人教版八年级数学下册章节分层课时作业
人教版八年级数学分层作业设计
人教版八年级数学分层作业设计人教版八年级数学分层作业设计一、知识梳理在进行分层作业设计之前,首先需要对八年级的数学知识进行梳理。
八年级数学的主要内容包括:代数与函数、几何与方位、统计与概率等。
在设计分层作业时,要根据不同层次的学生的学习情况和能力特点来设置不同的题目。
二、分层作业设计下面是针对八年级数学的分层作业设计,分为基础层、提高层和拓展层,目的是帮助不同层次的学生更好地巩固和掌握数学知识。
1.基础层题目1:计算下列代数式:(2x + 3y) - (4x - 2y)。
题目2:判断下列函数中的变量是否相同:f(x) = 2x + 3y,g(x) = 4x - 2y。
题目3:在平面直角坐标系中,求直线y = 2x - 1和x = -1的交点坐标。
题目4:用配方法求解方程:x^2 - 5x + 6 = 0。
2.提高层题目1:已知函数f(x) = 2x + 3y,求解方程f(x) = 0的解集。
题目2:在平面直角坐标系中,求直线y = kx + b和直线y = -x + 2的交点坐标。
题目3:求解方程组:(1) 2x + 3y = 73x - 2y = 4(2) 3x + 2y = 84x - 3y = -53.拓展层题目1:今天是星期一,某件事从今天开始,每隔5天发生一次,第几次发生在星期四?题目2:如图,平面上有一个长为20m,宽为15m的长方形草坪,现要用方形区域围起草坪边界,并且还需要保留一条宽2m的小路,这条小路的周长是多少米?题目3:某公司有5名员工,其中两名是男性,三名是女性。
从5名员工中选出3名代表参加一个会议,求男女员工分别被选出的可能性的比值。
三、作业要求基础层的作业主要针对掌握基本概念和计算方法的学生,能够启发他们进行基本运算的练习和简单问题的解决。
提高层的作业主要针对理解程度较好的学生,要求他们进行推理和证明的思考,提出一些较复杂的问题。
拓展层的作业主要针对学习能力较强的学生,要求他们进行拓展性的思考和创新性的解决问题。
17.1.1 勾股定理 人教版数学八年级下册分层作业(含答案)
人教版初中数学八年级下册17.1.1 勾股定理同步练习夯实基础篇一、单选题:1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2【答案】C【分析】利用勾股定理即可得到结果.【详解】解:在△ABC中,∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:.故选:C.【点睛】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.2.在△ABC中,∠C=90°,AB=3,则AB2+BC2+AC2的值为()A.6B.9C.12D.18【答案】D【分析】根据,利用勾股定理可得,据此求解即可.【详解】解:如图示,∴在中,∴,故选:D.【点睛】本题主要考查了勾股定理的性质,掌握直角三角形中,三角形的三边长,,满足是解题的关键.3.如图,是由两个直角三角形和三个正方形组成的图形,大直角三角形的斜边和直角边长分别是13,12.则图中阴影部分的面积是()A.16B.25C.144D.1【答案】B【分析】根据勾股定理可进行求解【详解】解:如图所示:根据勾股定理得出:,,阴影部分面积是,故选:B.【点睛】此题考查勾股定理,解决此题的关键是清楚阴影部分的两个正方形的面积和等于的平方.4.直角三角形两边长为3,4,则第三边长为()A.5B.C.5或D.不能确定【答案】C【分析】分两种情况,3,4为直角边时和4为斜边时,利用勾股定理求解即可.【详解】解:当3,4为直角边时,第三边的长为,当4为斜边时,第三边的长为,则第三边的长为或,故选:C【点睛】此题考查了勾股定理,解题的关键是掌握勾股定理,直角三角形的两个直角边的平方和等于斜边的平方,注意分类讨论.5.如图,在中,,,垂足为D .若,,则的长为( )A .2.4B .2.5C .4.8D .5【答案】A【分析】先由勾股定理求出的长,再运用等面积法求得的长即可.【详解】解:∵在中,,,,∴,∴,即.故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键.6.等腰三角形的腰长为5,底边上的中线长为4,它的面积为( )A .24B .20C .15D .12【答案】D【分析】根据等腰三角形的性质可知上的中线,同时也是边上的高线,根据勾股定理求出的长即可求得.【详解】解:如图所示,∵等腰三角形中,,是上的中线,,同时也是上的高线,,,,故选:D.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出底边上的中线是上的高线.7.在中,,,,则的长为( )A.3B.3或C.3或D.【答案】A【分析】在中,已知与的长,利用勾股定理求出的长即可;【详解】解:在中,,,,由勾股定理得:,∴的长为3;故选:A【点睛】本题考查了勾股定理,能灵活运用定理进行计算是解题的关键.二、填空题:8.在中,,,,则____.【答案】4【分析】直接根据勾股定理求解即可.【详解】解:∵在中,,,,.故答案为:4.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方和等于斜边长的平方是解答此题的关键.9.一直角三角形的两直角边长满足,则该直角三角形的斜边长为________.【答案】【分析】根据算术平方根的非负性,绝对值的非负性,得出的值,根据勾股定理即可求解.【详解】解:∵,∴,解得:,∴该直角三角形的斜边长为,故答案为:.【点睛】本题考查了算术平方根的非负性,绝对值的非负性,勾股定理,得出的值是解题的关键.10.在中,,.则的面积为______.【答案】60【分析】画出图形,过点作于,利用等腰三角形的三线合一性质得到,再利用勾股定理求得即可求解.【详解】解:如图,过点作于,则,∵,,∴,∴在中,,∴,故答案为:60.【点睛】本题考查等腰三角形的性质、勾股定理、三角形的面积公式,熟练掌握等腰三角形的三线合一性质解答的关键.11.如图,在中,.以、为边的正方形的面积分别为、.若,,则的长为______.【答案】3【分析】根据正方形的面积求得,,再根据勾股定理求解即可.【详解】解:∵以、为边的正方形的面积分别为、,,,∴,,在中,,由勾股定理得:,故答案为:3.【点睛】本题考查勾股定理、正方形的面积,熟练掌握勾股定理是解答的关键.12.若直角三角形的两边长为a、b,且满足,则该直角三角形的斜边长的平方为_____.【答案】25或16##16或25【分析】先根据非负数的性质求出两直角边长、,已知两直角边求斜边可以根据勾股定理求解.【详解】解:,,解得:,,,,解得,,①当a,b为直角边,该直角三角形的斜边长的平方为,②4也可能为斜边,该直角三角形的斜边长的平方为16,故答案为:25或16.【点睛】本题考查了非负数的性质,根据勾股定理计算直角三角形的斜边,正确的运用勾股定理是解题的关键.13.如图,为中斜边上的一点,且,过作的垂线,交于,若,,则的长为________.【答案】【分析】连接,根据已知条件,先证明,再根据全等三角形的性质,求得的长度,进而勾股定理即可求解.【详解】解:如图,连接.∵为中斜边上的一点,且,过作的垂线,交于,∴,∴在和中,,∴,∴,又∵,∴.在中,,∴故答案为:.【点睛】本题主要考查了直角三角形全等的判定()以及全等三角形的性质,勾股定理,连接是解决本题的关键.14.如图,Rt中,,现将沿进行翻折,使点A刚好落在上,则_____.【答案】##2.5【分析】设,将沿进行翻折,使点A刚好落在上,则.则直角中根据勾股定理,即可得到一个关于的方程,即可求得.【详解】解:设,则在Rt中,.则.在Rt中:.即:.解得:【点睛】此题考查了勾股定理的运用,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.三、解答题:15.如图,在△ABC中,AD⊥BC于点D,AB=3,BD=2,DC=1,求AC的长.解:在Rt△ABD中,AB=3,BD=2,由勾股定理得AD2=AB2-BD2=32-22=5.在Rt△ACD中,CD=1,由勾股定理得16.如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=8.求AC的长.解∵CD⊥AB,∴∠ADC=∠BDC=90°.在Rt△BCD中,设AC=AB=x,则AD=x-6.在Rt△ACD中,AC2=AD2+CD2,即x2=(x-6)2+82,解得x=,即AC的长为.17.、、是的三边,且有.若是直角三角形,求的值.【答案】或【分析】先根据完全平方公式把原式变形为,可得,,再分两种情况讨论,即可求解.【详解】解:∵∴∴∴∴,,解得:,,当,为直角边时,;当为斜边时,;综上所述,的值为或.【点睛】本题主要考查了完全平方公式的应用,勾股定理,熟练掌握完全平方公式的应用,勾股定理,利用分类讨论思想解答是解题的关键.18.已知:如图,在中,,点是中点,于点,求证:.【答案】见解析【分析】在、、中,运用三次勾股定理,然后利用等量代换即可证明结论.【详解】证明:在中,,在中,,∴,又∵是中点,∴,∴,即:.【点睛】题目主要考查勾股定理的重复运用,熟练掌握勾股定理且准确应用等量代换是解题关键.能力提升篇一、单选题:1.如图,在△ABC中,AB=AC=6,∠BAC=120°,过点A作AD⊥BA交BC于点D,过点D作DE⊥BC 交AC于点E,则AE的长为( )A.1B.2C.3D.4【答案】B【分析】根据等腰三角形的性质可得,根据含角的直角三角形的性质可得的长,再求出的长,即可确定的长.【详解】解:,,,,,设,则,根据勾股定理,可得,解得或(舍去),,,,,,,设,则,根据勾股定理,得,或(舍去),,,故选:B.【点睛】本题考查了等腰三角形的性质,勾股定理、直角三角形的性质,熟练掌握这些性质是解题的关键.2.如图,在四边形中,,,点是边上一点,,,.下列结论:①;②;③四边形的面积是;④;⑤该图可以验证勾股定理.其中正确的结论个数是()A.2个B.3个C.4个D.5个【答案】D【分析】利用可证,故①正确;由全等三角形的性质可得出,,求出,即可得到②正确;根据梯形的面积公式可得③正确;根据列式,可得④正确;整理后可得,即⑤正确.【详解】解:∵,,∴,∴,在和中,,∴,故①正确;∴,,∵,∴,∵,∴,故②正确;∵,,∴梯形的面积是,故③正确;∵,∴,故④正确;整理得:,∴该图可以验证勾股定理,故⑤正确;正确的结论个数是5个,故选:D.【点睛】本题考查了全等三角形的判定及性质的运用,梯形的面积计算,三角形的面积计算,勾股定理等知识,解答时证明三角形全等是关键.3.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是( )A.①②B.②④C.①②③D.①③【答案】C【分析】由题意知,①﹣②可得2xy=45记为③,①+③得到,由此即可判断.【详解】解:由题意知,①﹣②可得2xy=45记为③,①+③得到,∴,∴.∵x>y,由②可得x-y=2由③得2xy+4=49∴结论①②③正确,④错误.故选:C.【点睛】本题考查勾股定理中弦图的有关计算,准确找出图中的线段关系,并利用完全平方公式求出各个式子的关系是解题的关键.二、填空题:4.如图,点在边长为5的正方形内,满足,若,则图中阴影部分的面积为______.【答案】19【分析】根据勾股定理求出,分别求出和正方形的面积,即可求出答案.【详解】解:∵在中,,,,由勾股定理得:,∴正方形的面积是,∵的面积是,∴阴影部分的面积是,故答案为:19.【点睛】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.5.如图,在中,,AB的垂直平分线交AB于点D,交BC的延长线于点E.若,,则EC的长为______.【答案】【分析】连接,根据垂直平分线的性质得出,再由勾股定理确定,设,则,利用勾股定理求解即可.【详解】解:连接,如图所示:∵的垂直平分线交于点D,交的延长线于点E,∴,∵,,,∴,设,则,在中,,即,解得:,∴,故答案为:.【点睛】题目主要考查垂直平分线的性质,勾股定理解三角形等,理解题意,综合运用这些知识点是解题关键.6.如图,已知直角三角形的周长为24,且阴影部分的面积为24,则斜边的长为______.【答案】10【分析】根据阴影部分面积等于以为直径的半圆面积之和加上的面积减去以为直径的半圆面积进行求解即可.【详解】解;∵直角三角形的周长为24,∴,,∴,∵阴影部分的面积为24,∴,∴∴∴,∴,故答案为:10.【点睛】本题主要考查了勾股定理,完全平方公式,熟知相关知识是解题的关键.三、解答题:7.已知:在中,,、、所对的边分别记作a、b、c.如图1,分别以的三条边为边长向外作正方形,其正方形的面积由小到大分别记作、、,则有,(1)如图2,分别以的三条边为直径向外作半圆,其半圆的面积由小到大分、、,请问与有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2Sa,根据(2)中的探索,直接回答与有怎样的数量关系;(3)若中,,,求出图4中阴影部分的面积.【答案】(1),证明见解析(2)(3)24【分析】(1)由扇形的面积公式可知,,,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;(2)根据(1)中的求解即可得出答案;(3)利用(2)中的结论进行求解.(1)解:①,根据勾股定理可知:,;(2)解:由(1)知,同理根据根据勾股定理:,从而可得;(3)解:由(2)知.【点睛】本题考查勾股定理的应用,解题关键是对勾股定理的熟练掌握及灵活运用.。
【名师推荐】人教版八年级数学下册第二十单元课课练课时作业+单元测试卷(含答案解析)
第二十章 数据的分析 20.1 数据的集中趋势20.1.1 平均数 第1课时 平均数01 基础题 知识点1 平均数1.(2017·桂林)一组数据2,3,5,7,8的平均数是(D)A .2B .3C .4D .5 2.(2017·六盘水)国产大飞机C 919用数学建模的方法预测的价格是(单位:美元):5 098,5 099,5 001,5 002,4 990,4 920,5 080,5 010,4 901,4 902,这组数据的平均数是(A)A .5 000.3B .4 999.7C .4 997D .5 003 3.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(3)班的演唱打分情况(满分:100分)为:89,92,92,95,95,96,97,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为94分.4.(2017·大庆)已知一组数据:3,5,x ,7,9的平均数为6,则x =6. 5.水果店一周内某种水果每天的销量(单位:kg )如下:请计算该种水果本周每天销量的平均数. 解:该种水果本周每天销量的平均数为(45+44+48+42+57+55+66)÷7=51(kg ).知识点2 加权平均数6.有8个数的平均数是11,另外有12个数的平均数是12,则这20个数的平均数是(A )A .11.6B .2.32C .23.2D .11.5 7.已知一组数据4,13,24的权数分别是16,13,12,则这组数据的加权平均数是17.8.(2017·张家界)某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50名学生平均每人植树4棵.9.甲、乙两名大学生竞选班长,现对甲、乙两名候选人从笔试、口试、得票三个方面表现进行评分,各项成绩如表所示:(1)如果按笔试占总成绩20%,,试判断谁会竞选上? (2)如果将笔试、口试和得票按2∶1∶2来计算各人的成绩,那么又是谁会竞选上? 解:(1)甲的成绩为:85×20%+83×30%+90×50%=86.9(分),乙的成绩为:80×20%+85×30%+92×50%=87.5(分),∵87.5>86.9,∴乙会竞选上.(2)甲的成绩为:85×2+83×1+90×22+1+2=86.6(分),乙的成绩为:80×2+85×1+92×22+1+2=85.8(分),∵85.8<86.6,∴甲会竞选上.02中档题10.某同学使用计算器求15个数的平均数时,错将其中一个数据15输入为45,那么由此求得的平均数与实际平均数的差是(A)A.2 B.3C.-2 D.-311.已知数据x1,x2,x3的平均数是5,则数据3x1+2,3x2+2,3x3+2的平均数是(D)A.5 B.7C.15 D.1712.学校广播站要招聘1名记者,小亮和小丽报名参加了三项素质测试,成绩如下:5∶3∶2计算,总分变化情况是(B)A.小丽增加多B.小亮增加多C.两人成绩不变化D.变化情况无法确定13.某学校把学生的纸笔测试、实践能力两项成绩分别按60%,40%的比例计入学期总成绩.小明实践能力这一项成绩是81分,若想学期总成绩不低于90分,则纸笔测试的成绩至少是96分.14.洋洋九年级上学期的数学成绩如下表所示:(1)计算洋洋该学期的数学平时平均成绩;(2)如果学期总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩. 解:(1)x 平时=106+102+115+1094=108(分).答:洋洋该学期的数学平时平均成绩为108分. (2)洋洋该学期的数学总评成绩为:108×10%+112×30%+110×60%=110.4(分).03 综合题15.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A ,B ,C ,D ,E 五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评,结果如下表所示:表1 演讲答辩得分表(单位:分)表2 民主测评票统计表(单位:张)2分+“较好”票数×1分+“一般”票数×0分;综合得分=演讲答辩分×(1-a)+民主测评分×a(0.5≤a ≤0.8).(1)当a =0.6时,甲的综合得分是多少?(2)在什么范围内,甲的综合得分高;在什么范围内,乙的综合得分高?解:(1)甲的演讲答辩得分为90+92+943=92(分),甲的民主测评得分为40×2+7×1+3×0=87(分), 当a =0.6时,甲的综合得分为92×(1-0.6)+87×0.6=36.8+52.2=89(分). (2)∵乙的演讲答辩得分为89+87+913=89(分),乙的民主测评得分为42×2+4×1+4×0=88(分), ∴乙的综合得分为89(1-a)+88a.由(1),知甲的综合得分为92(1-a)+87a.当92(1-a)+87a >89(1-a)+88a 时,则a <0.75. 又∵0.5≤a ≤0.8,∴当0.5≤a <0.75时,甲的综合得分高.当92(1-a)+87a <89(1-a)+88a 时,则a >0.75. 又∵0.5≤a ≤0.8,∴当0.75<a ≤0.8时,乙的综合得分高.第2课时用样本平均数估计总体平均数01基础题知识点1组中值与平均数1.下列各组数据中,组中值不是10的是(D)A.0≤x<20 B.8≤x<12C.7≤x<13 D.3≤x<72.小王每个周一到周五的早上都会乘坐石家庄的110路公交车从柏林庄站到棉六站,小王统计了他40次乘坐的110路公交车在此路段上行驶的时间,并把数据分组整理,结果如下表,利用组中值,可得小王40次乘坐110路公交车所用的平均时间为20.4min.3.一个班有(1)(2)求该班本次考试的平均成绩.解:平均成绩为:54.5×4+64.5×8+74.5×14+84.5×18+94.5×64+8+14+18+6=77.3(分).答:该班本次考试的平均成绩为77.3分.知识点2用样本平均数估计总体平均数4.某“中学生暑期环保小组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):7,5,7,8,7,5,8,9,5,9.根据提供的数据,该小区2 000户家庭一周内需要环保方便袋约(B) A.2 000只B.14 000只C.21 000只D.98 000只5.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中随机选取20名同学统计了各自家庭一个月节约水情况.见表:请你估计这400名同学的家庭一个月节约用水的总量大约是(A)A.130 m3B.135 m3C.6.5 m3D.260 m36.某地区有一条长100千米,宽0.5千米的防护林.有关部门为统计该防护林的树林量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木数量如下(单位:棵):65 100,63 200,64 600,64 700,67 400.根据以上的数据估算这一防护林总共约有6__500__000棵树.7.某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了40只灯泡,它们的使用寿命如表所示,则这批灯泡的平均使用寿命是1__500__h .02 中档题8.某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,+10.则可估计这批食品罐头质量的平均数约为(C )A .453B .454C .455D .456 9.为了了解中学生的电脑打字成绩,某校在八年级450名学生中随机抽取了50名学生进行一分钟打字测试(字符数单位:个),将所得数据整理后,画出了频数分布直方图,如图所示(有缺失).已知图中从左到右分为5个小组.根据图中信息计算:在这次测试中,该50名学生一分钟打字的平均成绩是179.5个.10.果农老张进行桃树科学管理试验.把一片桃树林分成甲、乙两部分,甲地块用新技术管理,乙地块用老办法管理,管理成本相同.在甲、乙两地块各随机选取40棵桃树,根据每棵树的产量把桃树划分成A ,B ,C ,D ,E 五个等级(甲、乙两地块的桃树等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:甲地块桃树等级频数分布直方图 乙地块桃树等级扇形统计图(1)补全直方图,求α的值及相应扇形的圆心角的度数;(2)试从平均数的角度比较甲、乙两块地的产量水平,并说明试验结果. 解:(1)如图. α=10.相应扇形的圆心角为360°×10%=36°.(2)x 甲=95×10+85×12+75×10+65×6+55×240=80.5,x 乙=95×15%+85×10%+75×45%+65×20%+55×10%=75. ∴x 甲>x 乙.由样本平均数估计总体平均数的思想,说明通过新技术管理的甲地块桃树平均产量高于乙地块桃树平均产量.11.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况,小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查.将调查内容分为四组:A .饭和菜全部吃完;B .有剩饭但菜吃完;C .饭吃完但菜有剩;D .饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.回答下列问题:(1)这次被抽查的学生共有120人,扇形统计图中,“B 组”所对应的圆心角的度数为72°;(2)补全条形统计图;(3)已知该中学共有学生2 500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭?解:(2)补全条形统计图如图. (3)这日午饭有剩饭的学生人数为: 2 500×(1-60%-10%)=750(人),750×10=7 500(克)=7.5(千克). 答:这日午饭将浪费7.5千克米饭.03 综合题12.某地区在一次九年级数学检测中,有一道满分8分的解答题,按评分标准,所有考生的得分只有四种:0分,3分,5分,8分.老师为了了解学生的得分情况与题目的难易情况,从全区4 500名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空:a =25,b =20,并把条形统计图补全; (2)请估计该地区此题得满分(即8分)的学生人数;(3)已知难度系数的计算公式为L =XW ,其中L 为难度系数,X 为样本平均得分,W 为试题满分值.一般来说,根据试题的难度系数可将试题分为以下三类:当0<L ≤0.4时,此题为难题;当0.4<L ≤0.7时,此题为中等难度试题;当0.7<L <1时,此题为容易题.试问此题对于该地区的九年级学生来说属于哪一类?解:(1)补全条形统计图如图. (2)由(1)可知,得满分的占20%,∴该地区此题得满分(即8分)的学生人数是4 500×20%=900(人). (3)由题意可得L =0×10%+3×25%+5×45%+8×20%10%+25%+45%+20%8=4.68=0.575.∵0.575处于0.4与0.7之间,∴此题对于该地区的九年级学生来说属于中等难度试题.20.1.2 中位数和众数第1课时 中位数和众数01 基础题 知识点1 中位数1.(2017·百色)在以下一列数3,3,5,6,7,8中,中位数是(C)A .3B .5C .5.5D .62.(2017·铁岭)在某市举办的垂钓比赛上,5名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10,则这组数据的中位数是(B)A .5B .6C .7D .103.(2017·淮安)九年级这15A .2 B .3 C .4 D .54.(2016·德州)某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计他们假期参加社团活动的时间,绘成频数直方图(如图),则参加社团活动时间的中位数所在的范围是(B )A .4~6小时B .6~8小时C .8~10小时D .不能确定第4题图 第5题图5.小明根据去年4~10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是32人.6.在一次测试中,抽取了10名学生的成绩(单位:分)为:86,92,84,92,85,85,86,94,94,83.(1)这个小组本次测试成绩的中位数是多少? (2)小聪同学此次的成绩是88分,他的成绩如何?解:(1)将这组数据按从小到大的顺序排列为83,84,85,85,86,86,92,92,94,94,则中位数是86+862=86.(2)根据(1)中得到的样本数据的中位数,可以估计,在这次测试中,大约有一半学生的成绩高于86分.小聪同学的成绩是88分,大于中位数86分,可以推测他的成绩比一半以上同学的成绩好.知识点2 众数7.(2017·宿迁)一组数据:5,4,6,5,6,6,3,这组数据的众数是(A)A .6B .5C .4D .38.(2017·温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是(C)A.5个B.6个C.7个D.8个9.(2016·宜昌)在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动,其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是(C)A.18 B.19C.20 D.2110.为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果,该由调查数据的众数决定.(在横线上填写:平均数或中位数或众数)02中档题11.(2017·福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是(D)A.10,15B.13,15C.13,20D.15,1512.(2016·黔南)一组数据:1,-1,3,x,4,它有唯一的众数3,则这组数据的中位数为(C) A.-1 B.1C.3 D.413.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:A.众数是4B.平均数是4.6C.调查了10户家庭的月用水量D.中位数是4.514.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为40,图1中m 的值为15;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双? 解:(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都为36, ∴中位数为36+362=36.(3)200×30%=60(双).答:建议购买35号运动鞋60双.03 综合题15.如图是连续十周测试甲、乙两名运动员体能情况的折线统计图,教练组规定:体能测试成绩70分以上(包括70分)为合格.(1)请根据图中所提供的信息填写下表:(2)①依据平均数与成绩合格的次数比较甲和乙,乙的体能测试成绩较好; ②依据平均数与中位数比较甲和乙,甲的体能测试成绩较好;(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.解:从折线图上看,两名运动员体能测试成绩都呈上升的趋势,但是,乙的增长速度比甲快,并且后一阶段乙的成绩合格的次数比甲多,所以乙训练的效果较好.第2课时平均数、中位数和众数的应用01基础题知识点平均数、中位数和众数的应用1.(2017·郴州)在创建“全国园林城市”期间,郴州市某中学组织共青团员去植树,其中七位同学植树的棵数分别为:3,1,1,3,2,3,2,这组数据的中位数和众数分别是(B)A.3,2 B.2,3 C.2,2 D.3,32.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(D)A.众数B.最高分C.平均数D.中位数3.(2017·黄石)下表是某位男子马拉松长跑运动员近6次的比赛成绩(单位:分钟)A.137,138 B.138,137C.138,138 D.137,1394.(2016·安顺)A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分5.(2017·眉山)下列说法错误的是(C)A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个6.(2017·牡丹江)一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是(C)A.6 B.5C.4.5 D.3.57.为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5 mg/L,则第3次检测得到的氨氮含量是1mg/L.水质检测中氨氮含量统计图8.丽华根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分那么表中数据一定不发生变化的是中位数(填“平均数”“众数”或“中位数”).9.为降低金融危机给企业带来的风险,某工厂加强了管理,准备采取每天任务定额和超产有奖的措施,以提高工作效率,下面是该车间15名工人过去一天中各自装配机器的数量(单位:台):6,6,7,8,8,8,9,9,10,10,11,13,14,15,16.(1)求这组数据的平均数、众数和中位数;(2)管理者为了提高工人的工作效率,又不能挫伤其积极性,应确定每人标准日产量为多少台比较恰当?解:(1)平均数:10;众数:8;中位数:9.(2)确定每人标准日产量为8台或9台比较恰当.02中档题10.在2017年3月12日植树节到来之际,某学校教师分为四个植树小组参加了“大美南阳”的植树节活动,其中三个小组植树的棵数分别为8,10,12,另一个小组的植树棵数与他们中的一组相同,且这四个数据的众数与平均数相等,则这四个数据的中位数是(B)A.8 B.10C.12 D.10或1211.(2016·威海)某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是(C)A.19,20,14B.19,20,20C.18.4,20,20D.18.4,25,2012.有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,那么这7个数的中位数是34.13.(2016·巴中)两组数据m,6,n与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为7.14.质量检测部门对甲、乙、丙三家公司销售产品的使用寿命进行了跟踪调查,统计结果如下(单位:年):甲公司:4,5,5,5,5,7,9,12,13,15;乙公司:6,6,8,8,8,9,10,12,14,15;丙公司:4,4,4,6,7,9,13,15,16,16.请回答下列问题:(1)填空:(2)(3)如果你是丙公司的推销员,你将如何结合上述数据及统计量,对本公司的产品进行推销?(至少说两条)解:(2)乙公司.因为从平均数、众数和中位数三项指标上看,都比其他的两个公司要好,他们的产品质量更高.(3)答案不唯一,如:①丙公司的平均数和中位数都比甲公司高;②从产品寿命的最高年限考虑,购买丙公司的产品的使用寿命比较长的机会比乙公司产品大一些.03综合题15.在喜迎建党九十七周年之际,某校举办校园唱红歌比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理方案来确定演唱者的最后得分(每个评委打分最高10分).方案1:所有评委给分的平均分;方案2:在所有评委给分中,去掉一个最高分和一个最低分,再计算剩余评委给分的平均分;方案3:所有评委给分的中位数;方案4:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计,下图是这个同学的得分统计图.(1)分别按上述四种方案计算这个同学演唱的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演唱的最后得分?解:(1)方案1最后得分:110×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7(分);方案2最后得分:18×(7.0+7.8+3×8+3×8.4)=8(分);方案3最后得分:8分;方案4最后得分:8分或8.4分.(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.20.2 数据的波动程度01 基础题知识点1 方差的计算1.数据-2,-1,0,1,2的方差是(C )A .0B .2C .2D .42.在样本方差的计算式s 2=110[(x 1-5)2+(x 2-5)2+…+(x 10-5)2]中,数字“10”表示样本容量,数字“5”表示样本平均数.3.(2017·绥化)在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为2.知识点2 方差的应用4.(2017·山西)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的(D)A .众数B .平均数C .中位数D .方差5.(2016·凉山)教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在相同条件下各打了5发子弹,命中环数如下:甲:9,8,7,7,9;乙:10,8,9,7,6.应该选(A )A .甲B .乙C .甲、乙都可以D .无法确定6.(2017·葫芦岛)甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为s 2甲=16.7,乙比赛成绩的方差为s 2乙=28.3,那么成绩比较稳定的是甲(填“甲”或“乙”). 7.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投的成绩如图所示,那么三人中成绩最稳定的是乙.8.从甲、乙两种饮料中各抽取10盒250毫升的果汁饮料,检查其中的维生素C 的含量,所得数据如下(单位:毫克):甲:120,123,119,121,122,124,119,122,121,119; 乙:121,119,124,119,123,124,123,122,123,122.通过计算说明哪种饮料维生素C 的含量高?哪种饮料维生素C 的含量比较稳定? 解:x 甲=120+123+119+121+122+124+119+122+121+11910=121(毫克),x 乙=121+119+124+119+123+124+123+122+123+12210=122(毫克), ∵x 甲<x 乙,∴乙种饮料维生素C 的平均含量高. s 2甲=(121-120)2+…+(121-119)210=2.8,s 2乙=(122-121)2+…+(122-122)210=3,∵s 2甲<s 2乙,∴甲种饮料维生素C 的含量比较稳定.9.某商场统计了今年1~5月A 、B 两种品牌的冰箱的销售情况,并将获得的数据绘制成折线统计图:(1)分别求该商场这段时间内A 、B 两种品牌冰箱月销售量的中位数和方差; (2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性. 解:(1)∵A 种品牌:13,14,15,16,17;B 种品牌:10,14,15,16,20, ∴该商场这段时间内A 、B 两种品牌冰箱月销售量的中位数分别为15台、15台. ∵x A =15×(13+14+15+16+17)=15(台),x B =15×(10+14+15+16+20)=15(台),∴s 2A =15×[(13-15)2+(14-15)2+(15-15)2+(16-15)2+(17-15)2]=2, s 2B =15×[(10-15)2+(14-15)2+(15-15)2+(16-15)2+(20-15)2]=10.4. (2)∵x -A =x -B ,s 2A <s 2B, ∴该商场1~5月A 种品牌冰箱月销售量较稳定.02 中档题10.(2017·通辽)若数据10,9,a ,12,9的平均数是10,则这组数据的方差是(B)A .1B .1.2C .0.9D .1.411.在2017年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是(A )A .18,18,1B .18,17.5,3C .18,18,3D .18,17.5,112.已知一组数据-3,x ,-2,3,1,6的中位数为1,则其方差为9. 13.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:,该工程队员工月工资的方差变大(填“变小”“不变”或“变大”).14.八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)9.5分10分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是乙队. 解:x 乙=10+8+7+9+8+10+10+9+10+910=9(分). s 2乙=110×[(10-9)2+(8-9)2+…+(10-9)2+(9-9)2] =1.03 综合题15.元旦假期,小明一家游览仓圣公园,公园内有一座假山,假山上有一条石阶小路,其中有两段台阶的高度如图所示(图中的数字表示每一级台阶的高度,单位:cm ).请你运用所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下甲、乙两段台阶有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.解:(1)将甲、乙两台阶高度值从小到大排列如下:甲:10,12,15,17,18,18;乙:14,14,15,15,16,16. 甲的中位数是(15+17)÷2=16,平均数是16×(10+12+15+17+18+18)=15;乙的中位数是(15+15)÷2=15,平均数是16×(14+14+15+15+16+16)=15.故两台阶高度的平均数相同,中位数不同.(2)s 2甲=16×[(10-15)2+(12-15)2+(15-15)2+(17-15)2+(18-15)2+(18-15)2]=283, s 2乙=16×[(14-15)2+(14-15)2+(15-15)2+(15-15)2+(16-15)2+(16-15)2]=23. ∵s 2乙<s 2甲,∴乙台阶上行走会比较舒服. (3)修改如下:为使游客在两段台阶上行走比较舒服,需使方差尽可能小,最理想应为0,同时不能改变台阶数量和台阶总体高度,故可使每个台阶高度均为15 cm(原平均数),使得方差为0.20.3 课题学习 体质健康测试中的数据分析01 基础题知识点 完成调查活动1.要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是(D )A .选取该校一个班级的学生B .选取该校50名男生C .选取该校50名女生D .随机选取该校50名九年级学生2.设计调查活动要经历的5个重要步骤:①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.但这5个步骤的排序不对,正确排序为②①④⑤③.(填序号) 3.(2016·呼和浩特)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164134 155 152 168 162 148 (1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据该样本数据的中位数,推断他的成绩如何?解:(1)将这组数据按从小到大的顺序排列如下:125,134,140,143,146,148,152,155,162,164,168,175.∵这组数据按从小到大的顺序排列后,处于最中间的两个数为148,152, ∴该样本数据的中位数为148+1522=150(分钟),x -=112×(125+134+140+143+146+148+152+155+162+164+168+175)=151(分钟).(2)由该样本数据的中位数为150分钟,说明在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟.这名选手的成绩为147分钟,快于中位数150分钟,可以断定他的成绩比一半以上选手的成绩好.4.阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 41 51 36 44 46 40 53 37 47 45 46(1)前10株西红柿秧上小西红柿个数的平均数是47,中位数是49.5,众数是60; (2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图;频数25742(3)通过频数分布直方图试分析此大棚中西红柿的长势.解:此大棚的西红柿长势普遍较好,最少都有28个;西红柿个数最集中的株数在第三组,共7株;西红柿的个数分布合理,中间多,两端少.02 中档题5.小敏的妈妈下岗后开了一个牛奶销售店,主要经营“学生奶”“酸牛奶”“原味奶”.可由于经验不足,经常出现有的牛奶没卖完,有的牛奶又不够卖,一段时间下来,通过盘点,不但没有挣钱反而亏损了.小敏结合所学的现阶段统计知识帮妈妈统计了一个星期牛奶的销售情况,并绘制了下表:(1)(2)计算各品种牛奶的方差(结果保留小数点后两位),并比较哪种牛奶销量最稳定? (3)假如你是小敏,你对妈妈有哪些好的建议?解:(1)“学生奶”的日平均销售量为(2+1+1+9+8)÷7=3,“酸牛奶”的日平均销售量为(70+70+80+75+85+80+100)÷7=80, “原味奶”的日平均销售量为(40+30+35+30+38+47+60)÷7=40, 则“酸牛奶”的销量最高.(2)“学生奶”的方差:s 2=17×[(2-3)2+(1-3)2+(0-3)2+(1-3)2+(0-3)2+(9-3)2+(8-3)2]≈12.57,“酸牛奶”的方差:s 2=17×[(70-80)2+(70-80)2+(80-80)2+(75-80)2+(85-80)2+(80-80)2+(100-80)2]≈92.86,“原味奶”的方差:s 2=17×[(40-40)2+(30-40)2+(35-40)2+(30-40)2+(38-40)2+(47-40)2+(60-40)2]≈96.86,则“学生奶”的销量最稳定.(3)酸牛奶每天进80瓶,原味奶每天进40瓶,学生奶平时不进或少进,周末多进一些,进8~9瓶.6.我市某中学举行“中国梦·校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩(满分为100分)如图所示.(1)根据图示填写下表:(2)(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.解:(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵s 2初=15×[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70, s 2高=15×[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160, ∴s 2初<s 2高.。
人教版八年级数学下-18章平行四边形课时作业本
4.如图,在ABCD中,E,F分别是 BC,AD边上的点, 且∠1=∠2.求证:四边形 AECF是平行四边形.
20 零障碍导教导学案·数学八年级下册 RJ
第 4课 平行四边形的判定(2)
1.下列命题中,真命题是
( ) 4.如图,ABCD的对角线 AC和 BD相交于 O,A′,
①两组对边分别相等的四边形是平行四边形
°.
(1)求证:四边形 EFCD是平行四边形;
(2)若 BF=EF,求证:AE=AD.
2.如图,ABCD的对角线 AC,BD相交于点 O,EF 过点 O与 BA,DC的延长线分别相交于点 E,F. 求证:OE=OF.
3.如图,A′B′∥BA,B′C′∥CB,C′A′∥AC. (1)∠ABC与∠B′有什么关系?说明理由; (2)求证:AB′=AC′.
(1)求证:△AOE≌△COF;
证:AE=CF.
(2)若 AB=4,BC=7,OE=3,试求四边形 EFCD
的周长.
4.如图,在ABCD中,M,N分别是 OA,OC的中 点.求证:(1)BM=DN;(2)BM∥DN.
7.如图,已知ABCD的周长为 60cm,对角线 AC, BD相交于点 O,△AOB的周长比△BOC的周长 少8cm,求这个四边形各边长.
=AD,连接 EB,EC.求证:四边形 ABEC是平行
四边形.
3.如图,在ABCD中,点 E,F在对角线 BD上,且 BE=DF.求证:(1)AE=CF; (2)四边形 AECF是平行四边形.
5.如图,在△ABC中,∠C=90°,D,E分别为 BC, AC上一点,BD=CE,AE=BC. (1)以 AB为对角线作ADBG; (2)求∠AFE的度数; (3)求BADE的值.
八年级下数学分层课课练答案
八年级下数学分层课课练答案第一单元有理数的乘除运算1.1 有理数的乘法1.5/6 × (-2/3) = -5/92.(-2/5) × (-3/4) = 3/103.(-3/7) × 7/8 = -3/84.(-9/10) × 10/11 = -9/111.2 有理数的除法1.(-2/3) ÷ (4/5) = -10/12 = -5/62.(-5/6) ÷ (-2/3) = 15/12 = 5/43.(-2/3) ÷ 2/7 = -7/94.2/3 ÷ (-4/5) = -30/12 = -5/2第二单元利率与利息2.1 简单利息1.计算北京银行储蓄存款利息:本金10000元,年利率2.5%,存款时间为3年。
利息 = 10000 × 0.025 × 3 = 750元2.计算某贷款机构贷款利息:贷款金额100000元,年利率3%,贷款时间为5年。
利息 = 100000 × 0.03 × 5 = 15000元2.2 复利1.计算某银行定期存款利息:本金10000元,年利率2%,存款时间为3年,每年复利。
利息 = 10000 × (1 + 0.02)^3 - 10000 = 10612元2.计算某投资计划的总收益:投资金额50000元,年收益率5%,投资时间为6年,每年复利。
总收益 = 50000 × (1 + 0.05)^6 - 50000 = 16105元第三单元方程与方程组3.1 一元一次方程1.解方程 2x + 5 = 17:–2x = 17 - 5 = 12–x = 12 ÷ 2 = 62.解方程 3(x + 4) = 27:–3x + 12 = 27–3x = 27 - 12 = 15–x = 15 ÷ 3 = 53.解方程 2x - 4 = -10:–2x = -10 + 4 = -6–x = -6 ÷ 2 = -34.解方程 4 - 3x = 13:–-3x = 13 - 4 = 9–x = 9 ÷ -3 = -33.2 一元一次方程组1.解方程组–x + y = 5–x - y = 1 解得 x = 3, y = 22.解方程组–2x + y = 8–x - 3y = -6 解得 x = 3, y = 23.解方程组–3x + 2y = 13–x - y = 2 解得 x = 3, y = 14.解方程组–5x + 3y = 2–2x - y = 7 解得 x = -1, y = -4第四单元概率与统计4.1 随机事件的概率1.一颗骰子,投掷一次,出现3点的概率为 1/62.一副扑克牌,从中抽取一张红心的概率为 1/43.一个有5个红球和5个蓝球的盒子,从中抽取一球,为红球的概率为 1/24.一副扑克牌,从中抽取两张A的概率为 4/52 ×3/51 = 1/2214.2 统计与频率1.一个班级的学生身高数据如下 (单位:厘米):–150, 160, 155, 165, 170, 150, 155, 165, 155, 160 其中,150cm出现2次,155cm出现3次,160cm出现2次,165cm出现2次,170cm出现1次2.一组随机数的数据如下:–1, 2, 3, 4, 1, 3, 2, 4, 1, 2, 4, 3 其中,1出现3次,2出现3次,3出现3次,4出现3次3.一组学生的成绩数据如下:–80, 85, 90, 75, 80, 85, 70, 75, 85, 90 其中,70分出现1次,75分出现2次,80分出现2次,85分出现3次,90分出现2次4.一组人的年龄数据如下:–20, 21, 24, 20, 25, 24, 22, 20, 25, 23 其中,20岁出现3次,21岁出现1次,22岁出现1次,23岁出现1次,24岁出现2次,25岁出现2次以上是八年级下数学分层课课练的答案。
【名师推荐】人教版八年级数学下册第十八单元课课练课时作业+单元测试卷(含答案解析)
第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的边、角特征01基础题知识点1平行四边形的概念1.如图,在▱ABCD中,EF∥BC,则图中平行四边形有3个.第1题图第2题图2.如图,AB∥EG,EF∥BC,AC∥FG,图中有3个平行四边形,它们分别是▱ABCE,▱ABGC,▱AFBC.知识点2平行四边形的边、角特征3.(教材P43T1的变式)在▱ABCD中,AD=3 cm,AB=2 cm,则▱ABCD的周长等于(A) A.10 cm B.6 cmC.5 cm D.4 cm4.(2016·衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是(A)A.45°B.55°C.65°D.75°5.在▱ABCD中,两邻边的差为4 cm,周长为32 cm,则两邻边长分别为10__cm,6__cm.6.(1)在▱ABCD 中,若∠A∶∠B=5∶4,则∠C=100°;(2)已知▱ABCD 的周长为28 cm,若AB∶BC=3∶4,则AB=6__cm,BC=8__cm.7.如图,在▱ABCD中,CM⊥AD于点M,CN⊥AB于点N,若∠B=45°,求∠MCN的大小.解:∵四边形ABCD是平行四边形,∴AB∥CD,∠B=∠D.∵∠B=45°,∴∠BCD=135°,∠D=45°.∵CM⊥AD,CN⊥AB,∴∠BNC=∠DMC=90°.∴∠BCN=∠DCM=45°.∴∠MCN=∠BCD-∠BCN-∠DCM=45°.8.如图,已知四边形ABCD是平行四边形,点E,B,D,F在同一直线上,且BE=DF.求证:AE=CF.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD. ∴∠ABD =∠CDB. ∴∠ABE =∠CDF.在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF(SAS ). ∴AE =CF.知识点3 平行线间的距离9.如图,a ∥b ,AB ∥CD ,CE ⊥b ,FG ⊥b ,点E ,G 为垂足,则下列说法不正确的是(D )A .AB =CD B .EC =GFC .A ,B 两点的距离就是线段AB 的长度D .a 与b 的距离就是线段CD 的长度第9题图 第10题图10.(2016·柳州)如图,若▱ABCD 的面积为20,BC =5,则边AD 与BC 间的距离为4.02 中档题11.在▱ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可能是(A)A .2∶5∶2∶5B .3∶4∶4∶5C .4∶4∶3∶2D .2∶3∶5∶612.如图,在▱ABCD 中,AB =4,BC =6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是(B )A .7B .10C .11D .12第12题图 第13题图13.如图所示,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中△ABC 的面积(C )A .变大B .变小C .不变D .无法确定14.(2017·鹤岗)在▱ABCD 中,∠A 的平分线把BC 边分成长度是3和4的两部分,则▱ABCD 的周长是(C)A .22B .20C .22或20D .18 15.(2017·武汉)如图,在▱ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为30°.第15题图 第16题图16.如图,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为25°.17.如图,在▱ABCD 中,点P 是对角线BD 上的一个动点(点P 与点B 、点D 不重合),过点P 作EF ∥BC ,GH ∥AB ,则图中面积始终相等的平行四边形有3 对.18.(2016·温州)如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC.∴∠DAE =∠F ,∠D =∠ECF. ∵E 是CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAE =∠F ,∠D =∠ECF ,DE =CE ,∴△ADE ≌△FCE(AAS ). (2)∵△ADE ≌△FCE , ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF =90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.03 综合题19.如图,四边形ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA.(1)求∠APB 的度数;(2)如果AD =5 cm ,AP =8 cm ,求△APB 的周长. 解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥CB ,AB ∥CD ,AD =BC ,AB =DC. ∴∠DAB +∠CBA =180°.又∵AP 和BP 分别平分∠DAB 和∠CBA , ∴∠PAB +∠PBA =12(∠DAB +∠CBA)=90°.∴∠APB =180°-(∠PAB +∠PBA)=90°. (2)∵AP 平分∠DAB ,AB ∥CD , ∴∠DAP =∠PAB =∠DPA. ∴AD =DP =5 cm .同理:PC =BC =AD =5 cm . ∴AB =DC =DP +PC =10 cm .在Rt △APB 中,AB =10 cm ,AP =8 cm , ∴BP =102-82=6(cm ).∴△APB 的周长为6+8+10=24(cm ).第2课时 平行四边形的对角线性质01 基础题知识点1 平行四边形的对角线互相平分1.如图,在▱ABCD 中,O 是对角线AC ,BD 的交点,下列结论错误的是(C )A .AB ∥CD B .AB =CDC .AC =BD D .OA =OC第1题图 第2题图2.(教材P 44T 1的变式)如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD =8,BD =12,AC =6,则△OBC 的周长为(B)A .13B .17C .20D .263.如图,在▱ABCD 中,已知∠ODA =90°,AC =10 cm ,BD =6 cm ,则AD 的长为(A )A .4 cmB .5 cmC .6 cmD .8 cm第3题图 第4题图4.如图,▱ABCD 的周长为16 cm ,AC ,BD 相交于点O ,EO ⊥BD 交AD 于点E ,则△ABE 的周长为(C)A .4 cmB .6 cmC .8 cmD .10 cm5.如图,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC ,BD 相交于点O.若AC =6,则线段AO 的长度等于3.6.在▱ABCD 中,AB =3,BC =5,对角线AC ,BD 相交于点O ,则OA 的取值范围是1<OA <4. 7.如图所示,在▱ABCD 中,对角线AC 与BD 相交于点O ,点M ,N 在对角线AC 上,且AM =CN ,求证:BM ∥DN.证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD. ∵AM =CN ,∴OM =ON.在△BOM 和△DON 中,⎩⎨⎧OB =OD ,∠BOM =∠DON ,OM =ON ,∴△BOM ≌△DON(SAS ). ∴∠OBM =∠ODN. ∴BM ∥DN.知识点2平行四边形的面积8.如图,在▱ABCD中,O是对角线AC,BD的交点,若△AOD的面积是5,则▱ABCD的面积是(C) A.10 B.15C.20 D.25第8题图第9题图9.如图,在▱ABCD中,对角线AC,BD交于点O,若DO=1.5 cm,AB=5 cm,BC=4 cm,则▱ABCD的面积为12cm2.02中档题10.如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线的和是(C) A.18 B.28C.36 D.46第10题图第11题图11.如图,▱ABCD的对角线AC的长为10 cm,∠CAB=30°,AB的长为6 cm,则▱ABCD的面积为(B) A.60 cm2B.30 cm2C.20 cm2D.16 cm212.(2017·眉山)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为(C)A.14 B.13 C.12 D.10第12题图第13题图13.如图,若▱ABCD的周长为22 cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3 cm,则AD=4__cm,AB=7__cm.14.如图,在▱ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′15.如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=25,且AO∶BO=2∶3.(1)求AC 的长;(2)求▱ABCD 的面积.解:(1)∵AO ∶BO =2∶3, ∴设AO =2x ,BO =3x (x >0).∵AC ⊥AB ,AB =25, ∴(2x)2+(25)2=(3x)2. 解得x =2. ∴AO =4.∵四边形ABCD 是平行四边形, ∴AC =2AO =8. (2)∵S △ABC =12AB·AC=12×25×8 =85,∴S ▱ABCD =2S △ABC =2×85=16 5.16.(2016·本溪)如图,▱ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB ,CD 分别相交于点E ,F ,连接EC.(1)求证:OE =OF ;(2)若EF ⊥AC ,△BEC 的周长是10,求▱ABCD 的周长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,DC ∥AB. ∴∠FDO =∠EBO.在△DFO 和△BEO 中,⎩⎨⎧∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO(ASA ). ∴OE =OF.(2)∵四边形ABCD 是平行四边形, ∴AB =CD ,AD =BC ,OA =OC. ∵EF ⊥AC ,∴AE =CE. ∵△BEC 的周长是10,∴BC +BE +CE =BC +BE +AE =BC +AB =10. ∴C ▱ABCD =2(BC +AB)=20.03综合题17.如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以P A,PC为边作▱P AQC,则对角线PQ长度的最小值为(D)A.6B.8C.22D.4218.1.2平行四边形的判定第1课时平行四边形的判定01基础题知识点1两组对边分别相等的四边形是平行四边形1.如图,AB=CD=EF,且△ACE≌△BDF,则图中平行四边形的个数为(C)A.1B.2C.3D.42.若四边形ABCD的边AB=CD,BC=DA,则这个四边形是平行四边形,理由是两组对边分别相等的四边形是平行四边形.知识点2两组对角分别相等的四边形是平行四边形3.下面给出四边形ABCD中,∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD为平行四边形的是(B) A.1∶2∶3∶4 B.2∶3∶2∶3C.2∶2∶3∶3 D.1∶2∶2∶34.一个四边形的三个相邻内角的度数依次如下,那么其中是平行四边形的是(D)A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.108°,72°,108°知识点3对角线互相平分的四边形是平行四边形5.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件BO=DO(答案不唯一)(只添一个即可),使四边形ABCD是平行四边形.6.已知:如图,在四边形ABCD中,AB∥CD,对角线AC,BD相交于点O,且AO=CO.求证:四边形ABCD 是平行四边形.证明:∵AB∥CD,∴∠ABO=∠CDO,∠BAO=∠DCO.又∵AO=CO,∴△ABO≌△CDO(AAS).∴BO=DO.∴四边形ABCD是平行四边形.7.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是OB ,OD 的中点,求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD.∵点E ,F 分别是OB ,OD 的中点, ∴OE =12OB ,OF =12OD.∴OE =OF.又∵OA =OC ,∴四边形AECF 是平行四边形.知识点4 一组对边平行且相等的四边形是平行四边形8.如图所示,四边形ABCD 和AEFD 都是平行四边形,则四边形BCFE 是平行四边形,理由:一组对边平行且相等的四边形是平行四边形.9.(2016·新疆)如图,在四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF.求证:四边形ABCD 是平行四边形.证明:∵AE ⊥AD ,CF ⊥BC , ∴∠EAD =∠FCB =90°. ∵AD ∥BC ,∴∠ADE =∠CBF.在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,∠EAD =∠FCB ,AE =CF ,∴△AED ≌△CFB(AAS ). ∴AD =BC. 又∵AD ∥BC ,∴四边形ABCD 是平行四边形.02 中档题10.小玲的爸爸在制作平行四边形框架时,采用了一种方法:如图所示,将两根木条AC ,BD 的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是(A )A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形11.(2016·衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=4或-2.12.已知:如图,在四边形ABCD中,AB=CD,BC=AD,点E,F在AC上,且AF=CE.求证:四边形BEDF 是平行四边形.证明:连接BD交AC于O,∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AO=CO,BO=DO.∵AF=CE,∴AF-AO=CE-CO,即OF=OE.又∵OB=OD,∴四边形BEDF是平行四边形.13.(2017·南京)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE =OF.证明:连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∴OE=OF.14.(2016·张家界)已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.解:四边形ABFC 是平行四边形. 证明:∵AB ∥CD ,∴∠BAE =∠CFE.∵E 是BC 的中点,∴BE =CE. 在△ABE 和△FCE 中,⎩⎨⎧∠BAE =∠CFE ,∠AEB =∠FEC ,BE =CE ,∴△ABE ≌△FCE(AAS).∴AB =CF .又∵AB ∥CF ,∴四边形ABFC 是平行四边形.03 综合题 15.如图所示,在四边形ABCD 中,AD ∥BC ,AD =24 cm ,BC =30 cm ,点P 从点A 向点D 以1 cm /s 的速度运动,到点D 即停止.点Q 从点C 向点B 以2 cm /s 的速度运动,到点B 即停止.直线PQ 将四边形ABCD 截成两个四边形,分别为四边形ABQP 和四边形PQCD ,则当P ,Q 两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?解:设当P ,Q 两点同时出发t s 后,四边形ABQP 或四边形PQCD 是平行四边形. 根据题意,得AP =t cm ,PD =(24-t)cm ,CQ =2t cm ,BQ =(30-2t)cm (0≤t ≤15). ①若四边形ABQP 是平行四边形, ∵AD ∥BC ,∴还需满足AP =BQ. ∴t =30-2t.解得t =10.∴10 s 后四边形ABQP 是平行四边形; ②若四边形PQCD 是平行四边形, ∵AD ∥BC ,∴还需满足PD =CQ.∴24-t =2t.解得t =8.∴8 s 后四边形PQCD 是平行四边形.综上所述:当P ,Q 两点同时出发8秒或10秒后,所截得两个四边形中其中一个四边形为平行四边形.第2课时三角形的中位线01基础题知识点三角形的中位线1.如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4C.6 D.82.如图,在△ABC中,点D,E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是(C) A.8 B.10C.12 D.14第2题图第3题图3.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为(C) A.50°B.60°C.70°D.80°4.(2016·梧州)如图,在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(B)A.5 B.7C.9 D.11第4题图第5题图5.如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点C,D,量得CD=20 m,则A,B之间的距离是40m.6.(2017·怀化)如图,在▱ABCD中,对角线AC,BD 相交于点O,点E是AB的中点,OE=5 cm,则AD的长为10cm.第6题图第7题图7.如图,CD是△ABC的中线,点E,F分别是AC,DC的中点,EF=1,则BD=2.8.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8 cm,E,F分别为边AC,AB的中点.(1)求∠A的度数;(2)求EF的长.解:(1)∵∠C=90°,∴∠A+∠B=90°.∴∠A=90°-∠B=90°-60°=30°.(2)在Rt △ABC 中,∠A =30°,AB =8 cm , ∴BC =12AB =4 cm .∵E ,F 分别是AC ,AB 的中点, ∴EF 是△ABC 的中位线. ∴EF =12BC =2 cm .9.如图,在△ABC 中,D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.证明:∵D ,E ,F 分别为AB ,BC ,CA 的中点, ∴DF ,DE 为△ABC 的中位线. ∴DF ∥BC ,DE ∥AC.∴四边形DECF 是平行四边形.02 中档题10.如图,点D ,E ,F 分别为△ABC 各边中点,下列说法正确的是(C )A .DE =DFB .EF =12ABC .S △ABD =S △ACD D .AD 平分∠BAC11.如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E ,F 分别是边AB ,AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是(C )A .15米B .20米C .25米D .30米第11题图 第12题图12.(2016·陕西)如图,在△ABC 中,∠B =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为(B)A .7B .8C .9D .1013.如图,▱ABCD 的对角线AC ,BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是9.第13题图 第14题图14.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =18°,则∠PFE 的度数是18°.15.如图,四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,顺次连接E ,F ,G ,H ,得到的四边形EFGH 叫中点四边形.求证:四边形EFGH 是平行四边形.证明:连接BD.∵E ,H 分别是AB ,AD 的中点, ∴EH 是△ABD 的中位线. ∴EH =12BD ,EH ∥BD.同理FG =12BD ,FG ∥BD.∴EH =FG ,EH ∥FG.∴四边形EFGH 是平行四边形.16.如图,在▱ABCD 中,点O 是对角线AC ,BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上,∴OE ∥CF.∴四边形OCFE 是平行四边形.03 综合题17.如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH ,求线段DH 的长.解:∵AE 为△ABC 的角平分线, ∴∠FAH =∠CAH. ∵CH ⊥AE ,∴∠AHF =∠AHC =90°. 在△AHF 和△AHC 中,⎩⎨⎧∠FAH =∠CAH ,AH =AH ,∠AHF =∠AHC ,∴△AHF ≌△AHC(ASA ). ∴AF =AC ,HF =HC. ∵AC =3,AB =5,∴AF =AC =3,BF =AB -AF =5-3=2. ∵AD 为△ABC 的中线, ∴DH 是△BCF 的中位线. ∴DH =12BF =1.小专题(三) 平行四边形的证明思路类型1 若已知条件出现在四边形的边上,则考虑:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形1.如图,在▱ABCD 中,点E 在AB 的延长线上,且EC ∥BD.求证:四边形BECD 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,即BE ∥DC. 又∵EC ∥BD ,∴四边形BECD 是平行四边形.2.如图,已知:AB ∥CD ,BE ⊥AD ,垂足为点E ,CF ⊥AD ,垂足为点F ,并且AE =DF.求证:(1)BE =CF ;(2)四边形BECF 是平行四边形. 证明:(1)∵BE ⊥AD ,CF ⊥AD , ∴∠AEB =∠DFC =90°. ∵AB ∥CD ,∴∠A =∠D . 在△AEB 和△DFC 中,⎩⎨⎧∠AEB =∠DFC ,AE =DF ,∠A =∠D ,∴△AEB ≌△DFC (ASA). ∴BE =CF .(2)∵BE ⊥AD ,CF ⊥AD , ∴BE ∥CF . 又∵BE =CF ,∴四边形BECF 是平行四边形.3.如图,在▱ABCD 中,分别以AD ,BC 为边向内作等边△ADE 和等边△BCF ,连接BE ,DF.求证:四边形BEDF是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°.∴BF =DE ,CF =AE ,∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE ,即∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形.4.(2016·钦州)如图,DE 是△ABC 的中位线,延长DE 到F ,使EF =DE ,连接BF.求证:(1)BF =DC ;(2)四边形ABFD 是平行四边形.证明:(1)∵DE 是△ABC 的中位线, ∴CE =BE.在△DEC 和△FEB 中,⎩⎨⎧CE =BE ,∠CED =∠BEF ,DE =FE ,∴△DEC ≌△FEB(SAS ). ∴BF =DC.(2)∵DE 是△ABC 的中位线, ∴DE ∥AB ,且DE =12AB.又∵EF =DE , ∴DE =12DF.∴DF =AB. 又∵DF ∥AB ,∴四边形ABFD 是平行四边形.5.如图,已知D ,E ,F 分别在△ABC 的边BC ,AB ,AC 上,且DE ∥AF ,DE =AF ,将FD 延长到点G ,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.解:ED与AG互相平分.理由:连接EG,AD.∵DE∥AF,DE=AF,∴四边形AEDF是平行四边形.∴AE∥DF,AE=DF.又∵FG=2DF,∴DG=DF.∴AE=DG.又∵AE∥DG,∴四边形AEGD是平行四边形.∴ED与AG互相平分.类型2若已知条件出现在四边形的角上,则考虑利用“两组对角分别相等的四边形是平行四边形”6.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.类型3若已知条件出现在对角线上,则考虑利用“对角线互相平分的四边形是平行四边形”7.如图,▱ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.如图,▱ABCD 中,点O 是对角线AC 的中点,EF 过点O ,与AD ,BC 分别相交于点E ,F ,GH 过点O ,与AB ,CD 分别相交于点G ,H ,连接EG ,FG ,FH ,EH.求证:四边形EGFH 是平行四边形.证明:∵四边形ABCD 为平行四边形, ∴AD ∥BC.∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证得OG =OH.∴四边形EGFH 是平行四边形.周周练(18.1)(时间:45分钟 满分:100分)一、选择题(每小题 4分,共32分)1.下面的性质中,平行四边形不一定具有的是(A )A .对角互补B .邻角互补C .对角相等D .对边相等2.平行四边形的周长为24 cm ,相邻两边的差为2 cm ,则平行四边形的各边长为(B )A .4 cm ,8 cm ,4 cm ,8 cmB .5 cm ,7 cm ,5 cm ,7 cmC .5.5 cm ,6.5 cm ,5.5 cm ,6.5 cmD .3 cm ,9 cm ,3 cm ,9 cm3.下列说法错误的是(D)A .对角线互相平分的四边形是平行四边形B .两组对边分别相等的四边形是平行四边形C .一组对边平行且相等的四边形是平行四边形D .一组对边相等,另一组对边平行的四边形是平行四边形4.(2017·丽水)如图,在▱ABCD 中,连接AC ,∠B =∠CAD =45°,AB =2,则BC 的长是(C)A. 2 B .2 C .2 2D .4第4题图 第5题图5.(2016·株洲)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 交于点O ,E 是BC 的中点,以下说法错误的是(D)A .OE =12DCB .OA =OCC .∠BOE =∠OBAD .∠OBE =∠OCE6.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为(D )A .6B .12C .20D .247.在▱ABCD 中,AD =8,AE 平分∠BAD 交BC 于点E ,DF 平分∠ADC 交BC 于点F ,且EF =2,则AB 的长为(D)A .3B .5C .2或3D .3或58.如图,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是(B )A.②③B.②⑤C.①③④D.④⑤二、填空题(每小题4分,共24分)9.如图所示,在▱ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有4个平行四边形.第9题图第10题图10.(2016·江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为50°.11.(2016·河南)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是110°.12.在▱ABCD中,AB,BC,CD的长度分别为2x+1,3x,x+4,则▱ABCD的周长是32.13.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件答案不唯一,如:AB=CD(写一个即可),使四边形ABCD是平行四边形.第13题图第14题图14.(2017·河池)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是8.三、解答题(共44分)15.(10分)(2017·山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.证明:证法一:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BE=DF,∴AB+BE=CD+DF,即AE=CF.∵AB∥CD,∴AE∥CF.∴∠E=∠F.又∵∠AOE=∠COF,∴△AOE≌△COF(AAS).∴OE=OF.证法二:连接AF,CE.∵四边形ABCD是平行四边形,∴AB ∥CD ,AB =CD.∵BE =DF ,∴AB +BE =CD +DF ,即AE =CF. ∵AB ∥CD ,∴AE ∥CF.∴四边形AECF 是平行四边形.∴OE =OF.16.(10分)(2016·黄冈)如图,在▱ABCD 中,E ,F 分别是边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H.求证:AG =CH.证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC.∴∠HCF =∠GAE.又∵E ,F 分别是边AD ,BC 的中点, ∴AE =FC ,DE =BF.又∵DE ∥BF ,∴四边形BFDE 是平行四边形. ∴∠BED =∠BFD.∴∠AEG =∠CFH. 在△AGE 和△CHF 中,⎩⎨⎧∠GAE =∠HCF ,AE =CF ,∠AEG =∠CFH ,∴△AGE ≌△CHF(ASA ).∴AG =CH.17.(12分)已知:如图,在四边形ABCD 中,AB =CD ,E ,F ,G 分别是AD ,BC ,BD 的中点,GH 平分∠EGF 交EF 于点H.(1)猜想:GH 与EF 间的关系是GH 垂直平分EF ; (2)证明你的猜想.证明:∵E ,G 分别是AD ,BD 的中点, ∴EG =12AB.∵F ,G 分别是BC ,BD 的中点, ∴GF =12CD.∵AB =CD , ∴EG =GF.又∵GH 平分∠EGF , ∴GH 垂直平分EF.18.(12分)如图1,在▱ABCD 中,∠ABC ,∠ADC 的平分线分别交AD ,BC 于点E ,F.(1)求证:四边形EBFD 是平行四边形;(2)小明在完成(1)的证明后继续进行了探索.连接AF ,CE ,分别交BE ,FD 于点G ,H ,得到四边形EGFH.此时,他猜想四边形EGFH 是平行四边形,请在框图(图2)中补全他的证明思路.图1小明的证明思路由(1)可知BE ∥DF ,要证明四边形EGFH 是平行四边形,只需证GF ∥EH .由(1)可证ED =BF ,则AE =FC ,又由AE ∥CF , 故四边形AFCE 是平行四边形,从而可证得四边 形EGFH 是平行四边形.图2证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠ABC =∠ADC ,AD =BC. ∵BE 平分∠ABC ,∴∠ABE =∠EBC =12∠ABC.∵DF 平分∠ADC ,∴∠ADF =∠CDF =12∠ADC.∴∠EBC =∠ADF.∵AD ∥BC ,∴∠AEB =∠EBC. ∴∠AEB =∠ADF. ∴EB ∥DF. 又∵ED ∥BF ,∴四边形EBFD 是平行四边形.18.2特殊的平行四边形18.2.1矩形第1课时矩形的性质01基础题知识点1矩形的性质1.下列性质中,矩形具有但平行四边形不一定具有的是(C)A.对边相等B.对角相等C.对角线相等D.对边平行2.如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D)A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD第2题图第3题图3.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是(C) A.8 B.6 C.4 D.24.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为(B) A.30°B.60°C.90°D.120°第4题图第5题图5.(2017·怀化)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是(A) A.3 cm B.6 cmC.10 cm D.12 cm6.如果矩形的一边长为6,一条对角线的长为10,那么这个矩形的另一边长是8.7.如图,已知矩形的对角线AC与BD相交于点O,若AO=1,则BD=2.第7题图第8题图8.(2016·昆明)如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是24.9.(2016·岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF.求证:BF =CD.证明:∵四边形ABCD为矩形,∴∠B=∠C=90°.∴∠BFE+∠BEF=90°.∵EF⊥DF,∴∠DFE=90°.∴∠BFE+∠CFD=90°.∴∠BEF=∠CFD.在△BEF 和△CFD 中,⎩⎨⎧∠BEF =∠CFD ,BE =CF ,∠B =∠C ,∴△BEF ≌△CFD (ASA).∴BF =CD .知识点2 直角三角形斜边上的中线等于斜边的一半10.如图,在Rt △ABC 中,∠C =90°,AB =10 cm ,D 为AB 的中点,则CD =5cm .第10题图 第11题图11.如图,在Rt △ABC 中,∠ACB =90°,D ,E ,F 分别是AB ,BC ,CA 的中点,若CD =5 cm ,则EF =5cm . 12.如图,D ,E ,F 分别是△ABC 各边的中点,AH 是高,如果ED =5 cm ,求HF 的长.解:由题意得:DE 是△ABC 的中位线, ∴DE =12AC .∵HF 是Rt △AHC 的斜边AC 的中线, ∴HF =12AC .∴HF =DE =5 cm.02 中档题13.(2016·荆门)如图,在矩形ABCD 中(AD>AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是(B)A .△AFD ≌△DCEB .AF =12ADC .AB =AFD .BE =AD -DF第13题图 第14题图14.(2016·绵阳)如图,▱ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为(B)A .3 cmB .4 cmC .5 cmD .8 cm15.如图,已知在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,若∠DAE ∶∠BAE =3∶1,则∠EAC 的度数是(C )A .18°B .36°C .45°D .72°第15题图 第16题图16.(2016·宜宾)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB ,BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是(A )A .4.8B .5C .6D .7.217.(2017·广西四市同城)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,BE =DF.(1)求证:AE =CF ;(2)若AB =6,∠COD =60°,求矩形ABCD 的面积.解:(1)证明:∵四边形ABCD 是矩形,∴OA =OC ,OB =OD ,AC =BD ,∠ABC =90°. ∵BE =DF ,∴OE =OF . 在△AOE 和△COF 中,⎩⎨⎧OA =OC ,∠AOE =∠COF ,OE =OF ,∴△AOE ≌△COF (SAS). ∴AE =CF .(2)∵OA =OC ,OB =OD ,AC =BD ,∴OA =OB . ∵∠AOB =∠COD =60°, ∴△AOB 是等边三角形.∴OA =AB =6.∴AC =2OA =12.在Rt △ABC 中,BC =AC 2-AB 2=63,∴S 矩形ABCD =AB ·BC =6×63=36 3.18.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,延长CB 到点E ,使BE =BC ,连接AE.求证:(1)四边形ADBE 是平行四边形;(2)若AB =4,OB =52,求四边形ADBE 的周长.证明:(1)∵四边形ABCD为矩形,∴AD∥BC,AD=BC.又∵BE=BC,且点C,B,E在一条直线上,∴AD∥BE,AD=BE.∴四边形ADBE是平行四边形.(2)∵四边形ABCD为矩形,∴∠BAD=90°,OB=OD.∴BD=2OB=5.在Rt△BAD中,AD=52-42=3.又∵四边形ADBE为平行四边形,∴BE=AD=3,AE=BD=5.03综合题19.如图,将长8 cm,宽4 cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为.习题解析第2课时矩形的判定01基础题知识点1有一个角是直角的平行四边形是矩形1.下列说法正确的是(D)A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形D.对角互补的平行四边形是矩形2.如图,在△ABC中,AB=AC,AD是BC边上的中线,四边形ADBE是平行四边形,求证:四边形ADBE是矩形.解:∵AB=AC,AD是BC边上的中线,∴AD⊥BC.∴∠ADB=90°.又∵四边形ADBE是平行四边形,∴四边形ADBE是矩形.3.(2016·内江)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.解:(1)证明:∵AF∥BC,∴∠AFC=∠FCB.又∵∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS).∴AF=DC.又∵AF=BD,∴BD=DC,即D是BC的中点.(2)四边形AFBD是矩形.证明:∵AF∥BC,AF=BD,∴四边形AFBD是平行四边形.∵AB=AC,D是BC的中点,∴AD⊥BC,即∠ADB=90°.∴四边形AFBD是矩形.知识点2对角线相等的平行四边形是矩形4.能判断四边形是矩形的条件是(C)A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直5.如图,四边形ABCD的对角线AC,BD相交于点O,AD∥BC,AC=BD.试添加一个条件答案不唯一,如:AB∥CD,使四边形ABCD 为矩形.6.如图,矩形ABCD 的对角线相交于点O ,点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,请问四边形EFGH 是矩形吗?请说明理由.解:四边形EFGH 是矩形. 理由:∵四边形ABCD 是矩形,∴AC =BD ,AO =CO ,BO =DO.∴AO =CO =BO =DO.∵点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点, ∴EO =FO =GO =HO.∴OE =OG ,OF =OH. ∴四边形EFGH 是平行四边形.又∵EO +GO =FO +HO ,即EG =FH ,∴四边形EFGH 是矩形.知识点3 有三个角是直角的四边形是矩形7.已知O 为四边形ABCD 对角线的交点,下列条件能使四边形ABCD 成为矩形的是(D )A .OA =OC ,OB =OD B .AC =BD C .AC ⊥BDD .∠ABC =∠BCD =∠CDA =90°8.已知:如图,在▱ABCD 中,AF ,BH ,CH ,DF 分别是∠BAD ,∠ABC ,∠BCD ,∠ADC 的平分线.求证:四边形EFGH 为矩形.证明:∵四边形ABCD 是平行四边形, ∴∠DAB +∠ADC =180°.∵AF ,DF 分别平分∠DAB ,∠ADC , ∴∠FAD =∠BAF =12∠DAB ,∠ADF =∠CDF =12∠ADC.∴∠FAD +∠ADF =90°.∴∠AFD =90°. 同理可得:∠BHC =∠HEF =90°. ∴四边形EFGH 是矩形. 02 中档题9.以下条件不能判定四边形ABCD 是矩形的是(D )A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BDD.AB=CD,AB∥CD,OA=OC,OB=OD10.(2016·菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD,正确的有(B)A.①②③B.①②④C.②③④D.①③④11.如图,△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是(A)A.2 3 B.33C.4 D.43第11题图第12题图12.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为12.13.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF 于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.证明:(1)∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.又∵∠B=90°,∴四边形ABCF是矩形.(2)∵四边形ABCF是矩形,∴∠AFC=∠AFD=90°.∴∠DAF=90°-∠D,∠CGF=90°-∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.又∵∠EGA=∠CGF,∴∠DAF=∠EGA.∴EA=EG.14.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接BD,DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.证明:(1)∵在▱ABCD 中,AD =BC ,AB =CD ,AD ∥CB , ∴∠A =∠EBC.在△ABD 和△BEC 中,⎩⎨⎧AB =BE ,∠A =∠EBC ,AD =BC ,∴△ABD ≌△BEC(SAS ).(2)∵在▱ABCD 中,AB ∥ CD ,且AB =BE , BE ∥CD.∴四边形BECD 为平行四边形. ∴OB =12BC ,OE =12ED.∵∠BOD =2∠A =2∠EBC ,且∠BOD =∠EBC +∠BEO ,∴∠EBC =∠BEO.∴OB =OE.∴BC =ED. ∴四边形BECD 是矩形.03 综合题15.如图,在△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC.设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.视频讲解解:(1)证明:∵CF 平分∠ACD ,且MN ∥BD , ∴∠ACF =∠FCD =∠CFO. ∴OF =OC.同理可证:OC =OE. ∴OE =OF.(2)由(1),知∠OCF =∠OFC ,∠OCE =∠OEC , ∴∠OCF +∠OCE =∠OFC +∠OEC.∵(∠OCF +∠OCE)+(∠OFC +∠OEC)=180°, ∴∠ECF =∠OCF +∠OCE =90°. ∴EF =CE 2+CF 2=122+52=13. 又∵OE =OF , ∴OC =12EF =132.(3)当点O 移动到AC 中点时,四边形AECF 为矩形.理由:连接AE ,AF.当点O 移动到AC 中点时,OA =OC ,。
【初中数学】人教版八年级下册课时作业(练习题)
人教版八年级下册课时作业(一)[16.1 第1课时 二次根式的概念](389)1.当x 取何实数时,下列各式在实数范围内有意义?(1)√3−2x ;(2)√(x+1)2x; (3)√x+1(x−3)2; √x+1√x−4. 2.有一个长、宽之比为5∶2的长方形过道,其面积为10m 2.(1)求这个长方形过道的长和宽;(2)用40块大小相同的正方形地板砖刚好把这个过道铺满,求这种地板砖的边长.3.若x,y 都是实数,且y >√3x −4+√4−3x +34,试求3−4y |3−4y|+3x 的值.4.式子√9−x 有意义时,实数x 的最大整数值是 .5.跳水运动员从跳台跳下,他在空中的时间t (单位:秒)与跳台高度ℎ(单位:米)满足关系式ℎ=5t 2.如果用含ℎ的式子表示t ,那么t = .6.若二次根式√−62−x 有意义,则x 的取值范围是 .7.若等式(√x 3−2)0=1成立,则x 的取值范围是 . 8.已知x ,y 为实数,且y =√x 2−9−√9−x 2+4,则x −y = .9.下列各式中,是二次根式的为()A.√93B.√0.36 C.−1100 D.a−1(a<1) 10.若√x +2在实数范围内有意义,则x 的取值范围在数轴上的表示正确的是() A.B. C.D. 11.已知式子√a+1a−2有意义,则实数a 的取值范围是() A.a ≥−1 B.a ≠2 C.a ≥−1且a ≠2 D.a >212.无论x 取何值,下列各式中,一定有意义的是()Ax2−1 B.x+1 C.|x| D.1x213.当x的取值范围为x≥2时,下列各式有意义的是()C.√x−2D.√2−xA.√x−2x−2√x−2有意义,那么在平面直角坐标系中点A(a,b)的位置在()14.如果式子√a√abA.第一象限B.第二象限C.第三象限D.第四象限参考答案1(1)【答案】解:要使√3−2x 有意义,应满足3−2x ≥0,解得x ≤32.(2)【答案】因为无论x 取何值,(x +1)2都是非负数, 所以只需满足分母x ≠0即可.(3)【答案】要使原式有意义,需满足{x +1≥0x −3≠0, 解得x ≥−1且x ≠3.(4)【答案】要使原式有意义,需满足{x +1≥0x −4>0 解得x >4.2(1)【答案】解:设这个长方形过道的长为5xm ,则宽为2xm .根据题意,得5x ·2x =10,x 2=1,x =±√1=±1. 因为x 不能为负数,所以x =1.所以5x =5,2x =2.答:这个长方形过道的长为5m ,宽为2m .(2)【答案】设这种地板砖的边长为ym ,则 40y 2=10,y 2=14,y =±√14=±12. 因为y 不能为负数,所以y =12.答:这种地板砖的边长为12m .3.【答案】:解:由题意知{3x −4≥0,4−3x ≥0, 解得3x =4,∴y >34,即4y >3,∴3−4y |3−4y|+3x=3−4y −(3−4y)+3x=−1+4=3.4.【答案】:9【解析】:因为原式有意义,所以9−x ≥0,解得x ≤9,所以x 的最大整数值为9.5.【答案】:√ℎ56.【答案】:x >2【解析】:要使二次根式有意义,须满足−62−x >0,因为它的分子为负数,所以其分母也应是负数,即2−x <0,解得x >2.7.【答案】:x ≥0且x ≠12【解析】:依题意,得{x 3≥0√x 3−2≠0 ,所以x ≥0且x ≠12.8.【答案】:−1或−7 【解析】:由题意,知{x 2−9≥0,9−x 2≥0,所以x 2−9=0,x =±3,y =4, 故x −y =3−4=−1或x −y =−3−4=−79.【答案】:B【解析】:利用二次根式的定义进行判断.10.【答案】:D【解析】:由题意得x +2⩾0,解得x ⩾−2.故选:D .11.【答案】:C【解析】:式子√a+1a−2有意义,则a +1≥0,且a −2≠0,解得a ≥−1且a ≠2.12.【答案】:C13.【答案】:C【解析】:若式子√x−2x−2有意义,则{x −2≥0x −2≠0 ,解得x >2.若式√x−2有意义,则x −2>0,解得x >2.若式子√x −2有意义,则x −2≥0,解得x ≥2.若式子√2−x有意义,则2−x≥0,解得x≤2.故选C.14.【答案】:A有意义,【解析】:∵√a√ab∴a≥0且ab>0,解得a>0且b>0.∴平面直角坐标系中点A(a,b)的位置在第一象限.。
【人教版】八年级数学下第十七章《勾股定理》课时作业同步练习(含答案)
微课堂第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a 2+b 2=c 2.2.4个全等的直角三角形的直角边分别为a ,b ,斜边为c.现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.解:图形的总面积可以表示为 c 2+2×12ab =c 2+ab ,也可以表示为a 2+b 2+2×12ab =a 2+b 2+ab ,∴c 2+ab =a 2+b 2+ab. ∴a 2+b 2=c 2.知识点2 利用勾股定理进行计算3.在△ABC 中,∠A ,∠B ,∠C 的对应边分别是a ,b ,c ,若∠B =90°,则下列等式中成立的是(C )A .a 2+b 2=c 2B .b 2+c 2=a 2C .a 2+c 2=b 2D .c 2-a 2=b 24.已知在Rt △ABC 中,∠C =90°,AC =2,BC =3,则AB 的长为(C )A .4B . 5C .13D .55.已知直角三角形中30°角所对的直角的边长是2 3 cm ,则另一条直角边的长是(C )A .4 cmB .4 3 cmC .6 cmD .6 3 cm 6.(2016·阿坝)直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为6. 7.在△ABC 中,∠C =90°,AB =c ,BC =a ,AC =b.(1)a =7,b =24,求c ; (2)a =4,c =7,求b.解:(1)∵∠C =90°,∴△ABC 是直角三角形.∴a 2+b 2=c 2. ∴72+242=c 2.∴c2=49+576=625.∴c=25.(2)∵∠C=90°,∴△ABC是直角三角形.∴a2+b2=c2.∴42+b2=72.∴b2=72-42=49-16=33.∴b=33.8.如图,在△ABC中,AD⊥BC,垂足为点D,∠B=60°,∠C=45°.(1)求∠BAC的度数;(2)若AC=2,求AD的长.解:(1)∠BAC=180°-60°-45°=75°.(2)∵AD⊥BC,∴△ADC是直角三角形.∵∠C=45°,∴∠DAC=45°.∴AD=CD.根据勾股定理,得AD= 2.02中档题9.(2016·荆门)如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为(C) A.5 B.6 C.8 D.10第9题图第10题图10.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是(C) A.48 B.60 C.76 D.8011.(2017·陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6 C.3 2 D.21第11题图第14题图12.(2016·东营)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于(C) A.10 B.8C.6或10 D.8或1013.若一直角三角形两边长分别为12和5,则第三边长为13或119.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,BC =8,CD =3.15.图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt △ABC 中,若直角边AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是76.16.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =20,BC =15.(1)求AB 的长;(2)求CD 的长.解:(1)∵在Rt △ABC 中,∠ACB =90°,BC =15,AC =20, ∴AB =AC 2+BC 2=202+152=25.(2)∵S △ABC =12AC ·BC =12AB ·CD ,∴AC ·BC =AB ·CD .∴20×15=25CD .∴CD =12.17.(2016·益阳)在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程. 作AD ⊥BC 于点D , 设BD =x ,用含x的代数式表示CD.→根据勾股定理,利用 AD 作为“桥梁”,建立方程模型求出x.→利用勾股定理求出AD 的长,再计算三角形面积.解:在△ABC 中,AB =15,BC =14,AC =13, 设BD =x ,则CD =14-x.由勾股定理,得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x)2. ∴152-x 2=132-(14-x)2.解得x =9. ∴AD =12.∴S △ABC =12BC·AD =12×14×12=84.03综合题18.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2 017个等腰直角三角形的斜边长是(2)2017.习题解析第2课时 勾股定理的应用01 基础题知识点1 勾股定理在平面图形中的应用1.如图,一根垂直于地面的旗杆在离地面5 m 处折断,旗杆顶部落在离旗杆底部12 m 处,旗杆折断之前的高度是(D )A .5 mB .12 mC .13 mD .18 m第1题图 第2题图2.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.3.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE ,他们进行了如下操作:①测得BD 的长度为15米;(注:BD ⊥CE)②根据手中剩余线的长度计算出风筝线BC 的长为25米; ③牵线放风筝的小明身高1.6米. 求风筝的高度CE.解:在Rt △CDB 中,由勾股定理,得CD =CB 2-BD 2=252-152=20(米).∴CE =CD +DE =20+1.6=21.6(米). 答:风筝的高度CE 为21.6米.4.如图,甲船以16海里/时的速度离开码头向东北方向航行,乙船同时由码头向西北方向航行,已知两船离开码头1.5 h 后相距30海里,问乙船每小时航行多少海里?解:设码头所在的位置为C ,1.5 h 后甲船所在位置为A ,乙船所在位置为B ,则 AC 与正北方向的夹角为45°,BC 与正北方向的夹角为45°, ∴∠ACB =90°.在Rt △ABC 中,∵AC =16×32=24(海里),AB =30海里.由勾股定理,得 BC 2=AB 2-AC 2=302-242=324.解得BC =18. ∴18÷32=12(海里/小时).答:乙船每小时航行12海里.知识点2勾股定理与方程的应用5.印度数学家什迦逻(1141~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.解:如图,由题意可知AC=0.5,AB=2,OB=OC.设OA=x,则OB=OA+AC=x+0.5.在Rt△OAB中,OA2+AB2=OB2,∴x2+22=(x+0.5)2.解得x=3.75.∴水深3.75尺.6.如图,在一棵树(AD)的10 m高处(B)有两只猴子,其中一只爬下树走向离树20 m(C)的池塘,而另一只则爬到树顶(D)后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?解:B为猴子的初始位置,则AB=10 m,C为池塘,则AC=20 m.设BD=x m,则树高AD=(10+x)m.由题意知BD+CD=AB+AC,∴x+CD=20+10.∴CD=(30-x)m.在Rt△ACD中,∠A=90°,由勾股定理得AC2+AD2=CD2,∴202+(10+x)2=(30-x)2.∴x=5.∴AD=10+5=15(m).故这棵树有15 m高.知识点3两次勾股定理的应用7.(2017·绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C) A.0.7米B.1.5米C.2.2米D.2.4米第7题图第8题图8.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B 距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑0.5米.02中档题9.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1 m),却踩伤了花草(D)A.4 B.6 C.7 D.8第9题图第10题图10.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D) A.4米B.8米C.9米D.7米11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了2cm.第11题图第12题图习题解析12.将一根24 cm的筷子,置于底面直径为15 cm,高8 cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是7≤h≤16.13.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220 cm.在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.解:彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,得DE=DF2+EF2=1202+902=150.h=220-150=70(cm).∴彩旗下垂时的最低处离地面的最小高度h为70 cm.14.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A 处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?解:在Rt △APO 中,∠APO =60°,则∠PAO =30°. ∴AP =2OP =200 m ,AO =AP 2-OP 2=2002-1002=1003(m ).在Rt △BOP 中,∠BPO =45°,则BO =OP =100 m .∴AB =AO -BO =1003-100≈73(m ). ∴从A 到B 小车行驶的速度为73÷3≈24.3(m /s )=87.48 km /h >80 km /h . ∴此车超过每小时80千米的限制速度.03 综合题15.如图,在Rt △ABC 中,∠C =90°,AB =5 cm ,AC =3 cm ,动点P 从点B 出发沿射线BC 以1 cm /s 的速度移动,设运动的时间为t s .(1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值.解:(1)在Rt △ABC 中,由勾股定理,得BC 2=AB 2-AC 2=52-32=16. ∴BC =4 cm .(2)由题意,知BP =t cm ,①当∠APB 为直角时,如图1,点P 与点C 重合,BP =BC =4 cm , ∴t =4;②当∠BAP 为直角时,如图2,BP =t cm ,CP =(t -4)cm ,AC =3 cm , 在Rt △ACP 中,AP 2=AC 2+CP 2=32+(t -4)2. 在Rt △BAP 中,AB 2+AP 2=BP 2, 即52+[32+(t -4)2]=t 2. 解得t =254.∴当△ABP 为直角三角形时,t =4或t =254.第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数1.在数轴上作出表示5的点(保留作图痕迹,不写作法).解:略.知识点2 网格中的无理数2.如图,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,则线段AB 的长度为(A )A .5B .6C .7D .25知识点3 等腰三角形中的勾股定理3.在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的边上的高与面积.解:过点A 作AD ⊥BC 于D , ∵AB =AC =13 cm , ∴BD =CD =12BC =12×10=5(cm).∴AD =AB 2-BD 2=132-52=12(cm).∴S △ABC =12BC ·AD =12×10×12=60(cm 2).02 中档题 4.(2017·南充)如图,等边△OAB 的边长为2,则点B 的坐标为(D )A .(1,1,)B .(3,1)C .(3,3)D .(1,3) 5.(2017·成都)如图,数轴上点A 所表示的实数是5-1.第5题图 第6题图6.(2017·乐山)点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离355.7.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形, ∴CB =CD ,∠CDE =∠DCE =60°.∴∠BDC =∠DBC =12∠DCE =30°.∴∠BDE =90°.在Rt △BDE 中,DE =4,BE =8,DB =BE 2-DE 2=82-42=4 3.03 综合题8.仔细观察图形,认真分析下列各式,然后解答问题.OA 22=(1)2+1=2,S 1=12; OA 23=(2)2+1=3,S 2=22; OA 24=(3)2+1=4,S 3=32; …求:(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 21+S 22+S 23+…+S 210的值.解:(1)OA 2n =(n -1)2+1=n ,S n=n2(n 为正整数). (2)OA 210=(9)2+1=10,∴OA 10=10. (3)S 21+S 22+S 23+…+S 210=(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104 =1+2+3+…+9+104=1+102×104=554.小专题(二) 巧用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题解决折叠问题关键是抓住对称性.勾股定理的数学表达式是一个含有平方关系的等式,求线段的长时,可由此列出方程,运用方程思想分析问题和解决问题,以简化求解.【例1】 直角三角形纸片的两直角边AC =8,BC =6,现将△ABC 如图折叠,折痕为DE ,使点A 与点B 重合,则BE 的长为254.1.(2017·黔西南)如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是94cm .第1题图 第2题图2.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.类型2 利用勾股定理解决立体图形的展开问题立体图形中求表面距离最短时,需要将立体图形展开成平面图形,然后将条件集中于一个直角三角形,利用勾股定理求解.【例2】 (教材P39T12变式与应用)如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路径,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的AA ′剪开,得到如图所示的平面展开图,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.【解答】 如图,由题意可得:AA ′=12,A ′B =12×2π×3=9.在Rt △AA ′B 中,根裾勾股定理得:AB 2=A ′A 2+A ′B 2=122+92=225.∴AB =15.∴需要爬行的最短路径是15 cm.3.如图是一个高为10 cm ,底面圆的半径为4 cm 的圆柱体.在AA 1上有一个蜘蛛Q ,QA =3 cm ;在BB 1上有一只苍蝇P ,PB 1=2 cm ,蜘蛛沿圆柱体侧面爬到P 点吃苍蝇,最短的路径是16π2+25cm.(结果用带π和根号的式子表示)第3题图 第4题图4.如图,在一个长为2 m ,宽为1 m 的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2 m 的正方形,一只蚂蚁从点A 处到达点C 处需要走的最短路程是2.60m (精确到0.01 m ).5.如图,长方体的高为5 cm ,底面长为4 cm ,宽为1 cm .(1)点A 1到点C 2之间的距离是多少?(2)若一只蚂蚁从点A 2爬到C 1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm ,底面长为4 cm ,宽为1 cm , ∴A 2C 2=42+12=17(cm ). ∴A 1C 2=52+(17)2=42(cm ). (2)如图1所示,A 2C 1=52+52=52(cm ). 如图2所示,A 2C 1=92+12=82(cm ). 如图3所示,A 2C 1=62+42=213(cm ).∵52<213<82,∴一只蚂蚁从点A 2爬到C 1,爬行的最短路程是5 2 cm .17.2 勾股定理的逆定理01 基础题知识点1 互逆命题1.下列各命题的逆命题不成立的是(C )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a 2=b 2,那么a =b2.写出下列命题的逆命题,并判断它们是真命题还是假命题.(1)如果两个三角形全等,那么这两个三角形的面积相等;(2)等腰三角形的两个底角相等.解:(1)如果两个三角形的面积相等,那么这两个三角形全等.是假命题. (2)有两个内角相等的三角形是等腰三角形.是真命题.知识点2 勾股定理的逆定理3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是(B) A.3,4, 5 B .1,2, 3 C .6,7,8 D .2,3,4 4.下列各组数是勾股数的是(A )A .3,4,5B .1.5,2,2.5C .32,42,52D .13,14,155.在△ABC 中,AB =8,AC =15,BC =17,则该三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形6.三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶3∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有(C )A .1个B .2个C .3个D .4个7.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形8.已知:在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a =3,b =22,c =5; (2)a =5,b =7,c =9; (3)a =2,b =3,c =7; (4)a =5,b =26,c =1.解:(1)是,∠B是直角.(2)不是.(3)是,∠C是直角.(4)是,∠A是直角.9.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是不是直角三角形?为什么?解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理,得AB2=AD2+BD2,AC2=AD2+CD2,又∵AD=12,BD=16,CD=5,∴AB=20,AC=13.∴△ABC的周长为AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54.(2)△ABC不是直角三角形.理由:∵AB=20,AC=13,BC=21,AB2+AC2≠BC2,∴△ABC不是直角三角形.02中档题10.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10B.11C.12D.13c-10=0,那么下列说法中不正确的是(C) 11.已知a,b,c是三角形的三边长,如果满足(a-6)2+b-8+||A.这个三角形是直角三角形B.这个三角形的最长边长是10C.这个三角形的面积是48D.这个三角形的最长边上的高是4.812.下列定理中,没有逆定理的是(B)A.等腰三角形的两个底角相等B.对顶角相等C.三边对应相等的两个三角形全等D.直角三角形两个锐角的和等于90°13.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF 的度数为(C)A.50°B.60°C.70°D.80°14.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.15.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.解:在△ABC中,∵AB=4,BC=3,∠ABC=90°,根据勾股定理,得AC2=AB2+BC2=42+32=52.∴AC=5 cm.∵AC2+CD2=52+122=25+144=169,AD2=132=169,即AC2+CD2=AD2.∴△ACD是直角三角形,且AD为斜边,即∠ACD=90°.16.如图,在四边形ABCD中,AB=BC=1,CD=3,DA=1,且∠B=90°.求:(1)∠BAD的度数;(2)四边形ABCD的面积(结果保留根号).解:(1)连接AC.∵AB=BC=1,∠B=90°,∴∠BAC=∠ACB=45°,AC=AB2+BC2= 2.又∵CD=3,DA=1,∴AC2+DA2=CD2.∴△ADC 为直角三角形,∠DAC =90°. ∴∠BAD =∠BAC +∠DAC =135°. (2)∵S △ABC =12AB·BC =12,S △ADC =12AD·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.03 综合题17.在一次“探究性学习”课中,老师设计了如下数表:(1)请你分别观察a ,b ,c b ,c ,则a =n 2-1,b =2n ,c =n 2+1;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形?证明你的结论. 解:以a ,b ,c 为边的三角形是直角三角形.证明:∵a 2+b 2=(n 2-1)2+(2n)2=n 4-2n 2+1+4n 2=(n 2+1)2=c 2, ∴以a ,b ,c 为边的三角形是直角三角形.章末复习(二)勾股定理01基础题知识点1勾股定理1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A. 6 B.6 2C.6 3 D. 12第1题图第2题图2.如图,阴影部分是一个正方形,则此正方形的面积为64.3.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=2.4.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.知识点2勾股定理的应用5.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 m B.13 mC.16 m D.17 m第5题图第6题图6.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B 两地的距离是5km;若A地在C地的正东方向,则B地在C地的正北方向.7.(2016·烟台)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为7.知识点3逆命题与逆定理8.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.知识点4勾股定理的逆定理及其应用9.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形02中档题10.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+1第10题图第11题图11.(2016·漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD 长为正整数,则点D的个数共有(C)A.5个B.4个C.3个D.2个12.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为(C) A.90°B.60°C.45°D.30°第12题图第13题图13.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD14.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.15.有一块空白地,如图,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC .∵∠ADC =90°,∴△ADC 是直角三角形.∴AD 2+CD 2=AC 2,即82+62=AC 2,解得AC =10.又∵AC 2+CB 2=102+242=262=AB 2,∴△ACB 是直角三角形,∠ACB =90°∴S 四边形ABCD =S Rt △ACB -S Rt △ACD=12×10×24-12×6×8 =96(m 2).故这块空白地的面积为96 m 2.16.小明将一副三角板按如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知CD =2,求AC 的长.解:∵BD =CD =2,∴BC =22+22=2 2.∴设AB =x ,则AC =2x.∴x 2+(22)2=(2x)2.∴x 2+8=4x 2.∴x 2=83. ∴x =263. ∴AC =2AB =436.03 综合题17.如图,在△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内一点,且PA =3,PB =1,CD =PC =2,CD ⊥CP ,求∠BPC 的度数.解:连接BD.∵CD⊥CP,CP=CD=2,∴△CPD为等腰直角三角形.∴∠CPD=45°.∵∠ACP+∠BCP=∠BCP+∠BCD=90°,∴∠ACP=∠BCD.∵CA=CB,∴△CAP≌△CBD(SAS).∴DB=P A=3.在Rt△CPD中,DP2=CP2+CD2=22+22=8. 又∵PB=1,DB2=9,∴DB2=DP2+PB2=8+1=9.∴∠DPB=90°.∴∠CPB=∠CPD+∠DPB=45°+90°=135°.。
矩形的判定(分层作业)-八年级数学下册(人教版)(解析版)
人教版初中数学八年级下册18.2.2矩形的判定同步练习夯实基础篇一、单选题:1.下列给出的判定中不能判定一个四边形是矩形的是()A .有三个角是直角B .对角线互相平分且相等C .对角线互相垂直且相等D .一组对边平行且相等,一个角是直角【答案】C【分析】利用矩形的判定方法即可对各选项进行判断,得到符合题意的选项.【详解】解:A 、有三个角是直角的四边形是矩形,该选项说法正确,不合题意;B 、对角线互相平分且相等的四边形是矩形,该选项说法正确,不合题意;C 、对角线互相平分且相等的四边形是矩形,该选项原说法错误,符合题意;D 、一组对边平行且相等,一个角是直角的四边形是矩形,该选项说法正确,不合题意;故选:C .【点睛】此题考查了矩形的判定,矩形的判定方法有:有一个角是直角的平行四边形是矩形;三个角都是直角的四边形是矩形;对角线相等的平行四边形是矩形,熟练掌握矩形的判定方法是解本题的关键.2.如图,四边形ABCD 是平行四边形,添加下列条件,能判定这个四边形是矩形的是()A .=BAD ABCB .AB BDC .AC BD D .=A B BC【答案】A【分析】由矩形的判定和平行四边形的性质分别对各个选项进行判断即可;【详解】解:A 、∵四边形ABCD 是平行四边形,+=180°ABC BAC ,=ABC BAC ∵,==90°ABC BAC ,平行四边形ABCD 是矩形,故选项A 符合题意;B 、∵四边形ABCD 是平行四边形,AB BD ,++=180°BAD ABD DBC ,90ABD ,90°BAD ,选项B 不能判定这个平行四边形为矩形,故选项B 不符合题意;C 、∵四边形ABCD 是平行四边形,AC BD ,平行四边形ABCD 是菱形,故选项C 不符合题意;D 、∵四边形ABCD 是平行四边形,=A B BC ,平行四边形ABCD 是菱形,故选项D 不符合题意;故选:A .【点睛】本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识,熟练掌握矩形的判定是解题的关键.3.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE AC 交AD 于E ,若4,8AB BC ,则AE 的长为()A .3B .4C .5D .【答案】C 【分析】根据矩形ABCD ,得到AD =BC =8,∠ADC =90°,OA =OC ,从而得证△AOE ≌△COE ,AE =CE ,设AE =x ,则EC =x ,DE =8-x ,利用勾股定理计算即可.【详解】如图,连接EC ,∵矩形ABCD ,OE AC ,4,8AB BC ,∴AD =BC =8,AB =CD =4,∠ADC =90°,OA =OC ,∵OE AC ,∴∠AOE =∠COE =90°,∵OE=OE ,∴△AOE ≌△COE ,AE =CE ,设AE =x ,则EC =x ,DE =8-x ,在Rt △DEC 中,222CE DE CD ,∴222(8)4x x ,∴x =5,∴AE =5,故选C.【点睛】本题考查了矩形的性质,三角形全等的判定和性质,勾股定理,熟练掌握矩形的性质,三角形全等,勾股定理是解题的关键.4.如图,平行四边形ABCD的对角线AC,BD相交于点O, AOB是等边三角形,OE BD交BC于点E,CD=2,则CE的长为()DA.1B C.235.如图,在四边形ABCD 中,对角线AC BD ,垂足为O ,点E 、F 、G 、H 分别为边AD 、AB 、BC 、CD 的中点.若8AC ,6BD ,则四边形EFGH 的面积为()A .48B .24C .32D .12∴EF ∥GH ,FG ∥HE 且EF ⊥FG .四边形EFGH 是矩形.∴四边形EFGH 的面积=EF •EH =3×4=12,即四边形EFGH 的面积是12.故选:D .【点睛】本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的性质,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.6.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AD ,BD ,BC ,CA 的中点,若四边形EFGH 是矩形,则四边形ABCD 需满足的条件是()A .AB DCB .AC BD C .AC BD D .AB DC∵//EF AB ,//HE CD ,∴AB CD ,故选:A .【点睛】本题考查矩形的判定定理,三角形中位线的定义和性质,关键是利用三角形中位线定理证明四边形EFGH 是平行四边形,再利用 FE HE 推出AB CD .7.如图,在直角三角形ABC 中,90ACB ,3AC ,4BC ,点M 是边AB 上一点(不与点A ,B 重合),作ME AC 于点E ,MF BC 于点F ,则EF 的最小值是()A .2B .2.4C .2.5D .2.6【答案】B 【分析】根据题意可证四边形ECFM 是矩形,得EF =CM ,再由垂线段最短得CM 最短进而可得EF 最短,最后进行计算即可.【详解】连接CM ,∵ME AC ,MF BC ,∴ MEC = MFC =90°,当CM AB ,1122ABC S AC BC AB CM △,∴113422CM AB , ABC 中,二、填空题:8.如图,平行四边形ABCD中,对角线AC,BD相交于点O,欲使四边形ABCD变成矩形,则还需添加______.(写出一个合适的条件即可)【答案】AC=BD(答案不唯一)【分析】根据矩形的判定条件求解即可.【详解】解:添加条件AC=BD,利用如下:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC=BD,∴平行四边形ABCD是矩形,故答案为:AC=BD(答案不唯一).【点睛】本题主要考查了矩形的判定,熟知矩形的判定条件是解题的关键.9.一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯两次,就能得到矩形踏板.理由是______.【答案】三个角都是直角的四边形是矩形(或:“有一个角是直角的平行四边形是矩形”)【分析】使用矩形的判定定理,有三个角是直角的四边形是矩形【详解】因为木板的对边平行,在进行两次锯开时都是沿着垂直于对边的方向,所以会出现4个直角,有三个角是直角的四边形是矩形.故答案是三个角是直角的四边形是矩形.【点睛】本题考查矩形的判定,需要熟记矩形的判定定理并灵活运用.10.如图,顺次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,AC 与BD 应满足的的条件是___________.,,,E F G H ∵分别为,,CD AD AB 1,2EF AC GH EF GH AC 四边形EFGH 为平行四边形,要使平行四边形EFGH 为矩形,则AC BD,.故答案为:AC BD【点睛】本题考查了三角形中位线定理、平行四边形的判定、矩形的判定,熟练掌握三角形中位线定理是解题关键.AB CD,PM、PN、QM、QN分别为角平分线,则四边形PMQN是__________.11.如图,//∴四边形PMQN是平行四边形,∵∠NPM=90°,∴四边形PMQN是矩形.故答案为:矩形.【点睛】此题主要考查了矩形的判定和平行线的性质,解题关键是根据角平分线和平行线的性质得出90°角和平行四边形.12.如图,矩形ABCD中,BE⊥AC于点E,若∠ACB=23°,则∠DBE=_______度.【答案】44【分析】由矩形的性质可知∠OBC=∠ACB=23°,则可求得∠AOB度数,由直角三角形的性质可得∠DBE的度数.【详解】解:∵四边形ABCD是矩形∴AC=BD,OA=OC,OB=OD,∴OB=OC,∴∠ACB=∠OBC=23°,∵∠AOB=∠ACB+∠OBC=46°,且BE⊥AC,∴∠DBE=44°.故答案为:44【点睛】本题主要考查矩形的性质,等腰三角形的性质,利用矩形的对角线相等且平分求得∠OBC的度数是解题的关键.13.如图,在面积为36的四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,则DP的长是_____【答案】6【分析】作DE⊥BC,交BC延长线于E,如图,则四边形BEDP为矩形,再利用等角的余角相等得到∠ADP=∠CDE,则可利用“AAS”证明△ADP≌△CDE,得到DP=DE,S△ADP=S△CDE,所以四边形BEDP为正方形,S四边形ABCD=S正方形BEDP,根据正方形的面积公式得到DP2=36,易得DP=6.【详解】如图,作DE⊥BC,交BC延长线于E,∵DP⊥AB,ABC=90°,∴四边形BEDP为矩形,∴∠PDE=90°,即∠CDE+∠PDC=90°,∵∠ADC=90°,即∠ADP+∠PDC=90°,∴∠ADP=∠CDE,在△ADP和△CDE中APD CED ADP CDE AD DC===,∴△ADP ≌△CDE ,∴DP =DE ,S △ADP =S △CDE ,∴四边形BEDP 为正方形,S 四边形ABCD =S 正方形BEDP ,∴DP 2=36,∴DP =6.故答案为6.【点睛】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了正方形和矩形的性质.本题的关键的作辅助线构造两个全等的三角形.三、解答题:14.如图,在ABC 中,AB AC ,AD 平分BAC 交BC 于点D ,分别过点A 、D 作AE BC ∥、DE AB ∥,AE 与DE 相交于点E ,连接CE .(1)求证:AE BD ;(2)求证:四边形ADCE 是矩形.【答案】(1)见解析(2)见解析【分析】(1)根据AE BC ∥、DE AB ∥证明四边形ABDE 为平行四边形,即可得出答案;(2)由等腰三角形的性质得出BD CD ,AD BC ,得出AE CD ,90ADC ,先证出四边形ADCE 是平行四边形.再证明四边形ADCE 是矩形即可.【详解】(1)证明:∵AE BC ∥、DE AB ∥,∴四边形ABDE 是平行四边形,∴AE BD ;(2)证明:∵AB AC ,AD 平分BAC ,∴BD CD ,AD BC ,∵AE BD ,∴AE CD ,∵AE CD ∥,∴四边形ADCE 是平行四边形,∵AD BC ,∴90ADC∴四边形ADCE 是矩形.【点睛】本题主要考查了平行四边形的判定与性质、矩形的判定、等腰三角形的性质;熟练掌握平行四边形的判定与性质,由等腰三角形的性质得出BD CD ,AD BC ,是解决问题的关键.15.如图,四边形ABCD 是平行四边形,过点D 作DE AB 于点E ,点F 在边CD 上,CF AE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形.(2)若AF 是DAB 的平分线.若6CF ,8BF ,求DC 的长.DAF DFA ,10AD FD ,10616DC DF FC .【点睛】本题考查了平行四边形的性质,矩形的性质和判定,角平分线的定义,等角对等边,能综合运用定理进行推理是解此题的关键.16.如图,在四边形ABCD 中,AD BC ,90ABC BCD .对角线,AC BD 交于点,O DE 平分ADC 交BC 于点E ,连接OE .(1)求证:四边形ABCD 是矩形;(2)若2CD ,DBC =30 ,求△BED 的面积.17.如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,AE BD 于点E ,DF AC 于点F ,且AE DF .(1)求证:四边形ABCD 是矩形.(2)若:4:5BAE EAD ,求EAO 的度数.∴904050OBA OAB ,∴504010EAO OAB BAE .【点睛】本题考查了矩形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握矩形的判定与性质,证明三角形全等是解题的关键.能力提升篇一、单选题:1.如图,点P 是Rt ABC 中斜边(AC 不与A ,C 重合)上一动点,分别作PM AB 于点M ,作PN BC 于点N ,点O 是MN 的中点,若9AB ,12BC ,当点P 在AC 上运动时,则BO 的最小值是()A .3B .3.6C .3.75D .4【点睛】本题主要考查矩形的判定与性质,垂线段最短,勾股定理及面积法等知识,熟练掌握矩形的判定与性质是解题的关键.2.如图,在Rt ABC △中,90A ,M 为BC 的中点,H 为AB 上一点,过点C 作CG AB ∥,交HM 的延长线于点G ,若10AC ,8AB ,则四边形ACGH 周长的最小值是()A .28B .26C .22D .18【答案】A 【分析】通过证明BMH CMG △≌△可得BH CG ,可得四边形ACGH 的周长即为AB AC GH ,进而可确定当MH AB 时,四边形ACGH 的周长有最小值,通过证明四边形ACGH 为矩形可得H G 的长,进而可求解.【详解】解:CG AB ∥∵,B MCG ,M ∵是BC 的中点,BM CM ,在BMH V 和CMG V 中,B MCG BM CM BMH CMG,()BMH CMG ASA △≌△,HM GM ,BH CG ,10AC ∵,8AB ,四边形ACGH 的周长18AC CG AH GH AB AC GH GH ,当GH 最小时,即MH AB 时四边形ACGH 的周长有最小值,90A ∵,MH AB ,GH AC ∥,四边形ACGH 为矩形,10GH ,四边形ACGH 的周长最小值为181028 ,故选:A .【点睛】本题主要考查轴对称 最短路径问题,全等三角形的判定与性质,确定GH 的值是解题的关键.3.在矩形ABCD 中,对角线AC 、BD 相交于点O ,AE 平分BAD 交BC 于点E ,15CAE .连接OE ,则下面的结论:①DOC 是等边三角形;②BOE △是等腰三角形;③2BC AB ;④150 AOE ;⑤AOE COE S S ,其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题:4.如图,在平行四边形ABCD 中,90A ,10AD ,=8AB ,点P 在边AD 上,且BP BC ,点M 在线段BP 上,点N 在线段BC 的延长线上,且=PM CN ,连接MN 交CP 于点F ,过点M 作ME CP 于E ,则=EF ___________.,根据等角对等边可得5.如图,在矩形ABCD 中,4AB cm ,12AD cm ,点P 从点A 向点D 以每秒1cm 的速度运动,Q 以每秒4cm 的速度从点C 出发,在B 、C 两点之间做往返运动,两点同时出发,点P 到达点D 为止(同时点Q 也停止),这段时间内,当运动时间为______时,P 、Q 、C 、D 四点组成矩形.【答案】2.4s 或4s 或7.2s【分析】根据已知可知:点Q 将由,C B C B C 根据矩形的性质得到AD ∥BC ,设过了t 秒,当AP=BQ 时,P 、Q 、C 、D 四点组成矩形,在点Q 由C B 的过程中,则PA=t ,BQ=12-4t ,求得t=2.4(s ),在点Q 由B C 的过程中,t=4(t-3),求得t=4(s ),在点Q 再由C B 中,t=12-4(t-6),求得t=7.2(s ),在点Q 再由B C 的过程中,t=4(t-9),t=13(s ),故此舍去,从而得到结论.【详解】解:根据已知可知:点Q 由,C B C B C在点Q第一次到达点B过程中,∵四边形ABCD是矩形,∴AD∥BC,,则四边形APQB是矩形,则以P、Q、C、D四点为顶点组成矩形.若AP BQ设过了t秒,则PA=t,BQ=12-4t,∴t=12-4t,∴t=2.4(s),的过程中,在点Q由B C设过了t秒,则PA=t,BQ=4(t-3),t=4(t-3),解得:t=4(s),在点Q再由C B过程中,设过了t秒,则PA=t,BQ=12-4(t-6),t=12-4(t-6),解得:t=7.2(s),的过程中,在点Q再由B C设过了t秒,则PA=t,BQ=4(t-9),t=4(t-9),解得:t=13(s)>12(s),故此舍去.故答案为:2.4s或4s或7.2s;【点睛】本题考查了矩形的性质与判定,此题属于动点型题目.解题时要注意数形结合与方程思想的应用.三、解答题:6.如图,在平行四边形ABCD 中,过点D 作DE AB 于点E ,点F 在边CD 上,CF AE ,连接AF BF ,.(1)求证:四边形BFDE 是矩形.(2)已知60DAB AF ,是DAB 的平分线,若6AD ,则□ABCD 的面积为______.7.如图,在Rt ABC 中,90,5,3ACB AB BC ,D 是AC 的中点,CE AB ∥,动点P 以每秒1个单位长度的速度从点B 出发向点A 移动,连接PD 并延长交CE 于点F ,设点P 移动的时间为t 秒.(1)求AB与CE之间的距离;(2)当t为何值时,四边形PBCF为平行四边形;(3)当4PF 时,求t的值.【点睛】此题考查了平行四边形的判定与性质、矩形的判定与性质以及勾股定理的运用,熟练掌握平行四边形的判定与性质是解本题的关键.。
2020-2021学年人教版八年级数学下册课时作业:20.1.1 第1课时 平均数
20.1.1 第1课时平均数知识点1 算术平均数1.7名学生的体重(单位: kg)分别是40,42,43,45,47,47,58,则这组数据的平均数是()A.44B.45C.46D.472.某中学举行校园歌手大赛,7位评委给选手小明的评分如下表:评委 1 2 3 4 5 6 7得分(分) 9.8 9.5 9.7 9.8 9.4 9.5 9.4比赛的计分方法如下:去掉一个最高分,去掉一个最低分,其余分数的平均值作为该选手的最后得分,则小明的最后得分为()A.9.56分B.9.57分C.9.58分D.9.59分3.睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一.小强同学通过问卷调查的方式了解到本班三名同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三名同学该天的平均睡眠时间是小时.4.一名同学进行五次投实心球的练习,每次投出的成绩如下表:投实心球次序 1 2 3 4 5成绩(m) 10.5 10.2 10.3 10.6 10.4求该同学这五次投实心球的平均成绩.知识点2 加权平均数5.在某公司的面试中,李明的得分情况为:个人形象89分,工作能力93分,交际能力83分.已知个人形象、工作能力和交际能力的权重比为3∶3∶4,则李明的最终成绩是()A.88.33分B.88分C.87.8分D.265分6.为鼓励市民珍惜每一滴水,某居委会表扬了100户节约用水模范户,这100户居民6月份节约用水的情况如下表:每户节水量(单位:t) 1 1.2 1.5节水户数52 30 18则6月份这100户居民平均节约用水的吨数为()A.1.20 tB.1.15 tC.1.05 tD.1 t7.为了满足顾客的需求,某商场将5千克奶糖、3千克酥心糖和2千克水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖的售价为每千克20元,水果糖的售价为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元C.29元D.34.5元8.某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如下表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,求被录取教师的综合成绩.教师甲乙丙成绩笔试80分82分78分面试76分74分78分9.若一组数据3,4,5,x,6,7的平均数是5,则x的值是()A.4B.5C.6D.710.某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里,该工人每天生产零件的平均数是个.11.某班40名学生的某次数学测验成绩统计如下表:成绩(分) 50 60 70 80 90 100人数(人) 2 x10 y 4 2若这个班该次数学测验的平均成绩是69分,则x= ,y= .12.某校要招聘一名教师,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示(单位:分):应聘者专业知识讲课答辩甲70 85 80乙90 85 75丙80 90 85按照招聘简章要求,对专业知识、讲课、答辩三项赋权5∶4∶1,请计算三名应聘者的平均成绩,从成绩看,应该录取谁?13.某学校举行“我的中国梦”主题演讲活动,参加的选手需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.图是7位评委对选手甲演讲答辩的评分统计图及全班50名同学民主测评票数统计图.(1)求民主测评为“良好”的票数所对应扇形的圆心角度数;(2)求甲的综合得分;(3)在活动中,选手乙的民主测评得分为82分,若他的综合得分不低于甲的综合得分,则乙的演讲答辩得分至少为多少分?答案1.C 解析: 平均数为(40+42+43+45+47+47+58)÷7=322÷7=46.2.C 解析: 去掉一个9.8分和一个9.4分,然后计算剩余五个数的平均数,所以小明的最后得分=9.5+9.7+9.8+9.4+9.55=9.58(分).故选C .3.8.4 解析: 根据题意,得(7.8+8.6+8.8)÷3=8.4(时),则这三名同学该天的平均睡眠时间是8.4小时.4.解:该同学这五次投实心球的平均成绩为x =10+15×(0.5+0.2+0.3+0.6+0.4)=10+0.4=10.4(m). 5.C 解析:89×3+93×3+83×43+3+4=87.8(分).故选C .6.B 解析: (52×1+30×1.2+18×1.5)÷100=1.15(t).故选B .7.C 解析: 根据题意,得(40×5+20×3+15×2)÷(5+3+2)=29(元),即混合后什锦糖的售价应为每千克29元.故选C .8.解:甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分).因为78<78.4<78.8,所以被录取的教师为乙,其综合成绩为78.8分.9.B 解析: 因为3+4+5+x+6+76=5,所以x=5.故选B .10.34 解析: 由图可知这组数据是36,34,31,34,35,故x ̅=15×(36+34+31+34+35)=15×170=34.因此答案为34.11.18 4 解析: 依题意得,50×2+60x+70×10+80y+90×4+100×2=69×40,即3x+4y=70①,x+y+2+10+4+2=40,即x+y=22②.联立①②,解得{x =18,y =4.故答案为18,4.12.解:甲的平均成绩为70×5+85×4+80×15+4+1=77(分);乙的平均成绩为90×5+85×4+75×15+4+1=86.5(分); 丙的平均成绩为80×5+90×4+85×15+4+1=84.5(分).因为乙的平均成绩最高,所以应该录取乙.13.解:(1)民主测评为“良好”的票数所对应扇形的圆心角度数是(1-10%-70%)×360°=72°.(2)演讲答辩得分为(95+94+92+90+94)÷5=93(分),民主测评得分为50×70%×2+50×20%×1=80(分),所以甲的综合得分为93×0.4+80×0.6=85.2(分).(3)设乙的演讲答辩得分为x分.根据题意,得82×0.6+0.4x≥85.2,解得x≥90.答:乙的演讲答辩得分至少为90分.。
【初中数学】人教版八年级下册课时作业(练习题)
人教版八年级下册课时作业(十五)[18.1.2 第3课时三角形的中位线](389)1.如图所示,已知E为平行四边形ABCD中DC延长线上的一点,且CE=DC,连接AE,与BC和BD分别交于点F和G,连接AC交BD于点O,连接OF.试说明:AB=2OF.2.已知:在△ABC中,BC>AC,动点D绕△ABC的顶点A逆时针旋转,且AD=BC,连接DC.过AB,DC的中点E,F作直线EF,与直线AD,BC分别相交于点M,N.如图①,当点D旋转到BC的延长线上时,点N恰好与点F重合,取AC的中点H,连接HE,HF,根据三角形中位线定理和平行线的性质,可得结论∠AMF=∠BNE(不需证明);当点D旋转到图②或图③中的位置时,∠AMF与∠BNE有何数量关系?请分别写出猜想,并任选一种情况证明.3.如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O.E是CD的中点,BD=12,则△DOE的周长为.4.如图,在Rt△ABC中,∠A=30∘,BC=1,D,E分别是直角边BC,AC的中点,则DE的长为.5.如图,在Rt△ABC中,∠B=90∘,AB=4,BC>AB,点D在BC上,以AC为对角线的平行四边形ADCE中,DE的最小值是.6.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M.若BC=7,则MN的长为.7.如图所示,△ABC的中线BD,CE相交于点O,F,G分别是OB,OC的中点.求证:四边形DEFG是平行四边形.AC,D,E分别为边AB,BC的8.如图所示,在△ABC中,延长AC到点F,使CF=12中点.求证:DC=EF.9.如图,在四边形ABCD中,AB=CD,M,N,E,F分别是BD,AC,BC,MN的中点,连接ME,NE.(1)猜想△MEN的形状,并证明你的猜想;(2)EF与MN有何位置关系?写出你的结论,并说明理由.10.如图,在△ABC中,AB=AC=12,BC=8,AD平分∠BAC交BC于点D,若E为AC的中点,则△CDE的周长为()A.24B.14C.16D.1511.如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC,BD的中点,若∠MPN=130∘,则∠NMP的度数是()A.25∘B.30∘C.35∘D.50∘12.如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从点C向点D移动而点R不动时,下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关13.如图,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN,若AB=14,AC=20,则MN的长是()A.2B.3C.6D.1714.如图,在△ABC中,∠ACB=90∘,AC=8,AB=10,DE是△ABC的中位线,则DE的长为()A.6B.5C.4D.315.如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20,那么△DEF的周长是()A.5B.10C.15D.2016.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连接OE.若∠ABC=60∘,∠BAC=80∘,则∠1的度数为()A.50∘B.40∘C.30∘D.20∘参考答案1.【答案】:解:方法一:∵四边形ABCD是平行四边形,∴AB//DC,AB=DC,AO=CO,∴∠BAF=∠E,∠ABF=∠ECF.又∵CE=DC,,∴AB=CE,∴△ABF≌△ECF,∴BF=CF.又∵AO=CO,∴OF是△ABC的中位线,AB,即AB=2OF.∴OF=12方法二:连接BE,如图所示.∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AO=CO.又∵CD=CE,∴AB//CE且AB=CE,∴四边形ABEC是平行四边形,∴BF=FC.又∵AO=CO,∴OF是△ABC的中位线,∴OF=1AB,即AB=2OF.22.【答案】:题图②:∠AMF=∠BNE.题图③:∠AMF+∠BNE=180∘.证明:选第一种情况,如图①,取AC的中点H,连接HE,HF.∵F是DC的中点,H是AC的中点,AD,∴HF//AD,HF=12∴∠AMF=∠HFE.BC,同理HE//BC,HE=12∴∠BNE=∠HEF.∵AD=BC,∴HF=HE,∴∠HFE=∠HEF,∴∠AMF=∠BNE选第二种情况,如图②,取AC的中点H,连接HE,HF.∵F是DC的中点,H是AC的中点,AD,∴HF//AD,HF=12∴∠AMF+∠HFE=180∘.BC,同理HE//BC,HE=12∴∠BNE=∠HEF.∵AD=BC,∴HF=HE,∴∠HEF=∠HFE,∴∠AMF+∠BNE=180∘.【解析】:两题思路基本相同,都需要作出两条辅助线,运用两次中位线定理解答.3.【答案】:15【解析】:根据平行四边形的对角线互相平分可得OB=OD.又因为E是CD的中点,可得OE是△BCD的中位线,所以OE=12BC,易求得△DOE的周长为154.【答案】:15.【答案】:4【解析】:∵四边形ADCE是平行四边形,∴对角线DE经过AC的中点O,DE=2OD.而OD的最小值是点O到直线BC的距离,即△ABC的中位线的长,∴当D是BC的中点时,DE的长最小,最小值=2OD=AB=4.6.【答案】:52【解析】:∵△ABC的周长为19,BC=7,∴AB+AC=12.∵∠ABC的平分线垂直于AE,垂足为N,∴AB=BE,N是AE的中点.∵∠ACB的平分线垂直于AD,垂足为M,∴AC=DC,M是AD的中点,∴DE=BE+DC−BC=AB+AC−BC=5.∵MN是△ADE的中位线,∴MN=12DE=52.7.【答案】:∵E,D分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=12BC.又∵F,G分别是OB,OC的中点,∴FG是△OBC的中位线,∴FG∥BC,FG=12BC.∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形8.【答案】:证明:∵D,E分别是AB,BC的中点,AC.∴DE=//12∵CF=1AC,2∴DE=//CF,∴四边形DEFC是平行四边形,∴DC=EF.9(1)【答案】解:△MEN是等腰三角形.证明如下:∵在△ABC中,E,N分别是BC,AC的中点,∴NE=1AB,2CD.同理ME=12∵AB=CD,∴NE=ME,即△MEN是等腰三角形.(2)【答案】EF⊥MN.理由如下:在等腰三角形MEN中,NE=ME,且MF=NF,∴EF⊥MN.10.【答案】:C【解析】:由题意可知,D为BC的中点,所以DE是△ABC的中位线,AB=6,所以DE=12所以△CDE的周长为16,应选C.11.【答案】:A【解析】:根据三角形中位线定理,得MP=12AB,NP=12CD.因为AB=CD,故MP=NP.由∠MPN=130∘,得∠NMP=25∘,应选A.12.【答案】:C【解析】:连接AR,则EF是△APR的中位线,EF=12AR.因为在点P的移动过程中,点A和点R的位置不变,所以AR的长度不变.因此,线段EF的长也不变.13.【答案】:B【解析】:如图,延长BN交AC于点E.∵AN平分∠BAC,AN=AN,∠ANB=∠ANE=90∘,∴△ANB≌△ANE,∴AE=AB,BN=NE.∵M是BC的中点,∴MN=12CE=12(AC−AE)=12(AC−AB)=3.故选B.14.【答案】:D15.【答案】:B【解析】:根据三角形中位线定理求解即可. 故选 B.16.【答案】:B。
人教版八年级数学下册课时分层训练:18.2.3 正方形
18.2.3 正方形【基础练习】知识点 1 正方形的概念及性质1.如图,已知正方形ABCD的两条对角线相交于点O,那么图中等腰直角三角形有()A.4个B.6个C.8个D.10个2.若正方形的一条对角线的长为4,则这个正方形的面积是()A.8B.4√2C.8√2D.163.如图3,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是()图3A.67.5°B.22.5°C.30°D.45°4.如图4,在正方形ABCD的外侧,作等边三角形ABE,则∠BED的度数为()图4A.15°B.35°C.45°D.55°5.如图5,在正方形ABCD中,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AF的长.图5知识点 2 正方形的判定6.下列判断中,正确的是()A.四条边相等的四边形是正方形B.四个角相等的四边形是正方形C.对角线互相垂直的平行四边形是正方形D.对角线互相垂直平分且相等的四边形是正方形7.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.①②B.②③C.①③D.②④8.如图6,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足条件:时,四边形BEDF是正方形.图69.如图7所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至点E,F,G,H,使BE=CF=DG=AH.求证:四边形EFGH是正方形.图7【能力提升】10.如图8,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF.添加一个条件,仍不能证明四边形BECF为正方形的是()图8A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF11.如图9,四边形ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF-DG=FG.图912.在同一平面内,正方形ABCD与正方形CEFH如图18-2-60放置,连接DE,BH,两线交于点M.求证:(1)BH=DE;(2)BH⊥DE.图18-2-6013.如图,在四边形ABCD中,E,F,G,H分别是AD,BD,BC,AC的中点.(1)当AB,CD满足什么条件时,四边形EFGH是矩形?并证明你的结论;(2)当AB,CD满足什么条件时,四边形EFGH是菱形?并证明你的结论;(3)当AB,CD满足什么条件时,四边形EFGH是正方形?并证明你的结论.答案1.C2.A3.B 4.C5.解:(1)证明:∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD.∵DE=CF,∴AE=DF.在△BAE和△ADF中,{AB=DA,∠BAE=∠ADF, AE=DF,∴△BAE≌△ADF(SAS),∴BE=AF.(2)∵AD=AB=4,DE=1,∴AE=3.∵∠BAE=90°,∴BE=2+AE2=2+32=5,∴AF=BE=5.6.D7.B8.∠ABC=90°(答案不唯一)9.证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB,∴∠EBF=∠HAE=∠GDH=∠FCG.∵BE=CF=DG=AH,∴CG=DH=AE=BF,∴△AEH≌△CGF≌△DHG≌△BFE,∴EF=FG=GH=HE,∠EFB=∠HEA,∴四边形EFGH是菱形.∵∠EFB+∠FEB=90°, ∴∠FEB+∠HEA=∠FEH=90°, ∴菱形EFGH 是正方形.10.D11.证明:∵四边形ABCD 是正方形,∴AB=AD ,∠DAB=90°. ∵BF ⊥AE ,DG ⊥AE ,∴∠AFB=∠AGD=∠ADG+∠DAG=90°. ∵∠DAG+∠BAF=90°, ∴∠ADG=∠BAF.在△BAF 和△ADG 中,{∠BAF =∠ADG ,∠AFB =∠DGA ,AB =DA ,∴△BAF ≌△ADG (AAS), ∴BF=AG ,AF=DG.∵AG=AF+FG ,∴BF=AG=DG+FG. ∴BF -DG=FG.12.证明:(1)∵四边形ABCD 与四边形CEFH 均是正方形,∴BC=DC ,CH=CE ,∠BCD=∠HCE=90°,∴∠BCD+∠DCH=∠HCE+∠DCH ,即∠BCH=∠DCE.在△BCH 和△DCE 中,{BC =DC ,∠BCH =∠DCE ,CH =CE ,∴△BCH ≌△DCE ,∴BH=DE.(2)设CD 与BH 相交于点G ,则∠HBC+∠BGC=90°. 由(1)知△BCH ≌△DCE ,∴∠CDE=∠HBC. 又∵∠DGH=∠BGC ,∴∠CDE+∠DGH=90°, ∴∠GMD=90°,∴BH ⊥DE.13.解:(1)当AB ⊥CD 时,四边形EFGH 是矩形.证明:∵E ,F 分别是AD ,BD 的中点,G ,H 分别是BC ,AC 的中点,∴EF ∥AB ,EF=12AB , GH ∥AB ,GH=12AB , ∴EF ∥GH ,EF=GH ,∴四边形EFGH 是平行四边形. ∵F ,G 分别是BD ,BC 的中点,∴FG ∥CD又∵AB ⊥CD ,EF ∥AB ,∴EF ⊥FG ,即∠EFG=90°, ∴四边形EFGH 是矩形.(2)当AB=CD 时,四边形EFGH 是菱形.证明:∵E ,F ,G ,H 分别是AD ,BD ,BC ,AC 的中点,∴EF=12AB ,GH=12AB ,FG=12CD ,EH=12CD又∵AB=CD ,∴EF=FG=GH=EH ,∴四边形EFGH 是菱形.(3)当AB=CD 且AB ⊥CD 时,四边形EFGH 是正方形. 证明:∵E ,F 分别是AD ,BD 的中点,∴EF ∥AB ,EF=12AB.同理,EH ∥CD ,EH=12CD ,FG=12CD ,GH=12AB.∵AB=CD , ∴EF=EH=GH=FG , ∴四边形EFGH 是菱形. ∵AB ⊥CD ,EF ∥AB ,EH ∥CD , ∴EF ⊥EH ,∴菱形EFGH 是正方形.。
【初中数学】人教版八年级下册课时作业(练习题)
人教版八年级下册课时作业(十)[17.2 勾股定理的逆定理](389)1.某住宅小区有一块草坪如图所示,已知AB=3米,BC=4米,CD=12米,AD=13米,且AB⊥BC,求这块草坪的面积.2.如图,在△ABC中,AB=3,AC=5,BC边上的中线AD=2,延长AD到点E,使DE=AD,连接CE.(1)求证:△DEC≅△DAB;(2)求证:CE⊥AE;(3)求BC边的长.3.一位工人师傅测量一个等腰三角形工件的腰、底及底边上的高,并按顺序记录下数据,量完后,不小心把测量结果与其他记录的数据弄混了,请你帮助这位师傅从下列各组数据中找出这组数据.①13,10,10;②13,10,12;③13,12,12;④13,10,114.如图,已知等腰△ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm,求△ABC的周长.5.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338= 10a+24b+26c.试判断△ABC的形状.6.大家见过形如x+y=z这样的三元一次方程,并且知道数对{x=3,y=4,z=7就是适合该方程的一个正整数解.法国数学家费马早在17世纪还研究过形如x2+y2=z2的方程.(1)请写出方程“x2+y2=z2”的两个正整数解:,;(2)在研究直角三角形和勾股数时,小维同学发现:当最小边长是偶数时,三边长分别是2n,n2−1,n2+1;小尔同学发现:当最小边长是奇数时,三边长分别是2n+1,2n2+2n,2n2+2n+1.请你验证小维、小尔同学的发现.7.命题“全等三角形的面积相等”的逆命题是命题.(填“真”或“假”)8.如图所示,在4×4的正方形网格中,每个小正方形的边长都是1,△ABC的三个顶点分别在正方形网格的格点上,则△ABC的形状是9.张大伯家的菜地是一个三角形,它的三边长分别为7m,24m,25m,则这块菜地的面积是.10.若a,b,c是直角三角形的三条边长,斜边上的高的长是ℎ,以a+b,c+ℎ,ℎ为边长的三条线段能组成直角三角形,这一命题是.(填“真命题”或“假命题”)11.如图,P是等边三角形ABC内的一点,且PA=6,PB=8,PC=10.以PA为边作等边三角形PP′A,连接P′B,则P′B=,∠APB=∘.12.如图,在△ABC中,D是BC边上的点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.13.下列各组线段能构成直角三角形的一组是()A.30,40,50B.7,12,13C.5,9,12D.3,4,614.△ABC中,∠A,∠B,∠C的对边分别是a,b,c,则满足下列条件的三角形不是直角三角形的是()A.∠A=∠B−∠CB.∠A∶∠B∶∠C=1∶1∶2C.a∶b∶c=4∶5∶6D.a2−b2=c215.下列命题的逆命题成立的是()A.三个内角相等的三角形是等边三角形B.同角的余角相等C.三角形中,钝角所对的边最大D.全等三角形的对应角相等16.两艘轮船从同一港口同时出发,甲船时速为40海里,乙船时速为30海里,两个小时后,两船相距100海里,已知甲船的航向为北偏东46∘,则乙船的航向为()A.南偏东44∘B.北偏西44∘C.南偏东44∘或北偏西44∘D.无法确定17.一个零件的形状如图所示,按规定这个零件中的∠A和∠BDC都应为直角,将量得的这个零件的各边尺寸标注在图中,由此可知()A.∠A符合要求B.∠BDC符合要求C.∠A和∠BDC都符合要求D.∠A和∠BDC都不符合要求18.如图在单位正方形的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD,EF,GHB.AB,CD,GHC.AB,EF,GHD.AB,CD,EF参考答案1.【答案】:解:连接AC,根据勾股定理,可求得AC=5.在△ACD中,52+122=132,即AC2+CD2=AD2,所以∠ACD=90∘,AC·CD=30,所以△ACD的面积为12AB·BC=6,△ABC的面积为12故S四边形ABCD=S△ACD+S△ABC=36(米2).即这块草坪的面积为36平方米.2(1)【答案】证明:∵DE=DA,∠EDC=∠ADB,DC=DB,∴△DEC≅△DAB【解析】:利用三角形全等的判定(SAS)定理解题.(2)【答案】证明:由(1)知CE=AB=3.∵AD=2,∴AE=4.在△AEC中,∵AE2+CE2=42+32=25,AC2=52=25,∴AE2+CE2=AC2,∴∠E=90∘,即CE⊥AE【解析】:考查勾股定理的逆定理.(3)【答案】在Rt△DEC中,DC=√DE2+CE2=√13,故BC=2DC=2√13【解析】:考查勾股定理.3.【答案】:解:这组数据是②13,10,12.理由如下:如图,在等腰三角形ABC中,因为AD为底边上的高,所以BD=12BC,此时应满足AD2+(12BC)2=AB2,只有第②组数据符合这一关系.4.【答案】:∵BD2+DC2=122+162=202=BC2,∴CD⊥AB.∴在Rt△ADC中,AC2=AD2+DC2.又∵AC=AB=BD+AD=12+AD,∴(12+AD)2=AD2+162,解得AD=143,故△ABC的周长为:2AB+BC=2(12+AD)+BC=5313cm.【解析】:根据勾股定理的逆定理,在知道△BCD的三条边的长的条件下,可以确定△BCD为直角三角形,进而确定△ADC也为直角三角形,可以求出△ABC的腰长.5.【答案】:∵a2+b2+c2+338=10a+24b+26c,∴a2−10a+25+b2−24b+144+c2−26c+169=0,配方并化简得,(a−5)2+(b−12)2+(c−13)2=0,∵(a−5)2≥0,(b−12)2≥0,(c−13)2≥0.∴a−5=0,b−12=0,c−13=0.解得a=5,b=12,c=13.又∵a2+b2=169=c2,∴△ABC是直角三角形.【解析】:先移项,配成三个完全平方;由三个非负数的和为0,则都为0得到(a\)、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形.6(1)【答案】(答案不唯一) {x=3,y=4,z=5;{x=5,y=12,z=13(2)【答案】∵(2n)2+(n2−1)2\( =4n^2+n^4-2n^2+1\)\( =n^4+2n^2+1\)\( =(n^2+1)^2\),∴小维同学的发现正确.∵(2n+1)2+(2n2+2n)2\( =4n^2+4n+1+4n^4+8n^3+4n^2\)\( =4n^4+8n^3+8n^2+4n+1\)\( =(2n^2+2n+1)^2\),∴小尔同学的发现正确7.【答案】:假【解析】:“全等三角形的面积相等”的逆命题是“面积相等的三角形是全等三角形”,是假命题.8.【答案】:直角三角形【解析】:因为网格中的每个小正方形的边长都是1,所以根据勾股定理,得AC2=12+12=2,BC2=32+32=18,AB2=22+42=20,所以AC2+BC2=AB2,所以△ABC是直角三角形.要判断一个三角形是不是直角三角形,需要根据正方形网格的特点并借助勾股定理计算出三角形三边的平方,然后判断两条较短边长的平方和是否等于最长边的平方.9.【答案】:84m2【解析】:∵72+242=625=252,∴这块菜地的形状是直角三角形,×7×24=84(m2).∴这块菜地的面积是1210.【答案】:真命题【解析】:由勾股定理可知a2+b2=c2,由三角形的面积可知ab=cℎ,∴(c+ℎ)2−(a+b)2=c2+2cℎ+ℎ2−a2−2ab−b2=ℎ2,即(a+b)2+ℎ2=(c+ℎ)2,∴以a+b,c+ℎ,ℎ为边长的三条线段能组成直角三角形.故是真命题.11.【答案】:10;150【解析】:易知△P′AB≅△PAC,∴P′B=PC=10.∵62+82=102,即PP′2+PB2=P′B2,∴∠P′PB=90∘,∴∠APB=∠P′PA+∠P′PB=60∘+90∘=150∘.12.【答案】:解:因为AB2=169,AD2=144,BD2=25,所以AB2=AD2+BD2,所以△ABD是直角三角形,∠ADB=∠ADC=90∘.在Rt△ACD中,由勾股定理得CD2=AC2−AD2=81,故CD=9(负值已舍)【解析】:先根据勾股定理的逆定理判断出△ABD的形状,再根据勾股定理在Rt△ACD中求出CD的长13.【答案】:A【解析】:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.A、302+402=502,该三角形符合勾股定理的逆定理,是直角三角形,正确;B、72+122=49+144=193,132=169,193≠169,该三角形不符合勾股定理的逆定理,不是直角三角形,错误;C、52+92=25+81=106,122=144,106≠144,该三角形不符合勾股定理的逆定理,不是直角三角形,错误;D、32+42=9+16=25,62=36,25≠36,该三角形不符合勾股定理的逆定理,不是直角三角形,错误;故选A.14.【答案】:C【解析】:由∠A=∠B−∠C,可得∠B=∠A+∠C=90∘,故选项A为直角三角形;由∠A∶∠B∶∠C=1∶1∶2可知,∠C=∠A+∠B=90∘,故选项B为直角三角形;选项D可变形为a2=b2+c2,故此三角形是以∠A为直角的直角三角形;而选项C中42+52≠62,不能组成直角三角形,故选C.15.【答案】:A【解析】:选项A的逆命题:等边三角形的三个内角相等,正确;选项B的逆命题:余角相等的两个角是同一个角,错误;选项C的逆命题:三角形中,最大边所对的角是钝角,错误;选项D的逆命题:对应角相等的三角形是全等三角形,错误.故选 A.16.【答案】:C【解析】:因为602+802=1002,所以两船的航线夹角为90∘.因为甲船航向为北偏东46∘,所以乙船航向为南偏东44∘或北偏西44∘.17.【答案】:D【解析】:∵42+42=32≠25,∴∠A不是90∘,∵52+82=89≠122=144,∴∠BDC不是90∘.18.【答案】:C【解析】:设每个小正方形的边长为1,则由图形和勾股定理可知AB2=8,CD2= 20,EF2=5,GH2=13,所以AB2+EF2=GH2. 故AB,EF,GH这三条线段能构成一个直角三角形。
【初中数学】人教版八年级下册课时作业(练习题)
人教版八年级下册课时作业(四十一)[20.2 第2课时用样本方差估计总体方差](389)1.甲、乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是(填“甲”或“乙”).2.两台机床同时生产直径为10mm的零件.为了检验产品的质量,质量检验员从两台机床生产的产品中各抽出5件进行测量,结果如下表(单位:mm):如果你是质量检验员,在收到上述数据后,你将利用哪些知识来判断这两台机床中的哪台生产的零件质量更优?3.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图(不完整):(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?4.七年级(一)班和(二)班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如下表,请根据表中数据解答下列问题.(1)分别求(一)班和(二)班选手进球数的平均数、众数和中位数;(2)如果要从这两个班中选出一个班级参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?5.如图是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定参考答案1.【答案】:甲【解析】:通过计算可知乙组数据的平均数为5,方差为16.4.因为s2甲< s2乙,所以成绩较稳定的是甲2.【答案】:解:答案合理即可.(1)从平均数看,x¯甲=10mm,x¯乙=10mm,由于x¯甲=x¯乙,因此平均数不能反映两台机床生产出的零件质量的优劣;(2)从中位数看,两组数据的中位数都为10mm,故中位数不能反映两台机床生产出的零件质量的优劣;(3)从生产标准质量的零件个数看,甲组中数据10出现了一次,乙组中数据10出现了三次,所以乙机床生产的零件质量更优;(4)从方差看,s甲2=2,s乙2=3.6,由于s甲2<s乙2,说明甲机床生产出的零件直径波动小,因此,从产品质量稳定性的角度考虑,甲机床生产的零件质量更优.3(1)【答案】甲的平均成绩a=5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环),∵乙射击的成绩从小到大重新排列为:3,4,6,7,7,8,8,8,9,10,∴乙射击成绩的中位数b=7+82=7.5(环),其方差c=110×[(3−7)2+(4−7)2+(6−7)2+2×(7−7)2+3×(8−7)2+(9−7)2+(10−7)2]=110×(16+9+1+3+4+9)=4.2.故a=7,b=7.5,c=4.2.(2)【答案】从平均成绩看,甲、乙二人的平均成绩相等,均为7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多而乙射中8环的次数最多;从方差看甲的成绩比乙的成绩稳定.综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大(答案不唯一).4(1)【答案】(一)班选手进球数的平均数是110×(10×1+9×1+8×1+7×4+6×0+5×3)=7(个),众数是7个,中位数是7个. (二)班选手进球数的平均数是110×(10×0+9×1+8×2+7×5+6×0+5×2)=7(个),众数是7个,中位数是7个.【解析】:根据平均数、众数和中位数的定义计算(2)【答案】因为s (一)班2=110×[(10−7)2+(9−7)2+(8−7)2+(7−7)2×4+(5−7)2×3]=2.6, s (二)班2=110×[(9−7)2+(8−7)2×2+(7−7)2×5+(5−7)2×2]=1.4,而1.4<2.6,即s (二)班2<s (一)班2,所以(二)班成绩比(一)班成绩稳定,要争取夺得总进球数团体第一名,应选择(二)班.如果要争取个人进球数进入学校前三名,那么应选择(一)班, 因为(一)班有一个选手的进球数是10个(即十投十中).【解析】:根据方差和个人发挥的最好成绩进行选择5.【答案】:B【解析】:根据方差的意义作出判断,通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故答案为 B。
2020年春人教版八年级数学下册同步练习课件:课时作业(八)
条直水管,则水管的长为( B )
A.45 m
B.40 m
C.50 m
D.56 m
图K-8-1
课时作业(八)
[解析] B 已知东北方向和东南方向的夹角刚好是直角,∴∠AOB
=ห้องสมุดไป่ตู้0°.
又∵OA=32 m,OB=24 m, ∴AB= OA2+OB2= 322+242=40(m).故选 B.
课时作业(八)
AC·BC 24
24
三角形的面积公式,得 AB 边上的高= AB = 5 ,即 CQ′的最小值为 5 .
故选 C.
谢 谢 观 看!
PC+PQ 的最小值是( C )
A.152
B.4
C.254
图 K-8-12 D.5
课时作业(八)
[解析] C 如图,∵AD 平分∠BAC,∴点 Q 关于 AD 的对称点 Q′在 AB
上.当点 Q 固定时,PC+PQ 的最小值是 CQ′;当点 Q 在 AC 上运动时,CQ′
有最小值,最小值是 AB 边上的高.由勾股定理,得 AB= 62+82=10,由
课时作业(八)
[解析] 解法 1:这个圆柱的侧面展开图是一个宽 3 尺,长 20 尺的长方 形,将 5 个这样的长方形并排而放,得到一个宽 AA1=15 尺,长 AB=20 尺 的长方形,如图①,则葛藤的最短长度就是这个长方形的对角线长,由勾 股定理得 A1B= 152+202=25(尺).
解法 2:如图②,∵缠绕了五周,∴将高 分成五等份,∴AC=A′C′=20÷5=4(尺).
[解析] C 梯子斜靠在左墙上时,根据勾股定理可知梯子的长= 2.42+0.72=2.5(m).梯子斜靠在右墙上时,梯子底端到右墙脚的距 离= 2.52-22=1.5(m),所以小巷的宽度=0.7+1.5=2.2(m).
人教版八年级下册数学课时练《19.1.2 函数的图像》(含答案)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!人教版八年级数学下册第十九章一次函数《19.1.2函数的图像》课时练一、选择题1.已知点P (x ,y )在函数212y x x =+-的图象上,那么点P 应在平面直角坐标系中的()A .第一象限B .第二象限C .第三象限D .第四象限2.下面哪个点不在函数23y x =-+的图像上()A .(3,0)B .(0.5,2)C .(-5,13)D .(1,1)3.某地区植树造林2007年达到2万公顷,预计从2008年开始以后每年比前一年多植树1万公顷(2008年为第一年),则年植树面积y (万亩)与年数x (年)的关系是()A .20.5y x =+B .2y x =+C .22y x =+D .2y x=4.已知y 关于x 的函数图象如图所示,则图中当0y >时,自变量x 的取值范围是()A .0x <B .11x -<<或3x >C .1x >-D .1x <-或13x <<5.如图,是A 市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A .4℃B .8℃C .12℃D .16℃6.小强每天从家到学校上学行走的路程为900m ,某天他从家去上学时以每分30m 的速度行走了450m ,为了不迟到他加快了速度,以每分45m 的速度行走完剩下的路程,那么小强离学校的路程s (m )与他行走的时间t (min )之间的函数关系用图象表示正确的是()A .B .C .D .7.下列图象不能反映y 是x 的函数的是()A .B .C .D .8.下列图形中的曲线不表示y 是x 的函数的是()A .B .C .D .9.表示皮球从高处d 落下时,弹跳高度b 与下落高度d 的关系如下表所示:则d 与b 之间的关系式为()下落高度d…80100150…弹跳高度b …405075…A .b =d -40B .b =2dC .b =d 2D .b =2d10.周末,小明骑自行车从家里出发去游玩。
人教版八年级数学下册课时分层训练:17.1 第3课时 利用勾股定理作图、计算
17.1第3课时利用勾股定理作图、计算【基础练习】知识点 1 利用勾股定理在数轴上表示实数1.如图,数轴上点A对应的数是0,点B对应的数是1,BC⊥AB,垂足为B,且BC=2,以A为圆心,AC的长为半径画弧,交数轴于点D,则点D表示的数为()A.2.2B.√2C.√3D.√52.如图所示,在正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是.3.在数轴上作出表示√10,√15的点.知识点 2 勾股定理与网格4.如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB的长为半径画弧,交最上方的网格线于点D,则CD的长为()A.√5B.0.8C.3-√5D.√135.如图,正方形网格中每个小正方形的边长都是1,任意连接这些小正方形的顶点,可得到一些线段.请在图中画出线段AB=√2,CD=√5,EF=√13.知识点 3 勾股定理与图形折叠AB的长为半径画弧, 6.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以A,B为圆心,大于12两弧的交点分别为点P,Q,过P,Q两点作直线交BC于点D,则CD的长是.7.如图,折叠长方形ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8 cm,BC=10 cm,求CE的长.【能力提升】8.在平面直角坐标系xOy中,点A,B的坐标分别为(3,0),(0,4).以A为圆心,AB长为半径画弧,与x轴交于点C,则点C的坐标为.图19.为了比较√5+1与√10的大小,可以构造如图1所示的图形进行推算,其中∠C=90°,BC=3,点D在BC边上,且BD=AC=1.通过计算可得√5+1√10.(填“>”“<”或“=”)图2AC的长为10.如图2,在长方形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,大于12半径作弧,两弧相交于点M和点N;②作直线MN交CD于点E.若DE=2,CE=3,则长方形的对角线AC的长为.11.如图3是4张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长都是1,请在方格纸中分别画出符合下列要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形;(2)画一个底边长为4,面积为8的等腰三角形;(3)画一个面积为5的等腰直角三角形;(4)画一个边长为2√2,面积为6的等腰三角形.图312.如图4,在长方形纸片ABCD中,AB=6,BC=8,沿BD折叠△BCD,使点C落在C'处,BC'交AD 于点E.(1)BE与DE相等吗?请说明理由;(2)求阴影部分的面积.图 4 13.图5甲是第七届国际数学教育大会的会徽,会徽的主体图案是由图乙中的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1. 细心观察图形,认真分析下列各式,然后解答问题:(√1)2+1=2,S 1=√12;(√2)2+1=3,S 2=√22;(√3)2+1=4,S 3=√32;….(1)请用含有n (n 是正整数)的等式表示上述变化规律,并计算出OA 10的长;(2)求出S 12+S 22+S 32+…+S 102的值.图5答案1.D2.-√23.解:由于√10=√32+12,如图①所示,可作以3,1为直角边长的直角三角形,其斜边为OA,在数轴正半轴上截取OB=OA,则点B为表示√10的点.由于√15=√42-12,如图②所示,取点B使OB=1,以点B为直角顶点,BO为一条直角边作直角∠ABO,以点O为圆心,4为半径画弧,交∠ABO的另一条直角边于点A,连接AO,在数轴正半轴上截取OC=AB,则点C为表示√15的点.4.C.5.解:示例如图:6.1.6.7.解:由折叠的性质,知AD=AF=10 cm,DE=EF.在Rt△ABF中,BF=22=22=√36=6(cm),∴CF=BC-BF=4 cm.设CE=x cm,则DE=EF=(8-x)cm.在Rt△FEC中, 由勾股定理,得CF2+CE2=EF2,即42+x2=(8-x)2,解得x=3,即CE=3 cm.8.(-2,0)或(8,0).9.>10.√3011.解:(1)如图①,直角边长分别为4,3的直角三角形.(2)如图②,底边长为4,底边上的高为4的等腰三角形.(3)如图③,直角边长为√10的等腰直角三角形.(4)如图④,底边长为2√2,底边上的高为3√2的等腰三角形.12.解:(1)BE=DE.理由如下:由折叠的性质,得∠C'BD=∠CBD.∵四边形ABCD是长方形,∴AD∥BC,∴∠EDB=∠CBD,∴∠EDB=∠C'BD,∴BE=DE.(2)∵在Rt△ABE中,BE2=AE2+AB2,BE=DE,∴DE2=(8-DE)2+36,解得DE=25,4∴S 阴影部分=12×254×6=754.13.解:(1)根据勾股定理,得OA 2=√(√1)2+12=√2,OA 3=√3,OA 4=2,…,OA 10=√10,…,OA n =√n .S 1=√12,S 2=√22,S 3=√32,…,S 10=√102,…,S n =√n2. (2)S 12+S 22+S 32+…+S 102=√122+√222+√322+…+√1022=1+2+3+…+104=554.。
八年级下册数学分层作业答案第18课时
八年级下册数学分层作业答案第18课时1、已知sina<0且cota>0,则是()[单选题] *、第一象限角B、第一象限角C、第三象限角(正确答案)D、第四象限角2、下列计算正确的是()[单选题] *A. a2+a2=2a?B. 4x﹣9x+6x=1C. (﹣2x2y)3=﹣8x?y3(正确答案)D. a6÷a3=a23、下列语句中,描述集合的是()[单选题] *A、比1大很多的实数全体B、比2大很多的实数全体C、不超过5的整数全体(正确答案)D、数轴上位于原点附近的点的全体4、方程(x+3)(x-2)=0的根是()[单选题] *A.x=-3B.x=2C.x1=3,x2=-2D.x1=-3x2=2(正确答案)5、5.在下列四点中,与点所连的直线不与y轴相交的是().[单选题] * A.(-2,3)B.(2,-3)C(3,2)D(-3,2)(正确答案)6、14、在等腰中,如果的长是的2倍,且三角形周长为40,那么的长是()[单选题] * A.10B.16 (正确答案)C.10D.16或207、1、如果P(ab,a+b)在第四象限,那么Q(a,﹣b)在()[单选题] *A.第一象限B.第二象限(正确答案)C.第三象限D.第四象限8、12.已知点P(m,n),且mn>0,m+n<0,则点P在() [单选题] * A.第一象限B.第二象限C.第三象限(正确答案)D.第四象限9、1.在0,,3,2π,﹣23%,2021这六个数中,非正数有()个.[单选题] * A.2(正确答案)B.3C.4D.010、8.数轴上一个数到原点距离是8,则这个数表示为多少()[单选题] *A.8或﹣8(正确答案)B.4或﹣4C.8D.﹣411、2.在+3,﹣4,﹣8,﹣,0,90中,分数共有()[单选题] *A.1个B.2个C.3个(正确答案)D.4个12、11.小文买了一支温度计,回家后发现里面有一个小气泡(即不准确了),先拿它在冰箱里试一下,在标准温度是零下7℃时,显示为℃,在36℃的温水中,显示为32℃,那么用这个温度计量得的室外气温是23℃,则室外的实际气温应是()[单选题] *A.27℃(正确答案)B.19℃C.23℃D.不能确定13、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B 、33C、16D、414、7.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()[单选题] *A.110°(正确答案)B.145°C.35°D.70°15、14.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学下册章节分层课时作业目录:第十六章二次根式16.1二次根式第1课时二次根式的概念3——4第2课时二次根式的性质5——716.2二次根式的乘除第1课时二次根式的乘法8——11第2课时二次根式的除法12——1516.3二次根式的加减第1课时二次根式的加减16——18第2课时二次根式的混合运算19——21小专题(一)二次根式的运算22——24章末复习(一)二次根式25——27第十七章勾股定理17.1勾股定理第1课时勾股定理28——32第2课时勾股定理的应用33——37第3课时利用勾股定理作图38——40小专题(二)巧用勾股定理解决折叠与展开问题41——4217.2勾股定理的逆定理43——46章末复习(二)勾股定理47——50第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的边、角特征51——55第2课时平行四边形的对角线性质56——5918.1.2平行四边形的判定第1课时平行四边形的判定60——63第2课时三角形的中位线64——67小专题(三)平行四边形的证明思路68——71周周练(18.1) 72——7518.2特殊的平行四边形18.2.1矩形第1课时矩形的性质76——79第2课时矩形的判定80——8318.2.2菱形第1课时菱形的性质84——87第2课时菱形的判定88——9118.2.3正方形92——95小专题(四)特殊平行四边形的性质与判定96——99小专题(五)四边形中的折叠问题100——101小专题(六)四边形中的动点问题102——104章末复习(三)平行四边形105——109第十九章一次函数19.1函数19.1.1变量与函数110——11319.1.2函数的图象第1课时识别函数的图象114——117第2课时画函数图象118——121第3课时函数的三种表示方法122——12619.2一次函数19.2.1正比例函数127——130周周练(19.1~19.2.1) 131——13519.2.2一次函数第1课时一次函数的定义136——139第2课时一次函数的图象与性质140——143第3课时用待定系数法求一次函数的解析式144——147第4课时一次函数的应用148——15119.2.3一次函数与方程、不等式152——155小专题(七) 一次函数与坐标轴围成的三角形156——159小专题(八)一次函数与方程、不等式的综合应用160——164 周周练(19.2.2~19.2.3) 165——16919.3课题学习选择方案170——173章末复习(四)一次函数174——177第二十章数据的分析20.1数据的集中趋势20.1.1平均数第1课时平均数178——181第2课时用样本平均数估计总体平均数182——18620.1.2中位数和众数第1课时中位数和众数187——191第2课时平均数、中位数和众数的应用192——19520.2数据的波动程度196——19920.3课题学习体质健康测试中的数据分析200——203章末复习(五)数据的分析204——208第十六章二次根式16.1二次根式第1课时二次根式的概念01基础题知识点1二次根式的定义1.下列式子不是二次根式的是()A. 5B.3-πC.0.5D.1 32.下列各式中,一定是二次根式的是()A.-7B.3m C.1+x2D.2x3.已知a是二次根式,则a的值可以是()A.-2 B.-1 C.2 D.-54.若-3x是二次根式,则x的值可以为(写出一个即可).知识点2二次根式有意义的条件5.x取下列各数中的哪个数时,二次根式x-3有意义()A.-2 B.0C.2 D.46.(广安)要使二次根式2x-4在实数范围内有意义,则x的取值范围是() A.x>2 B.x≥2C.x<2 D.x=27.当x是怎样的实数时,下列各式在实数范围内有意义?(1)-x;(2)2x+6;(3)x2;(4)14-3x;(5)x-4 x-3.知识点3二次根式的实际应用8.已知一个表面积为12 dm2的正方体,则这个正方体的棱长为() A.1 dm B. 2 dmC. 6 dm D.3 dm9.若一个长方形的面积为10 cm2,它的长与宽的比为5∶1,则它的长为cm,宽为cm.02中档题10.下列各式中:①12;②2x;③x3;④-5.其中,二次根式的个数有()A.1个B.2个C.3个D.4个11.(济宁)若2x-1+1-2x+1在实数范围内有意义,则x满足的条件是()A.x≥12B.x≤12C.x=12D.x≠1212.使式子1x+3+4-3x在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个13.如果式子a+1ab有意义,那么在平面直角坐标系中点A(a,b)的位置在(A)A.第一象限B.第二象限C.第三象限D.第四象限14.使式子-(x-5)2有意义的未知数x的值有个.15.若整数x满足|x|≤3,则使7-x为整数的x的值是.16.要使二次根式2-3x有意义,则x的最大值是.17.当x是怎样的实数时,下列各式在实数范围内有意义?(1)32x-1;(2)21-x;(3)1-|x|;(4)x-3+4-x.03综合题18.已知a,b分别为等腰三角形的两条边长,且a,b满足b=4+3a-6+32-a,求此三角形的周长.第2课时二次根式的性质01基础题知识点1a≥0(a≥0)1.(荆门)已知实数m,n满足|n-2|+m+1=0,则m+2n的值为.2.当x=时,式子2 018-x-2 017有最大值,且最大值为.知识点2(a)2=a(a≥0)3.把下列非负数写成一个非负数的平方的形式:(1)5=;(2)3.4=;(3)16=(4)x=(x≥0).4.计算:( 2 018)2=.5.计算:(1)(0.8)2;(2)(-34)2;(3)(52)2;(4)(-26)2.知识点3a2=a(a≥0)6.计算(-5)2的结果是()A.-5 B.5C.-25 D.25 7.已知二次根式x2的值为3,那么x的值是() A.3 B.9C.-3 D.3或-38.当a≥0时,化简:9a2=.9.计算:(1)49;(2)(-5)2;(3)(-13)2;(4)6-2.知识点4代数式10.下列式子不是代数式的是()A.3x B.3x C.x>3 D.x-311.下列式子中属于代数式的有(A)①0;②x;③x+2;④2x;⑤x=2;⑥x>2;⑦x2+1;⑧x≠2.A.5个B.6个C.7个D.8个02中档题12.下列运算正确的是()A.-(-6)2=-6 B.(-3)2=9C.(-16)2=±16 D.-(-5)2=-2513.若a<1,化简(a-1)2-1的结果是()A.a-2 B.2-a C.a D.-a14.(枣庄)实数a,b在数轴上对应点的位置如图所示,化简|a|+(a-b)2的结果是()A.-2a+b B.2a-b C.-b D.b15.已知实数x,y,m满足x+2+|3x+y+m|=0,且y为负数,则m的取值范围是()A.m>6 B.m<6C.m>-6 D.m<-616.化简:(2-5)2=.17.在实数范围内分解因式:x2-5=.18.若等式(x -2)2=(x -2)2成立,则x 的取值范围是.19.若a 2=3,b =2,且ab <0,则a -b =.20.计算:(1)-2(-18)2;(2)4³10-4;(3)(23)2-(42)2;(4)(213)2+(-213)2.21.比较211与35的大小.22.先化简a +1+2a +a 2,然后分别求出当a =-2和a =3时,原代数式的值.03 综合题23.有如下一串二次根式:①52-42;②172-82;③372-122;④652-162…(1)求①,②,③,④的值;(2)仿照①,②,③,④,写出第⑤个二次根式;(3)仿照①,②,③,④,⑤,写出第个二次根式,并化简.16.2 二次根式的乘除第1课时二次根式的乘法01基础题知识点1a·b=ab(a≥0,b≥0)1.计算2³3的结果是()A. 5B.6C.2 3 D.3 22.下列各等式成立的是()A.45³25=8 5 B.53³42=20 5C.43³32=7 5 D.53³42=20 6 3.下列二次根式中,与2的积为无理数的是()A.12B.12C.18 D.324.计算:8³12=.5.计算:26³(-36)=.6.一个直角三角形的两条直角边分别为a=23cm,b=36cm,那么这个直角三角形的面积为cm2.7.计算下列各题:(1)3³5;(2)125³1 5;(3)(-32)³27;(4)3xy·1 y.知识点2ab=a·b(a≥0,b≥0) 8.下列各式正确的是()A.(-4)³(-9)=-4³-9B.16+94=16³94C.449=4³49D.4³9=4³99.(益阳)下列各式化简后的结果是32的结果是()A. 6B.12C.18D.3610.化简(-2)2³8³3的结果是()A.224 B.-224C.-4 6 D.4 6 11.化简:(1)100³36=;(2)2y3=.12.化简:(1)4³225;(2)300;(3)16y;(4)9x2y5z. 13.计算:(1)36³212;(2)15ab2²10ab.02中档题14.50·a的值是一个整数,则正整数a的最小值是()A.1 B.2 C.3 D.515.已知m=(-33)³(-221),则有()A.5<m<6 B.4<m<5C.-5<m<-4 D.-6<m<-516.若点P(a,b)在第三象限内,化简a2b2的结果是.17.计算:(1) 75³20³12;(2)(-14)³(-112);(3) -32³45³2;(4)200a5b4c3(a>0,c>0).18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦因数,在某次交通事故调查中,测得d=20 m,f=1.2,肇事汽车的车速大约是多少?(结果精确到0.01 km/h)19.一个底面为30 cm³30 cm的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10 cm的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20 cm,铁桶的底面边长是多少厘米?03综合题20. (教材P16“阅读与思考”变式)阅读:古希腊的几何家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如果一个三角形的三边长分别为a、b、c.记:p=a+b+c2,则三角形的面积S=p(p-a)(p-b)(p-c),此公式称为“海伦公式”.思考运用:已知李大爷有一块三角形的菜地,如图,测得AB=7 m,AC=5 m,BC=8 m,你能求出李大爷这块菜地的面积吗?试试看.第2课时二次根式的除法01基础题知识点1ab=ab(a≥0,b>0)1.计算:10÷2=()A. 5 B.5 C.52D.1022.计算23÷32的结果是()A.1 B.23C.32D.以上答案都不对3.下列运算正确的是()A.50÷5=10B.10÷25=2 2C.32+42=3+4=7D.27÷3=34.计算:123=.5.计算:(1)40÷5;(2)32 2;(3)45÷215;(4)2a3bab(a>0).知识点2ab=ab(a≥0,b>0)6.下列各式成立的是()A.-3-5=35=35B.-7-6=-7-6C.2-9=2-9D.9+14=9+14=3127.实数0.5的算术平方根等于()A.2 B. 2 C.22D.128.如果(x-1x-2)2=x-1x-2,那么x的取值范围是()A.1≤x≤2 B.1<x≤2C.x≥2 D.x>2或x≤1 9.化简:(1)7100;(2)11549;(3)25a49b2(b>0).知识点3最简二次根式10.(荆州)下列根式是最简二次根式的是()A.13B.0.3 C. 3 D.2011.把下列二次根式化为最简二次根式:(1) 2.5;(2)85;(3)122;(4)2340.02中档题12.下列各式计算正确的是()A.483=16 B.311÷323=1C.3663=22D.54a2b6a=9ab13.计算113÷213÷125的结果是()A.27 5 B.27C. 2 D.2714.在①14;②a2+b2;③27;④m2+1中,最简二次根式有个.15.如果一个三角形的面积为15,一边长为3,那么这边上的高为.16.不等式22x-6>0的解集是.17.化简或计算:(1)0.9³121100³0.36;(2) 12÷27³(-18);(3)27³123;(4)12x÷25y.18.如图,在Rt △ABC 中,∠C =90°,S △ABC =18cm 2,BC =3cm ,AB =33cm ,CD ⊥AB 于点D.求AC ,CD 的长.03 综合题19.阅读下面的解题过程,根据要求回答下列问题.化简:ab -ab 3-2ab 2+a 2ba(b<a<0).解:原式=ab -a b (b -a )2a① =a (b -a )b -a b a ②=a·1a ab ③ =ab.④(1)上述解答过程从哪一步开始出现错误?请写出代号②; (2)错误的原因是什么? (3)请你写出正确的解法.16.3 二次根式的加减第1课时二次根式的加减01基础题知识点1可以合并的二次根式1.(巴中)下列二次根式中,与3可以合并的是()A.18B.13C.24 D.0.32.下列各个运算中,能合并成一个根式的是()A.12- 2B.18-8C.8a2+2aD.x2y+xy2 3.若最简二次根式2x+1和4x-3能合并,则x的值为()A.-12B.34C.2 D.54.若m与18可以合并,则m的最小正整数值是() A.18 B.8C.4 D.2知识点2二次根式的加减5.(桂林)计算35-25的结果是()A. 5 B.25C.3 5 D.6 6.下列计算正确的是()A.12-3= 3B.2+3= 5C.43-33=1 D.3+22=5 27.计算27-1318-48的结果是()A.1 B.-1 C.-3- 2 D.2- 38.计算2+(2-1)的结果是()A.22-1 B.2-2C.1- 2 D.2+ 29.长方形的一边长为8,另一边长为50,则长方形的周长为.10.三角形的三边长分别为20cm,40cm,45cm,这个三角形的周长是cm.11.计算:(1)23-32;(2)16x+64x;(3) 125-25+45;(4)(黄冈)27-6-1 3.02中档题12.若x与2可以合并,则x可以是() A.0.5 B.0.4C.0.2 D.0.1 13.计算|2-5|+|4-5|的值是()A.-2 B.2C.25-6 D.6-2 514.计算412+313-8的结果是()A.3+ 2B.3C.33 D.3- 215.若a,b均为有理数,且8+18+18=a+b2,则a=,b=.16.已知等腰三角形的两边长分别为27和55,则此等腰三角形的周长为17.在如图所示的方格中,横向、纵向及对角线方向上的实数相乘都得出同样的结果,则两个空格中的实数之和为.18.计算:(1)18+12-8-27;(2) b12b3+b248b;(3)(45+27)-(43+125);(4)34(2-27)-12(3-2).19.已知3≈1.732,求(1327-413)-2(34-12)的近似值(结果保留小数点后两位).03综合题20.若a,b都是正整数,且a<b,a与b是可以合并的二次根式,是否存在a,b,使a+b=75?若存在,请求出a,b的值;若不存在,请说明理由.第2课时二次根式的混合运算01基础题知识点1二次根式的混合运算1.化简2(2+2)的结果是()A.2+2 2 B.2+2C.4 D.3 22.计算(12-3)÷3的结果是()A.-1 B.-3C. 3 D.13.(南京)计算:12+8³6的结果是.4.(青岛)计算:(24+16)³6=.5.计算:40+55=.6.计算:(1)3(5-2);(2)(24+18)÷2;(3)(2+3)(2+2);(4)(m+2n)(m-3n).知识点2二次根式与乘法公式7.(天津)计算:(4+7)(4-7)的结果等于.8.(包头)计算:613-(3+1)2=.9.计算:(1)(2-12)2;(2)(2+3)(2-3);(3)(5+32)2.10.(盐城)计算:(3-7)(3+7)+2(2-2).02中档题11.已知a=5+2,b=2-5,则a2 018b2 017的值为()A.5+2 B.-5-2 C.1 D.-112.按如图所示的程序计算,若开始输入的n值为2,则最后输出的结果是()A.14 B.16C.8+5 2 D.14+ 213.计算:(1)(1-22)(22+1);(2)12÷(34+233);(3)(46-412+38)÷22;(4)24³13-4³18³(1-2)0.14.计算:(1)(1-5)(5+1)+(5-1)2;(2)(3+2-1)(3-2+1).15. 已知a=7+2,b=7-2,求下列代数式的值:(1)ab2+ba2;(2)a2-2ab+b2;(3)a2-b2.03综合题16.观察下列运算:①由(2+1)(2-1)=1,得12+1=2-1;②由(3+2)(3-2)=1,得13+2=3-2;③由(4+3)(4-3)=1,得14+3=4-3;…(1)通过观察你得出什么规律?用含n的式子表示出来;(2)利用(1)中你发现的规律计算:(12+1+13+2+14+3+…+12 017+ 2 016+12 018+ 2 017)³( 2 018+1).小专题(一)二次根式的运算类型1与二次根式有关的计算1.计算:(1)62³136;(2)(-45)÷5145;(3)72-322+218;(4)(25+3)³(25-3).2.计算:(1)334÷(-12123);(2)(6+10³15)³3;(3)354³(-89)÷7115;(4)(12-418)-(313-40.5);(5)(32-6)2-(-32-6)2.3.计算:(1)(2 018-3)0+|3-12|-63;(2)(呼和浩特)|2-5|-2³(18-102)+32.类型2 与二次根式有关的化简求值4.已知a =3+22,b =3-22,求a 2b -ab 2的值.5.已知实数a ,b ,定义“★”运算规则如下:a ★b =⎩⎨⎧b (a ≤b ),a 2-b 2(a>b ),求7★(2★3)的值.6.已知x =2+3,求代数式(7-43)x 2+(2-3)x +3的值.7.(襄阳)先化简,再求值:(1x +y +1x -y )÷1xy +y 2,其中x =5+2,y =5-2.8.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a ,b ,m ,n 均为正整数),则有a +b 2=m 2+2n 2+22mn ,∴a =m 2+2n 2,b =2mn.这样小明就找到了一种把a +b 2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b ,得a =,b =;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:+=(+)2;(答案不唯一)(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.章末复习(一)二次根式01基础题知识点1二次根式的概念及性质1.(黄冈)在函数y=x+4x中,自变量x的取值范围是()A.x>0 B.x≥-4C.x≥-4且x≠0 D.x>0且x≠-4 2.(自贡)下列根式中,不是最简二次根式的是()A.10B.8C. 6D. 23.若xy<0,则x2y化简后的结果是()A.x y B.x-y C.-x-y D.-x y知识点2二次根式的运算4.与-5可以合并的二次根式的是()A.10B.15C.20D.255.(十堰)下列运算正确的是()A.2+3=5B.22³32=62C.8÷2=2 D.32-2=36.计算5÷5³15所得的结果是.7.计算:(1)(湖州)2³(1-2)+8;(2)(43+36)÷23;(3)1232-275+0.5-3127;(4)(32-23)(32+23).知识点3 二次根式的实际应用8.两个圆的圆心相同,它们的面积分别是25.12和50.24.求圆环的宽度d.(π取3.14,结果保留小数点后两位)02 中档题 9.把-a-1a 中根号外面的因式移到根号内的结果是()A .-aB .-aC .--aD . a10.已知x +1x =7,则x -1x 的值为()A. 3B .±2C .± 3 D.711.在数轴上表示实数a 的点如图所示,化简(a -5)2+|a -2|的结果为.12.(青岛)计算:32-82=. 13.计算:(3+2)3³(3-2)3=. 14.已知x =5-12,则x 2+x +1=.15.已知16-n 是整数,则自然数n 所有可能的值为.16.计算:(1)(3+1)(3-1)-16+(12)-1;(2)(3+2-6)2-(2-3+6)2.17.已知x =3+7,y =3-7,试求代数式3x 2-5xy +3y 2的值.18.教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm 2,另一张面积为450 cm 2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m 长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(2≈1.414,结果保留整数)03 综合题19.已知a ,b ,c 满足|a -8|+b -5+(c -18)2=0.(1)求a ,b ,c 的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.第十七章勾股定理17.1勾股定理第1课时勾股定理01基础题知识点1勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为,该定理结论的数学表达式是.2.4个全等的直角三角形的直角边分别为a,b,斜边为c.现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.知识点2利用勾股定理进行计算3.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b24.已知在Rt△ABC中,∠C=90°,AC=2,BC=3,则AB的长为() A.4 B.5C.13 D.55.已知直角三角形中30°角所对的直角的边长是23cm,则另一条直角边的长是()A.4 cm B.43cmC.6 cm D.63cm6.(阿坝)直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为.7.在△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)a=7,b=24,求c;(2)a=4,c=7,求b.8.如图,在△ABC中,AD⊥BC,垂足为点D,∠B=60°,∠C=45°.(1)求∠BAC的度数;(2)若AC=2,求AD的长.02中档题9.(荆门)如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10第9题图第10题图10.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.8011.(陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 3 B.6 C.3 2 D.21第11题图第14题图12.(东营)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或1013.若一直角三角形两边长分别为12和5,则第三边长为.14.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD =.15.图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是.16.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15.(1)求AB的长;(2)求CD的长.17.(益阳)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于点D,设BD=x,用含x的代数式表示CD.→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x.→利用勾股定理求出AD的长,再计算三角形面积.03综合题18.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC 为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2 017个等腰直角三角形的斜边长是.第2课时勾股定理的应用01基础题知识点1勾股定理在平面图形中的应用1.如图,一根垂直于地面的旗杆在离地面5 m处折断,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前的高度是()A.5 m B.12 m C.13 m D.18 m第1题图第2题图2.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行米.3.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE,他们进行了如下操作:①测得BD的长度为15米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.6米.求风筝的高度CE.4.如图,甲船以16海里/时的速度离开码头向东北方向航行,乙船同时由码头向西北方向航行,已知两船离开码头1.5 h后相距30海里,问乙船每小时航行多少海里?知识点2勾股定理与方程的应用5.印度数学家什迦逻(1141~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.6.如图,在一棵树(AD)的10 m高处(B)有两只猴子,其中一只爬下树走向离树20 m(C)的池塘,而另一只则爬到树顶(D)后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?知识点3两次勾股定理的应用7.(绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米第7题图第8题图8.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑米.02中档题9.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1 m),却踩伤了花草()A.4 B.6 C.7 D.8第9题图第10题图10.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为()A.4米B.8米C.9米D.7米11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C 向上拉升3 cm到点D,则橡皮筋被拉长了cm.第11题图第12题图12.将一根24 cm的筷子,置于底面直径为15 cm,高8 cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是.13.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD 是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220 cm.在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.14.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B 处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?03综合题15.如图,在Rt△ABC中,∠C=90°,AB=5 cm,AC=3 cm,动点P从点B 出发沿射线BC以1 cm/s的速度移动,设运动的时间为t s.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.第3课时利用勾股定理作图01基础题知识点1在数轴上表示无理数1.在数轴上作出表示5的点(保留作图痕迹,不写作法).知识点2网格中的无理数2.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.25知识点3等腰三角形中的勾股定理3.在△ABC中,AB=AC=13 cm,BC=10 cm,求等腰三角形的边上的高与面积.02中档题4.(南充)如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1,)B.(3,1)C.(3,3)D.(1,3)5.(成都)如图,数轴上点A所表示的实数是.第5题图第6题图6.(乐山)点A,B,C在格点图中的位置如图所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离.7.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,求BD的长.03综合题8.仔细观察图形,认真分析下列各式,然后解答问题.OA22=(1)2+1=2,S1=1 2;OA23=(2)2+1=3,S2=2 2;OA24=(3)2+1=4,S3=3 2;…求:(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S21+S22+S23+…+S210的值.小专题(二)巧用勾股定理解决折叠与展开问题类型1利用勾股定理解决平面图形的折叠问题【例1】直角三角形纸片的两直角边AC=8,BC=6,现将△ABC如图折叠,折痕为DE,使点A与点B重合,则BE的长为.1.(黔西南)如图,将边长为6 cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是cm.第1题图第2题图2.如图,在长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB=.类型2利用勾股定理解决立体图形的展开问题【例2】(教材P39T12变式与应用)如图,有一个圆柱,它的高等于12 cm,底面半径等于3 cm,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)3.如图是一个高为10 cm,底面圆的半径为4 cm的圆柱体.在AA1上有一个蜘蛛Q,QA=3 cm;在BB1上有一只苍蝇P,PB1=2 cm,蜘蛛沿圆柱体侧面爬到P点吃苍蝇,最短的路径是cm.(结果用带π和根号的式子表示)第3题图第4题图4.如图,在一个长为2 m,宽为1 m的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁从点A处到达点C处需要走的最短路程是m(精确到0.01 m).5.如图,长方体的高为5 cm,底面长为4 cm,宽为1 cm.(1)点A1到点C2之间的距离是多少?(2)若一只蚂蚁从点A2爬到C1,则爬行的最短路程是多少?17.2 勾股定理的逆定理01基础题知识点1互逆命题1.下列各命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.若两个数的绝对值相等,则这两个数也相等C.对顶角相等D.如果a2=b2,那么a=b2.写出下列命题的逆命题,并判断它们是真命题还是假命题.(1)如果两个三角形全等,那么这两个三角形的面积相等;(2)等腰三角形的两个底角相等.知识点2勾股定理的逆定理3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.3,4, 5 B.1,2,3C.6,7,8 D.2,3,44.下列各组数是勾股数的是()A.3,4,5 B.1.5,2,2.5 C.32,42,52D.13,14,155.在△ABC中,AB=8,AC=15,BC=17,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形6.三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶3∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有()A.1个B.2个C.3个D.4个7.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形8.已知:在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a=3,b=22,c=5;(2)a=5,b=7,c=9;(3)a=2,b=3,c=7;(4)a=5,b=26,c=1.9.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是不是直角三角形?为什么?02中档题10.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于()A.10B.11C.12D.13c-10=0,那11.已知a,b,c是三角形的三边长,如果满足(a-6)2+b-8+||么下列说法中不正确的是()A.这个三角形是直角三角形B.这个三角形的最长边长是10C.这个三角形的面积是48D.这个三角形的最长边上的高是4.812.下列定理中,没有逆定理的是()A.等腰三角形的两个底角相等B.对顶角相等C.三边对应相等的两个三角形全等D.直角三角形两个锐角的和等于90°13.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°14.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.15.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD =13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.16.如图,在四边形ABCD中,AB=BC=1,CD=3,DA=1,且∠B=90°.求:(1)∠BAD的度数;(2)四边形ABCD的面积(结果保留根号).03综合题17.在一次“探究性学习”课中,老师设计了如下数表:。