人教版初一数学上册数轴上两点间的距离

合集下载

数学-初一上-7年级上--人教版-数轴上两点的距离专项练习(四)附答案

数学-初一上-7年级上--人教版-数轴上两点的距离专项练习(四)附答案

●分清:在数轴上,点的名称以及该点所代表的数.●数轴上任意两点的距离:两点大小已知,大减小;两点大小未知,两数之差的绝对值.●逆向思维:绝对值可理解为数轴上两点的距离。

如|a-b|表示数a和数b的两点之间的距离;|a+b|表示数a和数-b的两点之间的距离;|a|表示数a和原点之间的距离.●数轴上两点距离的表示:用点的名称;如数轴上两点A,B之间的距离记为AB.1.数轴上点A表示-5,点B表示3,则表示A,B两点间的距离的算式是()A. -5+3B. -3-(-5)C. 3-(-5)D. 3-52.(1) 数轴上表示5和9的两点之间的距离是______(2) 数轴上表示-5和9的两点之间的距离是______(3) 数轴上表示5和-9的两点之间的距离是______(4) 数轴上表示-5和-9的两点之间的距离是______(5) 若数轴上表示a与-3的两点之间的距离是5个单位长度,则a的值是______3.数轴上点A(点的名称)表示的数为a(点A在数轴上所代表的数字), 若点A到原点的距离为4,则a=______; 若点B表示的数为2,点A到点B的距离为6,则a=______;4.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示6和2的两点之间的距离是_________; 表示-5和7两点之间的距离是___________;一般地,数轴上表示数a和数b的两点之间的距离等于_________;(2)如果|x-5|=3, 那么根据(1)的结论得x=_________;(3)若|x-2|=3, |y-1|=6, 且数x, y在数轴上对应的点分别是点M,N, 请借助数轴求M,N两点间的最大距离和最小距离的差;(4)若数轴表示数a的点位于-3与7之间,则|a-7|+|a+3|=_________.BA O ab 0 O 0 8 acd B C D5. 如图,数轴上的两个点A, B, 所表示的数分别为a, b ,那么A,B 两点之间的距离是AB=|a-b|. 直接利用此结论,回答以下问题:(1)数轴上表示3和9的两点之间的距离是_________, 数轴上表示5和-7的两点之间的距离是_________;(2)在数轴上,点A (表示整数a )在原点o 的左边,点B(表示整数b)在原点o 的右边,若|a-b|=9且AO=2BO,则a 的值是_________.6. 试试通过画数轴做出下列问题:已知|a+4|=1, |b-2|=5, 求a-b 的值.7. 如图数轴上A,B,C,D 四点所表示的数分别为a,8,c,d,若AB=BC=CD 且|a-d|=12, 求a, c, d 的值.8. 三点A,B,C 在数轴上,点A,B 在数轴上表示的数分别为-11,14(规定:数轴上两点A,B 之间的距离记为AB )(1)若点C 在A,B 两点之间,满足AC=BC ,则点对应的数是_______________;(2)若点C 在A,B 两点之间,满足AC:BC=2:3,则点C 对应的数是____________;A23 -1 3M M’ 1 5 7 66 -5 N N ’ 图1 -37 a 图2|a-(-3)| |a-7| A B C (3)若点C 在数轴上,满足AC:BC=2:3,则点C 对应的数是_______________;(4)若点C 在数轴上,满足AC-BC=12,则点C 对应的数是______________;(5)若点C 在数轴上,满足AC+BC=32,则点C 对应的数是______________;参考答案:1. C (解析:3>-5,已知大小,大减小);2. (1) 4; (2)14; (3)14; (4)4; (5)2或-8;(5)解析:∵a 与-3大小未知,∴|a-(-3)|=5, ∴a=2或-8.3. ±4;8或-4;4. (1) 4; 12; |a-b|或|b-a|均可;(2) -2或8;4. (3) 由图1可知,M 点代表的数x=-1或5;N 点代表的数y=-5或7;MN 最大值=NM’=10; MN 最小值=M’N’=2; ∴差=10-2=8(4) 由图2可知,线段AB=|a-(-3)|=|a+3|;线段AC=|7-a|=|a-7|;∴|a-7|+|a+3|=AB+AC=AC=7-(-3)=105. (1) 6; 12; (2) -6;(2) 解析:∵点B在原点O的左边,∴b>0, ∴BO=b-0=b;同理AO=0-a=-a.∵|a-b|=9, ∴AB=9=AO+BO=-a+b=b-a;又∵AO=2BO, ∴-a=2◊b,∴b-a=b+2b=3b=9, ∴b=3, a=-(2◊3) =-6;6. -10或0或-12或-2;7. ∵|a-d|=12, ∴AD=12, ∴AB=BC=CD=3, ∴a=8-3=5, b=8+3=11,c=8+6=14;8. 由题可知,∵14>-11,∴AB=14-(-11)=25.设点C点代表的数为x;(1)由“点C在A,B两点之间”可知,-11<x<14,则AC=x-(-11)=x+11, BC=14-x∵AC=BC,∴x+11=14-x, ∴2x=14-11=3,∴x=1.5;(2)与上题条件相同,AC=x+11,BC=14-x; ∵AC:BC=2:3, ∴2(14-x)=3(x+11)∴28-2x=3x+33 ∴x=-1;(3)由“点C在数轴上”可知,C点在数轴上位置不确定,也就是不知道x和-11,14的大小.大小不确定,则用绝对值运算。

人教版数学七年级上册期末复习:动点问题和绝对值问题压轴题

人教版数学七年级上册期末复习:动点问题和绝对值问题压轴题

压轴题:动点问题以及绝对值问题总结一、填空题1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)数轴上表示3和5两点之间的距离是________,数轴上表示2和-5两点之间的距离是________.(2)在数轴上表示数x的点与﹣2的点距离是3,那么x=________.(3)如果x表示一个有理数,那么|x+4|+|x﹣2|的最小值是________.(4)如果x表示一个有理数,当x=________时,|x+3|+|x﹣6|=11.2.阅读下列内容:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.数轴上表示数a的点与表示数b的点的距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在答题卡相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x=________,若|x﹣2|=|x+1|,则x=________;(2)若|x﹣2|+|x+1|=3,则x的取值范围是________;(3)若|x﹣2|+|x+1|=5,则x的值是________;(4)若|x﹣2|﹣|x+1|=3,则x能取到的最大值是________.二、综合题3.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=________;B,C两点间距离=________;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=________;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?4.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB=________,BC=________;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P 到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.5.已知a是最大的负整数,与互为相反数,在数轴上,所对应的点分别为A,B,C,点P为该数轴上一动点,其对应的数为x.(1)a=________,b=________,c=________;(2)化简:;(3)三个点在数轴上运动,其中点A以每秒3个单位长度的速度向左运动,同时,点B与点C分别以每秒2个单位长度和5个单位长度的速度向右运动,试求几秒后B点到点A、点C的距离相等?6.已知A,B在数轴上对应的数分别用a,b表示,且|2b+20|+|a-0|=0,P是数轴上的一个动点,0为原点。

七年级数学上册1.2.2 数轴-数轴上的动点问题 解答题专项练习十五(人教版,含解析)

七年级数学上册1.2.2 数轴-数轴上的动点问题 解答题专项练习十五(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习十五1.2.2 数轴-数轴上的动点问题1.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数互为相反数,那么点C、D表示的数是多少?2.如图,点P、Q在数轴上表示的数分别是-8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为_______,点P、Q之间的距离是______个单位;(2)经过__________秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.3.已知在数轴上有A、B两点,点A表示的数为8,点B在A点的左边,且12AB=.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒,解决以下问题:(1)写出数轴上点B所表示的数;t=秒时,写出数轴上点P,Q所表示的数;(2)当1(3)若点P,Q分别从A、B两点同时出发,问运动多少秒后点P与点Q相距3个单位长度?4.小红家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A,B,C,D,学校位于小红家西150m,邮局位于小红家东100m,图书馆位于小红家西400m.(1)用数轴表示A,B,C,D的位置;(以小红家为原点)(2)一天小红从家中去邮局寄信后,以每分钟25m的速度往图书馆方向走了16分钟,这时小红距图书馆和学校各多少米?5.如图:在数轴上 A 点表示数 a,B 点示数 b,C 点表示数 c,b 是最大的负整数,且 a、b 满足|a+ 3|+(c﹣6)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得 A点与B 点重合,则点 C与数表示的点重合;(3)点 A、B、C开始在数轴上运动,若点 A以每秒 2个单位长度的速度向左运动,同时,点 B和点 C分别以每秒1个单位长度和 4个单位长度的速度向右运动,假设 t 秒钟过后,若点 A与点 B之间的距离表示为 AB,点 A与点 C之间的距离表示为 AC,点 B与点 C之间的距离表示为 BC.则 AB= ,AC= ,BC= .(用含 t的代数式表示)(4)请问:2BC+AB - 32AC的值是否随着时间 t 的变化而改变?若变化,请说明理由;若不变,请求其值.6.已知:b是最小的正整数,且a、b满足(c−5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值,a=______,b=____,c=______.(2)数轴上a、b、c三个数所对应的分别为A、B、C,点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动.①经过2秒后,求出点A与点C之间的距离AC.②经过t秒后,请问:BC−AB的值是否随着时间t的变化而改变?若变化,请说明理上;若不变,请求其值.7.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B 两点之间的距离AB=|a-b|.已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)A,B两点之间的距离是;(2)设点P在数轴上表示的数为x,则x与-4之间的距离表示为;(3)若点P到点A、点B的距离相等,求点P对应的数;(4)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(5)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?8.一只电子跳蚤在数轴上左右跳动,最开始在数轴上的位置记为A,按如下指令运动:第一次向右跳动一格到A1.第二次在第一次的基础上向左跳动两格到A2.第三次在第二次的基础上向右跳动三格到A3.第四次在第三次的基础上向左跳动四格到A4,以此类推(1)若点A0表示原点,则跳动 10次后到点A10,它的位置在数轴上表示的数是.若每跳一格用时一秒,则跳动10次后到点A10,共用去时间是秒.(2)若跳动100次后到点A100,且所表示的数恰好是50,试求电子跳蚤的A初始位置所表示的数A.9.如图,在一条不完整的数轴上从左到右有点A,B,C,其中2AB BC=,设点A,B,C所对应数分别为a、b、c,且a b c m++=.(1)若点C为原点,1BC=,则a=__________,b=_________,m=_________;(2)若点B为原点,6AC=,求m的值.(3)若原点O到点C的距离为8,且OC AB=,求m的值.10.操作探究:已知在纸面上有一数轴左右对折纸面,折痕所在的直线与数轴的交点为“对折中心点”.(1)操作一:左右对折纸面,使1对应的点与-1对应的点重合,则-3对应的点与_____对应的点重合;(2)操作二:左右对折纸面,使-1对应的点与3对应的点重合,回答以下问题:①对折中心点对应的数为__________,对折后5对应的点与数_________对应的点重合;②若数轴上A、B两点之间的距离为11(A在B的左侧),且A、B两点经折叠后重合,通过计算求A、B两点对应的数分别是多少?(3)操作三:已知数轴上的点A对应的数是a,点B对应的数是b,对折中心点C对应的数是c,此时点A与点B对折重合,那么a,b,c三数满足的关系式为__________.11.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,52,-3.观察数轴,与点A的距离为3的点表示的数是____,A,B两点之间的距离为_____.(2)数轴上,点B关于点A的对称点表示的数是_____.(3)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是_____;若此数轴上M,N两点之间的距离为2019(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则点M表示的数是_____,点N表示的数是_____;(4)若数轴上P,Q两点间的距离为a (P在Q左侧),表示数b的点到P,Q两点的距离相等,将数轴折叠,当P点与Q点重合时,点P表示的数是_____,点Q表示的数是_____(用含a,b的式子表示这两个数).12.已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“-”,从开始到结束爬行的各段路程(单位:cm)依次为:+7,-5,-10,-8,+9,-6,+12,+4.(1)若A点在数轴上表示的数为-3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)蜗牛在(1)题在数轴上停的位置作以下运动:第1次向左移动1个单位长度至B点,第2次从B点向右移动2个单位长度至C点,第3次从C点向左移动3个单位长度至D点,第4次从D点向右移动4个单位长度至E点,…,依此类推.这样第2019次移动到的点在数轴上表示的数为(请直接写出答案).13.已知,如图,A、B、C分别为数轴上的三个点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A距离是B点到A点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度项终点C 运动,运动时间为t 秒.①点P 点在AB 之间运动时,则BP =_______.(用含t 的代数式表示)②P 点在A 点向C 点运动过程中,何时P 、A 、B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直接写出....相遇是P 点在数轴上对应的数.14.如图 .在数轴.上有A B 、两个点(点A 在点B 的左侧) , 20AB =(1)如果点A 表示的数是5- ,那么,①点B 表示的数是_______.②如果点C 从点A 出发,沿数轴正方向运动,速度是每秒3个单位长度,运动秒后,点C 表示的数是_______.( 用含t 的代数式表示) ; 经过________秒 , CA CB =.(2)如果点A 表示的数是10-,将数轴的负半轴绕原点O 顺时针旋转60° ,得到120AOB ∠=︒,如图2所示,射线OP 从OA 出发绕点O 顺时针旋转,速度是每秒15° ,同时,射线OQ 从OB 出发绕点O 逆时针旋转,速度是每秒5° .设运动时间为t 秒,当20t =秒时, ,OP OQ 停止运动.①当t 为________秒时,OP 与OQ 重合. ②当12BOP BOQ ∠=∠时,t 的值是________.15.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为1-,正方形ABCD的面积为16.(1)数轴上点B表示的数为__________;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为''''A B C D,移动后的正方形S=时,画出图形,并求出数轴上点A B C D与原正方形ABCD重叠部分的面积记为S.当4'''''A表示的数;参考答案1.(1)点C表示的数是-1;(2)表示的数是0.5,点D表示的数是-4.5.详见解析.解析:(1)根据互为相反数的定义确定出点O的位置,再根据数轴写出点C表示的数即可;(2)根据互为相反数的定义确定出点O的位置,再根据数轴写出点C、D表示的数即可.详解:(1)如图,点C表示的数是-1.(2)如图,点C表示的数是0.5,点D表示的数是-4.5.点睛:本题考查了相反数,数轴,熟练掌握相反数的定义并确定出原点的位置是解题的关键.2.(1)-4,10(2)4,12(3)①23②26③2④263解析:(1)点P表示的数为根据数在数轴的移动列算式计算即可.点P、Q之间的距离是先求出移动后P、Q表示的数再相减即可.(2)运动问题分为相遇和追及两种情况,分别列方程求出即可.相遇:P的路程+Q的路程=PQ;追及P的路程-Q的路程=PQ详解:(1)P表示的数:-8+2×2=-4,P表示的数:4+1×2=6 所以点P、Q之间的距离是6-(-4)= 10;(2)设经t秒点P、Q重合相遇时:2t+t=12解得t=4;追及时:2t-t=12解得t=12;(3)P向左运动,Q向右运动时:①2t+t+12=14 解得 t=23.点P、Q同时向左运动②2t=26+t 解得t=26 点P、Q同时向右运动③2t+12=14+t 解得t=2.点P向右运动,Q向左运动时:④2t+t=12+14 解得t=26 3答:经过23、26、2、263秒时,P 、Q 相距14个单位. 考点:有理数的运算,数轴.3.(1)-4;(2)P 表示5,Q 表示-2;(3)1.8秒或3秒.解析:(1)根据点A 表示的数为8,点B 在A 点的左边,且12AB =,设点B 为x ,根据绝对值的意义列式即可得知B 的数值;(2)根据数轴上的数值越向左越小,越向右越大的规律,用A 的数值减去P 点运动距离,用B 的数值加上Q 运动的数值即可得出答案;(3)设点P 运动时间为t 秒时,与Q 相距3个单位长度,则AP=3t ,BQ=2t ,根据AP+BQ=AB-3,或AP+BQ=AB+3列式计算即可.详解:解:(1)设B 点为x ,∵点A 表示的数为8,且12AB =, ∴812x -=解得4,30x x =-=∵点B 在A 点的左边∴点B 为-4;(2)∵P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,∴P=8-3×1=5∵Q 从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动∴Q=-4+2×1=-2即数轴上点P ,Q 所表示的数分别为3,-2;(3)设点P 运动t 秒时,与Q 相距3个单位长度,则AP=3t ,BQ=2t ,①如下图,当AP+BQ=AB-3时,即3t+2t=12-3,解得t=1.8秒;②如下图,当AP+BQ=AB+3时,即3t+2t=12+3,解得t=3秒,故运动1.8秒或3秒后点P与点Q相距3个单位长度.点睛:本题考查的是数轴上点的距离问题,能够结合数轴分不同情况列式结算是解题的关键.4.(1)见解析;(2)小红距图书馆100米,距学校150米解析:(1)根据题意,可设从西向东方向为正方向,小红家所在位置为原点,则很容易用数轴来表示A、B、C、D的位置;(2)根据路程=速度×时间,结合(1)中的解答回答问题.详解:(1)根据题意,可设从西向东方向为正方向,小红家所在位置为原点,则用数轴表示上述A、B、C、D的位置如下:(2)25×16=400(米),100﹣400=﹣300,﹣300﹣(﹣400)=100(米),﹣150﹣(﹣300)=150(米).故小红距图书馆100米,距学校150米.点睛:此题主要考查数轴的意义运用,熟练掌握,即可解题.5.(1)-3,-1,6;(2)-10;(3)AB=2+3t,AC=6t+9,BC=7+3t;(4)不变,2.5.解析:(1)利用|a+3|+(c-6)2=0,得a+3=0,c-6=0,解得a,c的值,由b是最大的负整数,可得b=-1;(2)先求出对称点,然后再求得点C到对称点的距离,从而求得点C的对称点;(3)利用数轴表示出A、B、C三点表示的数,进而可得AB、AC、BC的长;(4)根据题意列方程即可得到结论.详解:(1)∵|a+3|+(c-6)2=0,∴a+3=0,c-6=0,∴a=-3,c=6,∵b是最大的负整数,∴b=-1;(2)点A与点B的中点对应的数为:312--=-2,点C到-2的距离为8,所以与点C重合的数是:-2-8=-10.(3)AB=t+2t+2=3t+2,AC=2t+4t+9=6t+9,BC=(4-1)t+7=3t+7;(4)∵AB=3t+2,AC=6t+9,BC=3t+7,∴2BC+AB - 32AC=2(3t+7)+3t+2-32(6t+9)=6t+14+3t+2-9t-13.5=2.5,∴2BC+AB - 32AC的值不随着时间t的变化而改变,其值为2.5.点睛:考查了实数与数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.6.(1)a=-1,b=1,c=5;(2)14;(3)不变;2.解析:(1)根据b为最小的正整数求出b的值,再由非负数的和的性质建立方程就可以求出a、b的值;(2)分别表示出2秒钟过后A、C的位置,根据数轴上两点之间的距离公式就可以求出结论;(3)先根据数轴上两点之间的距离公式分别表示出BC和AB就可以得出BC-AB的值的情况.详解:(1)∵b是最小的正整数,∴b=1.∵(c-5)2+|a+b|=0,∴{c−5=0a+b=0,∴a=-1,b=1,c=5.故答案为:a=-1,b=1,c=5;(2)由题意,得2秒钟过后A点表示的数为:-1-2=-3,C点表示的数为:5+6=11,∴AC=11-(-3)=14;故答案为:14;(3)由题意,得BC=4+2t,AB=2+2t,∴BC-AB=4+2t-(2+2t)=2.∴BC-AB的值是不随着时间t的变化而改变,其值为2.点睛:本题考查了数轴的运用,数轴上任意两点间的距离的运用,代数式表示数的运用,非负数的性质的运用,一元一次方程的运用,解答时求出弄清楚数轴上任意两点间的距离公式是关键.7.(1)4;(2)|x+4|;(3)1;(4)-3或5;(5)13或813.解析:(1)(2)在数轴上A、B两点之间的距离为AB=|a-b|,依此即可求解;(3)根据中点坐标公式即可求解;(4)分两种情况:点P在点A的左边,点P在点B的右边,进行讨论即可求解;(5)分两种情况:点A在点B的左边,点A在点B的右边,进行讨论即可求解.详解:(1)A,B两点之间的距离是3-(-1)=4(2)x与-4之间的距离表示为|x-(-4)|=|x+4|(3)(-1+3)÷2=1.故点P对应的数是1;(4)点P在点A的左边,x的值是-1-(8-4)÷2=-3;点P在点B的右边,x的值是3+(8-4)÷2=5.故x的值是-3或5;(5)点A在点B的左边,(4-3)÷(2-0.5)×2+(-1)=13.点A所对应的数是1 3点A在点B的右边,(4+3)÷(2-0.5)×2+(-1)=813.点A所对应的数是813.故点A所对应的数是13或813.点睛:本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.注意分类思想在解题中的运用.8.(1)﹣5,55;(2)100.解析:(1)根据数轴上“左加右减”的原则进行计算即可,先求出青蛙跳10次所跳过的总格数,再根据它每跳一格用时1秒即可求出结论;(2) 设A0表示的数为a,由若跳动100次后到点A100,且所表示的数恰好是50列代数式可求出a.详解:解:(1)∵在数轴原点上第一次向右跳动一格,到数1;第二次在第一次基础上向左跳两格,到数﹣1;第三次在第二次的基础上向右跳动三格;第四次在第三次的基础上向左跳四格,∴它跳10次后,它的位置在数轴上表示的数=0+1﹣2+3﹣4+5﹣6+7﹣8+9﹣10=﹣5.答:它跳10次后,它的位置在数轴上表示的数是﹣5;电子跳蚤跳10次所跳过的格数=1+2+3+4+5+6+7+8+9+10=55,∵它每跳一格用时1秒,∴它跳10次共用去的时间=55×1=55秒.答:它每跳一格用时1秒,它跳10次共用去55秒.故答案为﹣5,55;(2)设A表示的数为a,则a+1﹣2+3﹣4+…+99﹣100=50.∴a+(1﹣2)+(3﹣4)+…+(99﹣100)=50.∴a﹣50=50.∴a=100.∴点A表示的数是100.点睛:本题考查的是数轴,熟知数轴上各数的特点是解答此题的关键.9.(1)-3,-1,-4;(2)-2;(3)m=8或-40.解析:(1)根据数轴上的点对应的数、已知的线段关系以及对应数字间的关系即可解答;(2)先根据数轴上原点的位置确定其它点对应的数,然后根据a b c m++=即可解答;(3)先确定点C的对应数为±8,然后再分8和﹣8两种情况解答即可.详解:解:(1)∵点C为原点,BC=1且B在C的左边∴B所对应的数为-1,∵AB=2BC,∴AB=2,∴AC=AB+BC=3,∴点A所对应的数为-3,∵m=a+b+c=-3-1+0=-4;故答案为:-3,-1,-4;(2)∵点B为原点,AC=6,AB=2BC,∴AC=3BC=6,即BC=2,AB=AC-AB=4∴点C所对应的数为2,点A所对应的数为-4∴m= a+b+c=-4+2+0=-2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为-4,∴m=a+b+c=4-4+8=8;当点C所对应的数为-8,AB=8,AB=2BC,∴点B 所对应的数为-12,点A 所对应的数为-20。

人教版初一数学上册知识点归纳总结

人教版初一数学上册知识点归纳总结

人教版初一数学上册知识点归纳总结一、有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 例如:3是正整数,-5是负整数,0.5=(1)/(2)是分数,0.333·s=(1)/(3)也是分数,它们都属于有理数。

2. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 数轴上的点与有理数一一对应。

右边的数总比左边的数大。

例如:在数轴上表示-2的点在表示-3的点的右边,所以-2 > -3。

3. 相反数。

- 只有符号不同的两个数互为相反数。

0的相反数是0。

- 若a与b互为相反数,则a + b=0。

例如:3与-3互为相反数,3+( - 3)=0。

4. 绝对值。

- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

- 即| a|=a(a≥0) -a(a < 0)。

例如:|5| = 5,| - 3|=3。

5. 有理数的加减法。

- 加法法则:- 同号两数相加,取相同的符号,并把绝对值相加。

例如:2 + 3=5,(-2)+(-3)=-5。

- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如:2+( - 3)=-1,(-2)+3 = 1。

- 一个数同0相加,仍得这个数。

- 减法法则:减去一个数,等于加上这个数的相反数。

即a - b=a+( - b)。

例如:5-3 = 5+( - 3)=2。

6. 有理数的乘除法。

- 乘法法则:- 两数相乘,同号得正,异号得负,并把绝对值相乘。

例如:2×3 = 6,(-2)×(-3)=6,2×(-3)=-6。

- 任何数同0相乘都得0。

- 多个有理数相乘:几个不为0的数相乘,负因数的个数为偶数时,积为正;负因数的个数为奇数时,积为负。

例如:(-2)×(-3)×4 = 24,(-2)×3×4=-24。

人教版七年级数学上册 第三章 运用一元一次方程解决 数轴上两点间距离问题 专题训练(含答案)

人教版七年级数学上册 第三章 运用一元一次方程解决 数轴上两点间距离问题 专题训练(含答案)

数轴上两点间距离 专题训练〖规律归纳〗数轴上点A 表示的数是a ,点B 表示的数是b ,则: ①到点A 与点B 的距离相等(即线段AB 的中点)的点表示的数是a+b 2;②若能明确点A 与点B 的位置关系,则点A 与点B 的距离(即线段AB 的长)为:大数减小数; ③若不能明确点A 与点B 的位置关系,则点A 与点B 的距离(即线段AB 的长)为|a −b |或|b −a | 例1.【思考】数轴上,点C 是线段AB 的中点,请填写下列表格: 【发现】通过表格可以得到,数轴上一条线段的中点表示的数是这两条线段端点表示的数的 ; 【表达】若数轴上A 、B 两点表示的数分别为m 、n ,则线段AB 的中点表示的数是 ;【应用】如图,数轴上点A 、C 、B 表示的数分别为﹣2x 、13x ﹣4、1,且点C 是线段AB 的中点,求x 的值.练习:如图,点A ,B 在数轴上表示的数分别为﹣2与+6,动点P 从点A 出发,沿A →B 以每秒2个 单位长度的速度向终点B 运动,同时,动点Q 从点B 出发,沿B →A 以每秒4个单位长度的速度向 终点A 运动,当一个点到达时,另一点也随之停止运动. (1)当Q 为AB 的中点时,求线段PQ 的长; (2)当Q 为PB 的中点时,求点P 表示的数.例2.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为﹣5,b ,4.某同学将 刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻 度5.4cm .(1)在图1的数轴上, AC = 个长度单位;数轴上的一个长度单位对应刻度尺上的 cm ; (2)求数轴上点B 所对应的数b ;(3)在图1的数轴上,点Q 是线段AB 上一点,满足AQ =2QB ,求点Q 所表示的数.练习:在数轴上,点A 代表的数是﹣12,点B 代表的数是2,AB 代表点A 与点B 之间的距离. (1)①AB = ;②若点P 为数轴上点A 与B 之间的一个点,且AP =6,则BP = ; ③若点P 为数轴上一点,且BP =2,则AP = .(2)若C 点为数轴上一点,且点C 到点A 点的距离与点C 到点B 的距离的和是35,求C 点表示的数.(3)若P 从点A 出发,Q 从原点出发,M 从点B 出发,且P 、Q 、M 同时向数轴负方向运动,P 点的运动速度是每秒6个单位长度,Q 点的运动速度是每秒8个单位长度,M 点的运动速度是每秒2个单位长度,当P 、Q 、M 同时向数轴负方向运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少?A 点表示的数B 点表示的数C 点表示的数2 6 ﹣1﹣5 ﹣31例3.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=;B,C两点间距离=;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?练习:如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数字1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?〖尝试反馈〗1.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.2.如图,已知数轴上点A,O,B对应的数分别为﹣2,0,6,点P是数轴上的一个动点.(1)设点P对应的数为x.①若点P到点A和点B的距离相等,则x的值是;②若点P在点A的左侧,则PA=,PB=(用含x的式子表示);(2)若点P以每秒1个单位长度的速度从点O向右运动,同时点A以每秒3个单位长度的速度向左运动,点B以每秒12个单位长度的速度向右运动,在运动过程中,点M和点N分别是AP 和OB的中点,设运动时间为t.求MN的长(用含t的式子表示);3.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.4.如图,A、B分别为数轴上的两点,A点对应的数为﹣5,B点对应的数为55,现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q点所对应的数.5.已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q 是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?6.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.7.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.8.如图,在数轴上A点表示数a,B点表示数b,且a、b满足|a+12|+(b﹣6)2=0.(1)求A、B两点之间的距离;(2)点C、D在线段AB上,AC为14个单位长度,BD为8个单位长度,求线段CD的长;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动,求经过几秒,点P、点Q到点C的距离相等.参考答案例1.(1)4,﹣3,﹣1;(2)和的一半;(3)n+m 2;(4)由题意得,−2x+12=13x −4,解得:x =278.练习:(1)PQ =2﹣0=2,(2)设点Q 移动的时间为t 秒,则移动后点Q 所表示的数为6﹣4t ,移动后点P 所表示的数为﹣2+2t , 当Q 为PB 的中点时,有−2+2t+62=6−4t ,解得,t =45,此时.点P 为﹣2+2×45=﹣25.例2:(1)9;0.6.(2)点B 所对应的数b 为﹣2;(3)设点Q 所表示的数是x ,依题意有 x ﹣(﹣5)=2(﹣2﹣x ),解得x =﹣3.故点Q 所表示的数是﹣3. 练习:(1)①14.②BP =AB ﹣AP =14﹣6=8.③P 在数轴上点A 与B 之间时,AP =AB ﹣BP =14﹣2=12;当P 不在数轴上点A 与B 之间时,因为AB =14,所以P 只能在B 右侧,此时BP =2,AP =AB+BP =14+2=16.(2)假设C 为x ,当C 在A 左侧时,AC =﹣12﹣x ,BC =2﹣x ,AC+BC =35,解得x =−452; 当C 在B 右侧时,AC =x ﹣(﹣12),BC =x ﹣2,AC+BC =35,解得x =252.(3)设经过时间T 秒,则P 点坐标为﹣12﹣6T ,Q 点坐标为﹣8T ,M 点坐标为2﹣2T .当Q 在P 和M 的正中间,即Q 为PM 的中点时,2(﹣8T )=(﹣12﹣6T )+(2﹣2T ),解得T =54s .当P 在Q 和M 的正中间,即P 为QM 的中点时,2(﹣12﹣6T )=(﹣8T )+(2﹣2T ),解得T =﹣13<0,不合题意,舍掉.当PQ 重合时,即M 到P 、Q 距离相等时,此时MP =MQ , ∴﹣12﹣6T =﹣8T ,∴T =6s .因此,当T =54秒时,此时,M =﹣12,Q =﹣10,P =﹣392. 当T =6秒时,此时,M =﹣10,Q =﹣48,P =﹣48. 例3:(1)如图所示:(2)CD =3.5﹣1=2.5,BC =1﹣(﹣2)=3;(3)MN =|a ﹣b|;(4)①依题意有2t ﹣t =3,解得t =3.故t 为3秒时P ,Q 两点重合;②依题意有2t ﹣t =3﹣1,解得t =2;或2t ﹣t =3+1,解得t =4.故t 为2秒或4秒时P ,Q 两点之间的距离为1.故答案为:2.5,3;|a ﹣b|. 练习:(1)∵AB =6,BC =2,∴点A 对应的数是1﹣6=﹣5,点C 对应的数是1+2=3.(2)∵动点P 、Q 分别同时从A 、C 出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动, ∴点P 对应的数是﹣5+2t ,点Q 对应的数是3+t ;(3)①当点P 与点Q 在原点两侧时,若OP =OQ ,则5﹣2t =3+t ,解得:t =23;②当点P 与点Q 在同侧时,若OP =OQ ,则﹣5+2t =3+t ,解得:t =8,当t 为23或8时,OP =OQ . 〖尝试反馈〗1.(1)6,4.(2)5t ,3t .(3)由题意:(5﹣3)t =6,∴t =3. (4)由题意:6+3t ﹣5t =5或5t ﹣(6+3t )=5,解得t =12或112, 2.(1)①−2+62=2,②根据数轴上两点之间距离的计算公式得:﹣2﹣x ,6﹣x ;(2)①移动后,点A 表示的数为﹣2﹣3t ,点B 表示的数为6+12t ,点P 表示的数为t , ∵点M 是AP 的中点,∴点M 在数轴上所表示的数为−2−3t+t2=−1−t ;∵点N 是OB 的中点,∴点N 在数轴上所表示的数为6+12t+02=3+6t ;∴MN =3+6t ﹣(﹣1﹣t )=4+7t .3.(1)根据题意得2t+t =28,解得t =283,∴AM =563>10,∴M 在O 右侧,且OM =563﹣10=263,∴当t =283时,P 、Q 两点相遇,相遇点M 所对应的数是263; (2)由题意得,t 的值大于0且小于7.若点P 在O 左边,则10﹣2t =7﹣t ,解得t =3.若点P 在O 右边,则2t ﹣10=7﹣t ,解得t =173. (3)∵N 是AP 的中点,∴AN =PN =12AP =t ,∴CN =AC ﹣AN =28﹣t ,PC =28﹣AP =28﹣2t , 2CN ﹣PC =2(28﹣t )﹣(28﹣2t )=28.4.(1)C 点对应的数为﹣5+4×6=19,(2)点D 对应的数为﹣5﹣4×30=﹣125,(3)①相遇前PQ=20时,设运动时间为a秒,4a+6a=55﹣(﹣5)﹣20,解得:a=4,因此Q点对应的数为﹣5+4×4=11,②相遇后PQ=20时,设运动时间为b秒,4b+6b=55﹣(﹣5)+20,解得:b=8,因此C点对应的数为﹣5+4×8=27,故Q点对应的数为11或27.5.(1)点N所对应的数是1;(2)点P所对应的数是﹣3.5或1.5.(3)①点P在点Q的左边:(4+2×5﹣2)÷(3﹣2)=12(秒),点P对应的数是﹣3﹣5×2﹣12×2=﹣37,点Q对应的数是﹣37+2=﹣35;②点P在点Q的右边:(4+2×5+2)÷(3﹣2)=16(秒);点P对应的数是﹣3﹣5×2﹣16×2=﹣45,点Q对应的数是﹣45﹣2=﹣47.6.(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.综上所述 m=8或﹣40.7.(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=23,符合题意.综上所述,t的值为23或4.8.(1)∵|a+12|+(b﹣6)2=0.∴a+12=0,b﹣6=0,即:a=﹣12,b=6;∴AB=6﹣(﹣12)=18;(2)点C、D在线段AB上,∵AB=18,AC=14,BD=8,∴BC=18﹣14=4,CD=BD﹣BC=8﹣4=4;(3)设经过t秒,点P、Q到点C的距离相等,AD=AB﹣BD=18﹣8=10,AP=3t,DQ=2t,①当点P、Q重合时,AP﹣DQ=AD,即:3t﹣2t=10,解得,t=10,②当点C是PQ的中点时,有CP=CQ,即,AC﹣AP=DQ﹣DC,14﹣3t=2t﹣4,解得,t=185,答:经过185或10秒,点P、点Q到点C的距离相等.。

人教版数学七年级上学期专题02 数轴上的三种动点问题(原卷版)(原卷版+解析版)(人教版)

人教版数学七年级上学期专题02 数轴上的三种动点问题(原卷版)(原卷版+解析版)(人教版)

专题02 数轴上的三种动点问题数轴的动点问题,无论在平时练习,还是月考,期中期末考试中属于压轴题的版块,其过程复杂,情况多变。

那么,本专题对其中常考的三种题型(求时间、求距离或者对应点、定值问题)做出详细分析与梳理。

【知识点梳理】1.数轴上两点间的距离数轴上A 、B 两点表示的数为分别为a 、b ,则A 与B 间的距离AB=|a -b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a 表示的点向右移动b 个单位长度后到达点表示的数为a+b ;向左移动b 个单位长度后到达点表示的数为a -b.类型一、求值(速度、时间、距离)例1.如图在数轴上A 点表示数a ,B 点表示数b ,a ,b 满足2a ++6b -=0;(1)点A 表示的数为 ;点B 表示的数为 ;(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC =2BC ,则C 点表示的数 ;(3)若在原点O 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后 (忽略球的大小,可看作一点) 以原来的速度向相反的方向运动,设运动的时间为t (秒),请分别表示出甲,乙两小球到原点的距离 (用t 表示).【答案】(1)-2;6;(2)103或14 (3)甲球与原点的距离为:t +2;当03t 时,乙球到原点的距离为62t -;当3t >时,乙球到原点的距离为26t -【解析】(1)解:∵|a +2|+|b −6|=0,∵a +2=0,b −6=0,解得,a =−2,b =6,∵点A 表示的数为−2,点B 表示的数为6.故答案为:−2;6.(2)设数轴上点C 表示的数为c ,∵AC =2BC ,∵|c −a |=2|c −b |,即|c +2|=2|c −6|,∵AC =2BC >BC ,∵点C 不可能在BA 的延长线上,则C 点可能在线段AB 上和线段AB 的延长线上, ①当C 点在线段AB 上时,则有−2∵c ∵6,得c +2=2(6−c ),解得:c =103; ②当C 点在线段AB 的延长线上时,则有c >6,得c +2=2(c −6),解得c =14,故当AC =2BC 时,c =103或c =14;故答案为:103或14. (3)∵甲球运动的路程为:1∵t =t ,OA =2,∵甲球与原点的距离为:t +2;乙球到原点的距离分两种情况:①当0<t ∵3时,乙球从点B 处开始向左运动,直到原点O ,∵OB =6,乙球运动的路程为:2∵t =2t ,乙到原点的距离:6−2t (0∵t ∵3);②当t >3时,乙球从原点O 处开始一直向右运动,此时乙球到原点的距离为:2t −6(t >3).例2.如图,数轴上两个动点A ,B 起始位置所表示的数分别为8-,4,A ,B 两点各自以一定的速度在数轴上运动,已知A 点的运动速度为2个单位/秒.(1)若A ,B 两点同时出发相向而行,正好在原点处相遇,请直接写出B 点的运动速度.(2)若A ,B 两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒时两点相距8个单位长度?(3)若A ,B 两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发作同方向的运动,如果在运动过程中,始终有2CA CB =,求C 点的运动速度.【答案】(1)1个单位/秒;(2)4秒和20秒;(3)43个单位/秒 【解析】(1)解:B 点的运动速度为:8422OA OB ÷=÷=1个单位/秒. (2)∵OA +OB =8+4=12>8,且A 点运动速度大于B 点的速度,∵分两种情况,①当点B 在点A 的右侧时,运动时间为1281821OA OB -+-=-=4秒. ②当点A 在点B 的右侧时,运动时间为1281821OA OB +++=-=20秒, 综合①②得,4秒和20秒时,两点相距都是8个单位长度;(3)设点C 的运动速度为x 个单位/秒,运动时间为t ,根据题意得知8+(2-x )×t =[4+(x -1)×t ]×2,整理,得2-x =2x -2,解得x =43, 故C 点的运动速度为43个单位/秒.【变式训练1】如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示-10,点B 表示10,点C 表示18,我们称点A 和点C 在数轴上相距28个长度单位.动点P 、Q 同时出发,点P 从点A 出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;动点Q 从点C 出发,以1单位/秒的速度沿着数轴的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t 秒.问:(1)动点P 从点A 运动至点C 需要多少时间?(2)求P 、Q 两点相遇时,t 的值和相遇点M 所对应的数.【答案】(1)动点P 从点A 运动至点C 需要19秒;(2)P 、Q 两点相遇时,t 的值为313秒,相遇点M 所对应的数是163. 【解析】(1)解:由图可知:动点P 从点A 运动至C 分成三段,分别为AO 、OB 、BC ,AO 段时间为102=5,OB 段时间为101=10,BC 段时间为82=4, ∵动点P 从点A 运动至C 点需要时间为5+10+4=19(秒),答:动点P 从点A 运动至点C 需要19秒;(2)解:点Q 经过8秒后从点B 运动到OB 段,而点P 经过5秒后从点A 运动到OB 段,经过3秒后还在OB 段,∵P 、Q 两点在OB 段相遇,设点Q 经过8秒后从点B 运动到OB 段,再经进y 秒与点P 在OB 段相遇,依题意得:3+y +2y =10,解得:y =73,∵P 、Q 两点相遇时经过的时间为8+73=313(秒), 此时相遇点M 在“折线数轴”上所对应的数是为3+73=163; 答:P 、Q 两点相遇时,t 的值为313秒,相遇点M 所对应的数是163. 【变式训练2】如图,已知A 、B 、C 是数轴上三点,点B 表示的数为4,8AB =,2BC =.(1)点A 表示的数是______,点C 表示的数是______.(2)动点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 的运动时间为t (0t >)秒.①用含t 的代数式表示:点P 表示的数为______,点Q 表示是数为______;②当1t =时,点P 、Q 之间的距离为______;③当点Q 在C B →上运动时,用含t 的代数式表示点P 、Q 之间的距离;④当点P 、Q 到点C 的距离相等时,直接写出t 的值.【答案】(1)4-,6;(2)①42t -+,6t -;②7;③103t -;④t 的值为103或10 【解析】(1)解:A 点在B 点左边,B 点表示4,AB =8,∵A 点表示的数,4-8=-4;C 点在B 点右边,BC =2,∵C 点表示的数为:4+2=6;(2)解:①P 点向右运动,∵P 点表示的数为-4+2t ;Q 点向左运动,∵Q 点表示的数为6-t ;②t =1时,P 点-2,Q 点5,两点距离=5-(-2)=7;③∵Q 点在右,P 点在左,∵两点距离=6-t -(-4+2t )=10-3t ,④当P ,Q 相遇时,两点到C 点距离相等,此时2t +t =10,解得:t =103, 当P 点在C 点右边,Q 点在C 点左边时,-4+2t -6=6-(6-t ),解得:t =10,∵t 的值为103或10; 【变式训练3】如图,点A 、B 为数轴上的点(点A 在数轴的正半轴),8AB =,N 为AB 的中点,且点N 表示的数为2.(1)点A 表示的数为______,点B 表示的数为______;(2)点M 为数轴上一动点,点C 是AM 的中点,若1CM =,求点M 表示的数,并画出点M 的位置;(3)点P 从点N 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,设运动时间为()0t t >秒.在运动过程中,点P 、Q 之间的距离为3时,求运动时间t 的值.【答案】(1)6,﹣2;(2)8或4;(3)1秒或7秒.【解析】(1)解:∵8AB =,N 为AB 的中点,∵AN =BN =12AB =4∵点N表示的数为2,点A在点N的右侧,点B在点N的左侧∵点A表示的数为2+4=6,点B表示的数为2-4=﹣2,即点A表示的数为6,点B表示的数为﹣2,故答案为:6,﹣2(2)解:当点M在点A的右侧时,如图1所示,∵ C是AM的中点,CM=1,∵AM=2CM=2,∵点M表示的数是6+2=8;当点M在点A的左侧时,如图2所示,∵ C是AM的中点,CM=1,∵AM=2CM=2,∵点M表示的数是6-2=4.故点M表示的数是8或4;(3)解:当点P在点Q的右侧,即点P还没追上点Q时,如图3,由题意得t+4-2t=3,解得t=1,当点P在点Q的左侧,即点P追上点Q并超过点Q时,如图4所示,由题意得2t-t-4=3,解得t=7,∵点P、Q之间的距离为3时,运动时间t=1秒或7秒.类型二、定值问题例1.已知:a是单项式-xy2的系数,b是最小的正整数,c是多项式2m2n-m3n2-m-2的次数.请回答下列问题:(1)请直接写出a、b、c的值.a=,b=,c=.(2)数轴上,a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用含t的关系式表示);②请问:BC-AB的值是否会随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.【答案】(1)-1,1,5;(2)①4t+6;②不会变化,2【解析】(1)解:由题意得,单项式-xy2的系数a=-1,最小的正整数b=1,多项式2m2n-m3n2-m-2的次数c=5;故答案为:-1,1,5(2)①t秒后点A对应的数为a-t,点B对应的数为b+t,点C对应的数为c+3t,故AC=|c+3t-a+t|=|5+4t+1|=6+4t;故答案为:6+4t②∵BC=5+3t-(1+t)=4+2t,AB=1+t-(-1-t)=2+2t;∵BC-AB=4+2t-2-2t=2,故BC-AB的值不会随时间t的变化而改变.其值为2.AB=.动点P从点A出发,【变式训练1】如图,已知数轴上点A表示的数为12,B是数轴上一点.且20t t>秒.以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)(1)写出数轴上点B表示的数___,点P表示的数___(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发,问点P运动多少秒时追上点Q;(3)若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.【答案】(1)﹣8,12﹣5t;(2)点P运动10秒时追上点Q;(3)线段MN的长度不发生变化,都等于10;理由见解析.【解析】(1)解:∵点A 表示的数为12,B 在A 点左边,AB =20,∵点B 表示的数是12-20=-8,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,运动时间为t (t >0)秒, ∵点P 表示的数是12-5t .故答案为:-8,12-5t ;(2)解:设点P 运动x 秒追上点Q ,Q 表示的数是-8-3t ,根据题意得:12-5x =-8-3x ,解得:x =10,∵点P 运动10秒时追上点Q ;(3)解:线段MN 的长度不发生变化,都等于10;理由如下:∵点A 表示的数为12,点P 表示的数是12-5t ,M 为AP 的中点,∵M 表示的数是1212551222t t +-=-, ∵点B 表示的数是-8,点P 表示的数是12-5t ,N 为PB 的中点,∵N 表示的数是81255222t t -+-=-, ∵MN =(12-52t )-(2-52t )=10. 【变式训练2】如图,已知数轴上点A 表示的数为9,B 是数轴负方向上一点,且15AB =.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,运动时间为(0)t t >秒.(1)数轴上点B 表示的数为_____,点P 表示的数为________;(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P ,Q 同时出发,问t 为何值时,点P 追上点Q ?此时P 点表示的数是多少?(3)若点M 是线段AP 的中点,点N 是线段BP 的中点.点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变化,请求出MN 的长度;【答案】(1)6-,95-t ;(2)-16;(3)不发生变化,152【解析】(1)解:∵数轴上点A 表示的数为8,且AB =14,∵点B 表示的数为−6,点P 表示的数为95-t ,故答案为:6-,95-t .(2)解:设点P 运动t 秒时,在点C 处追上点Q ,如图,则5,2==AC t BC t ,因为AC BC AB -=,所以5215-=t t .解得5t =.所以点P 运动5秒时,在点C 处追上点Q .当5t =时,9592516-=-=-t .此时P 点表示的数是16-.(3)解:不发生变化.理由是:因为M 是线段AP 的中点,N 是线段BP 的中点,所以11,22==PM AP PN BP . 分两种情况:①当点P 在点A 、B 两点之间运动时,如图所示,所以111115()22222=+=+=+==MN MP NP AP BP AP BP AB . ②当点P 运动到点B 的左侧时,如图所示,所以111115()22222=-=-=-==MN MP NP AP BP AP BP AB . 综上所述,线段MN 的长度不发生变化,其值为152. 【变式训练3】点A 、B 在数轴上对应的数分别为a 、b ,且a 、b 满足2130a b ++-=.(1)如图1,求线段AB 的长;(2)若点C 在数轴上对应的数为x ,且x 是方程12122x x +=-的根,在数轴上是否存在点P 使PA PB BC +=,若存在,求出点P 对应的数,若不存在,说明理由;(3)如图2,点P 在B 点右侧,P A 的中点为M ,N 为PB 靠近于B 点的四等分点,当P 在B 的右侧运动时,有两个结论:①2PM BN -的值不变;②23PM BN -的值不变,其中只有一个结论正确,请判断正确的结论,并直接写出该值.【答案】(1)4;(2)存在,当点P 表示的数为-1.5或3.5时,PA PB BC +=;理由见解析(3)结论①正确,2PM BN -=2【解析】(1)解:∵|a +1|+(b -3)2=0,∵a +1=0,b -3=0,∵a =-1,b =3,∵AB =|-1-3|=4.答:AB 的长为4;(2)解:存在,∵12122x x +=-,∵x =-2,∵BC =23--=5. 设点P 在数轴上对应的数是m ,∵PA PB BC +=,∵|m +1|+|m -3|=5,令m +1=0,m -3=0,∵m =-1或m =3.①当m ≤-1时,-m -1+3-m =5,m =-1.5;②当-1<m ≤3时,m +1+3-m =5,(舍去);③当m >3时,m +1+m -3=5,m =3.5.∵当点P 表示的数为-1.5或3.5时,PA PB BC +=;(3)解:设P 点所表示的数为n ,∵P A =n +1,PB =n -3.∵P A 的中点为M ,∵PM =12P A =12n +. ∵N 为PB 的四等分点且靠近于B 点,∵BN =14PB =34n -,∵①PM -2BN =12n +-2×34n -=2(不变), ②PM +23BN =12n ++23×34n -=23n (随点P 的变化而变化), ∵正确的结论为①,且PM -2BN =2.类型三、点之间的位置关系问题例1.如图,已知在数轴上有A ,B 两点,点A 表示的数为8,点B 在A 点的左边,且12AB =.若有一动点P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动.设点P 的运动时间为t 秒.(1)解决问题:①当1t =时,写出数轴上点B ,P 所表示的数;②若点P ,Q 分别从A ,B 两点同时出发,问点P 运动多少秒与点Q 相距3个单位长度?(2)探索问题:若M 为AQ 的中点,N 为BP 的中点.当点P 在A ,B 两点之间运动时,探索线段MN 与线段PQ 的数量关系(写出过程).【答案】(1)①点B 表示-4,点P 表示5;②1.8秒或3秒(2)2MN+PQ=12或2MN-PQ=12,过程见解析【解析】(1)解:①∵点A表示的数为8,B在A点左边,AB=12,∵点B表示的数是8-12=-4,∵动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,∵点P表示的数是8-3×1=5.②设点P运动x秒时,与Q相距3个单位长度,则AP=3x,BQ=2x,∵AP+BQ=AB-3,∵3x+2x=9,解得:x=1.8,∵AP+BQ=AB+3,∵3x+2x=15,解得:x=3.∵点P运动1.8秒或3秒时与点Q相距3个单位长度.(2)2MN+PQ=12或2MN-PQ=12;理由如下:P在Q右侧时有:MN=MQ+NP-PQ=12AQ+12BP-PQ=12(AQ+BP-PQ)-12PQ=12AB-12PQ=12(12-PQ),即2MN+PQ=12.同理P在Q左侧时有:2MN-PQ=12.例2.如图,在数轴上A点表示的数为a,B点表示的数为b,C点表示的数为c,b是最大的负整数,且a,c 满足|a+3|+(c﹣9)2=0.点P从点B出发以每秒3个单位长度的速度向左运动,到达点A后立刻返回到点C,到达点C后再返回到点A并停止.(1)a=,b=;(2)点P从点B离开后,在点P第二次到达点B的过程中,经过x秒钟,P A+PB+PC=13,求x的值.(3)点P从点B出发的同时,数轴上的动点M,N分别从点A和点C同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设t秒钟时,P、M、N三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的t的值.【答案】(1)﹣3,﹣1;(2)13或1或53或233;(3)1,2617,167,8.【解析】(1)解:b是最大的负整数,即b=﹣1,|a+3|+(c﹣9)2=0,∵|a+3|=0,(c﹣9)2=0,∵a=﹣3,c=9,故答案为:﹣3,﹣1;(2)解:AB=2,BC=10,AC=12,P A+PB+PC=13,P A+PC=12,则PB=1,∵此时P点位置为﹣2或0,根据P的运动轨迹得:由B到A时:x=1÷3=13,由A到B时:x=3÷3=1,由B到C时:x=5÷3=53,由C到B时:x=23÷3=233;故x的值为:13或1或53或233.(3)解:当P点由B到A运动时P=﹣3t-1(0≤t<23),当P点由A到C运动时P=﹣3+(3t-2)=3t-5(23≤t<143),当P点由C到B运动时P=9-(3t-14)=﹣3t+23(143≤t≤8),当M点由A到C运动时M=4t-3,当N点由C到A运动时N=﹣5t+9,PM相遇时3t+4t=2,t=27,MN相遇时4t+5t=12,t=43,PN相遇时3t+5t=12+2,t=74,0≤t<27,P在中间,则4t-3﹣5t+9=2(﹣3t-1)解得t=﹣85舍去;2 7<t<23,M在中间,则﹣5t+9﹣3t-1=2(4t-3)解得t=78舍去;2 3≤t<43,M在中间,则﹣5t+9+3t-5=2(4t-3)解得t=1;4 3<t<74,N在中间,则4t-3+3t-5=2(﹣5t+9)解得t=2617;7 4<t<143,P在中间,则4t-3﹣5t+9=2(3t-5)解得t=167;14 3≤t≤8,P在中间,则4t-3﹣5t+9=2(﹣3t+23)解得t=8;故t的值为:1,2617,167,8.【变式训练1】如图,已知A、B、C是数轴上三点,点O为原点,点C表示的数为6,BC=4,AB=12.(1)写出数轴上点A、B表示的数;(2)动点P、Q分别从A、C同时出发,沿数轴向右匀速运动.点P的速度是每秒6个单位长度,点Q的速度是每秒3个单位长度,点M为AP的中点,点N在线段CQ上,且CN=13CQ,设运动时间为t(t>0)秒.①求数轴上点M、N表示的数(用含t的式子表示);②当M、B、N三个点中的其中一个点是另两点构成的线段的中点的时候,求t的值.【答案】(1)A点表示-10,B表示2,(2)①点M表示的数为:-10+3t,点N表示的数为:6+t,②t的值为:2秒或285秒或20秒;【解析】(1)解:∵O为原点,C表示6,BC=4,∵B表示2,∵AB=12,∵A点表示-10;(2)解:①∵点P从A点以每秒6个单位长度沿数轴向右匀速运动,∵P点表示的数为-10+6t,∵点M为AP的中点,∵点M表示的数为:12(-10-10+6t)=-10+3t,∵点Q从C点以每秒3个单位长度沿数轴向右匀速运动,∵Q点表示的数为6+3t,∵点N为13CQ,∵点N表示的数为:6+13×(6+3t-6)=6+t,②当M是B、N中点,B点在左侧时,BM=MN,即-10+3t-2=6+t-(-10+3t),解得:t=285,当B是M、N中点,M点在左侧时,BM=BN,即2-(-10+3t)=6+t-2,解得:t=2,当N是B、M中点,B点在左侧时,BN=MN,即6+t-2=-10+3t-(6+t),解得:t=20,∵t的值为:2秒或285秒或20秒;【变式训练2】已知,如图1:数轴上有A、B、C三点,点A表示的数为-5,点B表示的数为13,点C 表示的数为-2,将一条长为9个单位长度的线段MN放在该数轴上(点M在点N的左边).(1)求线段AB中点表示的数;(2)如图2:若从点M与点A重合开始,将线段MN以0.3个单位长度/秒的速度沿数轴向右移动,经过x秒后,点N恰为线段BC的中点,求x的值;(3)如图3:在(2)的基础上,若线段MN向右移动的同时,动点P从点C开始以0.6个单位长度/秒的速度也沿数轴向右移动,设移动的时间为t秒,当P、N、B三个点中恰有一个点为另两个点所组成线段的中点时,求t的值.【答案】(1)4;(2)5;(3)703或803【解析】(1)解:线段AB中点表示的数为51342-+=,∵线段AB中点表示的数为4;(2)解:点N表示的数为:-5+9=4线段BC中点表示的数为:2135.52-+=根据题意,得4+0.3x=5.5,解得:x=5,∵点N恰为线段BC的中点重合时,x的值为5;(3)解:当点N恰为线段BP的中点时,根据题意,得20.61340.32tt-++=+,方程无解,当点P恰为线段BN的中点时,根据题意,得40.31320.62tt++=-+,解得:t=703,当点B恰为线段PN的中点时,根据题意,得20.640.3132t t-+++=,解得:t=803,综上,当P、N、B三个点中恰有一个点为另两个点所组成线段的中点时,t的值为703或803.【变式训练3】已知A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C 是(),A B的优点.例如:如图1,A,B为数轴上两点,点A表示的数为-1,点B表示的数为2,表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是(),A B的优点;表示数0的点D到点C的距离是1,到点B的距离是2,那么点D是(),B C的优点.(1)在图1中,点C是(),A B的优点,也是(A,_____________)的优点;点D是(),B C的优点,也是(B,_____________)的优点;(2)如图2,A ,B 为数轴上两点,点A 所表示的数为-2,点B 所表示的数为4.设数x 所表示的点是(),A B 的优点,求x 的值;(3)如图3,A ,B 为数轴两点,点A 所表的数为-20,点B 所表示的数为40.现有一只电子蚂蚁Р从点B 出发,以5个单位每秒的速度向左运动,到达点A 停止,设点Р的运动时间为t 秒,在点Р运动过程中,是否存在P 、A 和B 中恰有一个点为其余两点的优点﹖如果存在请求出t 的值;如果不存在,说明理由.【答案】(1)D ,A ;(2)10或2;(3)当4t =或6t =或8t =时,P 、A 和B 中恰有一个点为其余两点的优点【解析】(1)解:A ,B 为数轴上两点,点A 表示的数为-1,点D 表示的数为0,表示数1的点C 到点A 的距离是2,到点D 的距离是1,那么点C 是(),A D 的优点;表示数0的点D 到点B 的距离是2,到点A 的距离是1,那么点D 是A 的优点,故答案为:D ;A ;(2)解:由题意得()224x x --=-,∵()224x x +=-或()224x x +=--,解得10x =或2x =;(3)解:由题意得运动t 秒时点P 表示的数为405t -,∵()40520605PA t t =---=-,()=404055PB t t --=,()402060AB =--=,当A 是(B ,P )的优点时,∵()602605t =-,解得6t =;当B 为(A ,P )的优点时6025t =⋅,解得6t =;当P 为(A 、B )的优点时60525t t -=⋅,解得4t =;当P 为(B ,A )的优点时()52605t t =-,解得8t =;综上所述,当4t =或6t =或8t =时,P 、A 和B 中恰有一个点为其余两点的优点专题02 数轴上的三种动点问题数轴的动点问题,无论在平时练习,还是月考,期中期末考试中属于压轴题的版块,其过程复杂,情况多变。

人教版七年级上册数学期末复习专题---数轴类动点问题(4)

人教版七年级上册数学期末复习专题---数轴类动点问题(4)

人教版七年级上册数学期末复习专题---数轴类动点问题(4)1.根据下面给出的数轴,解答下面的问题:①请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:;B:;②观察数轴,与点A的距离为4的点表示的数是:;③若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合;④若数轴上M、N两点之间的距离为2014(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N表示的数分别是:M:;N:.2.同学们,你会求数轴上两点间的距离吗?例如:数轴上,3和5两数在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|(﹣5)﹣2|=7或|5﹣(﹣2)|=7.试探索:(1)求7与﹣7两数在数轴上所对的两点之间的距离=.(2)找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4这样的整数是.(3)由以上探索猜想对于任何有理数x,|x﹣3|+|x+6|是否有最小值?如果有,写出最小值,如果没有,说明理由.3.根据给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:,B:.(2)观察数轴,与点A的距离为4的点表示的数是:.(3)若将数轴折叠,使得A点与﹣2表示的点重合,则:①B点与哪个数表示的点重合?②若数轴上M、N两点之间的距离为2011(M在N的左侧),且M、N两点经过折叠后互相重合,求M、N两点表示的数分别是多少?4.某中学位于东西方向的北京路上,这天学校的王老师出校门去家访,她先向东走100米到聪聪家,再向西走150米到青青家,再向西走200米到刚刚家,请问:(1)聪聪家与刚刚家相距多远?(2)如果把这条北京路看作一条数轴,以向东为正方向,以校门口为原点.请你画出这条数轴,并在数轴上标出他们三家与学校的大概位置(数轴上一格表示50米)(3)聪聪家向西210米是体育场,体育场所在点所表示的数是多少?(4)如果数轴上有两点A、B,点A所表示的数是x1,点B所表示的数是x2,你认为可用一个怎样的式子来求数轴上AB两点之间的距离d?请用含有x1,x2的式子把d表示出来.5.对数轴上的点P进行如下操作:先把点P表示的数乘以3,再把所得数对应的点向左平移1个单位,得到点P的对应点P′.(1)点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图,若点A表示的数是1,则点A′表示的数是;若点B′表示的数是﹣4,则点B表示的数是;(2)若数轴上的点M经过上述操作后,位置不变,则点M表示的数是.并在数轴上画出点M的位置.6.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:;B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合;(4)若数轴上M、N两点之间的距离为2010(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:N:.7.一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)若货车每千米耗油0.5升,这趟路货车共耗油多少升?8.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1.5千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.05升,那么这辆货车共耗油多少升?9.已知在数轴上到表示数﹣3的点和表示数5的点距离相等的点表示数1,有这样的关系,那么在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的数是.(3)已知在数轴上表示数x的点到表示数﹣2的点的距离是到表示数6的点的距离的2倍,求数x.10.邮递员骑摩托车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到C时,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若这辆摩托车每100km耗油2升,这趟路共耗油多少升?参考答案1.解:(1)由数轴可知,A点表示数1,B点表示数﹣2.5.故答案为:1,﹣2.5;(2)A点表示数1,与点A的距离为4的点表示的数是:﹣3或5.故答案为:﹣3或5;(3)当A点与﹣3表示的点重合,则B点与数0.5表示的点重合.故答案为:0.5;(4)由对称点为﹣1,且M、N两点之间的距离为2014(M在N的左侧)可知,点M、N到﹣1的距离为2014÷2=1007,所以,M点表示数﹣1﹣1007=﹣1008,N点表示数﹣1+1007=1006.故答案为:﹣1008,1006.2.解:(1)7﹣(﹣7)=14,故答案为:14;(2)∵|x+3|+|x﹣1|=x+3+1﹣x=4,∴x+3≥0,且x﹣1≤0,∴﹣3≤x≤1,即符合条件的整数有±1,0,﹣2,﹣3,故答案为:±1、0、﹣2、﹣3.(3)有最小值.最小值为9,理由是:∵丨x﹣3丨+丨x+6丨可以理解为:在数轴上表示x到3和﹣6的距离之和,∴当x在3与﹣6之间的线段上(即﹣6≤x≤3)时:即丨x﹣3丨+丨x+6丨的值有最小值,最小值为3﹣(﹣6)=9.3.解:(1)利用数轴得出:A:1 B:﹣2.5;故答案为:1,﹣2.5;(2)分为两种情况:①当点在表示1的点的左边时,数为1﹣4=﹣3;②当点在表示1的点的右边时,数为1+4=5;故答案为:5和﹣3;(3)①∵A点与﹣2表示的点重合,∴A点与﹣2关于﹣0.5对称,∴B点与表示1.5的点重合,②∵数轴上M、N两点之间的距离为2011(M在N的左侧),且M、N两点经过折叠后互相重合,∴M、N两点表示的数分别是﹣1006,1005.4.解:(1)150+200=350(米);(2)如图所示:;(3)体育场所在点所表示的数是﹣110;(4)数轴上两点x1,x2之间的距离是d=|x1﹣x2|.5.解:(1)点A'表示的数是:1×3﹣1=2;设点B表示的数为x,则3x﹣1=﹣4,解得:x=﹣1,若点B'表示的数是:﹣4,则点B表示的数是﹣1;(2)设点M表示的数为y,则3y﹣1=y,解得:y=,即点M表示的数是:,在数轴上画出点M的位置如图所示:.6.解:(1)由数轴可知,A点表示数1,B点表示数﹣2.5.故答案为:1,﹣2.5;(2)A点表示数1,与点A的距离为4的点表示的数是:﹣3或5.故答案为:﹣3或5;(3)当A点与﹣3表示的点重合,则B点与数0.5表示的点重合.故答案为0.5;(4)由对称点为﹣1,且M、N两点之间的距离为2010(M在N的左侧)可知,点M、N到﹣1的距离为2010÷2=1005,所以,M点表示数﹣1﹣1005=﹣1006,N点表示数﹣1+1005=1004.故答案为:﹣1006,1004.7.解:(1);(2)根据数轴可知:小明家距小彬家是7.5个单位长度,因而是7.5千米;(3)路程是2×10=20千米,则耗油量是:20×0.5=10升.答:小明家距小彬家7.5千米,这趟路货车共耗油10升.8.解:(1)如图所示:A、B、C分别表示小明、小红、小刚家(2)小明家与小刚家相距:4﹣(﹣4.5)=8.5(千米);(3)这辆货车此次送货共耗油:(4+1.5+10+4.5)×0.05=1(升).答:小明家与小刚家相距8.5千米,这辆货车此次送货共耗油1升.9.解:(1)4﹣(﹣3)=7.(2)在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的数是:(a+b).(3)由x与﹣2的差的绝对值等于x与6的差的绝对值的2倍,得:x﹣(﹣2)=2(x﹣6),解得:x=14.x﹣(﹣2)=﹣2(x﹣6),解得:x=.10.解:(1)(2)C村离A村为:4﹣(﹣2)=4+2=6(km).答:C村离A村有6km.(3)邮递员实际一共走了|﹣2|+|﹣3|+|+9|+|9﹣5|=2+3+9+4=18(km),18÷100×2=0.36答:这趟路共耗油0.36升.。

人教版七年级数学上册专题复习 数轴上的动点问题讲义 含部分答案(word文档良心出品)

人教版七年级数学上册专题复习   数轴上的动点问题讲义  含部分答案(word文档良心出品)

数轴上的运动问题在讲这个问题之前,我们先来看一道行程问题。

【题 1】甲乙两地相距 200 米,小明从甲地步行到乙地,用时 3 分钟,小明的平均速度为多少米每秒? 【分析】这个问题的本质,就是把实际生活中的问题剥离出来,抽象成了简单的数学问题,很多学生都会解;初学时,老师会画线段图,用线段的长度来将两点间的距离具象化,如下:小明甲地乙地【解法一】直接利用:速度=路程÷时间解决。

200 ÷180 =10 (米/秒)9【解法二】用方程解。

设速度为 x 米/ 秒,根据路程=时间×速度,得: 200 = 180x ,解得 x =10。

9如果在线段图上,用一个具体的数来表示甲地和乙地,从甲往乙的方向规定为正方向建立数轴,这个问题就转化为数轴上的运动问题了。

【题 2】如图,数轴上有两点 A 、B ,点 A 表示的数为0 ,点 B 表示的数为 200 ,一只电子蚂蚁 P 从 A 出发,以1个单位每秒的速度由 A 往 B 运动,到 B 点运动停止。

设运动时间为 t 。

(1)用含 t 的代数式表示电子蚂蚁 P 运动的距离; (2)用含 t 的代数式表示电子蚂蚁 P 表示的数;(3)用含 t 的代数式表示电子蚂蚁 P 到数 B 的距离。

(4)当电子蚂蚁运动多少时间后,点 P 为线段 AB 的三等分点?【分析】引入数轴后,其本质是把线段图换成了带方向带单位长度的直线,将有限的实际距离推广到了无限的距离问题。

所以,对于运动的点,处理的核心思想依然是路程=速度×时间。

其余的点的距离,利用数 轴上两点间距离公式解决。

(1)根据路程=速度×时间,有: AP = t ; (2) AP = t ,故点 P 表示的数为t ;(3)点 B 表示的数为 200,点 P 表示的数为t ,且 P 在 B 左边,故 PB = 200 - t 。

(4)若 P 为 AB 的三等分点,有两种情况:①AP=2PB ,即: t = 2 ⨯ (200 - t ),解得t = 400秒; 3②2AP=PB ,即: 2t = 200 - t ,解得t =200秒; 3现在,我们将【题 2】一般化,线段 AB 一般化为在数轴上的一条定长线段,便得到如下的题:【题 3】如图,数轴上有两点 A 、B ,点 A 表示的数为 a ,点 B 表示的数为b ,且数 A 和数 B 的距离为 200 个单位长度,一只电子蚂蚁 P 从 A 出发,以1个单位每秒的速度由 A 往 B 运动,到 B 点运动停止。

人教版初一数学上册数轴上的动点问题

人教版初一数学上册数轴上的动点问题

A
B
-5 甲
乙 丙
练:
已知数轴上有A、B、C三点,分别代表—24,—10,10 ,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲 的速度为4个单位/秒。
⑴若乙的速度为6个单位/秒,问甲、乙在数轴上的哪个 点相遇?
(2)电子蚂蚁甲以4个单位/秒的速度向右运动,问多少 秒后,甲到A、B、C的距离和为40个单位?
点A表示-2,将点A以2个单位/秒的速度向左移动t秒后,
则点A表示 -2-2t ;
-3 -2 -1 0 1 2 3
二Байду номын сангаас数轴上的行程问题
例题讲解:
数轴上点A对应的数为—5,电子蚂蚁甲从 A以3个单位/秒的速度向右运动。
⑴若电子蚂蚁甲经过5秒运动到点B,求 点B表示的数;
A
B
-5
二、数轴上的行程问题
A
B
C
-24
-10
10
备用:已知数轴上两点A、B对应的数分别为—1,3,点 P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数; ⑵当点P以每分钟一个单位长度的速度从O点向左运动时 点A以每分钟5个单位长度向左运动,点B以每分钟20个单 位长度向左运动,问它们同时出发,几分钟后P点到点A、 点B的距离相等?
例题讲解:
数轴上点A对应的数为—5,电子蚂蚁甲从A以3 个单位/秒的速度向右运动。
(2)若电子蚂蚁乙从B以1个单位/秒的速度向 右运动,且与电子蚂蚁甲同时出发,甲在C处追 上乙,求点C表示的数;
A
-5 甲
3
B
C
乙101
例题讲解:
(3)在⑵的条件下,当甲、乙之间的距离为5时 ,求它们运动的时间;

初中数学人教版七年级上册第一章 有理数1.2 有理数1.2.2 数轴-章节测试习题(18)

初中数学人教版七年级上册第一章 有理数1.2 有理数1.2.2 数轴-章节测试习题(18)

章节测试题1.【答题】将数轴上一点P先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P表示的数是______.【答案】6【分析】本题考查数轴上的动点问题.【解答】设点P原来表示的数为x,根据题意,得:x+3−5=4,解得x=6,即原来点P表示的数是6,故答案为:6.2.【答题】在数轴上,点A表示的数是3+x,点B表示的数是2-x,且A,B两点的距离为8,则x=______.【答案】3.5或-4.5【分析】本题考查的是数轴上两点间的距离. 数轴上两点的距离等于右边点表示的数减去左边点表示的数.【解答】根据A,B两点的距离为8,当点B在点A左边时,得3+x-(2-x)=1+2x=8,解得x=3.5;当点B在点A右边时,得2-x-(3+x)=-1-2x=8,解得x=-4.5.故答案为3.5或-4.5.3.【答题】如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合…),则数轴上表示-2016的点与圆周上表示数字______的点重合.【答案】1【分析】本题考查数轴上的动点问题,关键在于观察出每4个数为一个循环组依次循环,难点在于找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.【解答】由图可知,每4个数为一个循环组依次循环,∵2016÷4=504,∴表示﹣2016的点是第504个循环组的第4个数1重合,故答案为:1.4.【答题】如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径,把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,则此时点C表示的数是______.【答案】-π【分析】本题考查数轴上的动点问题.【解答】∵把圆片沿数轴向左滚动半周,半圆的长度为π,∴滚动的距离为π,∴点C 表示的数是-π.故答案为-π.5.【答题】在数轴上到表示2的点的距离等于5的负数是______.【答案】﹣3【分析】本题考查数轴上两点间的距离.【解答】到2的距离等于5的点有两个,一个在2右边,为2+5=7;一个在2左边,为2-5=-3.故在数轴上到表示2的点的距离等于5的负数是-3.故答案为-3.6.【答题】数轴上表示整数的点叫作整点.某数轴的单位长度为1厘米,若在这条数轴上随意画出一条长度为2016厘米的线段,则线段盖住的整点个数为______.【答案】2016或2017【分析】本题考查有理数在数轴上的表示.【解答】2016厘米,从整数点开始,有2017个点,不从整数开始可以盖2016个.7.【答题】数轴上与原点的距离为2的点表示的数是______.【答案】±2【分析】本题考查数轴上两点间的距离.【解答】数轴上与原点的距离为的点表示的数是:故答案为:8.【答题】在数轴上与表示-2的点的距离为3个单位长度的点所表示的数是______.【答案】1或-5【分析】本题考查数轴上两点间的距离.【解答】在数轴上与表示-2的点的距离为3个单位长度的点有两个,分别在-2的左侧和右侧,∴-2分别加3或减3,这个点为1或-5.9.【答题】数轴上与表示-2的点相距8.5个长度单位的点表示的数是______.【答案】-10.5和6.5【分析】本题考查数轴上两点间的距离.【解答】分类讨论:(1)所求的点在-2的左边,则-2-8.5=-10.5;(2)所求的点在-2的右边,则-2+8.5=6.5.故数轴上与表示-2的点相距8.5个长度单位的点表示的数是―10.5和6.5.10.【答题】如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿数轴匀速爬向B点的过程中,到达C点时用了9分钟,那么到达B点还需要______分钟.【答案】6【分析】本题考查数轴上的动点问题.【解答】∵9÷3=3,∴2×3=6,即由C到点B还需要6分钟.11.【答题】在数轴上与﹣2对应的点的距离为4个单位长度的点有______个,它们对应的数是______.【答案】两,﹣6或2【分析】本题考查数轴上两点间的距离.【解答】在数轴上与-2对应的点距离为4个单位长度的点有2个,其中-2左边的那个点表示的数是-6,-2右边那个点表示的数是2.12.【答题】在数轴上表示的两个数中,______的数总比______的数大.【答案】右边左边【分析】本题考查数轴的定义.【解答】数轴上表示的两个数,右边的数为正半轴,左边的数为负半轴的的数,∴右边的数总比左边的大,故答案为:右,左.13.【答题】在数轴上与表示-2的点的距离为3个单位长度的点所表示的数是______.【答案】-5或1【分析】本题考查数轴上两点间的距离.设数轴上与表示-2的点相距3个单位长度的点所表示的数是x,再根据数轴上两点间的距离公式求出x的值即可.【解答】设数轴上与表示−2的点相距3个单位长度的点所表示的数是x,则|x-(-2)|=3,解得x=1或x=−5.故答案为:-5或1.14.【答题】在数轴上,与原点距离为6的点所表示的数是______.【答案】±6【分析】一般地,设a是一个正数,数轴上与原点距离是a的点有两个,它们分别在原点左右两侧,表示为-a和a,这两点关于原点对称.【解答】距离原点距离为6的点表示的数有两个,分别在原点左右两侧,为6和-6.故答案为±6.15.【答题】数轴上、两点的距离为2,点表示的数为-1,则点表示的数为______.【答案】1或-3【分析】本题考查数轴上两点间的距离.【解答】∵点A表示的数为-1,A,B两点的距离是2,∴当点B在点A的左边时,点B 表示的数为-1-2=-3;当点B在点A的右边时,点B表示的数为-1+2=1.16.【答题】在数轴上,若点P表示-2,则距P点5个单位长度的点表示的数是______.【答案】-7或3【分析】本题考查数轴上两点间的距离.【解答】在数轴上与表示-2的点距离5个单位长度的点表示的数是-2+5=3或-2-5=-7.故答案为3或-7.17.【答题】如果数轴上的点A对应的数为3,那么与A点相距200个单位长度的点所对应的有理数为______.【答案】203或-197【分析】本题考查数轴上两点间的距离.【解答】设该点表示的数是x,则|3-x|=200,故3-x=200或3-x=-200,解得x=-197或203.18.【答题】数轴上到表示-1的点距离6个单位长度的点表示的数是______.【答案】-7或5【分析】本题考查数轴上两点间的距离.【解答】由题意得:当所求点在−1的左侧时,则距离6个单位长度的点表示的数是−1−6=−7;当所求点在−1的右侧时,则距离6个单位长度的点表示的数是−1+6=5.故答案为:-7或5.19.【答题】数轴上,点A如果表示3,那么与A点相距4个单位的点表示的数是______.【答案】7或-1【分析】本题考查数轴上两点间的距离.【解答】如图所示,与3表示的点距离4个单位长度的点是-1或7.20.【答题】距离原点3个单位长度的数是______.【答案】【分析】本题考查数轴上两点间的距离.【解答】如图所示,数轴上距离原点3个单位长度的数是±3.。

初中数学人教版七年级上册第一章 有理数1.2 有理数1.2.2 数轴-章节测试习题(16)

初中数学人教版七年级上册第一章 有理数1.2 有理数1.2.2 数轴-章节测试习题(16)

章节测试题1.【答题】数轴是上点A、点B表示的数分别是﹣1和3,则点A、点B之间的距离是______.【答案】4【分析】本题考查数轴上的两点间的距离.【解答】∵点A、点B表示的数分别是﹣1和3,∴点A、点B之间的距离是故答案为4.2.【答题】数轴上距离3的点5个单位长度所表示的数是______.【答案】8或﹣2【分析】本题考查数轴上的两点间的距离.【解答】在数轴上与表示3的点距离5个单位长度的点表示的数是3+5=8或3﹣5=﹣2.故答案为:8或﹣2.3.【答题】直径为1个单位长度的圆从原点开始沿数轴的负方向滚动2周(不滑动),圆上的一点由原点到达O′,点O′所对应的实数是______.【答案】-2π【分析】本题考查数轴上的动点问题.【解答】2×2π×=2π,∴点O'所对应的实数是-2π.4.【答题】数轴上,在原点的右边表示与5的距离为3的点表示的数是______.【答案】2或8【解答】在5的左边与5距离为3的点表示的数是5-3=2;在5的右边与5距离为3的点表示的数是5+3=8.即在原点的右边表示与5的距离为3的点表示的数是2或8.故答案为:2或8.5.【答题】数轴上到原点的距离等于1的点所表示的数是______.【答案】±1【分析】本题考查数轴上两点间的距离.【解答】数轴上到原点的距离等于1的点所表示的数是故答案为:6.【答题】若点A、点B在数轴上,点A对应的数为2,点B与点A相距5个单位长度,则点B所表示的数是______.【答案】7或-3【分析】本题考查的是数轴上两点之间的距离,即数轴上两点之间的距离等于两点所表示数的差的绝对值.【解答】设点B表示的数为b,由题意得,,∴b-2=5或b-2=-5,∴b=7或b=-3.7.【答题】将数轴上的点A向左平移1个单位长度,再向右平移4个单位长度到达点B.若点B到原点的距离是2个单位长度,则点A表示的数是______.【答案】-1或-5【解答】设A点对应的数为x.则x−1+4=2,或x−1+4=-2,解得:x=−1或x=-5,∴A点表示的数为-1或-5.故答案为:-1或-5.8.【答题】若点A在数轴上对应的数为2,点B在点A左边,且点B与点A相距7个单位长度,则点B所表示的数是______.【答案】-5【分析】本题考查数轴上两点之间的距离.【解答】∵2−7=−5,∴点B所表示的数是−5.故答案为−5.9.【答题】在数轴上,与表示﹣1的点距离为3的点所表示的数是______.【答案】2或﹣4【分析】本题考查数轴上两点之间的距离.【解答】若点在-1的左面,则点为-1-3=-4;若点在-1的右面,则点为-1+3=2,故答案为:2或-4.10.【答题】将数-2,0,-1,1按从大到小的顺序排列______(用“>”号连接).【答案】1>0>-1>-2【分析】本题考查有理数的大小比较.【解答】将数-2,0,-1,1按从大到小的顺序排列为11.【答题】如图,数轴上相邻刻度之间的距离是,若BC=,A点在数轴上对应的数值是-,则B点在数轴上对应的数值是______.【答案】0或【分析】本题考查数轴上两点之间的距离.【解答】-+×5=-+1=,∵BC=,∴点B表示的有理数是0或.故答案为0或.12.【答题】数轴上表示一个数的点与原点的距离是6,那么这个数是______.【答案】±6【分析】本题考查数轴上两点之间的距离.【解答】∵|±6|=6,∴数轴上表示一个数的点与原点的距离是6,那么这个数是±6.故答案为:±6.13.【答题】比大小:-2______-3.【答案】>【分析】比较数的大小可以借助数轴,数轴上的点表示的数,越往右越大.【解答】数轴上,-2位于-3的右侧,∴-2>-3.故答案为>.14.【答题】已知是数轴上的三个点,且在的右侧.点表示的数分别是,若,则点表示的数是______.【答案】7【分析】本题考查数轴上两点之间的距离.【解答】∵点A,B表示的数分别是1,3,∴AB=3-1=2,∵BC=2AB=4,∴OC=OA +AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.15.【答题】在数轴上,表示+4的点在原点的______侧,距原点______个单位.【答案】右 4【分析】本题考查数轴上两点之间的距离.【解答】由正数在原点右侧,负数在原点左侧,两数到原点的距离即是它们的绝对值,∴在数轴上,表示+4的点在原点的右侧,距原点4个单位.故答案为:右,4.16.【答题】数轴上点A对应的数为﹣2,与点A相距5个单位长度的点所对应的数为______.【答案】-7或3【分析】本题考查数轴上两点之间的距离.【解答】如图距离−2相距5个单位长度的点A1在−2的左侧为A1=−7;A2在−2的右侧为A2=3.故答案为:−7或3.17.【答题】在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是______.【答案】2或﹣6【分析】本题考查数轴,涉及有理数的加减运算、分类讨论的思想.【解答】当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6.故答案为:2或﹣6.18.【答题】数轴上与表示-3的点相距4个单位长度的点表示的数是______.【答案】1或-7【分析】本题考查了数轴的应用,注意符合条件的有两种情况.【解答】分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣4=﹣7;②当点在表示﹣3的点的右边时,数为﹣3+4=1;故答案为:1或﹣7.19.【答题】到-3的距离等于4的点表示的数是______.【答案】-7或1【分析】本题考查数轴上两点之间的距离.【解答】到-3的距离等于4的点表示的数有两个,分别为1或-7.20.【答题】如图,在数轴上与A点的距离等于5的数为______.【答案】-6或4【分析】本题考查数轴上两点之间的距离.注意此类题的两种情况:左侧时,用减法;右侧时,用加法.【解答】由数轴上点A的位置,可知与A点的距离等于5的数为-1-5=-6或-1+5=4.故答案为-6或4.。

人教版数学七年级上册第三章《一元一次方程》应用题分类:数轴类专项练(五)

人教版数学七年级上册第三章《一元一次方程》应用题分类:数轴类专项练(五)

第三章《一元一次方程》应用题分类:数轴类专项练(五)1.如图,数轴上有A,B两点,A在B的左侧,表示的有理数分别为a,b,已知AB=12,原点O是线段AB上的一点,且OA=2OB.(1)a=,b=;(2)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P,Q两点停止运动,当t为何值时,2OP﹣OQ=4.(3)在(2)的条件下,若当点P开始运动时,动点M从点A出发,以每秒3个单位长度的速度也向右运动,当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P 后再立即返回,以同样的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动,求在此过程中点M行驶的总路程和点M停止运动时在数轴上所对应的有理数.2.已知,如图A,B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为90.(1)A,B两点间的距离为.(2)现在有一只电子蚂蚁P从A点出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动.运动时间为t秒,用含t 的代数式表示:①点P在数轴上表示的数为.②若两只电子蚂蚁在数轴上的C点相遇,则C点对应的数是多少.(3)若当电子蚂蚁P从A点出发时,以4个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从B点出发,以6个单位/秒的速度向左运动,经过多长的时间两只电子蚂蚁在数轴上相距20个单位长度.3.如图,A、B两点在数轴上,这两点在数轴对应的数分别为﹣12、16,点P、Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒、4个单位/秒,它们运动的时间为t秒,0点对应的数是0.(规定:数轴上两点A,B之间的距离记为AB)(1)如果点P、Q在A、B之间相向运动,当它们相遇时,t=,此时点P所走的路程为,点Q所走的路程为,则点P对应的数是.(2)如果点P、Q都向左运动,当点Q追上点P时,求点P对应的数;(3)如果点P、Q在点A、B之间相向运动,当PQ=8时,求P点对应的数.4.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为40个单位长度?5.如图,数轴上点A在原点O的左侧,点B在原点的右侧,AO=5,BO=7.(1)请写出点A表示的数为,点B表示的数为,A、B两点的距离为;(2)若一动点P从点A出发,以3个单位长度/秒的速度向右运动;同一时刻,另一动点Q从点B出发,以1个单位长度/秒的速度向右运动.①点P刚好在点C追上点Q,请你求出点C对应的数;②经过多长时间PQ=5?6.【阅读理解】:A,B,C为数轴上三点,若点C到A的距离CA是点C到B的距离CB的2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离CA 是2,到点B的距离CB是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离DA是1,到点B的距离DB是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.【知识运用】:(1)如图1,表示数和的点是(A,B)的好点;(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.①表示数的点是(M,N)的好点;②表示数的点是(N,M)的好点;(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动.当t为何值时,P、A和B中恰有一个点为其余两点的好点?7.如图,已知A,B,C是数轴上的三点,点C表示的数是6,BC=4,AB=12.(1)写出数轴上点A,点B表示的数;(2)点M为线段AB的中点,CN=3,求MN的长;(3)动点P,Q分别从A,C同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,求t为何值时,原点O恰好为线段PQ的中点.8.已知A,B为数轴上的两个点,点A表示的数为﹣20,点B表示的数为100.(1)现有一只电子蚂蚁P从点B出发,以每秒6个单位长度的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以每秒4个单位长度的速度向右运动,设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数;(2)若电子蚂蚁P从点B出发,以每秒6个单位长度的速度向左运动,同时另一电子蚂蚁Q恰好从点A出发,以每秒4个单位长度的速度向左运动,设两只电子蚂蚁在数轴上的点D处相遇,求点D表示的数.9.阅读思考:小明在学习过程中,发现“数轴上两点间的距离”可以用“表示这两点数的差”来表示,如图1所示,线段AB,BC,CD的长度可表示为:AB=3=4﹣1;BC=5=4﹣(﹣1);CD=3=(﹣1)﹣(﹣4);于是他归纳出这样的结论:如果点A表示的数为a,点B表示的数为b,当b>a时,AB =b﹣a(较大数﹣较小数).(1)尝试应用:①如图2所示,计算:OE=,EF=;②把一条数轴在数m处对折,使表示﹣20和2020两数的点恰好互相重合,则m=;(2)问题解决:①如图3所示,点P表示数x,点M表示数﹣2,点N表示数2x+8,且MN=4PM,求出点P和点N分别表示的数;②在上述①的条件下,是否存在点Q,使PQ+QN=3QM?若存在,求出点Q所表示的数;若不存在,请说明理由.10.[新定义]:A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离的3倍,我们就称点C是[A,B]的幸运点.[特例感知](1)如图1,点A表示的数为﹣1,点B表示的数为3.表示2的点C到点A的距离是3,到点B的距离是1,那么点C是[A,B]的幸运点,①[B,A]的幸运点表示的数是;A.﹣1 B.0 C.1 D.2②试说明A是[C,E]的幸运点.(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4,则[M,N]的幸运点表示的数为.[拓展应用](3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.有一只电子蚂蚁P从点B出发,以5个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B三个点中恰好有一个点为其余两点的幸运点?参考答案1.解:(1)∵AB=12,AO=2OB,∴AO=8,OB=4,∴A点所表示的实数为﹣8,B点所表示的实数为4,∴a=﹣8,b=4.故答案是:﹣8;4;(2)当0<t<4时,如图1,AP=2t,OP=8﹣2t,BQ=t,OQ=4+t,∵2OP﹣OQ=4,∴2(8﹣2t)﹣(4+t)=4,t==1.6,当点P与点Q重合时,如图2,2t=12+t,t=12,当4<t<12时,如图3,OP=2t﹣8,OQ=4+t,则2(2t﹣8)﹣(4+t)=4,t=8,综上所述,当t为1.6秒或8秒时,2OP﹣OQ=4;(3)当点P到达点O时,8÷2=4,此时,OQ=4+t=8,即点Q所表示的实数为8,如图4,设点M运动的时间为t秒,由题意得:2t﹣t=12,t=12,此时,点P表示的实数为﹣8+12×2=16,所以点M表示的实数是16,∴点M行驶的总路程为:3×12=36,答:点M行驶的总路程为36和点M最后位置在数轴上对应的实数为16.2.解:(1)由题意,得:90﹣(﹣10)=100故答案是:100;(2)①点P表示的数是:2t﹣10.故答案是:2t﹣10;②设t秒后P、Q相遇,∴3t+2t=100,解得t=20;∴此时点P走过的路程=2×20=40,∴此时C点表示的数为﹣10+40=30.答:C点对应的数是30;(3)设经过x秒两只电子蚂蚁在数轴上相距20个单位长度,相遇前:4x﹣6x+100=20解得x=40.相遇后:6x﹣4x﹣100=20解得x=60综上所述,经过40或60秒,两只电子蚂蚁在数轴上相距20个单位长度.3.解:(1)由题意可得:2t+4t=16+12,∴t=,∴点P所走的路程=2×=,点Q所走的路程=4×=,∵﹣12+=﹣,∴点P对应的数是﹣,故答案为:,,,﹣;(2)设经过x秒点Q追上点P,由题意可得:4x﹣2x=16+12,∴x=14,∴﹣12﹣2×14=﹣40,∴点P对应的数为﹣40;(3)设经过y秒后,PQ=8,|16﹣4y﹣(﹣12+2y)|=8,∴y1=,y2=6,∴当y=时,点P对应的数为﹣12+2×=﹣,当y=6时,点P对应的数为﹣12+2×6=0,综上所述:点P对应的数为﹣或0.4.解:(1)M点对应的数是(100﹣20)÷2=40,答:点M所对应的数是40;(2)设t秒后相遇,由题意得:5t+3t=120,解得:t=15,所以点C对应的数为﹣20+3×15=25,答:C点对应的数是25;(3)设当它们运动x秒两只蚂蚁间的距离为40个单位长度,相遇前:5x﹣3x=120﹣40,解得:x=40,相遇后:5x﹣3x=120+40,解得:x=80,答:当它们运动40秒或80秒两只蚂蚁间的距离为40个单位长度.5.解:(1)∵点A在原点O的左侧,点B在原点的右侧,AO=5,BO=7,∴点A表示的数为﹣5,点B表示的数为7,AB=AO+BO=12.故答案为:﹣5;7;12.(2)当运动时间为t秒时,点P表示的数为3t﹣5,点Q表示的数为t+7.①依题意,得:3t﹣5=t+7,解得:t=6,∴3t﹣5=13.答:点C对应的数为13.②当点P在点Q的左侧时,t+7﹣(3t﹣5)=5,解得:t=;当点P在点Q的右侧时,3t﹣5﹣(t+7)=5,解得:t=.答:经过秒或秒时,PQ=5.6.解:(1)设所求数为a,由题意得a﹣(﹣1)=2(a﹣2),或a﹣(﹣1)=2(2﹣a)解得:a=5或1,故答案为:5,1;(1)①设所求数为x,由题意得x﹣(﹣2)=2(4﹣x),或x﹣(﹣2)=2(x﹣4),解得:x=2或10;故答案为:2,10;②设所求数为x,由题意得2[(﹣2)﹣x]=4﹣x或2[x﹣(﹣2)]=4﹣x,解得:x=﹣8或0,故答案为:﹣8或0;(2)设点P表示的数为y,分四种情况:①P为(A,B)的好点.由题意,得(40﹣2t)﹣(﹣20)=2×2t,解得;t=10s②P为(B,A)的好点.由题意,得2[(40﹣2t)﹣(﹣20)]=2t,或2t=2[﹣20﹣(40﹣2t)]解得t=20s或60st=20÷10=2(秒);③B为(A,P)的好点,由题意得:40﹣(﹣20)=2×2t,解得t=15s,④B为(P,A)的好点,由题意得:2t=2[40﹣(﹣20)]t=60s,⑤A为(P,B)的好点,根据题意可得:2t﹣60=2×60,∴t=90⑥A为(B,P)的好点,60=2(60﹣2t)或60=2(2t﹣60),∴t=15或45综上可知,当t为10秒或20秒或60秒或15秒或90秒或45秒时,P、A和B中恰有一个点为其余两点的好点.7.解:(1)如图,∵点C表示的数是6,BC=4,AB=12.∴A表示的数是﹣10,B表示的数是2.(2)∵AB=12,M是AB的中点.∵AM=BM=6,因为CN=3,当点N在点C的左侧时,BN=1,此时MN=BM+BN=6+1=7;当点N在点C的右侧时,BN=7,此时MN=BM+BN=6+7=13;(3)∵A表示的数是﹣10,∴OA=10∵C表示的数是6,∴OC=6∵点P、点Q同时出发,且运动的时间为t∴AP=6t,CQ=3t,∴OP=OA﹣AP=10﹣6t,CQ=OC﹣CQ=6﹣3t,当原点O为PQ的中点时,OP=OQ,∴10﹣6t=6﹣3t.解得t=,故当t=时,原点O为PQ的中点.8.解:(1)AB=100﹣(﹣20)=120设运动x秒在C处相遇,则4x+6x=120,解得x=12,﹣20+4×12=28.故点C表示的数为28;(2)设运动y秒在D处相遇,则6y﹣4y=120,解得y=60,﹣20﹣4×60=﹣260.故点D表示的数为﹣260.9.解:(1)①OE=0﹣(﹣5)=5,EF=3﹣(﹣5)=8.故答案为:5;8.②依题意,得:2020﹣m=m﹣(﹣20),解得:m=1000.故答案为:1000.(2)①依题意,得:2x+8﹣(﹣2)=4×(﹣2﹣x),解得:x=﹣3,∴2x+8=2.答:点P表示的数为﹣3,点N表示的数为2.②设点Q表示的数为y.当y<﹣3时,﹣3﹣y+2﹣y=3×(﹣2﹣y),解得:y=﹣5;当﹣3≤y<﹣2时,y﹣(﹣3)+2﹣y=3×(﹣2﹣y),解得:y=﹣(不合题意,舍去);当﹣2≤y<2时,y﹣(﹣3)+2﹣y=3×[y﹣(﹣2)],解得:y=﹣;当y≥2时,y﹣(﹣3)+y﹣2=3×[y﹣(﹣2)],解得:y=﹣5(不合题意,舍去).答:在上述①的条件下,存在点Q,使PQ+QN=3QM,点Q表示的数为﹣5或﹣.10.解:(1)①由题意可知,点0到B是到A点距离的3倍,即EA=1,EB=3,故选B.②由数轴可知,AC=3,AE=1,∴AC=3AE,∴A是【C,E】的幸运点.(2)设【M,N】的幸运点为P,T表示的数为p,∴PM=3PN,∴|p+2|=3|p﹣4|,∴p+2=3(p﹣4)或p+2=﹣3(p﹣4),∴p=7或p=2.5;故答案为7或2.5;(3)由题意可得,BP=5t,AP=60﹣5t,①当P是[A,B]的幸运点时,PA=3PB,∴60﹣5t=3×5t,∴t=3;②当P是[B,A]的幸运点时,PB=3PA,∴5t=3×(60﹣5t),∴t=9;③当A是[B,P]的幸运点时,AB=3PA,∴60=3×(60﹣5t),∴t=8;④当B是[A,P]的幸运点时,AB=3PB,∴60=3×5t,∴t=4;.∴t为3秒,9秒,8秒,4秒时,P、A、B中恰好有一个点为其余两点的幸运点..。

人教版七年级上册数学期末动点问题压轴题

人教版七年级上册数学期末动点问题压轴题

人教版七年级上册数学期末动点问题压轴题1.已知式子32(4)625M a x x x =++-+是关于x 的二次多项式,且二次项系数为b ,数轴上A ,B 两点所对应的数分别是a 和b .(1)则=a _____,b =_____;A ,B 两点之间的距离为_____;(2)有一动点P 从点A 出发第一次向左运动1个单位长度,然后在新的位置第二次向右运动2个单位长度,再在此位置第三次向左运动3个单位长度…,按照如此规律不断地左右运动,当运动到第2022次时,求点P 所对应的有理数;(3)若点A 以每秒2个单位长度的速度向左运动,同时点B 以每秒3个单位长度的速度向右运动,动点D 从原点开始以每秒m (0m >)个单位长度在A ,B 之间运动(到达A 或B 即停止运动),运动时间为t 秒,在运动过程中,2BD AD -的值始终保持不变,求D点运动的方向及m 的值.2.如图,数轴上点A 、B 表示的数分别是6-和4,点P 为数轴上的一个运动点,以每秒3个单位长度的速度,从点A 出发沿数轴向右运动.点P 出发的同时,动点Q 以每秒n 个单位长度的速度从点B 出发,沿数轴向左运动.设点P 运动时间为(t 秒).(1)A 、B 两点间的距离为______,点P 对应的数为______(用含t 的代数式表示); (2)若2n =,当P 、Q 两点对应的数互为相反数时,求t 的值;(3)若1n =,当P 、Q 两点到原点距离相等时,点P 表示的数为______;(4)点C 对应的数为1-,点P 出发的同时,动点M 以每秒2个单位长度的速度从点C 出发,沿数轴向左运动,点P 遇到点M 时,立即以原速返回点A ,点M 保持原速继续向左运动.点P 到达点A 时,各点同时停止运动.若当P 、M 两点距离为1时,P 、Q 两点对应的数的绝对值恰好相等,直接写出n 的值.3.已知数轴上A、B两点对应的数分别为1-和5-,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,写出点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由;(3)若数轴上点M、N所对应的数为m、n,其中A为PM的中点,B为PN的中点,无论点P在何处,MNAB是否为一个定值?若是,求出定值;若不是,请说明理由.4.已知数轴上A,B两点对应数分别为2-和4,P为数轴上一动点,对应数为x.(1)若P为线段AB的三等分点,求P点对应的数.(2)数轴上是否存在点P,使P点到A点、B点距离之和为10?若存在,求出x的值;若不存在,请说明理由.(3)若点A、点B和点(P点P在原点)同时向左运动,它们的速度分别为1个单位长度/分、2个单位长度/分和1个单位长度/分,则经过多长时间其中一个点到另外两个点的距离相等.5.如图,数轴上有三个点A,B,C表示的数分别是a,b,c,其中a,b,c满足2(7)|1|0a b+++=,c是最小的正整数.(1)=a___________;b=___________;c=___________;(2)为使A,B两点的距离与C,B两点距离相等,可将点B向左移动几个单位长度?(3)若动点P,Q分别从点A、点B出发,以每秒4个单位长度和每秒3个单位长度的速度向左匀速运动,动点R从点C出发,以每秒1个单位长度的速度向右匀速运动,点P,Q,R同时出发,设运动时间为t秒.①若动点Q到达点A后,速度变为每秒7个单位长度,继续向左运动,当t为何值时,点P 与点Q 距离3个单位长度?①记点P 与点Q 之间的距离为1d ,点Q 与点R 之间的距离为2d ,请用含t 的代数式表示1d 和2d ,并判断是否存在一个常数m ,使12md d -的值不随t 的变化而改变,若存在,求出m 的值;若不存在,请说明理由;6.如图,已知数轴上的点A 表示的数为6,点B 表示的数为4-,点C 到点A 、点B 的距离相等,动点P 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x (x 大于0)秒.(1)点C 表示的数是___________;(2)运动过程中点P 表示的数是____________(用含字母的式子表示); (3)当P ,C 之间的距离为2个单位长度时,求x 的值.7.如图,数轴上有A 、B 、C 三个点,A 、B 、C 对应的数分别是a 、b 、c ,且满足()22410100a b c ++++-=,动点P 从A 出发,以每秒1个单位的速度向终点C 运动,设运动时间为t 秒.(1)求是a 、b 、c 的值;(2)若点P 到点A 的距离是点P 到点B 的距离的2倍,求点P 对应的数;(3)当点P 运动到点B 时,点Q 从点A 出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.8.如图,已知数轴上有三点、、A B C ,若用AB 表示A 、B 两点的距离,AC 表示A C 、两点的距离且12AB BC =,点A 、点C 对应的数是分别是a c 、,且()250100a c ++-=.(1)线段BC 的长度为_____________个单位长度;(2)若点P Q 、分别从A C 、两点同时出发向左运动,速度分别为3个单位长度每秒、5个单位长度每秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(3)若点P Q 、仍然以(2)中的速度分别从A C 、两点同时出发向左运动,2秒后,得到线段AP 与线段CQ ,点M 为线段AP 的中点,点N 为线段CQ 的中点,若线段AP 与线段CQ 从此时的位置上同时出发分别以2个单位长度每秒、3个单位长度每秒的速度都向左运动,动点R 以1个单位长度每秒的速度从A 点出发向右运动,在线段CQ 追上线段PA 之前,点R 运动了多少秒时恰好满足68MN RQ +=.9.如图,已知在数轴上有三个点A ,B ,C ,O 是原点,其中A ,B ,C 三点表示的数分别是40,80,120,动点P 从点O 出发向右以每秒4个单位的速度匀速运动:同时,动点Q 从点C 出发,在数轴上向左匀速运动,速度为每秒a 个单位(1)a ;运动时间为t (单位:秒).(1)求:点P 从点O 运动到点C 时,运动时间t 的值.(2)若Q 的速度a 为每秒6个单位,那么经过多长时间P ,Q 两点相距60个单位? (3)当248PA PB QB QC +=-=时,请求出点Q 的速度a 的值(注:QB 表示Q 、B 两点之间的距离).10.已知多项式()32102053a x x x ++-+是关于x 的二次多项式,且二次项系数为b ,数轴上两点A ,B 对应的数分别为a ,b .(1)a =___________,b =___________,线段AB =___________; (2)若数轴上有一点C ,使得32AC BC =,点M 为AB 的中点,求MC 的长___________; (3)有一动点G 从点A 出发,以3个单位每秒的速度向右方向运动,同时动点H 从点B 出发,以1个单位每秒的速度在数轴上作同方向运动,设运动时间为t 秒(30t <),点D 为线段GB 的中点,点F 为线段DH 的中点,点E 在线段GB 上且13GE GB =,在G ,H 的运动过程中,求DE DF +的值___________.(用含t 的代数式表示)11.已知:如图,点A 、点B 为数轴上两点,点A 表示的数为a ,点B 表示的数为b ,a 与b 满足()2480a b ++-=.动点P 从点A 出发,以2个单位长度/秒的速度沿数轴向右运动,若在点B 处放一挡板(挡板厚度忽略不计),点P 在碰到挡板后立即返回,以3个单位长度/秒的速度在数轴上向左运动,到点A 停止,设点P 运动的时间为t (秒)(t >0).(1)直接写出a 、b 的值,=a ______,b =______; (2)点P 碰到挡板时,t 的值为______;(3)当4t =时,点P 表示的有理数为______;当7t =时,点P 表示的有理数为______; (4)试探究:点P 到挡板的距离与它到原点的距离可能相等吗?若能,直接写出相等时t 的值;若不能,请说明理由.12.已知点A 在数轴上对应的数为a ,点B 在数轴上对的数为b ,且320a b ++-=,A 、B 之间的距离记为AB a b =-或b a -,请回答问题:(1)直接写出a ,b ,AB 的值,=a ______,b = ______,AB = ______. (2)设点P 在数轴上对应的数为x ,若35x -=,则x =______.(3)如图,点M ,N ,P 是数轴上的三点,点M 表示的数为4,点N 表示的数为1-,动点P 表示的数为x .①若点P 在点M 、N 之间,则14x x ++-=______;①若点P 表示的数是5-,现在有一蚂蚁从点P 出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M 、点N 的距离之和是8?13.如图,数轴上点A 表示10-,点O 表示0,点B 表示10,点C 表示18.动点P 从点A 出来,以2个单位长度/秒的速度沿着数轴的正方向运动;同时,动点Q 从点C 出发,以1个单位长度/秒的速度沿着数轴的负方向运动.当点P 到达点C 时,两点都停止运动,设点P 运动的时间为(t 秒).(1)点A 和点C 在数轴上相距______个单位长度; (2)当3t =时,求点P 与点Q 之间的距离; (3)求P 、Q 两点相遇时t 的值;(4)当点P 到点O 的距离与点Q 到点B 的距离相等时,直接写出t 的值.14.已知:如图数轴上有A B C 、、三点,点A 和点B 间距20个单位长度且点A 、B 表示的有理数互为相反数,40AC =,数轴上有一动点P 从点A 出发,以2个单位/秒的速度向右沿数轴运动,设运动时间为t 秒(0)t >.(1)点A 表示的有理数是______,点C 表示的有理数是______,点P 表示的数是______(用含t 的式子表示).(2)当t =______秒时,P B 、两点之间相距8个单位长度?(3)若点A 、点B 和点C 与点P 同时在数轴上运动,点A 以1个单位/秒的速度向左运动,点B 和点C 分别以3个单位/秒和4个单位/秒的速度向右运动,是否存在常数m ,使得72mAP BP CP +-为一个定值,若存在,请求出m 值以及这个定值;若不存在,请说明理由.15.数轴上两点间的距离可以表示为这两点所对应的数的差的绝对值,如数轴上表示3的点A 到数轴上表示2-的点B 的距离可以表示为:()325--=,若点P ,Q 是数轴上的两个动点,点P 从点A 出发向左每秒运动2个单位长度,点Q 从点B 出发向右每秒运动1个单位长度.(1)3秒后点P 到A 点的距离PA 为___________,t 秒后点P 到B 点的距离PB 为___________.(2)求出当Q 运动到A 点时,P 到B 点的距离PB .(3)当Q 运动到A 点右侧后,是否存在k 使得无论时间t 如何变化PB kQA -为定值?若存在,请直接写出此时的k 值以及该定值,若不存在,请说明理由.16.已知点A 、B 在数轴上分别表示有理数a ,b ,且a ,b 满足720a b ++-=,我们将A ,B 两点间的距离记为AB ,那么ABa b .若数轴上点C 表示的数为x ,点P ,点Q 为数轴上的两个动点,点P 从点A 出发,速度为每秒4个单位长度,点Q 同时从点B 出发,速度为每秒2个单位长度,回答下列问题: (1)A ,B 两点间的距离AB =________;(2)若点C 在点B 的右边,12AC BC +=,求x 的值;(3)若点P 和点Q 都向右运动,它们在点M 处相遇,求点M 所表示的数.17.如图,在数轴上点A 表示数a ,点B 表示数b ,且()26150a b ++-=.(1)填空:=a ________,b =________.(2)已知点C 为数轴上一动点,且满足27AC BC +=,求出点C 表示的数;(3)若点A 以每秒2个单位长度的速度向左运动,同时点B 以每秒3个单位长度的速度向右运动,动点D 从原点开始以每秒m 个单位长度运动,运动时间为t 秒,运动过程中,点D 始终在动线段AB 上,且2BD AD -的值始终是一个定值,求D 点运动的方向及m 的值.18.已知多项式10514293420x x y xy -+-的常数项是a ,次数是b a b ,、在数轴上分别表示的点是A B 、(如图),点A 与点B 之间的距离记作AB .(1)求a b ,的值; (2)求AB 的长;(3)动点P 从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A ,B 在数轴上运动,点A ,B 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.若点A 向右运动,点B 向左运动,AP PB =,求t 的值.参考答案:1.(1)-4,6,10; (2)1007;(3)向左运动,m 的值为13.2.(1)10,63t -+ (2)2 (3)-3或1.5(4)12或172或53.(1)点P 对应的数是3- (2)存在点P ,x 的值是1或7-, (3)MNAB为一个定值,定值是24.(1)点P 对应的数为0,2; (2)存在,4x =-或6x =(3)经过时间2分或5分或8分时,其中一个点到另外两个点的距离相等.5.(1)7,1,1a b c =-=-= (2)2个 (3)①t 为113或173时,①存在,当4m =时,12md d -的值不随t 的变化而改变 6.(1)1 (2)42x -+ (3)32x =或72x =7.(1)24a =-,10b =-,10c = (2)443-或4(3)当Q 点开始运动后第5、9、12.5、14.5秒时,P 、Q 两点之间的距离为4, 8.(1)40(2)当运动了52秒或30秒时,Q 到B 的距离与P 到B 的距离相等(3)在线段CQ 追上线段PA 之前,点R 运动了8秒或20秒时恰好满足68MN RQ +=9.(1)30秒 (2)6秒或18秒 (3)3221单位长度/秒或329单位长度/秒10.(1)10-;20;30 (2)3或75 (3)25211.(1)48-,; (2)6; (3)4,5; (4)4或 223.12.(1)3,2,5-; (2)2-或8; (3)2.5或10.5秒.13.(1)28 (2)19 (3)283(4)2或6答案第3页,共3页 14.(1)10-,30,102t -+(2)6或14(3)1m =-,这个定值为6015.(1)6,52t -(2)当Q 运动到A 点时,P 到B 点的距离PB 为5(3)此时的k 值为2,该定值为516.(1)9(2) 3.5x =(3)1117.(1)6-,15(2)点C 表示的数为9-或18;(3)D 点运动的方向为从原点向左运动,m 的值为13.18.(1)20,30a b =-=(2)50AB =(3)10t =或83t =。

七年级数学上册1.2.2 数轴-数轴的三要素及其画法 选择题专项练习十四(人教版,含解析)

七年级数学上册1.2.2 数轴-数轴的三要素及其画法 选择题专项练习十四(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习十四1.2.2 数轴-数轴的三要素及其画法1.一把刻度尺如图所示放在数轴上(单位长度为 1 cm),数轴的原点对应刻度尺上的 3.6 cm,点A和点B分别对应刻度尺上的“15 cm”和“0 cm”,则点A与点B在数轴上分别表示数________和________.2.如图,点A、B在数轴上,其对应的数分别是-14和10,若点C也在这个数轴上,且AC:BC=2:5,则点C对应的数是_________.3.点A,C,O,B在数轴上的位置如图所示,其中点O为原点,2AC=,OA OB=,若点C所表示的数为a,则点B所表示的数为____.4.在数轴上,与原点相距4个单位的点所对应的数是____________.5.已知有理数a、b、c在数轴上对应的点如图所示,则cb_____ab.(填“>”或“<”或“=”)6.在数轴上表示a,b,c三个有理数的点的位置如图所示,下列各式:①b+a+(-c)>0;②a|a|+||bb+||cc=1;③bc-a>0;④|a-b|-|c+b|+|a-c|=-2b.其中正确的有__________.(填序号)7.有理数在a,b,c在数轴上的位置如图所示,则a c+-c b-=__________.8.如图,数轴上A、B两点分别对应有理数a、b,则a﹣b_____0(用“>”“<”或“=”填空).9.比较大小:12-____13-(用“>或=或<”填空).10.一只蜗牛在数轴上爬行,从原点出发爬行2个单位长度到达终点,那么这个终点表示的数值是__________.11.数轴上点A表示的数是1,-将A点向左平移2个单位,再向右平移5个单位得到点B,则点B表示的数是_____.12.数轴上一动点A表示的数是2,将A向右移动5个单位长度到达点C、再将点C向左移动9个单位所表示的数为_______.13.点A到原点的距离为4,且位于原点的左侧,若一个点从A处向右移动2个单位长度,再向左移动7个单位长度,此时终点所表示的数为__.14.在数轴上,与原点距离为6的点所表示的数是____.15.数轴上点A距原点3个单位,将点A向左移动7个单位,再向右移动2个单位到达B点,则点B所表示的数是_____.16.如图,P是线段AB上一点,M是AP的中点,N是PB的中点,8AB=,2AP=,则MN=________.17.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动.那么数轴上的﹣2009所对应的点将与圆周上字母________所对应的点重合.18.如图,在数轴上有一个动点A,从表示1的位置开始以每秒2个单位长度的速度沿负方向运动,运动t秒之后停止,此时点A表示的数为_____.19.数轴上一点从原点向正方向移动3个单位长度,再向负方向移动5个单位长度,此时该点表示的数为_____.20.点 A 在数轴上表示的数是 a .若点 A 沿数轴移动 4 个单位长度恰好到达原点,则 a的值是_____.21.在数轴上与表示2的点相距5个单位长度的点所表示的数是____________.22.在数轴上,表示+4的点在原点的____侧,距原点____个单位.23.点A 、B 是数轴上的两个点,点A 表示数,如果AB = 3 ,那么点B 表示的数是_____.24.在数轴上,如果点A 、点B 所对应的数分别为3-、2,那么A 、B 两点的距离AB =_______.25.在数轴上,点A 所表示的数为3,那么到点A 的距离等于5个单位长度的点所表示的数是_____.26.数轴上到数-2所表示的点的距离为4的点所表示的数是______.27.如图线段AB=6,如果在直线AB 上取一点C ,使AB :BC=3:2,再分别取线段AB 、BC 的中点M 、N ,那么MN=_____.28.到数轴上表示6-和表示10的两点距离相等的点表示的数是______.29.如图,在数轴上有A,B,C,D 四个点,且2AB=BC=3CD,若A,D 两点表示的数分别为-5,6,点E 为BD 的中点,则该数轴上点E 表示的数是____.30.一只小球落在数轴上的某点0p ,第一次从0p 向左跳1个单位到1p ,第二次从1p 向右跳2个单位到2p ,第三次从2p 向左跳3个单位到3p ,第四次从3p 向右跳4个单位到4p ……若按以上规律跳了6次时,它落在数轴上的点6p 所表示的数恰好是2017,则这只小球的初始位置点0p 所表示的数是_______,若按以上规律跳了2n 次时,它落在数轴上的点2n p 所表示的数恰好是a ,则这只小球的初始位置点0p 所表示的数是________.参考答案1.11.4 -3.6解析:分析:本题图中的刻度尺对应的数并不是从0开始的,所以B 点对应的数为0-3.6,A 点对应的数为15-3.6,即可求解.详解:依题意得:B 点对应的数为0-3.6=-3.6;A 点对应的数为15-3.6=11.4.故答案为.点睛:注意:数轴上两点间的距离=右边的数减去左边的数.2.-507或-30. 解析:设点C 表示的数为x ,分点C 在A 、B 之间和点C 在点A 的左边两种情况,利用两点间的距离公式列方程求解可得.详解:设点C 表示的数为x ,当点C 在A 、B 之间时,142105x x +=-, 解得:x=-507; 当点C 在点A 的左边时,142105x x --=-, 解得:x=-30,故答案为:-507或-30. 点睛:本题主要考查数轴,熟练掌握两点间的距离公式是解题的关键.3.2a -解析:根据题意和数轴可以用含a的式子表示出点B表示的数,本题得以解决.详解:∵O为原点,AC=2,OA=OB,点C所表示的数为a,∴点A表示的数为a−2,∴点B表示的数为:−(a−2)=2a-,故答案为:2a-.点睛:本题考查数轴,解答本题的关键是明确题意,利用数形结合的思想解答.4.4或-4解析:分点在原点左边和右边两种情况讨论求解.详解:解:点在原点左边时,为-4,点在原点右边时,为4,所以,在数轴上与原点相距4个单位长度的点对应的数是4或-4.故答案为:4或-4.点睛:本题考查了数轴上表示的数到原点的距离,要注意分情况讨论.5.>解析:利用有理数a、b、c在数轴上对应的位置即可解答.详解:解:由图知c<b<0,a>0,即cb>0,ab<0,所以cb>ab.点睛:本题考查数轴上点的大小,属于基础题.6.②④解析:首先根据各有理数在数轴上的位置,判定出其大小关系,然后逐一判定即可得解.详解:根据题意,可得0b a c <<<b +a +(-c)<0,错误;1111a b c a b c++=-+=,正确; bc -a <0,错误;2a b c b a c a b c b a c b --++-=----+=-,正确;故答案为②④.点睛:此题主要考查利用有理数在数轴上的位置判定式子的正误,熟练掌握,即可解题.7.-a-2c+b解析:根据数轴上点的位置判断出绝对值里式子的正负,利用绝对值的代数意义化简,计算即可得到结果.详解:解:根据题意得:a <b <0<c ,且|c|<|b|<|a|,∴a+c<0,c-b>0,则原式=-a-c-c+b=-a-2c+b ;故答案为:-a-2c+b .点睛:本题考查了整式的加减,掌握整式的加减实质上就是合并同类项是解题的关键.8.<解析:根据原点左边的数小于0、原点右边的数大于0,可得出a 和b 的符号,继而结合选项可得出答案.详解:解:由坐标轴可得,0a <,0b >,0a b ∴-<.故答案为:<点睛:本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.9.<解析:根据绝对值的性质即可求解.详解:∵11 23>∴12-<13-故填:<.点睛:此题主要考查有理数的大小比较,解题的关键是熟知绝对值的性质.10.2±解析:分向左和向右两种情况求解即可.详解:当向左爬行2个点位长度时,0-2=-2;当向右爬行2个点位长度时,0+2=2;∴这个终点表示的数值是2±.故答案为:2±.点睛:本题考查了数轴上的动点问题,以及分类讨论的数学思想,熟练掌握左减右加是解答本题的关键.11.2解析:根据数轴上的数向左移动用减法,向右移动用加法,据此可解.详解:∵数轴上点A表示的数是-1,将A点向左平移2个单位,再向右平移5个单位得到点B∴点B表示的数是:-1-2+5=2故答案为:2.点睛:本题考查了数轴上的点移动后所表示的数,明确数轴上的点移动时,向左移动几个单位减去几,向右移动几个单位加上几,是解题的关键.12.2-解析:根据数轴上的点表示数的和平移特点即可解答.详解:解:点A表示的数是2,点A向右移动5个单位长到达点C,点C表示的数是257+=,点C 向左移动9个单位所表示的数是792-=-.故答案为2-.点睛:本题主要考查了数轴.一个点向右移动表示的数等于这个点表示的数加上移动的距离,向左则减去移动的距离.13.-9解析:根据数轴上点的运动规律“左减右加”即可解答.详解:解:∵点A到原点的距离为4,且位于原点的左侧,∴点A表示的数为﹣4,∵一个点从A处向右移动2个单位长度,再向左移动7个单位长度,∴﹣4+2﹣7=﹣9,故答案为:﹣9.点精:本题主要考查了数轴,解题的关键是根据题意得到点A的运动路线.14.±6解析:距离原点距离为6的点表示的数有两个,分别在原点左右两侧,为6和-6.故答案为±6.点睛:一般地,设a是一个正数,数轴上与原点距离是a的点有两个,它们分别在原点左右两侧,表示为-a和a,这两点关于原点对称.15.﹣2或﹣8解析:分析:根据题意可以求得点A表示的数,从而可以得到点B表示的数,本题得以解决.详解:由题意可得,点A表示的数是3或-3,∴当A为3时,点B表示的数为:3-7+2=-2,当A为-3时,点B表示的数为:-3-7+2=-8,故答案为-2或-8.点睛:本题考查数轴,解答本题的关键是明确数轴的特点,利用数轴的知识解答.16.4解析:首先根据中点定义可得到AM=PM=12AP,PN=12PB,再根据图形可得PB=AB-AP,MN=MP+PN,即可得到答案.详解:∵M是AP的中点,∴AM=PM=12AP=1,∵AB=8,∴PB=AB-AP=6,∵N是PB的中点,∴PN=12PB=3,∴MN=MP+PN=1+3=4.故答案为:4.点睛:本题考查了求两点间的距离,解题的关键是根据条件理清线段之间的关系.17.C详解:分析:由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,1,2,3,则分别与圆周上表示的字母A,B,C,D的点重合.详解:∵1-(-2009)=2010,2010÷4=502…2,∴数轴上表示数-2009的点与圆周上表示C的字母重合.故答案为C.点睛:本题考查了图形类规律与探索,把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.18.1﹣2t解析:先根据路程=速度×时间,求出动点A行驶的路程,再根据左减右加可求点A表示的数.详解:解:点A表示的数为1﹣2t.故答案为:1﹣2t.点睛:此题考查数轴的实际运用,结合数轴,掌握行程问题中的基本数量关系是解决问题的关键.19.-2解析:根据点的平移中,点所对应的数的变化规律:左减右加进行解题即可详解:解:根据题意,得0+3﹣5=﹣2.故答案为:﹣2.点睛:本题主要考查了点的平移规律,掌握其规律是解题关键20. 4解析:数轴上点的坐标变化和平移规律:左加右减,此题要注意考虑两种情况:可以向左或者向右平移.详解:解:∵点A在数轴上表示为a的点:∴①当点A沿数轴向左平移4个单位长度到达原点时,a=4;∴②当点A沿数轴向右平移4个单位长度到达原点时,a=-4;故答案为:±4.点睛:本题考查了数轴,解题的关键是注意数的大小变化和平移之间的规律:左加右减.21.-3或7解析:试题解析:设数轴上与表示2的点相距5个单位长度的点代表的数是x,则|x−2|=5,解得x=7或x=−3.故答案为7或−3.22.右 4解析:由正数在原点右侧,负数在原点左侧,两数到原点的距离即是它们的绝对值,所以在数轴上,表示+4的点在原点的右侧,距原点4个单位.故答案为右,4.23.,3解析:已知 3AB=,那么点B表示的数即是与点A距离3个单位的点,有两个,在A点的左边和右边各一个.详解:解:在数轴上表示A,∴数轴上到A的距离是3的点B表示的数是或3;故答案为:或3.点睛:本题考查了利用数轴的点表示数的有关内容,用几何方法借助数轴分为两种情况来求解即可.24.5解析:利用A,B对应的数,进而求出两点之间的距离.详解:A,B两点之间的距离为2-(-3)=2+3=5.故答案为:5.点睛:此题主要考查了实数与数轴,得出异号两点之间距离求法是解题关键.25.8或﹣2.解析:设该点表示的数为x ,利用两点间的距离公式,即可得出关于x 的一元一次方程,解之即可得出结论.详解:设该点表示的数为x ,依题意,得:x ﹣3=5或3﹣x =5,解得:x =8或x =﹣2.故答案为:8或﹣2.点睛:本题考查了数轴以及两点间的距离公式,找准等量关系,正确列出一元一次方程是解题的关键.26.-6与2解析:此题考查数轴相关知识距离-2点的距离是4的点有两个,一个在左边,24,6x x --=∴=-.一个在右边(2)4,2x x --=∴=,答案 -6与227.5或1解析:分两种情况进行讨论, 先画图来确定C 、M 、N 三点的位置, 然后根据这三点的位置来确定MN 的长详解:如图, ①当点C 在线段AB 上时,线段AB 、BC 的中点分别是M 、N,∴BM=12AB,BN=12BC ,又AB=6, AB:BC=3:2,∴BC=4,∴MN=BM-BN=3-2=1;②当点C在线段AB的延长线上时,线段AB、BC的中点分别是M、N,∴BM=12AB,BN=12BC ,又AB=6, AB:BC=3:2,∴BC=4,∴MN=BM-BN=3+2=5故答案为: 5 或 1.点睛:本题主要考查数轴及数轴上的点.28.2解析:根据数轴上两点的中点求法,即两数和的一半,直接求出即可.详解:解:到数轴上表示6-和表示10的两点距离相等的点表示的数是61022-+=,故答案为:2.点睛:本题考查了数轴上两点之间中点求法,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.29.2解析:由A与D表示的数求出AD的长,再根据已知等式用AB,CD表示出BC,根据AB+BC+CD=AD求出BC的长,进而求出AB与CD的长,即可得出该数轴上点E表示的数.详解:解:∵A、D两点表示的数分别为-5和6,∴AD=11,∵BC=2AB=3CD,∴AB=12BC,CD=13BC,∴AD=AB+BC+CD=11,即12BC+BC+13BC=11,∴BC=6,AB=3,CD=2,则B、D两点所表示的数分别为-2和6,该数轴上点E表示的数是(-2+6)÷2=2.故答案为2.点睛:此题考查了数轴,两点间的距离,弄清题意是解本题的关键.30.2014, a-n解析:①设p表示的数为x,P1表示的数为x-1;P2表示的数为x-1+2=x+1;P3表示的数为x+1-3=x-2;P4表示的数为x-2+4=x+2;P5表示的数为x+2-5=x-3;P6表示的数为x-3+6=x+3;由题意得x+3=2017,∴x=2014.由①知,x+n=a,∴x=a-n.点睛:本题考查了数轴上动点的运动规律,动点在数轴上的运动规律是:右加左减.根据这一规律用含x的代数式表示出p点运动6次后及2n次后所表示的数,从而列出方程求出p所表示的数.。

+数轴上的动点问题解题技巧+课件2024-2025学年人教版数学七年级上册

+数轴上的动点问题解题技巧+课件2024-2025学年人教版数学七年级上册
数轴上动点问题解题技巧
WPS,a click to unlimited possibilities
汇报人:WPS
1
一、数轴上两点间的距离:右边点表示的数-左边点表示的数
已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为70 (1)求出A、B两点间的距离
2
二、两点中点公式:两数和除以2
6
三动点问题
已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。 ⑴若点P到点A、点B的距离相等,求点P对应的数; ⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。若不存在,请说 明理由? ⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一 每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?
已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为70 (2)请写出AB的中点M对应的数
3
三、用字母表示动点:数轴上的点向左移动用减法,移动几个单位长度就减去几 数轴上的点向右移动用加法,移动几个单位长度就加上几
已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为70 (3)现在有一只电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发, 以2个单位/秒的速度向左运动,
(3)如果A. B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发也向数轴的负方向运动,
且始终保持AB=
2 3
AC.当点C运动到−6时,点A对应的数ቤተ መጻሕፍቲ ባይዱ多少?
8
7
动点折返问题
如图,在数轴上每相邻两点间的距离为一个单位长度,点A. B. C. D对应的数分别是a、b、c、d,且 d−2a=14

人教版七年级数学上册专题复习 数轴上动点问题精讲精练

人教版七年级数学上册专题复习  数轴上动点问题精讲精练

要想掌握数轴上的动点问题,首先应明确两点:一、点左右移动如何表示例如,数轴上有一点A,表示的数是1,这个点向左移动2个单位长度是,向右移动3个单位长度是数轴上有一点A,表示的数是a,这个点向左移动2个单位长度是,向右移动3个单位长度是数轴上一个点向左移动,应该,向右移动,应该二、数轴上两点之间距离的表示;(1)两个定点之间的距离:例如,数轴上表示1和7两点之间的距离是算式表示为,用右边的减去左边的数(即大-小=大小之间的距离).那么数轴上A、B两点,分别用a,b来表示。

A在B的左边,A,B两点之间的距离就可以表示为(2)一个定点和一个动点之间的距离:例如.数轴上A、B两点分别表示1、7。

点P从点A出发,以每秒2个单位长度的速度向右动,t秒后,点P表示的数为 ,求A、P两点及B、P两点间的距离.(3)两个动点之间的距离:例如,数轴上A.B两点分别表示1、7。

点P从点A出发,以每秒2个单位长度的速度向右运动,点Q 从点B出发,以每秒4个单位长度的速度向左运动。

t秒后,点P表示的数为,点Q示的数为,求P、Q两点之间的距离为练习1:数轴上A.B两点分别表示-1、8。

点P从点A出发,以每秒2个单位长度的速度向右运动,点Q从点B出发,以每秒5个单位长度的速度向右运动。

t秒后,点P表示的数为,点Q示的数为,求P、Q两点之间的距离为 (提示:看一下P点能不能追上Q点,如果追不上,PQ两点之间的距离就只有一种情况,或者也可以说不用加绝对值)练习2:数轴上A.B两点分别表示-1、10。

点P从点A出发,以每秒6个单位长度的速度向右运动,点Q从点B出发,以每秒4个单位长度的速度向右运动。

t秒后,点P表示的数为,点Q示的数为,求P、Q两点之间的距离为 (提示:看一下P点能不能追上Q点,如果追得上,PQ两点之间的距离就只有两种种情况,或者也可以说需要加绝对值)练习3:数轴上A.B两点分别表示-10、8。

点P从点A出发,以每秒5个单位长度的速度向左运动,点Q从点B出发,以每秒3个单位长度的速度向右运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两点间的距离
【学习目标】
会借助数轴理解绝对值的几何意义进而求数轴上两点间的距离.
【回顾】
1、数轴上两点A,B,
(1)若A点表示2,B点表示4,则A、B两点间的距离等于________;
-5 -4 -3 -2 -1 0 1 2 3 4 5(2)若A点表示2,B点表示4
-,则A、B两点间的距离等于________;
-5 -4 -3 -2 -1 0 1 2 3 4 5(3)若A点表示2
-,B点表示4
-,则A、B两点间的距离等于________.
-5 -4 -3 -2 -1 0 1 2 3 4 5
2、通过以上特例,可以发现:
数轴上两点间的距离等于这两点所对应的数的差的绝对值.
如图所示,点A,B在数轴上分别对应的数为a,b,则A,B两点间的距离表示
为|AB|= ______________ B
例如5与2
-两数在数轴上所对应的两点之间的距离可列式为|5(2)|7
--=
列式计算:
(1)若A点表示8,B点表示26,求A,B两点间的距离;(2)若A点表示8
-,B点表示26,求A,B两点间的距离;(3)若A点表示8
-,B点表示26
-,求A,B两点间的距离;
【应用】
3、我们知道|5(2)
--|表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对应的两点之间的距离.那么,
(1)|4-2|表示_________与________之差的绝对值,实际上也可理解为______与_____两数在数轴上所对应的两点之间的距离;
(2)|5(3)
---|表示_________与________之差的绝对值,实际上也可理解为
______与_____两数在数轴上所对应的两点之间的距离;
(3)|53
--|表示_________与________之差的绝对值,实际上也可理解为
______与_____两数在数轴上所对应的两点之间的距离;
(4)①数轴上表示x和3的两点A和B之间的距离是______________,如果|AB|=2,那么x的值是___________.
②数轴上表示x和1
-的两点A和B之间的距离是______________,如果|AB|=2,那么x的值是___________.
(5)
①找出所有符合条件的整数x,使得|x-5|+|x-2|=3,这样的整数x是
_____________;
②找出所有符合条件的整数x,使得|x-5|+|x|=5,这样的整数x是
_____________;
③找出所有符合条件的整数x,使得|x+5|+|x-2|=7,这样的整数x是
_____________;
④找出所有符合条件的整数x,使得|x+5|+|x+2|=3,这样的整数x是
_____________;
(6) 找出所有符合条件的整数x,使得|x+5|+|x-2|=9,这样的整数x是
_____________;
(7)若|x+1|+|x-2|取最小值时,相应的x的取值是__________,此时最小值是___________.
【巩固练习】
1、利用数轴求下列每组数在数轴上对应点之间的距离:
(1) 如图所示,A,B 两点的距离为___________;
(2) 如图所示,C,D 两点的距离为___________;
(3) 如图所示,A,D 两点的距离为___________;
D
C B A -4 -3 -2 -1 0 1 2 3 4
(4)若在数轴上M 点表示的数为m,N 点表示的数为n ,如图所示,则点M 与点N 的距离为__________.
M N
m 0 n
2、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为2,则所有满足条件的点B 与原点O 的距离之和为 _____________
3、已知数轴上两点A 、B 对应的数分别为-1、3,点P 为数轴上一动点,其对应的数为x .
(1)若点P 到点A ,点B 的距离相等,求点P 对应的数;
(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为6?若存在,请求出x 的值;若不存在,说明理由;
【课后反思】数轴上两点间的距离,实质是绝对值的知识,体现了数形结合的思想,在初中教学中是一个难点。

本节课先从数轴上特殊的两点间距离出发,求出两点间的距离,然后由特殊点到一般用字母表示的点,归纳出数轴上任意两点间的距离公式AB=|a-b|,熟练掌握公式后,公式的应用是重点,通过一组练习,加强训练。

讲解过特定的例题后,让学生上黑板板演习题,以锻炼他们的解题和计算能力,整堂课我给予学生比较多的时间去自主练习,让学生展示自己,使绝大多数学生参与到课堂中来,但极少数同学还是有一定的难度,解题能力有待提高,知识的综合运用能力欠缺。

相关文档
最新文档