成的角相等,AC和EF不一定垂直,可以相交、平行,所以EF与平面ACDB不一定垂直,所以推不出EF与BD垂直,②不能成为增加的条件;由CD⊥α,EF⊂α,得EF⊥CD,所以EF与CD在β内的射影垂直,又AC与CD在β内的射影在同一直线上,所以EF⊥AC,CD和AC 是平面ACDB上的两条相交直线,则EF⊥平面ACDB,则EF⊥BD,③可以成为增加的条件;若AC ∥EF,则AC∥α,则BD∥AC,所以BD∥EF,④不能成为增加的条件,故能成为增加条件的序号是①③.]图11­1(2)(2016·全国乙卷)如图11­1,已知正三棱锥P­ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.①证明:G是AB的中点;②在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. 解题指导] (2)①正投影D ,E →AB ⊥PD ,AB ⊥DE →AB ⊥平面PED →AB ⊥PG②PA ⊥PB PB ⊥PC →过点E 作EF ∥PB 交PA 于点F →证明EF ⊥平面PAC →点D 在CG 上→PE =23PG ,DE =13PC →DE =2,PE =22→EF =PF =2→求四面体的体积解] ①证明:因为P 在平面ABC 内的正投影为D ,所以AB ⊥PD .因为D 在平面PAB 内的正投影为E ,所以AB ⊥DE .1分因为PD ∩DE =D ,所以AB ⊥平面PED ,故AB ⊥PG .2分又由已知可得,PA =PB ,所以G 是AB 的中点.3分②在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.4分理由如下:由已知可得PB ⊥PA ,PB ⊥PC ,又EF ∥PB ,所以EF ⊥PA ,EF ⊥PC .又PA ∩PC =P ,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由①知,G是AB 的中点,所以D 在CG 上,故CD =23CG .8分 由题设可得PC ⊥平面PAB ,DE ⊥平面PAB ,所以DE ∥PC ,因此PE =23PG ,DE =13PC .10分 由已知,正三棱锥的侧面是直角三角形且PA =6,可得DE =2,PE =2 2.在等腰直角三角形EFP 中,可得EF =PF =2,11分所以四面体PDEF 的体积V =13×12×2×2×2=43.12分在解答空间中线线、线面和面面的位置关系问题时,我们可以从线、面的概念、定理出发,学会找特例、反例和构建几何模型.判断两直线是异面直线是难点,我们可以依据定义来判定,也可以依据定理(过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线)判定.而反证法是证明两直线异面的有效方法.提醒:判断直线和平面的位置关系中往往易忽视直线在平面内,而面面位置关系中易忽视两个平面平行.此类问题可以结合长方体中的线面关系找出假命题中的反例.变式训练1] (1)(2016·石家庄二模)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m ⊂α,n ∥α,则m ∥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ;③若α∩β=n ,m ∥n ,则m ∥α,m ∥β;④若α⊥γ,β⊥γ,则α∥β.其中真命题的个数为( )A .0B .1C .2D .3B 若m ⊂α,n ∥α,则m ,n 可能平行或异面,①错误;若α∥β,β∥γ,则α∥γ,又m ⊥α,则m ⊥γ,②正确;若α∩β=n ,m ∥n ,则m ∥α或m ∥β或m ⊂α或m ⊂β,③错误;若α⊥γ,β⊥γ,则α,β可能平行或相交,④错误,则真命题个数为1,故选B.](2)(2016·全国丙卷)如图11­2,四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.图11­2①证明MN ∥平面PAB ;②求四面体N ­BCM 的体积.解] ①证明:由已知得AM =23AD =2. 如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,2分所以四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .4分②因为PA ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12PA . 如图,取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.6分由AM ∥BC 得M 到BC 的距离为5,。

高考数学考纲解读与热点难点突破专题14空间中的平行与垂直教学案文含解析0330248

高考数学考纲解读与热点难点突破专题14空间中的平行与垂直教学案文含解析0330248

空间中的平行与垂直【2019年高考考纲解读】1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面平行和垂直的判定定理与性质定理对命题的真假进行判断,属于基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系的交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中档.【重点、难点剖析】1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.平行关系的转化两平面平行问题常常可以转化为直线与平面的平行,而直线与平面平行又可转化为直线与直线平行,所以要注意转化思想的应用,以下为三种平行关系的转化示意图.3.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(2)如图,平面α与平面β相交于BC,AB⊂α,CD⊂β,点A∉BC,点D∉BC,则下列叙述错误的是( )A.直线AD与BC是异面直线B.过AD只能作一个平面与BC平行C.过AD只能作一个平面与BC垂直D .过D 只能作唯一平面与BC 垂直,但过D 可作无数个平面与BC 平行答案 C解析 由异面直线的判定定理得直线AD 与BC 是异面直线;在平面β内仅有一条直线过点D 且与BC 平行,这条直线与AD 确定一个平面与BC 平行,即过AD 只能作一个平面与BC 平行;若AD 垂直于平面α,则过AD 的平面都与BC 垂直,因此C 错;过D 只能作唯一平面与BC 垂直,但过D 可作无数个平面与BC 平行. 题型二 空间平行、垂直关系的证明例2. (2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.(1)证明 因为PA =PC =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.如图,连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC ,所以PO ⊥平面ABC .(2)解 作CH ⊥OM ,垂足为H ,又由(1)可得OP ⊥CH ,因为OM ∩OP =O ,OM ,OP ⊂平面POM ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题意可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以在△OMC 中,由余弦定理可得,OM =253,CH =OC ·MC ·sin∠ACB OM =455. 所以点C 到平面POM 的距离为455.【变式探究】(1)如图,四棱锥P -ABCD 的底面ABCD 是边长为2的正方形,平面PAB ⊥平面ABCD ,点E 是PD 的中点,棱PA 与平面BCE 交于点F .①求证:AD ∥EF ;②若△PAB 是正三角形,求三棱锥P -BEF 的体积.①证明 因为底面ABCD 是边长为2的正方形,所以BC ∥AD .又因为BC ⊄平面PAD ,AD ⊂平面PAD ,所以BC ∥平面PAD .又因为B ,C ,E ,F 四点共面,且平面BCEF ∩平面PAD =EF ,所以BC ∥EF .又因为BC ∥AD ,所以AD ∥EF .②解 由①知,AD ∥EF ,点E 是PD 的中点,所以点F 为PA 的中点,EF =12AD =1.又因为平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,AD ⊥AB ,所以AD ⊥平面PAB ,所以EF ⊥平面PAB .又因为△PAB 是正三角形,所以PA =PB =AB =2,所以S △PBF =12S △PBA =32.又EF =1,所以V P -BEF =V E -PBF =13×32×1=36.故三棱锥P -BEF 的体积为36.(2)(2018·北京)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点. ①求证:PE ⊥BC ;②求证:平面PAB ⊥平面PCD ;③求证:EF ∥平面PCD .证明 ①因为PA =PD ,E 为AD 的中点,所以PE ⊥AD .因为底面ABCD 为矩形,所以BC ∥AD ,所以PE ⊥BC .③如图,取PC 的中点G ,连接FG ,DG .因为F ,G 分别为PB ,PC 的中点,所以FG ∥BC ,FG =12BC ,因为四边形ABCD 为矩形,且E 为AD 的中点,所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形,所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD ,所以EF ∥平面PCD .【感悟提升】垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证明线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质,即要证线线垂直,只需证明一条直线垂直于另一条直线所在的平面即可,l ⊥α,a ⊂α⇒l ⊥a .【变式探究】 (2018·全国Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC .(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC ,所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解当P为AM的中点时,MC∥平面PBD.证明如下:连接AC,BD,交于点O.因为ABCD为矩形,所以O为AC的中点.连接OP,因为P为AM的中点,所以MC∥OP.又MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.题型三平面图形的翻折问题平面图形经过翻折成为空间图形后,原有的性质有的发生变化,有的没有发生变化,这些发生变化和没有发生变化的性质是解决问题的关键.一般地,在翻折后还在一个平面上的性质不发生变化,不在同一个平面上的性质发生变化,解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值,这是解决翻折问题的主要方法.例3、如图1,已知菱形AECD的对角线AC,DE交于点F,点E为AB中点.将△ADE沿线段DE折起到△PD E 的位置,如图2所示.(1)求证:DE⊥平面PCF;(2)求证:平面PBC⊥平面PCF;(3)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由.(1)证明折叠前,因为四边形AECD为菱形,所以AC⊥DE,所以折叠后,DE⊥PF,DE⊥CF,又PF∩CF=F,PF,CF⊂平面PCF,所以DE⊥平面PCF.(2)证明因为四边形AECD为菱形,所以DC ∥AE ,DC =AE .又点E 为AB 的中点,所以DC ∥EB ,DC =EB ,所以四边形DEBC 为平行四边形,所以CB ∥DE .又由(1)得,DE ⊥平面PCF ,所以CB ⊥平面PCF .因为CB ⊂平面PBC ,所以平面PBC ⊥平面PCF .(3)解 存在满足条件的点M ,N ,且M ,N 分别是PD 和BC 的中点.如图,分别取PD 和BC 的中点M ,N .连接EN ,PN ,MF ,CM .因为四边形DEBC 为平行四边形,所以EF ∥CN ,EF =12BC =CN , 所以四边形ENCF 为平行四边形,所以FC ∥EN .在△PDE 中,M ,F 分别为PD ,DE 的中点,所以MF ∥PE .又EN ,PE ⊂平面PEN ,PE ∩EN =E ,MF ,CF ⊂平面CFM ,MF ∩CF =F ,所以平面CFM ∥平面PEN .【感悟提升】(1)折叠问题中不变的数量和位置关系是解题的突破口.(2)存在探索性问题可先假设存在,然后在此前提下进行逻辑推理,得出矛盾则否定假设,否则给出肯定结论.【变式探究】如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,BD ⊥DC ,点E 是BC 边的中点,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图所示的空间几何体.(1)求证:AB ⊥平面ADC ; (2)若AD =1,AB =2,求点B 到平面ADE 的距离.(1)证明 因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,又BD ⊥DC ,DC ⊂平面BCD ,所以DC ⊥平面ABD .因为AB ⊂平面ABD ,所以DC ⊥AB .又AD ⊥AB ,DC ∩AD =D ,AD ,DC ⊂平面ADC ,所以AB ⊥平面ADC .所以S △ADE =12×1× ⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫122=22. 因为DC ⊥平面ABD ,所以V A —BCD =13CD ·S △ABD =33. 设点B 到平面ADE 的距离为d ,则13d ·S △ADE =V B —ADE =V A —BDE =12V A —BCD =36, 所以d =62, 即点B 到平面ADE 的距离为62.精美句子1、善思则能“从无字句处读书”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间中的平行与垂直
【2019年高考考纲解读】
1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面平行和垂直的判定定理与性
质定理对命题的真假进行判断,属于基础题.
2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系的交汇综合命题,且多以棱柱、棱锥、
棱台或其简单组合体为载体进行考查,难度中档.
【重点、难点剖析】
1.直线、平面平行的判定及其性质
(1)线面平行的判定定理:a∉α,b⊂α,a∥b⇒a∥α.
(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.
(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.
(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.
2.平行关系的转化
两平面平行问题常常可以转化为直线与平面的平行,而直线与平面平行又可转化为直线与直线平行,所以
要注意转化思想的应用,以下为三种平行关系的转化示意图.
3.直线、平面垂直的判定及其性质
(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.
(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.
(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.
(2)如图,平面α与平面β相交于BC,AB⊂α,CD⊂β,点A∉BC,点D∉BC,则下列叙述错误的是()
1。

相关文档
最新文档