线性代数期末复习题
线性代数期末复习题及参考答案
线性代数期末复习题及参考答案复习题之判断题(√)1. 若行列式的每一行元素之和全为零,则行列式的值等于零. ( )2. 设A ,B 为n 阶矩阵,则22))((B A B A B A −=−+. (√)3. 方阵A 可逆的充要条件是A E ~.( )4. 若n 阶矩阵A 相似于对角矩阵,则A 必有n 个互不相同的特征值. (√)5. 二次型222123123(,,)4f x x x x x x =++是正定二次型. (√ )6. 若B A 、为n 阶方阵,则AB BA =. ( )7. 设A 为任意n 阶矩阵,则A —A T 为对称阵. ( )8. 若n 阶矩阵A 能对角化, 则A 必有n 个不同的特征值. (√)9. 实对称矩阵A 对应不同特征值的特征向量必正交. (√)10. 设AB=0,若A 为列满秩矩阵,则B=0.( )11. 对于任何矩阵Amxn ,不能经过有限次初等列变换把它变为列阶梯形矩阵和列最简形矩阵.( )12. 奇排列变成标准排列的对换次数为偶数.( )13. 在秩是r 的矩阵中,存在等于0的r-1阶子式,但是不存在等于0的r+1阶子式.复习题之填空题1.设向量()1,0,3,Tαλ=−,()4,2,0,1Tβ=−−,若α与β正交,则λ= - 4 . 2. 当A 为任意的n 阶矩阵时,下列矩阵A A T +;T A A −;T AA ;A A T 中, 对称矩阵是T T T A A AA A A +,,,反对称矩阵是T A A −. 3. 设00B A C⎛⎫=⎪⎝⎭,B ,C 均为可逆矩阵,则1A −=1100C B−−⎛⎫⎪⎝⎭.4.设A 是n 阶矩阵(2n ≥),且A 的行列式det 2A =, 则它的伴随矩阵*A 的行列式*det A =12n −5.矩阵⎪⎪⎪⎭⎫⎝⎛−−−=466353331A 的所有特征值之和等于0.6. 设,A B 为n 阶对称矩阵,则AB 是对称矩阵的充分必要条件AB=BA.7.设向量11,,0,132Tα⎛⎫=−− ⎪⎝⎭,()3,2,1,1T β=−−,则α与β的内积为 1 .8.设方阵A 满足2240A A E −+=,且A E +可逆,则1()A E −+=37A E−−. 9. 设n 阶矩阵A 的伴随矩阵为*A ,若0A =,则*A =0.10.设向量()1,2,0,1T α=−,()3,1,1,2Tβ=−−,则α与β的内积为 -1 . 11.设方阵A 满足220A A E −−=,且A 可逆,则1A −=2A E−.12.矩阵⎪⎪⎪⎭⎫ ⎝⎛−−−=269643932A 的所有特征值之和等于0 .13.2103111113423122−−−−的代数余子式之和31323334-2A A A A ++= -33 ___ .14. 设n 阶矩阵A 满足0322=+−E A A ,则()12−−E A=3A −15. 若4阶方阵A 的行列式A =3, *A 是A 的伴随矩阵,则*A = 27 ___ . 16 向量α=()1,1,1,5T−−−与()4,2,1,Tβλ=−−正交,则λ=-1.17. 二次型2221231231223(,,)4324f x x x x x x x x x x =−+−+−对应的对称矩阵是110142023A −⎛⎫ ⎪=− ⎪ ⎪−−⎝⎭_________________.18.3023111110560122−−−−−的代数余子式之和31323334A A A A +++= 0 .19. 设n 阶矩阵A 满足02A 2=−−E A ,则1)3(A −−E =2A E +−.20. 设A 是4阶方阵,4A =−,则*A =-64.21. 向量(2,2,3),(3,3,)T T t αβ=−=−−与正交,则t = 0 .22. 二次型22123131223(,,)224f x x x x x x x x x =++−对应的对称矩阵是110102022A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭.复习题之计算题1a .设3111131111311113A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭, 122212221B ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭.(1)计算矩阵A 的行列式.(2)求矩阵B 的逆. 1a.(1)解:=D 31111311113111136111631161316113=11111311611311113=11110200600200002==48.(2).解:()122100************A E ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭122100036210063201⎛⎫⎪→−−− ⎪ ⎪−−−⎝⎭122100036210009221⎛⎫ ⎪→−−− ⎪ ⎪−⎝⎭12211021012033221001999⎛⎫ ⎪⎪→− ⎪⎪ ⎪−⎝⎭122100999212010999221001999⎛⎫⎪ ⎪→− ⎪ ⎪ ⎪−⎝⎭ 从而有112212129221A −⎛⎫ ⎪=− ⎪ ⎪−⎝⎭。
(完整版)线性代数期末测试题及其答案.doc
线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。
1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。
x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。
4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。
5.n阶方阵A满足A23A E 0 ,则A1。
二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。
a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。
2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。
线性代数期末测试题及其答案
线性代数期末考试题一、填空题将正确答案填在题中横线上;每小题5分,共25分1. 若022150131=---x ,则=χ__________; 2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 ;3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵;4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A ;5.n 阶方阵A 满足032=--E A A ,则=-1A ;二、选择题 每小题5分,共25分6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定A.054<<-tB.5454<<-tC.540<<tD.2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是 A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关9.过点0,2,4且与两平面2312=-=+z y z x 和的交线平行的直线方程为 A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x10.已知矩阵⎪⎪⎭⎫⎝⎛-=1513A ,其特征值为 A.4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 每小题10分,共50分11.设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式EX B C T=-)(, 求X ;12.问a 取何值时,下列向量组线性相关 123112211,,221122a a a ααα⎛⎫⎛⎫-⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪⎪ ⎪ ⎪=-==- ⎪ ⎪ ⎪⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭⎝⎭;13. λ为何值时,线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321x x x x x x x x x λλλλ有唯一解,无解和有无穷多解 当方程组有无穷多解时求其通解;14. 设.77103 ,1301 ,3192 ,01414321⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααα 求此向量组的秩和一个极大无关组,并将其余向量用该极大无关组线性表示;15.证明:若A 是n 阶方阵,且,I AA =T,1-=A 证明 0=+I A ;其中I 为单位矩阵 线性代数期末考试题答案一、填空题 1. 5.解析:采用对角线法则,由002)5(03)2(51=----++-⨯⨯x x 有5=x . 考查知识点:行列式的计算. 难度系数:2.1≠λ.解析:由现行方程组有)1(22211111111-=-+==λλλλλD ,要使该现行方程组只有零解,则0≠D ,即1≠λ.考查知识点:线性方程组的求解 难度系数: 3.n n s s ⨯⨯, 解析;由题可知ns ij c C ⨯=)(,则设D CB AC ==,可知D 的行数与A 一致,列数与B 一致,且A 与B 均为方阵,所以A 为s s ⨯阶矩阵,B 为n n ⨯阶矩阵.考查知识点:n 阶矩阵的性质 难度系数:4. 24解析:由题可知,A 为3阶矩阵且3=A ,则24223==A A .考查知识点:矩阵的运算 难度系数:5. E A 3-解析:由032=--E A A 有E E A A =-)3(,此时E A A 31-=-.考查知识点:求解矩阵的逆矩阵 难度系数:二、选择题 6. A解析:由题可知,该二次型矩阵为⎪⎪⎪⎭⎫ ⎝⎛--5212111t t ,而0455212111,0111,1122>--=-->-=>t t t t t t t,可解得054<<-t ;此时,该二次型正定;考查知识点:二次型正定的判断 难度系数7. C解析:由矩阵特征值性质有1-3+3=1+x+5,可解得x=-5; 考查知识点:n 阶矩阵特征值的性质 难度系数: 8. D解析:由题可知,A 为n 阶可逆矩阵,则A 的行向量组线性无关; 考查知识点:n 阶可逆矩阵的性质 难度系数:9. A.解析:由题可知,两平面法向量分别为)3,1,0(),2,0,1(21-==n n ,则所求直线的方向向量为k j i n n s ++-=⨯=3221;所以所求直线为14322-=-=-z y x ; 考查知识点:求空间平面交线平行的直线方程难度系数:10. C.解析:由08215132=--=⎪⎪⎭⎫ ⎝⎛---=-λλλλλE A ,可解得特征值为4,221=-=λλ 考查知识点:求解矩阵的特征值难度系数:三、解答题11. 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=------121012100120001][1210012100120001][1234012300120001100021003210432111)()()(B C B C B C TT T E X B C ,, 考查知识点:矩阵方程的运算求解难度系数:12.解:)22()12(81212121212121||2321-+=------==a a a a aa a a A ,, 当||A =0时即21-=a 或1=a 时,向量组321a a a ,,线性相关;考查知识点:向量组的线性相关性 难度系数:13.解:①当1≠λ且2-≠λ时,方程组有唯一解;②当2-=λ时方程组无解③当1=λ时,有无穷多组解,通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=X 10101100221c c 考查知识点:线性方程组的求解难度系数:14.解:由题可知⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------==0000110020102001131300161600241031217130104302410312171307311100943121)(4321a a a a A ,,,则()34321=a a a a r ,,,,其中321a a a ,,构成极大无关组,且线性关系为 321422a a a a ++-=考查知识点:向量组的秩与 最大无关组 难度系数:15.证明:由题可知,()()A I TA I A I A AA A I A TT+-=+-=+=+=+∴()02=+A I ,即()0=+A I 考查知识点:n 阶方阵的性质 难度系数:。
线性代数期末复习题
《线性代数》综合复习题一、单项选择题:1、若三阶行列式D 的第三行的元素依次为1、2、3,它们的余子式分别为4、2、1,则D =( )(A)-3 (B) 3 (C) -11 (D) 112、设123,,ααα是三阶方阵A 的列向量组,且齐次线性方程组AX =O 仅有零解,则( )(A) 1α可由23,αα线性表示 (B) 2α可由13,αα线性表示 (C) 3α可由12,αα线性表示 (D) 以上说法都不对3、设A 为n(n ≥2)阶方阵,且A 的行列式|A |=a ≠0,A *为A 的伴随矩阵,则| 3A * | 等于( )(A) 3n a (B) 3a n -1(C) 3n a n -1 (D) 3a n4、设A =⎪⎪⎪⎭⎫⎝⎛333231232221131211a a aa a a a a a , B =⎪⎪⎪⎭⎫ ⎝⎛+++133311311232232122131112a a a a a a a a a a a a ,⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫ ⎝⎛=1010100012P ,则有( )(A) B AP P =12 (B) B AP P =21 (C) B A P P =21 (D) B A P P =12 5、设A 是正交矩阵,则下列结论错误..的是( ) (A) |A |2必为1 (B) |A |必为1 (C) A -1=A T (D) A 的行向量组是正交单位向量组 6、设A 是n 阶方阵,且O E A A =+-232,则( )(A) 1和2必是A 的特征值 (B) 若,2E A ≠则E A =(C) 若,E A ≠则E A 2= (D) 若1不是A 的特征值,则E A 2=7、设矩阵210120001A ⎛⎫⎪= ⎪ ⎪⎝⎭,矩阵B 满足2ABA BA E **=+,其中E 为三阶单位矩阵,A *为A 的伴随矩阵,则B = (A )13; (B )19; (C )14; (D )13。
线性代数期末复习题
线性代数期末复习题《线性代数》综合复习题⼀、单项选择题:1、若三阶⾏列式D 的第三⾏的元素依次为1、2、3,它们的余⼦式分别为4、2、1,则D =()(A)-3 (B) 3 (C) -11 (D) 112、设123,,ααα是三阶⽅阵A 的列向量组,且齐次线性⽅程组AX =O 仅有零解,则()(A) 1α可由23,αα线性表⽰ (B) 2α可由13,αα线性表⽰ (C) 3α可由12,αα线性表⽰ (D) 以上说法都不对3、设A 为n(n ≥2)阶⽅阵,且A 的⾏列式|A |=a ≠0,A *为A 的伴随矩阵,则| 3A * | 等于()(A) 3n a (B) 3a n -1(C) 3n a n -1 (D) 3a n4、设A =333231232221131211a a aa a a a a a , B =????? ??+++133311311232232122131112a a a a a a a a a a a a ,????? ??=1000010101P ,????=1010100012P ,则有()(A) B AP P =12 (B) B AP P =21 (C) B A P P =21 (D) B A P P =12 5、设A 是正交矩阵,则下列结论错误..的是() (A) |A |2必为1 (B) |A |必为1 (C) A -1=A T (D) A 的⾏向量组是正交单位向量组 6、设A 是n 阶⽅阵,且O E A A =+-232,则()(A) 1和2必是A 的特征值 (B) 若,2E A ≠则E A =(C) 若,E A ≠则E A 2= (D) 若1不是A 的特征值,则E A 2=7、设矩阵210120001A ??=,矩阵B 满⾜2ABA BA E **=+,其中E 为三阶单位矩阵,A *为A 的伴随矩阵,则B = (A )13;(B )19;(C )14;(D )13。
线性代数复习题
,
2 )T 3
,= α 2
(
2 3
,
1 3
,
−
2 )T 3
,α=3
( 2 , − 2 , 1)T 是 R3 的一组标准正 3 33
交基,则向量 β = (1,1,1)T 在这组基下的坐标为
.
28.设矩阵 A 的特征多项式 λE − A = (λ + 1)(λ + 5)(λ + 7) ,则 A−1 = __ _ .
A.
r
(α1
,
α
2
,
,
α
r)≥
r(β1,
β
2
,
,
βs )
B. r ≥ s
C. r(α1,α2 ,,αr)≤ r(β1, β2 ,, βs )
D. r ≤ s
14.设α1 , α2 是非齐次线性方程组 AX = b 的两个解,则下列仍为线性方程组 AX = b 的解的
(
).
A. α1 + α2 B. α1 − α2
3.
已知向量组 α1
=
−421,α
2
=
3 1 2
,α
3
=
−5 3 6
,
α
4
=
−2 2 0
,α
5
=
−8611,
.求向量组的秩
和一个极大线性无关组;将其余向量用所求的极大线性无关组线性表示.
x1 + x2 + x3 + x4 + x5 = a
4.
已知线性方程组
3x1
+2 x2
− 1
1
β1 = 1 , β 2 = 1 ,则 AX = b 的全部解可表示为
线性代数期末复习题
线性代数复习题一、判断题 (正确在括号里打√,错误打×)1. 把三阶行列式的第一列减去第二列,同时把第二列减去第一列,这样得到的新行列式与原行列式相等,亦即333332222211111333222111------=c a b b a c a b b a c a b b a c b a c b a c b a . ( ) 2. 假设一个行列式等于零,则它必有一行〔列〕元素全为零,或有两行〔列〕完全一样,或有两行〔列〕元素成比例. () 3. 假设行列式D 中每个元素都大于零,则D > 0. () 4. 设C B A ,,都是n 阶矩阵,且E ABC =,则E CAB =. () 5. 假设矩阵A 的秩为r ,则A 的r -1阶子式不会全为零. () 6. 假设矩阵A 与矩阵B 等价,则矩阵的秩R (A )=R (B ). () 7. 零向量一定可以表示成任意一组向量的线性组合. () 8. 假设向量组s ααα,...,,21线性相关,则1α一定可由s αα,...,2线性表示. () 9. 向量组s ααα,...,,21中,假设1α与s α对应分量成比例,则向量组s ααα,...,,21线性相关. () 10. )3(,...,,21≥s s ααα线性无关的充要条件是:该向量组中任意两个向量都线性无关. () 11. 当齐次线性方程组的方程个数少于未知量个数时,此齐次线性方程一定有非零解. () 12. 齐次线性方程组一定有解. ()13. 假设λ为可逆矩阵A 的特征值,则1-λ为1-A 的特征值. () 14. 方程组()A λ-=E x 0的解向量都是矩阵A 的属于特征值λ的特征向量. () 15. n 阶方阵A 有n 个不同特征值是A 可以相似于对角矩阵的充分条件. () 16. 假设矩阵A 与矩阵B 相似,则R R =A B ()(). () 二、单项选择题 1.设行列式,,2123121322211211n a a a a m a a a a ==则行列式=++232221131211a a a a a a ()2. 行列式701215683的元素21a 的代数余子式21A 的值为 ( )3.四阶行列式111111111111101-------x 中*的一次项系数为 ( )4. 设,..................... ,......... (112)11,12,11,12122122221112111nnn n n nn n n nnn n n n a a a a a a a a a D a a a a a a a a a D ---==则D 2与D 1的关系是 ( )5.n 阶行列式a b b a bab a D n 0000000000=的值为 ( )6. ,1002103211⎪⎪⎪⎭⎫ ⎝⎛=-A 则=*A ( )7. 设A 是n 阶方阵且5=A ,则=-1T )5(A ( )8. 设A 是n m ⨯矩阵,B 是m n ⨯矩阵)(n m ≠,则以下运算结果是m 阶方阵的是 ( ) 9. A 和B 均为n 阶方阵,且2222)(B AB A B A ++=+,则必有 ( )10. 设A 、B 均为n 阶方阵,满足等式O AB =,则必有 ( ) 11. 设A 是方阵,假设有矩阵关系式AC AB =,则必有 ( ) 12. 方阵⎪⎪⎪⎭⎫⎝⎛+++=⎪⎪⎪⎭⎫⎝⎛=133312321131131211232221333231232221131211,a a a a a a a a a a a a a a a a a a a a a B A ,以及初等变换矩阵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=101010001 ,10000101021P P ,则有 ( )13. 设A 、B 为n 阶对称阵且B 可逆,则以下矩阵中为对称阵的是 ( ) 14. 设A 、B 均为n 阶方阵,下面结论正确的选项是 ( )(A) 假设A 、B 均可逆,则A +B 可逆 (B) 假设A 、B 均可逆,则AB 可逆 (C) 假设A+B 均可逆,则A -B 可逆 (D) 假设A +B 可逆,则A 、B 均可逆15. 以下结论正确的选项是 ( )(A) 降秩矩阵经过假设干次初等变换可以化为满秩矩阵 (B) 满秩矩阵经过假设干次初等变换可以化为降秩矩阵 (C) 非奇异阵等价于单位阵 (D) 奇异阵等价于单位阵16. 设矩阵A 的秩为r ,则A 中 ( )(A) 所有r -1阶子式都不为0 (B) 所有r -1阶子式全为0 (C) 至少有一个r 阶子式不为0(D) 所有r 阶子式都不为017. 设A 、B 、C 均为n 阶矩阵,且ABC = E ,以下式子(1) BCA = E , (2) BAC = E , (3) CAB = E , (4) CBA = E 中,一定成立的是 ( ) (A) (1) (3)(B) (2) (3)(C) (1) (4)(D) (2) (4)18. 设A 是n 阶方阵,且O A =s (s 为正整数),则1)(--A E 等于 ( )19. 矩阵⎪⎪⎪⎭⎫⎝⎛---=412101213A ,*A 是A 的伴随矩阵,则*A 中位于(1, 2)的元素是 ( ) (A) -6 (B) 6 (C) 2 (D) -220. A 为三阶方阵,R (A ) = 1,则 ( )21. 43⨯矩阵A 的行向量组线性无关,则矩阵A T的秩等于 ( )(A) 1(B) 2(C) 3(D) 422. 设两个向量组s ααα ..., , ,21和s βββ ..., , ,21均线性无关,则 ( )(A) 存在不全为0的数s λλλ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββλλλ (2211)(B) 存在不全为0的数s λλλ ..., , ,21使得 (C) 存在不全为0的数s λλλ ..., , ,21使得(D) 存在不全为0的数s λλλ ..., , ,21和不全为0的数s μμμ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββμμμ (2211)23. 设有4维向量组621 ..., , ,ααα,则 ( )(A) 621 ..., , ,ααα中至少有两个向量能由其余向量线性表示 (B) 621 ..., , ,ααα线性无关 (C) 621 ..., , ,ααα的秩为4 (D) 上述说法都不对24. 设321 , ,ααα线性无关,则下面向量组一定线性无关的是 ( ) 25. n 维向量组)3( ..., , ,21n s s ≤≤ααα线性无关的充要条件是 ( )(A) s ααα ..., , ,21中任意两个向量都线性无关(B) s ααα ..., , ,21中存在一个向量不能用其余向量线性表示(C) s ααα ..., , ,21中任一个向量都不能用其余向量线性表示 (D) s ααα ..., , ,21中不含零向量 26. 以下命题中正确的选项是 ( )(A) 任意n 个n +1维向量线性相关 (B) 任意n 个n +1维向量线性无关 (C) 任意n +1个n 维向量线性相关(D) 任意n +1个n 维向量线性无关27. 线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0......0...0...221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 的系数行列式D =0,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解28. 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112)222212111212111的系数行列式D =0,把D 的第一列换成常数项得到的行列式01≠D ,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解29. A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是 ( )(A) A 的列向量线性无关 (B) A 的列向量线性相关 (C) A 的行向量线性无关(D) A 的行向量线性相关30. A 为n m ⨯矩阵,且方程组b Ax =有唯一解,则必有 ( ) 31. n 阶方阵A 不可逆,则必有 ( )n R <)( )A (A 1)( )B (-=n R A 0=A )C ((D) 方程组0=Ax 只有零解32. n 元非齐次线性方程组b Ax =的增广矩阵的秩为n +1,则此方程组 ( )(A) 有唯一解(B) 有无穷多解(C) 无解(D) 不能确定其解的数量33. 21 ,ηη是非齐次线性方程组b Ax =的任意两个解,则以下结论错误的选项是 ( )(A) 21ηη+是0=Ax 的一个解 (B) )(2121ηη+是b Ax =的一个解(C) 21ηη-是0=Ax 的一个解(D) 212ηη-是b Ax =的一个解34. 假设4321 , , ,v v v v 是线性方程组0=Ax 的根底解系,则4321v v v v +++是该方程组的 ( )(A) 解向量(B) 根底解系(C) 通解(D) A 的行向量35. 假设η是线性方程组b Ax =的解,ξ是方程0=Ax 的解,则以下选项中是方程b Ax =的解的是 ( ) (C 为任意常数)36. n m ⨯矩阵A 的秩为1-n ,21 ,αα是齐次线性方程组0=Ax 的任意两个不同的解,k 为任意常数,则方程组0=Ax 的通解为 ( ) 37. n 阶方阵A 为奇异矩阵的充要条件是 ( )(A) A 的秩小于n 0 )B (≠A (C) A 的特征值都等于零(D)A 的特征值都不等于零38. A 为三阶方阵,E 为三阶单位阵,A 的三个特征值分别为3 ,2 ,1-,则以下矩阵中是可逆矩阵的是 ( )39. 21 ,λλ是n 阶方阵A 的两个不同特征值,对应的特征向量分别为21 ,ξξ,则 ( )(A) 1ξ和2ξ线性相关 (B) 1ξ和2ξ线性无关 (C) 1ξ和2ξ正交(D) 1ξ和2ξ的积等于零40. A 是一个)3( ≥n 阶方阵,以下表达中正确的选项是 ( )(A) 假设存在数λ和向量α使得αA αλ=,则α是A 的属于特征值λ的特征值 (B) 假设存在数λ和非零向量α使得0=-αA E )(λ,则λ是A 的特征值 (C) A 的两个不同特征值可以有同一个特征向量(D) 假设321 , ,λλλ是A 的三个互不一样的特征值,321 , ,ααα分别是相应的特征向量,则 321 , ,ααα有可能线性相关41. 0λ是矩阵A 的特征方程的三重根,A 的属于0λ的线性无关的特征向量的个数为k ,则必有 ( )42. 矩阵A 与B 相似,则以下说法不正确的选项是 ( )(A) R (A ) = R (B ) (B) A = BB A = )C ((D) A 与B 有一样的特征值43. n 阶方阵A 具有n 个线性无关的特征向量是A 与对角阵相似的 ( )(A) 充分条件(B) 必要条件(C) 充要条件(D) 既不充分也不必要条件44. n 阶方阵A 是正交矩阵的充要条件是 ( )(A) A 相似于单位矩阵E (B) A 的n 个列向量都是单位向量 (C) 1T -=A A(D)A 的n 个列向量是一个正交向量组45. A 是正交矩阵,则以下结论错误的选项是 ( )1 )A (2=A A )B (必为1T 1 )C (A A =-(D) A 的行(列)向量组是单位正交组46. n 阶方阵A 是实对称矩阵,则 ( )(A) A 相似于单位矩阵E (B) A 相似于对角矩阵T 1 )C (A A =-(D) A 的n 个列向量是一个正交向量组47. A 是实对称矩阵,C 是实可逆矩阵,AC C B T =,则 ( )(A) A 与B 相似(B) A 与B 不等价 (C) A 与B 有一样的特征值(D) A 与B 合同三、填空题1. 44513231a a a a a k i 是五阶行列式中的一项且带正号,则i = ,k = .2. 三阶行列式987654321=D ,ij A 表示元素ij a 对应的代数余子式,则与232221cA bA aA ++ 对应的三阶行列式为.3. 022150131=---x ,则* = . 4. A ,B 均为n 阶方阵,且0 ,0≠=≠=b a B A ,则=T )2(B A ,=-121AB . 5. A 是四阶方阵,且31=A ,则=-1A ,=--1*43A A . 6. 三阶矩阵A 的三个特征值分别为123-,,,则=---*134A A . 7. 设矩阵⎪⎪⎭⎫⎝⎛=232221131211a a aa a a A ,B 是方阵,且AB 有意义,则B 是阶矩阵,AB 是行 列矩阵.8. 矩阵n s ij c ⨯=)( , ,C B A ,满足CB AC =,则A 与B 分别是,阶矩阵. 9. 可逆矩阵A 满足O E A A =--22,则=-1A .10. T 3T 2T 1)2 ,3 ,1( ,) ,0 ,( ,)1 ,1 ,1(===αααy x ,假设321 , ,ααα线性相关,则*,y 满足关系式.11. 矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性关. 12. 一个非齐次线性方程组的增广矩阵的秩比系数矩阵的秩最多大.13. 设A 是43⨯矩阵,3)(=A R ,假设21 ,ηη为非齐次线性方程组b Ax =的两个不同的解,则该方程的通解为.14. A 是n m ⨯矩阵,)( )(n r R <=A ,则齐次线性方程组0=Ax 的一个根底解系中含有解的个数为.15. 方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+32121232121321x x x a a 无解,则a =.16. 假设齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213211x x x x x x x x x λλ只有零解,则λ需要满足.17. 矩阵⎪⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化,则* =.18. 向量α、β的长度依次为2和3,则向量积[, ]+-=αβαβ. 19. 向量⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=324 ,201b a ,c 与a 正交,且c a b +=λ,则=λ,c =.20. ⎪⎪⎪⎭⎫ ⎝⎛-=111x 为⎪⎪⎪⎭⎫ ⎝⎛---=2135212b aA 的特征向量,则a =,b =. 21. 三阶矩阵A 的行列式8=A ,且有两个特征值1-和4,则第三个特征值为.22. 设实二次型),,,,(54321x x x x x f 的秩为4,正惯性指数为3,则其规形),,,,(54321z z z z z f 为.23. 二次型233221321342),,(x x x x x x x x f +-=的矩阵为.24. 二次型),,(z y x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--050532021,则此二次型=),,(z y x f .25. 二次型31212322213212232),,(x x x x tx x x x x x f ++++=是正定的,则t 要满足. 四、行列式计算1. A ,B 为三阶方阵,2 ,1-==B A ,求行列式A AB 1*)2(-.2. 行列式219221612132402-----=D ,求4131211145A A A A ++-.3. 计算n 阶行列式2...010 (201) (02)=n D ,其中主对角线上的元素都是2,另外两个角落的元素是1,其它元素都是0.4. 计算n 阶行列式xaa a xa a ax D n .........=.5. 计算n 阶行列式21...00000 (2100)0 (1)2100...012 =n D .6. 计算行列式dx c b ad c x b a d c b x a d c b ax ++++.7. 计算行列式yy x xD -+-+=1111111111111111.8. 计算行列式3......3 (32)12121+++=n n n n x x x x x x x x x D .五、矩阵计算1. 设⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=042132 ,121043021B A ,求 (1)T AB ;(2)14-A .2. ⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---=115202 ,212241222B A ,且X B AX +=,求*.3. 设⎪⎪⎪⎭⎫ ⎝⎛-=101020102A ,B 均为三阶方阵,E 为三阶单位阵,且B A E AB +=+2,求B .4. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=2000120031204312 ,1000110001100011C B ,E 为四阶单位阵,且矩阵*满足关系式E B C X =-T )(,求*.5. ⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=310021 ,110162031B A ,且B XA =,求*.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ,问:当k 取何值时,有 (1)1)(=A R ;(2)2)(=A R ;(3)3)(=A R .六、向量组的线性相关性及计算1. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=1325 ,3214 ,2143 ,21114321αααα,求向量组4321 , , ,αααα的秩和一个最大线性无关向量组,并判断4321 , , ,αααα是线性相关还是线性无关.2. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=77103 ,1301 ,3192 ,01414321αααα,求此向量组的秩和一个最大无关组,并将其余向量用该最大无关组线性表示.3. 当a 取何值时,向量组⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=a a a 2121 ,2121 ,2121321ααα线性相关?4. 将向量组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=014 ,131 ,121321ααα规正交化.七、线性方程组的解1. 给定向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=9410 ,1203 ,4231 ,30124321αααα,试判断4α是否为321 , ,ααα的线性组合;假设是,则求出线性表达式.2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x .3. 求解非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x .4. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=++=++-=++022232212321321x k x x k kx x x kx x x 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.5. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=+-+=++=+-+2)1(2221)1(321321321kx x k kx x kx kx x x k kx 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.6. 非齐次线性方程组b Ax =为⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 543215432543215432133453622 3232,问:当a 、b 取何值时,方程组b Ax =有无穷多个解?并求出该方程组的通解.7. 设方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 与方程12321-=++a x x x 有公共解,求a 的值.8. 设四元非齐次线性方程组b Ax =的系数矩阵A 的秩为3,321 , ,ηηη是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫⎝⎛=+432132ηη,求该方程组的通解.9. 设非齐次线性方程组b Ax =的增广矩阵()b A A =,A 经过初等行变换为⎪⎪⎪⎭⎫ ⎝⎛---→300001311021011λA ,则 (1) 求对应的齐次线性方程组0=Ax 的一个根底解系; (2) λ取何值时,方程组b Ax =有解?并求出通解.八、方阵的特征值与特征向量1. ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=10000002 ,10100002y x B A ,假设方阵A 与B 相似,求*、y 的值.2. 设方阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=210010000010010y A 的一个特征值为3,求y 的值. 3. 三阶方阵A 的特征值为1、2、3-,求行列式E A A 231++-的值.4. 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=314020112A 的特征值与对应的特征向量.5. 设⎪⎪⎪⎭⎫ ⎝⎛--=011101110A ,求可逆矩阵P ,使得AP P 1-为对角矩阵.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A ,求正交矩阵P ,使得AP P 1-为对角矩阵.7. 矩阵110430102-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A , 判断是否存在一个正交矩阵P , 使得1-=P AP Λ为对角矩阵. 8. 矩阵⎪⎪⎪⎭⎫ ⎝⎛----=342432220A 的特征值为1、1、8-,求正交矩阵P ,使得AP P 1-为对角阵. 九、二次型1. 当t 取何值时,32312123222132142244),,(x x x x x tx x x x x x x f +-+++=为正定二次型? 2. 求一个正交变换把二次型123122331(,,)222f x x x x x x x x x =++化成标准形.十、证明题1. 向量组r ααα ..., , ,21线性无关,而r r αααβααβαβ+++=+==... ..., , ,2121211,证明:向量组r βββ ..., , ,21线性无关.2. 设A 、B 都是n 阶对称阵,证明:AB 是对称阵的充要条件是AB = BA .3. 方阵A 满足O E A A =--1032,证明:A 与E A 4-都是可逆矩阵,并求出它们的逆矩阵.4. 设A 、B 为n 阶对称阵,且B 是可逆矩阵,证明:A B AB 11--+是对称阵.5. 设n 阶方阵A 的伴随矩阵为*A ,证明:1*-=n A A .6. 向量b 可由向量组321 , ,a a a 线性表示且表达式唯一,证明:321 , ,a a a 线性无关.7. 设321 , ,ααα是n 阶方阵A 的三个特征向量,它们的特征值互不相等,记321αααβ++=,证明:β不是A 的特征向量.8. 向量组321 , ,a a a 线性无关,3133222114 ,3 ,2a a b a a b a a b +=+=+=,证明:向量组321 , ,b b b线性无关.9. 设0η是非齐次线性方程组b Ax =的一个特解,21 ,ξξ是对应的线性方程组0=Ax 的一个根底解系,证明:(1) 101202, ==++ηηξηηξ都是b Ax =的解;(2) 210 , ,ηηη线性无关.10. A 是n 阶方阵,E 是n 阶单位阵,E A +可逆,且1))(()(-+-=A E A E A f ,证明:(1) E A E A E 2)))(((=++f ;(2) A A =))((f f .11. 设方阵A 与B 相似,证明:T A 与T B 相似.12. 方阵A 、B 都是正定阵,证明:B A +也是正定阵.13. 设n 阶行列式n D 的元素满足n j i a a ji ij ..., ,2 ,1 , ,=-=,证明:当n 为奇数时0=n D .14. A 为正交阵,k 为实数,证明:假设A k 也是正交阵,则1±=k .15. 设A 、B 均为n 阶正交矩阵,证明:(1) 矩阵AB 是正交阵;(2) 矩阵1-AB 是正交阵.16. 假设A 是n 阶方阵,且T =AA E ,| A | =-1,这里E 为单位阵. 证明:| A +E | = 0.。
线性代数期末考试题及答案
《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。
《线性代数》期末考试复习题
《线性代数》复习题一一、单项选择题⒈已知11122122b b b b =2,则11122111221222b b b b b b -- =( )A.0B.1C.2D.4⒉行列式1 02 1中元素12a 的代数余子式为()A.0B.1C.2D.-2⒊已知A=a b c ⎛⎫ ⎪⎝⎭ d ,则*A =( ) A.⎛⎫⎪⎝⎭d -b -c a B.⎛⎫⎪⎝⎭d c b a C.⎛⎫⎪⎝⎭a cb d D.⎛⎫⎪⎝⎭-a c b -d ⒋E 为三阶单位矩阵,E=(,,εεε123)则下列错误的是( )A. ,,εεε123为3R 中的一组基。
B. ,,εεε123两两正交。
C. ,,εεε123线性无关。
D.j T i εε =1 (i j ≠)⒌若β可被1s αα线性表示,则下列各式一定成立的有( )A.11,s βαα线性无关。
B. 11,s βαα线性相关。
C. 1s αα线性相关。
D.β一定是零向量。
⒍有m 个方程组成的n 元齐次线性方程组AX=0仅有零解,则( ) A.()()r A r A ≠。
B.()r A n =。
C.det 0A ≠。
D.()0r A =。
⒎若向量(1,1,1)(2,5,)k αβ=-=-、,若0=βαT ,则k=( ) A.3B.2C.-3D.-7⒏若B A ~,则下列各式不完全正确的是 ( )A.det det A B =B.det det T A B =C.1det det A B -=D.det det T A B =⒐若n 阶矩阵A 合同于B ,则( ) A. 存在n 阶可逆矩阵p 使得T p Ap B =。
B. B A ~ C. detA=detBD. A 与B 有相同的特征值⒑二次型222221121...),...,,(n n n x d x d x d x x x f +++=为正定二次型的充分必要条件是( )A.0(1,2)i d i n <=B.二次型矩阵A 可逆C.detA=0D. 0(1)i d i n >=二.填空题⒈已知p 为n 阶初等矩阵,A 为n 阶可逆矩阵,则r(PA)=_________。
线性代数期末试题及答案
第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数期末测试题及其答案
线性代数期末测试题及其答案一、填空题(将正确答案填在题中横线上。
每小题5分,共25分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3.已知矩阵ns ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、选择题 (每小题5分,共25分)6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( )A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t7.已知矩阵BA xB A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B.1≠-A C.n A r =)( D.A 的行向量组线性相关9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( )A.14322-=-=-z y x B.24322-=-=z y xC.14322+=+=-z y xD.24322+=+=z y x10.已知矩阵⎪⎪⎭⎫⎝⎛-=1513A ,其特征值为( ) A.4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 (每小题10分,共50分)11.设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式E X B C T =-)(, 求X 。
线性代数期末测试题(卷)与答案解析
线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题5分,共25分)1. 若022150131=---x ,则=c __________。
2.若齐次线性方程组ïîïíì=++=++=++000321321321x x x x x x x x x l l 只有零解,则l 应满足 。
3.已知矩阵n s ij c C B A ´=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.已知矩阵A 为3´3的矩阵,且3||=A ,则=|2|A 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、选择题 (每小题5分,共25分)6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( )A.054<<-tB.5454<<-tC.540<<tD.2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且÷÷÷øöçççèæ=÷÷÷øöçççèæ-=,求x 的值( )A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0¹A B. 01¹-A C.n A r =)( D.A 的行向量组线性相关9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( )A.14322-=-=-z y xB.24322-=-=z y xC.14322+=+=-z y x D.24322+=+=z y x10.已知矩阵÷÷øöççèæ-=1513A ,其特征值为() A.4,221==l lB.4,221-=-=l lC.4,221=-=l l D.4,221-==l l三、解答题 (每小题10分,共50分)11.设,1000110001100011÷÷÷÷øöççççèæ---=B ÷÷÷÷÷øöçççççèæ=2000120031204312C 且矩阵C 满足关系式EX B C T=-)(, 求C 。
线性代数期末考试试题及答案
线性代数期末考试试题及答案线性代数期末考试试题及答案线性代数是一门重要的数学课程,广泛应用于各个领域,如物理学、工程学、计算机科学等。
期末考试是对学生对于线性代数知识的综合考察,下面将给出一些线性代数期末考试试题及答案,供大家参考。
一、选择题(每题2分,共20分)1. 设A是一个3×3矩阵,若A的行列式值为0,则A的秩为:A. 0B. 1C. 2D. 3答案:C2. 设A是一个3×3矩阵,若A的特征值为1,2,3,则A的特征向量个数为:A. 0B. 1C. 2D. 3答案:D3. 设A是一个3×3矩阵,若A的秩为2,则A的零空间的维数为:A. 0B. 1C. 2D. 3答案:B4. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的列向量组是否线性无关?A. 是B. 否答案:A5. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的列向量组是否线性相关?A. 是B. 否答案:A6. 设A是一个3×3矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2D. 3答案:C7. 设A是一个2×2矩阵,若A的特征值为1,2,则A的特征向量个数为:A. 0B. 1C. 2答案:C8. 设A是一个2×2矩阵,若A的特征值为1,1,则A的特征向量个数为:A. 0B. 1C. 2答案:B9. 设A是一个2×2矩阵,若A的秩为1,则A的零空间的维数为:A. 0B. 1C. 2答案:B10. 设A是一个2×2矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2答案:C二、填空题(每题3分,共30分)1. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的秩为____。
答案:32. 设A是一个3×3矩阵,若A的列向量组线性无关,则A的秩为____。
答案:33. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的秩为____。
线性代数期末复习题目
一.单项选择题1.设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是【 】(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [五.特征值,特征向量]2. 设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B , **,A B分别为A,B 的伴随矩阵,则【 】.(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (B) 交换*A 的第1列与第2列得*B -; (D) 交换*A 的第1行与第2行得*B -. [二.四.矩阵及其运算,行列式]3.设矩阵A =33)(⨯ij a 满足*TA A=,其中*A 为A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为【 】.(A) 33. (B) 3. (C)31. (D) 3. [二.四.伴随矩阵,行列式]4.设A,B,C 均为n 阶矩阵,E 为n 阶单位矩阵,若B =E +AB ,C =A +CA ,则B -C 为【 】(A) E . (B )-E . (C )A . (D) -A [二.矩阵及其运算]5 .设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是【 】 (A )若12,,,,a a a 线性相关,则12,,,,A a A a A a 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,A a A a A a 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,A a A a A a 线性相关. (D )若12,,,,a a a 线性无关,则12,,,,A a A a A a 线性无关.[二.向量组的线性相关性]6.设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫⎪= ⎪ ⎪⎝⎭P ,则 【 】 (A )1.-=C PA P (B )1.-=C P A P(C ).=TC PA P (D ).=TC P A P[二.矩阵及其运算,初等矩阵]7.设125,,......∂∂∂,均为n 维列向量 A 是m n ⨯矩阵,下列正确的是【 】(A) 若125,,......∂∂∂线性相关,则125,......A A A ∂∂∂线性相关(B) 若125,,......∂∂∂线性相关,则125,......A A A ∂∂∂线性无关(C) 若125,,......∂∂∂线性无关,则125,......A A A ∂∂∂线性相关(D) 若125,,......∂∂∂线性无关,则125,......A A A ∂∂∂线性无关[二.向量组的线性相关性]8.设向量组123,,ααα线性无关,则下列向量组线性相关的是【 】 (A)122331,,;---αααααα (B) 122331,,;+++αααααα(C)1223312,2,2;---αααααα (D)1223312,2,2+++αααααα.[二.向量组的线性相关性]9.设矩阵211100121,010112000--⎛⎫⎛⎫⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B ,则A 与B 【 】(A) 合同且相似; (B) 合同但不相似; (C) 不合同但相似; (D) 既不合同也不相似.[五.矩阵的相似与合同]10.设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30=A ,则【 】 (A) -E A 不可逆,+E A 不可逆. (B) -E A 不可逆,+E A 可逆. (C) -E A 可逆,+E A 可逆. (D)-E A 可逆,+E A不可逆.[二.矩阵及其运算,逆矩阵]11.设A 为3阶实对称矩阵,如果二次曲面方程(,,)1x x y z A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为【 】 (A) 0 ; (B) 1 ; (C) 2 ; (D) 3. [五.矩阵的特征值]12.设1221⎛⎫=⎪⎝⎭A 则在实数域上与A 合同的矩阵为【 】 (A) 2112-⎛⎫⎪-⎝⎭;(B) 2112-⎛⎫⎪-⎝⎭;(C) 2112⎛⎫⎪⎝⎭.;(D) 1221-⎛⎫⎪-⎝⎭. [五.矩阵的合同]13.设123,,a a a 是3维向量空间3R 的一组基,则由基12311,,23a a a 到基122331,,+++a a a a a a 的过渡矩阵为【 】.(A )101220033⎛⎫⎪ ⎪ ⎪⎝⎭(B )120023103⎛⎫⎪ ⎪ ⎪⎝⎭(C )111246111246111246⎛⎫-⎪⎪⎪- ⎪⎪ ⎪- ⎪⎝⎭(D )111222111444111666⎛⎫-⎪ ⎪⎪- ⎪ ⎪ ⎪- ⎪⎝⎭. [三. 向量空间,基,过渡矩阵]14.设 A ,B 均为 2 阶矩阵,,**A B 分别为A ,B 的伴随矩阵,若|A |=2,|B |=3,则分块矩阵00⎛⎫⎪⎝⎭A B的伴随矩阵为【 】. (A )32**⎛⎫⎪⎝⎭OB A O (B )23**⎛⎫⎪⎝⎭O B A O (C )32**⎛⎫⎪⎝⎭OA B O (D )23**⎛⎫⎪⎝⎭OA B O [二. 三..四.伴随矩阵,逆矩阵,分块矩阵,行列式]15.设A ,P 均为3阶矩阵,TP 为P 的转置矩阵,且TPA P=100010002 ⎛⎫ ⎪⎪ ⎪ ⎝⎭,若1231223(,,),(,,)==+P Q ααααααα,则TQA Q 为【 】.(A)2101 ⎛⎫⎪ 1 0⎪ ⎪0 0 2⎝⎭ (B)11012000 ⎛⎫⎪ ⎪ ⎪ 2⎝⎭ (C)20001 ⎛⎫⎪ 0 ⎪ ⎪0 0 2⎝⎭ (D)100020002 ⎛⎫⎪ ⎪ ⎪ ⎝⎭[二. 四.伴随矩阵,分块矩阵的行列式与逆矩阵]16.设矩阵142242A a b a 2 1⎛⎫ ⎪=2 + ⎪ ⎪ + ⎝⎭的秩为2,则【 】.(A )a =0,b =0(B )a =0,b ≠0 (C )a ≠0,b =0 (D )a ≠0,b ≠0.[一. 矩阵的秩]17.设A 为3阶矩阵,*A 为A 的伴随矩阵,A 的行列式|A |=2,则|-2*A |=【 】.(A )52-; (B )32-; (C )32 ;(D )52.[四. 伴随矩阵,方阵的行列式]二.填空题1.设123,,ααα均为三维列向量,记矩阵123(,,)=Aααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .[四.方阵的行列式]2. 设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a = . .[二.四.向量组的线性相关性,行列式] 3.设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2=+B A B E , 则B = .[四.方阵的行列式]4.设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2=+B A B E ,则B = .[二.矩阵及其运算]5. 已知12,a a 为2维列向量,矩阵1212(2,)=+-A a a a a ,12(,)=B a a .若行列式||6=A ,则||B = .[四.方阵的行列式]6.设矩阵01000010000100⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为 .[二.矩阵及其运算,矩阵的秩]7.设A 为2阶矩阵,12,αα为线性无关的2维列向量,10,=A α,2122=+A ααα则A 的非零特征值为 .[五.矩阵的特征值]8.设3阶矩阵A 的特征值1,2,2,14--=A E . [五.矩阵的特征值,行列式]9.设3阶矩阵A 的特征值为2,3,λ. 若行列式248=-A ,则λ= .[五.矩阵的特征值,行列式]10.设3阶矩阵A 的特征值互不相同,若行列式0=A , 则A 的秩为 .[五.矩阵的特征值,行列式]11.若 3 维向量,a β满足2=Ta β,其中Ta 为a 的转置,则矩阵Ta β的非零特征值为______.[五.矩阵的特征值与特征向量]12.设,αβ为3维列向量,Tβ为β的转置,若Tβ相似于200000000 ⎛⎫ ⎪⎪ ⎪ ⎝⎭,则Tβα=___________[五. 相似矩阵,特征值]13.设(1,1,1),(1,0,)k ==αβ,若矩阵Tαβ相似于300000000 ⎛⎫⎪⎪ ⎪ ⎝⎭,则k =_______ [五. 相似矩阵,特征值]14.设向量组(1,0,1),(2,1),TTk ==-αβ(1,1,4)=--Ty 线性相关,则k =______ [二.四. 向量组的线性相关性,行列式]三 .解答题1.已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值; (II ) 求正交变换=xQ y,把),,(321x x x f 化成标准形;(III ) 求方程),,(321x x x f =0的解. [五. 二次型,矩阵的特征值, 特征向量,正交变换] 2.已知三阶矩阵A的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636⎛⎫⎪= ⎪ ⎪⎝⎭B k (k 为常数),且AB =O , 求线性方程组Ax =0的通解.[二.线性方程组,基础解系,矩阵]3.确定常数a ,使向量组,),1,1(1Ta =α,)1,,1(2Ta =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示. [二.向量组的线性相关性]4.已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x 和 (ii) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求,,a b c 的值. [一.线性方程组求解]5.设⎛⎫= ⎪⎝⎭TAC D CB 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵.(I) 计算TPD P ,其中1-⎛⎫-=⎪ ⎪⎝⎭mn EAC P O E ;(II )利用(I)的结果判断矩阵1--TB C A C是否为正定矩阵,并证明你的结论. [五.分块矩阵,正定矩阵]6.设A 为三阶矩阵,123,,ααα是线性无关的三维列向量,且满足1123=++A αααα,2232=+A ααα,32323=+A ααα.(I) 求矩阵B , 使得123123(,,)(,,)=A Bαααααα;(II )求矩阵A 的特征值;(III )求可逆矩阵P , 使得1-P A P 为对角矩阵. [五.矩阵的特征值,相似矩阵]7.已知非齐次线性方程组1234123412341435131x x x x x x x x a x x x b x +++=-⎧⎪++-=-⎨⎪++-=⎩有3个线性无关的解.(Ⅰ)证明方程组系数矩阵A 的秩()2R A =; (Ⅱ)求,a b 的值及方程组的通解. [二.线性方程组求解]8.设3阶实对称矩阵A 的各行元素之和均为3,向量()11,2,1Tα=--,()20,1,1Tα=-是线性方程组0=A x 的两个解, (Ⅰ)求A 的特征值与特征向量; (Ⅱ)求正交矩阵Q 和对角矩阵Λ使得=TQ A Q Λ;.(Ⅲ)求A 及63()2A E -,其中E 为3阶单位矩阵.[五.矩阵的特征值,相似矩阵]9.设4维向量组()11,1,1,1,T a ∂=+()22,2,2,2,T a ∂=+()33,3,3,3,Ta ∂=+()44,4,4,4Ta ∂=+.问a 为何值时1234,,,∂∂∂∂线性相关? 当1234,,,∂∂∂∂线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出. [二.向量组的线性相关性]10.设线性方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 与方程12321-=++a x x x 有公共解,求a 的值及所有公共解. [二.线性方程组求解]11.设3阶实对称矩阵A 的特征值2,2,1321-===λλλ,且T )1,1,1(1-=α是A 的属于1λ的一个特征向量。
线性代数期末复习
线性代数期末复习一、 填空题1. 设n 阶方阵A 满足A 2-A-2E=0,且︱A ︱=2,则︱A-E ︱=___2. 设A=⎪⎪⎪⎭⎫ ⎝⎛543022001,其伴随矩阵A *,则(A *)-1=___3. 矩阵A 经有限次初等行变换得到矩阵B ,则方程组AX=0与方程组BX=0的关系是___4. 设a 1a 2a 3线性无关,若是a 2-a 1,ka 2-a 3,a 1-a 3也线性无关,则k 应满足的条件为___5. 在秩为r 的矩阵中,是否有等于0的阶r-1子式___6. 设A=⎪⎪⎪⎭⎫ ⎝⎛300044003,E=⎪⎪⎪⎭⎫⎝⎛111,则(A-2E )-1=___ 7. 设A=(a 1,a 2,…,a n )B=(b 1,b 2,…,b n ),其中a 1不全为零,b 1不全为零,则A 的秩R (A )=___8. 设A 、B 都是n 阶菲零方阵,且R (A )=r ,若AB=0,则R (B )应满足的条件为___ 二、 选择题1、设A 为m 阶方阵,B 为n 阶方阵,C=⎪⎪⎭⎫⎝⎛00BA ,则C =___ A 、B A B 、-B AC 、(-1)nm B AD 、(-1)n (n-1)/2B A 2、设A 、B 为n 阶方阵,则必有___A 、B A B A +=+ B 、AB=BAC 、BA AB =D 、(A+B )-1=A -1+B -13、设A 为m*n 矩阵,齐次线性方程组Ax=0仅有零解的充分必要条件是___A、A的列向量组线性无关B、A的列向量组线性相关C、A的行向量组线性无关D、A的行向量组线性相关4、设a1a2…a n为n维向量,则下列结论正确的是___A、k1a1+k2a2+…+k n a n=0,则a1a2…a n线性相关B、对任何一组不全为零的数k1k2…k m都有k1a1+k2a2+…+k n a n≠0,则a1a2…a n线性无关C、a1a2…a n线性相关,则对任何一组不全为零的数k1k2…k m都有k1a1+k2a2+…+k n a n=0成立D、若0a1+0a2+…+0a n=0,则a1a2…a n线性无关5、设η1与η2是非其次线性方程组Ax=β的两个不同的解,ξ1与ξ2时对应的其次线性方程组Ax=0的基础解系,k1与k2是任意实数,则Ax=β的通解为___A、221ηη-+k1ξ1+k2(ξ1+ξ2) B、221ηη++k1ξ1+k2(ξ1-ξ2)C、221ηη-+k1ξ1+k2(η1+η2) D、221ηη++k1ξ1+k2(η1-η2)6、设A为n阶可逆阵(n≥2),A*为A的伴随矩阵,则___A、(A*)*=A n-1AB、(A*)*=A n+1AC、(A*)*=A n-2AD、(A*)*=A n+2A7、设A、B、C是n阶方阵,E为n阶单位阵,若ABC=E,则必有__A、ACB=EB、CBA=EC、BAC=ED、BCA=E8、设n阶方阵A与B等价,则___A 、A =B B 、A ≠BC 、若A ≠0,则必有B ≠0D 、A =-B 三、计算1、计算下列行列式(1)n001030100211111⋯⋯⋯⋯⋯⋯⋯⋯⋯(2)1111111111111111---+---+--x x x x(3)D=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯0111110111110111110111110 2、已知A=⎪⎪⎪⎭⎫ ⎝⎛---433312120,B=⎪⎪⎭⎫⎝⎛-132321,求X 使得XA=B3、解方程组⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x 4、(1)设n 阶方阵满足A+B=AB ,证明:A-E 可逆,并求(A-E )-1 (2)证明:m 个n 维向量,当m 〉n 时,它们线性相关 5、设E+AB 可逆,证明E+BA 也可逆,且(E+BA )-1=E-B (E+BA )-1A6、设A=⎪⎪⎭⎫⎝⎛--82593122,求一个4*2矩阵B ,使得AB=0,且R (B )=27、求下列向量组的一个最大无关组,并以此最大无关组将其余向量线性表示出。
线性代数期末考试复习题
1.设A ,B ,C 为n 阶矩阵,且A 可逆,下列结论成立的是()(A).若AC AB =,则C B = (B).若CB AB =,则C A = (C).若O BC =,则O B = (D).若O AB =,则O A =或O B =2.若5734111113263278----=D ,则D 中第一行元素的代数余子式的和为() (A).-1 (B).-2 (C).-3 (D).03.设A ,B 为n 阶非零矩阵,且O AB =,则A ,B 的秩为()(A).必有一个等于零 (B).都小于n (C).一个小于n ,一个等于n (D).都等于n4.设向量组321,,ααα线性无关,则下列向量组线性相关的是()(A). 133221,,αααααα+++ (B). 321211,,αααααα+++ (C).133221,,αααααα--- (D). 1332213,2,αααααα+++5.要使TT )1,0,2(,)1,0,1(21-==ξξ都是线性方程组0=Ax 的解,只要系数矩阵A 为(). (A). ⎪⎪⎪⎭⎫ ⎝⎛112213321(B). ⎪⎪⎭⎫ ⎝⎛-211121 (C). ⎪⎪⎪⎭⎫ ⎝⎛123020010(D). ⎪⎪⎭⎫ ⎝⎛-020010 二、填空题(15分)1. 四阶行列式中包含4322a a 且带正号的项是_____.2. 齐次方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =_____.3. 设A 为5阶方阵,*A 为其伴随矩阵,且3=A ,则=*A .4. 设A 是n 阶矩阵,满足O E A A =++322,则1-A =_____.5. 设A 是n 阶矩阵,对于0=Ax ,若每个n 维向量都是解,则=)(A R . 三、(10分)求行列式1332141121524321=D . 四、(15分)设⎪⎪⎪⎭⎫ ⎝⎛--=145243121A ,⎪⎪⎪⎭⎫ ⎝⎛=223B 满足B AX =,求1-A 和X . 五、(15分)判断向量组T T T a a )3,2,2(,),2,0(,)3,1,(321===ααα的线性关系. 六、(15分)对矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=7236311232201012A ,求A 的列向量组的秩、最大无关组、并表示其他向量. 七、(15分)求线性方程组⎩⎨⎧=-+--=-+12624321421x x x x x x x 的通解,并用基础解系表示.1.设A 为n 阶矩阵,k 为非零常数,则=kA ( ). (A) A k (B) A k (C) A k n (D) A k n2.设A 为n m ⨯阶矩阵,C 为n 阶可逆矩阵,矩阵A 的秩为1r ,矩阵AC B =的秩为r ,则()(A) 1r r > (B) 1r r < (C) 1r r = (D) 1r r ,的关系依C 而定3.设n 元齐次方程组0=Ax 的系数矩阵为r ,则0=Ax 有非零解的充分必要条件是()(A) n r = (B) n r < (C) n r ≥ (D) n r >4.n 维向量组)2(,,,≥s s 21ααα 线性相关的充要条件是()(A) s 21ααα,,, 中至少有一个零向量 (B) s 21ααα,,, 中至少有两个向量成比例(C) s 21ααα,,, 中任意两个向量不成比例 (D) s 21ααα,,, 中至少有一个向量可以被其余向量所表示5.设321ξξξ,,是0=Ax 的基础解系,则该方程组其余的基础解系还可以表示为()(A) 133221ξξξξξξ-++,, (B) 321ξξξ,,的一个等秩向量组 (C) 321211ξξξξξξ+++,, (D) 133221ξξξξξξ---,,二、填空题(15分)6. 261365415432a a a a a a 为六阶行列式的元素乘积,前面应冠以_______号.7. 6427811694143211111=D 中第三行元素的代数余子式的和∑=413j j A =__________. 8. =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛4131211135111111________. 9. 设A 是n 阶矩阵,满足E A A -=22,则1)2(--E A =_____.10. n 维零向量一定线性 (相关/无关).三、(10分)求行列式1232145121524321=D .四、(15分)设⎪⎪⎪⎭⎫ ⎝⎛--=130140121A ,⎪⎪⎪⎭⎫ ⎝⎛=123B 满足B AX =,求1-A 和X . 五、(15分)设向量组T T T k k )2,1,1(,)1,,1(,)1,1,(321===ααα,向量T k k ),,1(2=β,则k 取何值时(1)β不能由321,,ααα线性表示;(2)β可以由321,,ααα线性表示,且表示法唯一;(3)β可以由321,,ααα线性表示,且表示法不唯一六、(15分)设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=5244423232201012A ,求A 的列向量组的秩、最大无关组、并表示其他向量. 七、(15分)求线性方程组⎩⎨⎧=-+--=-+12624321421x x x x x x x 的通解,并用基础解系表示.1.设A ,B ,C 为n 阶矩阵,且A 可逆,下列结论成立的是()(A).若AC AB =,则C B = (B).若CB AB =,则C A = (C).若O BC =,则O B = (D).若O AB =,则O A =或O B =2.若5734111113263278----=D ,则D 中第一行元素的代数余子式的和为() (A).-1 (B).-2 (C).-3 (D).03.设A ,B 为n 阶非零矩阵,且O AB =,则A ,B 的秩为()(A).必有一个等于零 (B).都小于n (C).一个小于n ,一个等于n (D).都等于n4.n 维向量组)2(,,,≥s s 21ααα 线性相关的充要条件是()(A) s 21ααα,,, 中至少有一个零向量 (B) s 21ααα,,, 中至少有两个向量成比例(C) s 21ααα,,, 中任意两个向量不成比例 (D) s 21ααα,,, 中至少有一个向量可以被其余向量所表示5.设321ξξξ,,是0=Ax 的基础解系,则该方程组其余的基础解系还可以表示为()(A) 133221ξξξξξξ-++,, (B) 321ξξξ,,的一个等秩向量组 (C) 321211ξξξξξξ+++,, (D) 133221ξξξξξξ---,,二、填空题(15分)11. 615243342516a a a a a a 为六阶行列式的元素乘积,前面应冠以_______号.12. =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛4131211143211111________. 13. 设A 是n 阶矩阵,满足A A 32=,则1)(-+E A =_____.14. 设A 是2阶矩阵,3=A ,*A 是A 的伴随矩阵,求*1A A +-=________.15. 向量组321,,ααα线性无关的充要条件是______.三、(10分)求行列式1332101121024321=D .四、(15分)设⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,⎪⎪⎪⎭⎫ ⎝⎛=212B 满足B AX =,求1-A 和X . 五、(15分)判断向量T )9,6,2,0(-=β是否可由向量组T T T )3,5,1,1(,)2,1,2,1(,)2,3,3,1(321-=---==ααα,如果可以,写出表达式. 六、(15分)设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=7236311232201012A ,求A 的列向量组的秩、最大无关组、并表示其他向量. 七、(15分)求线性方程组⎩⎨⎧=----=-+14624321421x x x x x x x 的通解及基础解系. 一、填空题1. 排列6137524的逆序数是 .2. 若齐次方程组⎪⎩⎪⎨⎧=+=+=+-0052023232321kx x x x x x x 有非零解,则k = .3. 设A 为3阶方阵,且3=A ,则=A 5 .4. 向量组4321,,,αααα线性无关的定义是 .5.向量组1234,,,αααα线性相关的定义是_____________.6. 53(1)无解的充要条件是 ___________________________________;(2)当____________时,方程组有无穷多解,这时通解含有 _____个自由未知量.7.行列式=301120111 .8.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++444342418765A A A A .9.设⎪⎪⎭⎫ ⎝⎛=1011A ,则=-1)3(A . 10.设T )2,1,1(1-=α,T )1,3,1(2-=α,则=-2124αα . 二、选择题1.设B A 、为n 阶方阵,则下列选项中恒成立的是( ). A. BA AB =B. ))((22B A B A B A +-=-C. AB A A B A -=-2)(D. T T T B A AB =)(2.设n 维向量组)3(,,,21n s s ≤≤ααα 线性无关,则下列结论正确的是( ).A. s ααα,,,21 中至少有一向量可由其余向量线性表示B. s ααα,,,21 中存在部分组线性相关C. s ααα,,,21 中没有零向量D. s ααα,,,21 中存在两个向量对应成比例3. 下列),,(z y x f 为二次型的是( ).A. yz xy x 422++B. z xyz x 4222++C. 142++yz xD. 2242yz xy x ++4. 对矩阵m n n m B A ⨯⨯,,下列运算有意义的是( ).A. T ABB. 2AC. A B TD. AB5. 设4321,,,αααα是三维实向量组,则( ).A .4321,,,αααα一定线性无关B .1α一定可由432,,ααα线性表出C .4321,,,αααα一定线性相关D .321,,ααα一定线性无关 6. 设321ξξξ,,是0=Ax 的基础解系,则该方程组的基础解系还可以表示为( ).A. 133221ξξξξξξ-++,,B. 321ξξξ,,的一个等秩向量组C. 133221ξξξξξξ+++,,D. 133221ξξξξξξ---,, 7.设A 为3阶方阵,行列式2=A ,*A 为A 的伴随矩阵,则=--*1)2(A A ( ). A.1627 B. 2716 C. 1627- D. 2716- 8.设A ,B ,C 为n 阶矩阵,且A 可逆,下列结论成立的是()(A).若AC AB =,则C B = (B).若CB AB =,则C A = (C).若O BC =,则O B = (D).若O AB =,则O A =或O B =9.设A ,B 为n 阶非零矩阵,且O AB =,则A ,B 的秩为() (A).必有一个等于零 (B).都小于n (C).一个小于n ,一个等于n (D).都等于n10.设A 为n 阶矩阵,k 为非零常数,则=kA ( ).(A) A k (B) A k (C) A k n (D) A k n11.设A 为n m ⨯阶矩阵,C 为n 阶可逆矩阵,矩阵A 的秩为1r ,矩阵AC B =的秩为r ,则()(A) 1r r > (B) 1r r < (C) 1r r = (D) 1r r ,的关系依C 而定12.设n 元齐次方程组0=Ax 的系数矩阵为r ,则0=Ax 有非零解的充分必要条件是()(A) n r = (B) n r < (C) n r ≥ (D) n r >13.设行列式1111304=zy x ,则行列式=1111034222zy x ( ) A .32 B .1 C .2 D .38 14. 设矩阵m n n s B A ⨯⨯,,则下列运算有意义的是 ( )A. T ABB.2A C.BA D. AB15.设n s j i a A ⨯=)(,s m j i b B ⨯=)(,则( ) A. BA 是m n ⨯矩阵; B. BA 是n m ⨯矩阵;C. BA 是s s ⨯矩阵;D. BA 未必有意义.16.设矩阵A 的秩为r ,则A 中( )(A )所有1r -阶子式都不为0;(B )所有1r -阶子式全为0;(C )至少有一个r 阶子式不为0; (D )所有r 阶子式都不为0。
线性代数期末考试试卷及答案
一、 填空题(每空3分,共15分)1、设A 为n 阶方阵,且3A =,则|3A |= 。
2、设矩阵5678A ⎡⎤=⎢⎥⎣⎦,则A *= 。
(其中A *是A 的伴随矩阵) 3、已知n 阶矩阵A 满足2A A =,则A 的特征值为 。
4、n 阶方阵A 与对角矩阵相似的充要条件是 。
5、二次型22212312133428f x x x x x x x =-+-+的实对称矩阵为 。
二、选择题(每小题3分,共15分)1、12021k k +≠+的充要条件是( )(A )1k ≠ (B )3k ≠-(C )1k ≠且3k ≠- (D )1k ≠或3k ≠-2、若111221226a a a a =,则121122212020021a a a a --的值为( ) ()A 12 ()B -12 ()C 18 ()D 03、设,A B 都是n 阶方阵,且0AB =,则下列一定成立的是( )()A 0A =或0B = (),B A B 都不可逆 (),C A B 中至少有一个不可逆 ()0D A B += 4、向量组()12,,,2s s ααα≥ 线性相关的充分必要条件是( )()A 12,,,s ααα 中含有零向量。
()B 12,,,s ααα 中有两个向量的对应分量成比例。
()C 12,,,s ααα 中每一个向量都可由其余1s -个向量线性表示。
()D 12,,,s ααα 中至少有一个向量可由其余1s -个向量线性表示。
5、当ad ≠bc 时,1a b c d -⎡⎤⎢⎥⎣⎦=( ) (A )d c b a -⎡⎤⎢⎥-⎣⎦(B )1d b c a ad bc -⎡⎤⎢⎥--⎣⎦(C )1d b c a bc ad ⎡⎤⎢⎥--⎣⎦(D )1d c b a ad bc -⎡⎤⎢⎥--⎣⎦三、(8分)计算行列式411102*********23D -=-四、(11分)求向量组()()()()12342,1,1,1,1,1,7,10,3,1,1,2,8,5,9,11αααα==-=--=的一个最大无关组,并将其余向量用此最大无关组线性表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数期末复习题一、判断下列各题是否正确1. 矩阵A 、B 的积AB =0,则A =0或B =0。
( ) 2. 设A 为一任意矩阵,则A +A T ,AA T 均为对称矩阵。
( )3. 设对矩阵A 施行初等变换得到矩阵B ,且已知秩(A)=r ,秩(B)=s,则r = s 。
( )4. A 、B 均为n 阶可逆矩阵,则(AB)*= A *B *。
( ) 5. 设n 阶方阵A 、B 、C 满足关系式ABC =E ,则BCA =E 。
( )6. 设A 、B 为n 阶方阵,则,(A -1 B -1)T =(A T B T )-1。
( ) 7. 等价的矩阵的秩相等。
( ) 8. 若矩阵P T AP 为对称矩阵,则A 为对称矩阵。
( ) 9.在4阶行列式中,项a 13a 34a 42a 21带正号。
( ) 10. A *是n 阶方阵A 的伴随矩阵,则 (2 A)*= 2 A *( ) 11.在5阶行列式中,设a ij 为第i 行第j 列元素,A ij 为a ij 的代数余子式。
则, a 31A 41+a 32A 42+a 33A 43+ a 34A 44+ a 35A 45=0 ( ) 12.若A *是n 阶方阵A 的伴随矩阵,则,|A *| = |A|n-1。
( ) 13.若A 、B 是同阶方阵,则(A +B )2 =A 2+2AB +B 2。
( )14. 等价的向量组的秩相等。
( ) 15. A *是n 阶方阵A 的伴随矩阵,则A *A =A A *= |A| E 。
( ) 16.在4阶行列式中,项a 12a 34a 43a 21带负号。
( ) 17. 若 n 阶矩阵A 可逆,则A 的n 个列向量线性相关 ( ) 18. 若矩阵A 、B 相似,则矩阵A 、B 合同。
( )19. 实二次型f (x 1, x 2, x 3) =2322x x + 是半正定二次型。
( )20. 已知三阶矩阵A 的三个特征值是 -1,1,2,则|A| = -2 ( ) 21设A 是4×5矩阵,秩(A )=3,则A 中的3阶子式都不为0 ( ) 22若矩阵A 、B 合同,则矩阵A 、B 相似。
( )23.设A 、B 为n 阶可逆方阵,则 (AB)-1 = A -1 B -1。
( ) 24.. 若A 为对称矩阵,则P T AP 为对称矩阵。
( ) 25.在5阶行列式中,设a ij 为第i 行第j 列元素,A ij 为a ij 的代数余子式。
则 a 51A 51+a 52A 52+a 53A 53+ a 54A 54+ a 55A 55=0 ( ) 26.若矩阵A 中所有t 阶子全为式0,则秩(A )≤t 。
( ) 27.n 维零向量是任何一组n 维向量的线性组合。
( ) 28.正交矩阵的行列式等于1或 -1 。
( ) 29.任一实对称矩阵一定能与对角矩阵相似。
( )30.实二次型f(x 1,x 2,x 3)=2322x x + 是正定二次型。
( )31若一个向量组线性相关,则该向量组的任一部分组都线性相关。
( ) 32若向量α与β正交,则对任意实数a 、b, a α与b β也正交 ( ) 33若矩阵A 满足A T = A -1 ,则矩阵A 为正交矩阵 ( ) 34.若矩阵A 、B 相似,则矩阵A 、B 等价 ( )35.n 阶矩阵A 非奇异的充要条件是A 的行向量都是非零向量。
( ) 36.若λ1和λ2分别是n 阶矩阵A 、B 的特征值,则λ1 +λ2是n 阶矩阵A+B 的特征值, ( ) 37.二次型f(x 1,x 2,x 3) =(x 1+x 2)2 + (x 2-x 3) 2 + (x 3+x 1) 2的秩为2 ( )二.单项选择题1.A ,B 为三阶方阵,矩阵X 满足A X A B X B B X A A X B E -=-+则 ( ) .(A)221()X A B -=-; (B)11()()X A B A B --=-+; (C)11()()X A B A B --=+- (D) 以上答案都不对. 2.A 、B 、C 为n 阶方阵,且A B C =,A 、B 、C 的列向量组分别为12,,,n ααα⋅⋅⋅;12,,,n βββ⋅⋅⋅;12,,,n γγγ⋅⋅⋅. 若12,,,n γγγ⋅⋅⋅线性相关,则( ) . (A) 12,,,n ααα⋅⋅⋅线性相关; (B) 12,,,n βββ⋅⋅⋅线性相关; (C) (A )与(B)都成立; (D) (A)或(B)成立. 3. 设,A B为三阶矩阵,且2(32)3r A A E ++=,若()2r B =则()r AB B +=( ).(A) 1 ; (B) 2; (C) 3; (D) 无法判断. 4. 设三阶矩阵⎪⎪⎪⎭⎫ ⎝⎛=3232γγαA ,⎪⎪⎪⎭⎫⎝⎛=322γγβB ,其中32,,,γγβα均为三维行向量,已知18=A ,2=B ,则=-B A ( ) .(A) 1 ; (B) 2; (C) 3; (D)4.5. 若,A B 都是三阶可逆矩阵,则下列结论不一定正确的是 ( ).(A) ()TTTA B B A =. (B) 111()A B BA---=.(C) ***()A B B A =. (D) 222()A B B A =.6. 若A 为三阶方阵,将矩阵A 第一列与第三列交换得矩阵B ,再把矩阵B 的第二列加到第三列得矩阵C ,则满足AQ C =的可逆矩阵Q 为( ).(A) 010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B) 010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (C)01011100⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D) 011100001⎛⎫ ⎪ ⎪ ⎪⎝⎭.7. 若,A B 都是n 阶方阵,且0B ≠,0A B =,则必有( ).(A)B ≠. (B)*B≠. (C)TA =. (D) 222()A B A B -=+8. 已知向量组123,,ααα的秩为3,向量组1234,,,αααα的秩为3,向量组1235,,,αααα的秩为4,则向量组 1234523,,,ααααααα--,的秩为( ).(A) 3. (B) 4 . (C) 5. (D) 不能确定9. r (A) = r (A,b)是非齐次线性方程组A x b =有无穷多解的 ( ).(A) 充分条件. (B) 必要条件. (C) 既非充分条件又非必要条件. (D) 不能确定.10.若向量组1(1,3,6,2)Tα=,2(2,1,2,1)Tα=-,3(1,1,,2)Ta α=--的秩为2,则a =( ).(A) 1. (B) -2. (C) 2. (D) -1.11.若B A ,都是n 阶方阵,且0≠B ,0=AB ,则必有( ). (A)B ≠. (B)A =. (C)*B≠ . (D) 222)(B A B A +=+.12.下列矩阵中,不能相似于对角矩阵的是( ).(A). ⎪⎪⎪⎭⎫ ⎝⎛-200120011 (B) 110120002-⎛⎫ ⎪ ⎪ ⎪⎝⎭. (C) 110020001⎛⎫ ⎪ ⎪ ⎪-⎝⎭. (D)111020002⎛⎫ ⎪- ⎪ ⎪⎝⎭.13.已知A 是n 阶可逆矩阵,则与A 必有相同特征值的矩阵是( ).(A) 1A -. (B) 2A . (C) T A . (D) *A . 14.若方程组⎪⎩⎪⎨⎧=+=+-=++020209873232321x t x x x x x x 存在非零解,则常数t = [ ]。
(A ) 2 (B ) 4 (C ) -2 (D ) -4 15.设有n 阶方阵A 与B 等价,则 [ ]。
(A) | A | = | B | (B) | A | ≠ | B | (C) 若| A |≠0,则必有| B |≠0 (D) | A | = -| B |16.若A 为n 阶可逆矩阵,下列各式正确的是 [ ]。
(A )(2A )-1 = 2 A -1(B) |2A| = 2 | A | (C)()AAA 11*--=(D) (A -1 )T = ( A T )-117.设611521112344321--=A ,则4A 41+3A 42+2A 43+A 44= [ ] (A) 0 (B) 1 (C) 2 (D) 318.已知可逆方阵⎥⎦⎤⎢⎣⎡--=-21731A,则A = [ ]。
(A )⎥⎦⎤⎢⎣⎡--3172 (B )⎥⎦⎤⎢⎣⎡3172 (C )⎥⎦⎤⎢⎣⎡--2173 (D )⎥⎦⎤⎢⎣⎡--217319.设矩阵A 、B 、C 满足AB =AC ,则B =C 成立的一个充分条件是 [ ]。
(A) A 为方阵 (B )A 为非零矩阵 (C) A 为可逆方阵 (D) A 为对角阵20.43211113214304324321)(xxx x x f =,则x 4的系数是 [ ]。
(A) 2 (B) 1 (C) -1 (D) -221.若A 为三阶方阵,将矩阵A 第一行与第三行交换得矩阵B ,再把矩阵B 的第一行加到第二行得矩阵C ,则满足QA=C 的可逆矩阵Q 为 ( )(A) 010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B) 010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (C) 001011100⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D) 011100001⎛⎫ ⎪ ⎪ ⎪⎝⎭.22.下列不是矩阵A 可逆充分必要条件的是 ( )(A) | A | ≠ 0 (B) A 是非奇异矩阵 (C) A 的任一特征值不为零 (D) A 是满秩矩阵。
23.设n 阶方阵A 与n 阶方阵B 等价,则( )(A) | A | = | B | (B) A 与B 合同 (C) r (A) = r (A,B) (D) A 与B 相似24.若A 为n 阶可逆矩阵,下列各式正确的是( )(A ) (2A )-1 = 2 A -1(B) |2A| = 2 | A |(C) (2 A)* = 2 A * (D) (2A -1 )T = 2(A T )-125.A 为n 阶矩阵,每个n 维向量都是齐次线性方程组Ax=0的解,则秩(A )=( )( A ) 1 (B ) n ( C ) n-1 ( D ) 026.若向量组α1=(1,1,3,1)T ,α2=(1,1,a ,1)T ,α3=(5,-3,7,-11)T的秩为2,则a =( )(A) 1. (B) 3. (C) -3. (D) -1.27.设A 是m ×n 矩阵,Ax=0是线性方程组Ax=b 的导出组,若m <n ,则( )A. Ax=b 必有无穷多解B. Ax=b 必有唯一解C. Ax=0必有非零解D. Ax=0必有唯一解28. 设二次型f(x)=x TAx 正定,则下列结论中正确的是( )A .对任意n 维列向量x ,x T Ax 都大于零B .A 的特征值都大于零C .f 的标准形的系数都大于或等于零D .A 的所有子式都大于零29. 设矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---496375254,则以下向量中是A 的特征向量的是( ) (A).(1,1,1)T (B).(1,1,3)T(C).(1,1,0)T (D).(1,0,-3)T30.若矩阵B 的列向量组能由矩阵A 的列向量组线性表示,则 ( )(A) 秩(B )≤秩(A) (B) 秩(B )<秩(A) (C) 秩(B )>秩(A) (D) 秩(B )≥秩(A)31.设A 为3阶实对称矩阵,A 的全部特征值为0,1,1,则齐次线性方程组(E-A)x=0的基础解系所含解向量的个数为( )(A ).0 (B ). 1 (C ).2 (D ). 332.若A 、B 相似,则下列说法错误..的是( ) (A ).A 与B 等价 (B ). A 与B 合同 (C). | A | = | B |(D). A 与B 有相同特征值33.设3阶实对称矩阵A 的特征值分别为2,1,0,则矩阵A( )(A). 正定 (B). 半正定 (C). 负定 (D). 半负定34.设α1,α2是非齐次方程组Ax=b 的解,β是对应的齐次方程组Ax=0的解,则Ax=b 必有一个解是( ) A .α1+α2B .α1-α 2C .β+α1+α2D .β+212121α+α35.设3元非齐次线性方程组Ax=b 的两个解为α=(1,0,2)T ,β=(1,-1,3)T ,且系数矩阵A 的秩r(A )=2,则对于任意常数k , k 1, k 2, 方程组的通解可表为( ) A .k 1(1,0,2)T+k 2(1,-1,3)TB .(1,0,2)T +k (1,-1,3)TC .(1,0,2)T +k (0,1,-1)TD .(1,0,2)T +k (2,-1,5)T36.矩阵A =⎪⎪⎪⎭⎫ ⎝⎛111111111的非零特征值为( )A .4B .3C .2D .137.4元二次型413121214321222),,,(x x x x x x x x x x x f +++=的秩为( ) A .4 B .3 C .2 D .138.设3阶实对称矩阵A 的特征值为λ1=λ2=0,λ3=2,则秩(A )=( )A .0B .1C .2D .3 39.二次型2.2),,(y x z y x f -=的正惯性指数p 为( )A .0.B .1C .2D .340.设向量,若有常数a ,b 使,则( ) A .a =-1, b =-2 B .a =-1, b =2 C .a =1, b =-2D .a =1, b =2 41. 设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( )A.21 B.1 C.23 D.242. 设向量组α1=(1,2), α2=(0,2),β=(4,2),则 ( )A. α1, α2,β线性无关B. β可由α1, α2线性表示,但表示法不惟一C. β不能由α1, α2线性表示D. β可由α1, α2线性表示,且表示法惟一43. 下列矩阵是正交矩阵的是( )A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--10010001 B.21⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110011101C.⎥⎦⎤⎢⎣⎡--θθθθcos sin sin cos D.⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡--336102233660336122三、填空题1.设A 、B 为n 阶非零矩阵,A B O =,且A 的阶梯形为1000n E -⎡⎤⎢⎥⎣⎦,则矩阵B 的秩= .2.已知1111111111111a D b c=,则此行列式的所有代数余子式之和,1nij i j A ==∑.3.已知(1,1)Tx =是⎪⎪⎭⎫⎝⎛=a A 011的一个特征向量,则=a .4.为已知A 是3阶方阵,123,,ααα是三维线性无关的向量. 若112A ααα=+,223A ααα=+,313A ααα=+,则A 的行列式等于 .5.设,A B 均为三阶矩阵,2,3A B =-=,则*2TA B= .6.设A 是4阶矩阵,伴随矩阵*A 的特征值是--1,2,4,8,则矩阵A 的全部特征值是 .7.若向量组1(1,3,6,2)T α=,2(2,1,2,1)T α=-,3(1,1,,2)Ta α=--的秩为2,则a = .8.若矩阵111111t A t t ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭为正定的,则t 满足的条件为 .9.已知A 为3阶可逆矩阵,*A 是A 的伴随矩阵,若 2A =,则*11()4A A --= .10.设A =110122114312121-⎛⎫⎪-- ⎪ ⎪-⎝⎭,则0A x =的基础解系中所含向量的个数是 . 11.已知22021202x -⎛⎫ ⎪-- ⎪ ⎪-⎝⎭与10000002y ⎛⎫⎪ ⎪ ⎪-⎝⎭相似,则y = .12.矩阵112203112A -⎛⎫ ⎪= ⎪ ⎪⎝⎭的逆矩阵为 .13.若矩阵111111t A t t ⎛⎫⎪=- ⎪ ⎪-⎝⎭为正定的,则t 满足的条件为 .14. 设21321,,,,ββααα 都是4维列向量,且4阶行列式,,3221121n m ==αβαααβαα 则4阶行列式()=+21123ββααα_______________15. 已知321,,ααα线性相关,3α不能由21,αα线性表示则21,αα线性__________16.设A 是n m ⨯阶矩阵 ,,B 是s n ⨯阶矩阵,,()r A R =,且0=AB ,则()B R 的取值 范围是________________17.设A 是4⨯3矩阵,且A 的秩()2=A R 且⎪⎪⎪⎭⎫ ⎝⎛-=301020201B 则()=AB R __________-18.设0是矩阵⎪⎪⎪⎭⎫⎝⎛=a A 01020101的特征值,则=a _____________19.设2123222213212),,(x x x k kx x x x x f +++=是正定二次型, 则t 的取值区间为 20.矩阵⎪⎪⎪⎭⎫ ⎝⎛--=314120401A 对应的二次型是_______________21. 设⎪⎪⎪⎭⎫ ⎝⎛---=44644325x A 相似于对角阵⎪⎪⎪⎭⎫⎝⎛321,则=x22.设A 为3阶方阵,*A 为伴随矩阵,81=A ,则*1831AA -⎪⎭⎫ ⎝⎛-=___________23.设⎪⎪⎪⎭⎫⎝⎛---=14523121x A 是不可逆矩阵,则=x ____________ 24. .________,___,04334221321111==-x xx x 的根方程25.().________)(,,2010,2101===⎪⎪⎪⎪⎪⎭⎫⎝⎛-=A R A 则矩阵设αββα26. 设A 、B 为4阶方阵,且2-=A ,3=B ,则_________1))((=-T AB27. .______,=A A 则相似于单位矩阵设28. A 是34⨯矩阵,其秩()A =1,⎪⎪⎪⎪⎪⎭⎫⎝⎛--=0030000108532001B , 则秩()BA = _____29.._________ ,0,11223112321==⎪⎪⎪⎪⎪⎭⎫⎝⎛---=t Ax t A 则有非零解且方程组设30.设方阵A 有一特征值为λ,则 的特征值为 。