新沪科版七年级数学上册第一章《科学计数法》教案

合集下载

七年级数学上册_第一章《科学记数法》课堂教学案例

七年级数学上册_第一章《科学记数法》课堂教学案例

七年级数学上册_第一章《科学记数法》课堂教学案例1.5.2 科学记数法【情境导入】从学生原有认知结构提出问题师:什么叫乘方?说出103,-103,(-10)3的底数、指数、幂.生:求几个相同因数的积的运算,底数分别是10、10、-10,指数分别是3,3,3,幂分别是1000,-1000,-1000.师:请一位同学口答:103,-103,(-10)3.生:1000,-1000,-1000.师:把下列各式写成幂的形式:100,27,-125,-10000生:102,33,-53,-104.师:请一个同学汇报计算结果:101,102,103,104,105,106,1010.生:10,100,1000,10000,100000,1000000,1000000000.〖评析〗从前面乘方的概念复习起,而且选取了以10为底数的幂的形式,为本课新知—科学记数法奠基.【探索新知】师:同学们完成得很好,下面我观察第4题计算105=100000,106=1000000,1010=10000000000,左边用10的n次幂表示简洁明了,且不易出错,右边有许多零,很容易发生写错的情况,读的时候也是左易右难,这就使我们想到用10的n次幂表示较大的数,比如一亿,一百亿等等.但是像太阳的半径大约是696 000千米,光速大约是300 000 000米/秒,中国人口大约 13亿等等,我们如何能简单明了地表示它们呢?这就是本节课我们要学习的内容——科学记数法.(三)讲授新课师:现在我们把同学们的运算结果对齐看一下10n的特征:101=10,102=100,103=1000,104=10000,1010=10000000000.哪位同学们说一下,10n中的n表示n个10相乘,它与运算结果中0的个数有什么关系?与运算结果的数位有什么关系?生:n与0的个数相等;位数是n+1.师:回答得很好,我们根据上面积累的经验做两组练习:练习(1) 把下面各数写成10的幂的形式.1000,100000000,100000000000.练习(2) 指出下列各数是几位数.103,105,1012,10100.(同学们练习2分钟后)师:哪位同学汇报一下求解答案.生1:练习(1)中依次为103,108,1011;生2:练习(2)中分别是4位数、6位数、13位数、101位数.师:完成得很好!下面我们介绍科学记数法的形式:任何一个数都可以表示成整数数位是一位数的数乘以10的n 次幂的形式.如:100=1×100=1×102,6000=6×1000=6×103,7500=7.5×1000=7.5×103.师:第一个等号是我们在小学里就学习过的关于小数点移动的知识,我们现在要做的就是把100,1000,变成10的n 次幂的形式就行了.请一个同学们把课本上关于科学记数法定义读一遍.生:我们把大于10的数记成a×10n 的形式,其中a 是整数数位只有一位的数,n 是自然数,这种记数法叫做科学记数法.师:现在我们只学习绝对值大于10的数的科学记数法,以后我们还要学习其他一些数的科学记数法.说它科学,因为它简单明了,易读易记易判断大小,在自然科学中经常运用.请一个学生再来根据自己的理解表述一下这个定义:生:用字母N 表示数,则N=a×10n (1≤|a|<10,n 是整数),这就是科学记数法.师:很好!下面我们通过具体例题感受科学记数法的表示方式:例1 用科学记数法表示下列各数:(1)1 000 000; (2) 57 000 000; (3) 696 000;(4) 300 000 000; (5)-78 000; (6) 12 000 000 000.讲解:(1) 1000 000=106;(2) 57 000 000=5.7×10 000 000=5.7×107;(3) 696 000=6.96×100 000=6.9×105;(4) 300 000 000=3×100 000 000=3×108;(5)-78 000=-7.8×10 000=-7.8×104;(6)12 000 000 000=1.2×10 000 000 000=1.2×1010.师:如果每次都按解的步骤去做又显得有点繁,那么利用n 与数位的关系去做,试一试:(1) 1 000 000是7位数,所以 n=6,即106.(2)57 000 000是8位数,n=7,所以57 000 000=5.7×107.(3) 696 000是6位数,n=5,所以696 000=6.96×105.(4) 300 000 000是9位数,n=8,所以 300 000 000=3×108.后面两题同学们自己试一试看.〖评析〗这一组例题涵盖了常规的科学记数法表示方法,有利于巩固比较大的数之表示方法.例2 (1)据《连云港日报》报道,至2010年5月1日零时,田湾核电站1、2号两台机组今年共累计发电42.96亿千瓦时.“42.96亿”用科学记数法可表示为()A .74.29610?B .84.29610?C .94.29610?D .104.29610?(2)写出下列用科学记数表示的数原来是什么数:北京故宫的占地面积约为57.210?平方米,即______平方米.(3)废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为立讲解:(1) C ;(2)720000;(3)50×600=3×104 .〖评析〗这里是带有单位的数表示成科学记数法的形式,应注意原数的单位是否与用科学记数法时的单位一致,如果不一致,应注意单位之间的换算.而第(2)问是要把科学记数法写成原数,需要运算;第(3)问需要用50和600相乘,把积再写成科学记数法的形式.师:下面请同学们做一组练习.(选两个学生到黑板上做)课堂练习1.用科学记数法记出下列各数;8000000;5600000;740000000.〖参考答案〗8×106,5.6×106,7.4×108.2.下列用科学记数法记出的数,原来各是什么数?1×107;4×103;8.5×106;7.04×105;3.96×104.〖参考答案〗10000000,4000,8500000,7040000,39600.(请两个组长帮助订正、点评)〖评析〗这里选用的形式是学生分组练习,组长批改、点评,倡导了一种小组合作学习方式,而且让学生互相纠错,也起到互相促进的好处.师:根据学生在黑板上完成情况进行点评.下面请同学们再阅读一下课本这部分的内容.(2分钟后)师:什么是科学记数法,以及为什么学习科学记数法.生:我们把大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是自然数,这种记数法叫做科学记数法.师:请一个同学说说你对科学记数法中字母a的规定及10的幂指数与原数整数位数的关系有什么理解?生:科学记数法是一种特定的记数方法,其形式为a×10n,应注意现阶段学习的科学记数法中的a满足的条件是1≤a<10,也就是a为整数位数只有一位的数. 而由于a是只有一位整数位的数,所以n的值等于原数的整数位数减1.师:很好!本课新知就是这些了,下面请同学们完成今天的作业.(学生作业,老师现在批改、当堂个别反馈)课后提升练习设计1.用科学记数法记出下列各数:(1) 7 000 000; (2) 92 000; (3) 63 000 000; (4) 304 000;(5) 8 700 000; (6) 500 900 000; (7)374.2; (8) 7000.5.(2)下列用科学记数法记出的数,原来各是什么数?(1)2×106;(2)9.6×105;(3)7.58×107;(4)4.31×105;(5)6.03×108;(6)5.002×107;(7)5.016×102;(8)7.7105×104.3.用科学记数法记出下列各数:(1)地球离太阳约有一亿五千万千米;(2)地球上煤的储量估计为15万亿吨以上;(3)月球的质量约是7 340 000 000 000 000万吨;(4)银河系中的恒星数约是160 000 000 000个;(5)地球绕太阳公转的轨道半径约是149 000 000千米;(6)1cm3的空气中约有 25 000 000 000 000 000 000个分子.4.一天有8.64×104秒,一年如果按365天计算,一年有多少秒?(用科学记数法表示) 5.地球绕太阳转动(即地球的公转)每小时约通过1.1×105千米,声音在空气中传播,每小时约通过1.2×103千米.地球公转的速度与声音的速度哪个大?。

【沪教版】七年级数学上册1.6.2《科学计数法》教案

【沪教版】七年级数学上册1.6.2《科学计数法》教案
1.6有理数的乘方
第2课时科学计数法
【教学目标】
1.借助身边熟悉的事物进一步体会大数,并会用科学记数法表示大数.
2.知道科学记数法中字母a的规定及10的幂指数与原数整数位数的关系.
【重点难点】
重点:正确使用科学记数法表示大于10的数.
难点:10的幂指数的特征.【教学过程设计】
教学过程
设计意图
一、创设情境,导入新课
四、课堂小结,提炼观点
1.生活中我们会遇到读、写都有困难的较大的数,我们可用科学记数法表示它们:任何一个绝对值大于10的数都可记成±a×10n的形式,其中1≤a<10,n为自然数.
2.科学记数法中,n与数位的关系是:
n=数位-1,利用这一关系可以将一个较大的数用科学记数法表示出来,也可以把科学记数法表示的数的原数写出来.
二、师生互动,探究新知
1.10n的特征
师:让学生计算101,103,105,1010,并讨论1022表示什么?指数与运算结果中的0的个数有什么关系?与运算结果的数位有什么关系?
生:小组合作讨论.
师:让学生完成练习:
(1)把下面各数写成10的幂的形式:
1000,10000000,10000000000.
生:独立完成.
师:综上所述,一般地,一个绝对值大于10的数都可记成±a×10n的形式,其中1≤a<10,n等于原数的整数位数减1.这种记数方法叫做科学记数法.
3.例题讲解
师:用多媒体出示教材第42页例3.
生:尝试解答.
师:出示答案进行校正.
三、运用新知,解决问题
让学生独立完成教材43页练习第1,2,3,4题.
五、布置作业,巩固提升
教材第43~44页习题1.6第3~7题.

科学计数法教案初中

科学计数法教案初中

科学计数法教案初中教案标题:科学计数法教案初中教案目标:1. 理解科学计数法的定义和用途。

2. 掌握科学计数法的转换方法。

3. 能够运用科学计数法解决实际问题。

教学重点:1. 科学计数法的定义和用途。

2. 科学计数法的转换方法。

教学难点:能够灵活运用科学计数法解决实际问题。

教学准备:1. 教师准备:教学课件、科学计算器、练习题。

2. 学生准备:笔、纸、科学计算器。

教学过程:Step 1: 导入引入科学计数法的概念,通过提问激发学生对科学计数法的兴趣和认识。

教师提问:- 你们在日常生活中是否遇到过很大或很小的数值?- 在科学研究或实验中,为什么需要使用科学计数法?Step 2: 理解科学计数法的定义和用途教师通过讲解和示例,引导学生理解科学计数法的定义和用途。

教师讲解:科学计数法是一种表示非常大或非常小数值的方法。

它使用一个基数(通常是10)和一个指数来表示数值。

指数表示基数需要乘以多少次。

科学计数法的使用可以简化计算和表示,使得大数或小数更易于理解和比较。

示例:- 1克的质子质量约为1.67 × 10^-27千克。

- 地球距离太阳约为1.496 × 10^11米。

Step 3: 科学计数法的转换方法教师介绍科学计数法的转换方法,并通过例题进行讲解。

教师讲解:- 将一个数转换为科学计数法,首先确定一个基数(通常是10),然后将原数值转换为一个在1和基数之间的数,最后确定指数。

- 将科学计数法转换为普通数,将基数和指数进行运算,得到最终结果。

示例:- 将0.000035转换为科学计数法:基数为10,将小数点移动到最左边的非零数字后面,得到3.5,指数为-5,所以0.000035 = 3.5 × 10^-5。

- 将5.2 × 10^8转换为普通数:基数为10,指数为8,所以5.2 × 10^8 = 520000000。

Step 4: 运用科学计数法解决实际问题教师通过实际问题的练习,让学生运用科学计数法解决实际问题。

1.6有理数的乘方(第3课时科学记数法)(同步课件)-七年级数学上册(沪科版2024) (1)

1.6有理数的乘方(第3课时科学记数法)(同步课件)-七年级数学上册(沪科版2024) (1)

)
5
5
A. 0.186×10
B. 1.86×10
C. 18.6×104
D. 186×103
2. [2023·泰安]2023年1月17日,国家航天局公布了我国嫦娥
五号月球样品的科研成果,科学家们通过对月球样品的研
究,精确测定了月球的年龄是20.3亿年,数据20.3亿年用
科学记数法表示为( B
8
)
9
A. 2.03×10 年


3.用科学记数法表示下列各数:
(1)304 000;
(2)8 700 000;
(3)500 900 000;
(4)63 000 000.
解:(1)3.04×105 .
(3)5.009×108 .
(2)8.7×106 .
(4)6.3×107 .
4.下列用科学记数法表示的数,原来各是什么数?
(1)9.6×105;
贫到解决,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人
迹!请用科学记数法表示9899万和12.8万
解:9899万=98990000=9.899 ×
12.8万=128000=1.28×
6.用科学记数法表示下列各数:
(1)地球的半径约为6 400 000 m;
(2)青藏铁路从青海西宁到西藏拉萨的铁路全长约1 955 000 m;
4. 2024年1月11日安徽省文化和旅游局长会议在合肥召开,会
议提出今年要大力推进文化和旅游深度融合发展,全面实施
高品质旅游强省“六大工程”,力争旅游总收入突破1万亿
12
1×10
元,1万亿用科学记数法表示为
.

知识点2 还原用科学记数法表示的数

七年级数学上册《科学记数法》教案、教学设计

七年级数学上册《科学记数法》教案、教学设计
例如:假设某星球的质量是地球质量的10^3倍,该星球的重力加速度是地球的5倍,计算该星球上物体质量与地球上物体质量的关系,并使用科学记数法表示。
作业布置要求:
1.学生需独立完成作业,注重作业质量,书写规范,保持页面整洁。
2.鼓励学生在作业中展示自己的思考过程,教师将关注学生的解题思路和方法。
3.作业完成后,学生应进行自查,确保答案正确,并对错题进行订正。
4.教师将根据作业完成情况进行评价,关注学生的进步,及时给予反馈和指导。
b.示例讲解如何将一个数字表示为科学记数法,强调a的取值范围及n的确定方法。
c.讲解科学记数法与常规表示方法之间的转换规则,使学生掌握转换方法。
d.通过示例,讲解科学记数法在乘除运算中的运用,总结运算规律。
(三)学生小组讨论
1.教学活动设计:将学生分成若干小组,每组选一个组长,负责组织讨论和汇报。
2.讨论主题:如何正确表示一个数的形式为科学记数法?科学记数法在生活中的应用。
在小组合作过程中,教师应关注学生的参与度,引导他们合理分工、积极参与讨论,提高合作效果。
6.注重过程评价,鼓励学生积极参与课堂讨论、提问,充分调动学生的学习积极性。
教师应及时给予学生反馈,关注他们的进步,激发学生的学习兴趣。
7.结合生活实际,设计富有挑战性的问题,激发学生的探究欲望。
例如:让学生计算一个物体从地球到月球的距离,并使用科学记数法表示,让学生在实际问题中感受数学的魅力。
表示它们?
3.创设情境:通过实际生活中的例子,让学生感受到学习科学记数法的必要性,激发学生学习兴趣。
(二)讲授新知
1.教学内容:科学记数法的定义、表示方法、转换规则及运算规律。
2.教学过程:
a.教师讲解科学记数法的定义,解释为什么需要使用科学记数法。

【最新沪科版精选】沪科初中数学七上《1.0第1章 有理数》word教案 (3).doc

【最新沪科版精选】沪科初中数学七上《1.0第1章 有理数》word教案 (3).doc

第三课时教学目标:1.了解科学计数法的概念,会用科学计数法表示较大的数;2.了解近似数和有效数字的概念,体会近似数的意义及在生活中的作用;3.能说出一个近似数的精确度或有几个有效数字;能按照要求用四舍五入的方法,取一个数的近似数.教学重点:用科学计数法表示较大的数.理解近似数的精确度和有效数字.教学难点:用科学计数法记一个小于-10的数,正确把握一个近似数的精确度及它的有效数字的个数,用科学记数法表示的近似数的精确度和有效数字的个数.教学程序设计:一知识梳理1.科学记数法也就是把一个数表示成a×10n的形式,其中0≤a<10的数,n的值等于整数部分的位数减1.2.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.换句话说这个近似数最末一个数字所处数位就是它的精确度.如:2.59是精确到百分位.3.对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位.如:所以精确到百位.4.确定有效数字应注意:(1)有效数字是指从左起第一个不是零的数字起,到精确到的数位止的所有数字.从左起第一个不是零的数字左边的零不是有效数字,而从这个数往右的零不论在中间还是末尾都是有效数字如:0.00250有三个有效数字2,5,0.(2)以(科学记数法)形式写成的数的有效数字与数的有效数字完全相同.如:有2个有效数字:2,5.5.取近似数,应看要求精确到的数位的下一位数字,然后按四舍五入的总原则取近似值,而不看其它数位上的数.如:2.598精确到十分位是2.6.6.科学记数法形式写出的数取近似值往往容易出错,按四舍五入原则取值后,舍掉的整数位应补上0,然后把这个数用科学记数法表示出来.二典型例题例1 用科学记数法记出下列各数:(1)1 000 000;(2)57 000 000;(3)123 000 000 000解:(1)1 000 000=1×106.(2)57 000 000=5.7×107(3)123 000 000 000=1.23×1011.注意:一个数的科学记数法中,10的指数比原数的整数位数少1,如原数有6位整数,指数就是5.例2 判断下列各数,哪些是准确数,哪些是近似数:(1)初一(2)班有43名学生,数学期末考试的平均成绩是82.5分;(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;(3)通过计算,直径为10cm的圆的周长是31.4cm;(4)检查一双没洗过的手,发现带有各种细菌80000万个;(5)1999年我国国民经济增长7.8%.解:(1)43是准确数.因为43是质数,求平均数时不一定除得尽,所以82.5一般是近似数;(2)一万二千是近似数;(3)10是准确数,因为3.14是π的近似值,所以31.4是近似数;(4)80000万是近似数;(5)1999是准确数,7.8%是近似数.说明:1.在近似数的计算中,分清准确数和近似数是很重要的,它是决定我们用近似计算法则进行计算,还是用一般方法进行计算的依据.产生近似数的主要原因:(1)“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;(2)用测量工具测出的量一般都是近似数,如长度、重量、时间等等;(3)不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;(4)由于不必要知道准确数而产生近似数.例3 下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)38200 (2)0.040 (3)20.05000 (4)4×104分析:对于一个四舍五入得到的近似数,如果是整数,如38200,就精确到个位;如果有一位小数,就精确到十分位;两位小数,就精确到百分位;象0.040有三位小数就精确到千分位;象20.05000就精确到十万分位;而4×104=40000,只有一个有效数字4,则精确到万位.有效数字的个数应按照定义计算.解:(1)38200精确到个位,有五个有效数字3、8、2、0、0.(2)0.040精确到千分位(即精确到0.001)有两个有效数字4、0.(3)20.05000精确到十万分位(即精确到0.00001),有七个有效数字2、0、0、5、0、0、0.(4)4×104精确到万位,有一个有效数字4.说明:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零.如20.05000的有效数字是2、0、0、5、0、0、0七个.而20.05的有效数字是2、0、0、5四个.因为20.05000精确到0.00001,而20.05精确到0.01,精确度不一样,有效数字也不同,所以右边的三个0不能随意去掉.(2)对有效数字,如0.040,4左边的两个0不是有效数字,4右边的0是有效数字.(3)近似数40000与4×104有区别,40000表示精确到个位,有五个有效数字4、0、0、0、0,而4×104表示精确到万位,有1个有效数字4.例4 下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?(1)70万(2)9.03万(3)1.8亿(4)6.40×105分析:因为这四个数都是近似数,所以(1)的有效数字是2个:7、0,0不是个位,而是“万”位;(2)的有效数字是3个:9、0、3,3不是百分位,而是“百”位;(3)的有效数字是2个:1、8,8不是十分位,而是“千万”位;(4)的有效数字是3个:6、4、0,0不是百分位,而是“千”位.解:(1)70万. 精确到万位,有2个有效数字7、0;(2)9.03万.精确到百位,有3个有效数字9、0、3;(3)1.8亿.精确到千万位,有2个有效数字1、8;(4)6.40×105.精确到千位,有3个有效数字6、4、0.说明:较大的数取近似值时,常用×万,×亿等等来表示,这里的“×”表示这个近似数的有效数字,而它精确到的位数不一定是“万”或“亿”.对于不熟练的学生,应当写出原数之后再判断精确到哪一位,例如9.03万=90300,因为“3”在百位上,所以9.03万精确到百位.例5 用四舍五入法,按括号里的要求对下列各数取近似值.(1)1.5982(精确到0.01) (2)0.03049(保留两个有效数字)(3)3.3074(精确到个位) (4)81.661(保留三个有效数字)分析:四舍五入是指要精确到的那一位后面紧跟的一位,如果比5小则舍,如果比5大或等于5则进1,与再后面各位数字的大小无关.(1)1.5982要精确到0.01即百分位,只看它后面的一位即千分位的数字,是8>5,应当进1,所以近似值为1.60.(2)0.03049保留两个有效数字,3左边的0不算,从3开始,两个有效数字是3、0,再看第三个数字是4<5,应当舍,所以近似值为0.030.(3)、(4)同上.解:(1)1.5982≈1.60 (2)0.03049≈0.030 (3)3.3074≈3 (4)81.661≈81.7说明:1.60与0.030的最后一个0都不能随便去掉.1.60是表示精确到0.01,而1.6表示精确到0.1.对0.030,最后一个0也是表示精确度的,表示精确到千分位,而0.03只精确到百分位.三 课堂反馈1.用科学记数法记出下列各数.(1)30060;(2)15 400 000;(3)123000.2.下列用科学记数法记出的数,原来各是什么数?(1)2×510;(2)7.12×310;(3)8.5×610.3.已知长方形的长为7×105mm ,宽为5×104mm ,求长方形的面积.4.把199 000 000用科学记数法写成1.99×10n -3的形式,求n 的值.5. 由四舍五入得到的近似数0.600的有效数字是 ( )A. 1个B. 2个C. 3个D. 4个6. 用四舍五入法取近似值,3.1415926精确到百分位的近似值是_________,精确到千分位近似值是________.7. 用四舍五入法取近似值,0.01249精确到0.001的近似数是_________,保留三个有效数字的近似数是___________.8. 用四舍五入法取近似值,396.7精确到十位的近似数是______________;保留两个有效数字的近似数是____________.9. 用四舍五入法得到的近似值0.380精确到_____位,48.68万精确到___位.四 总结反思 拓展升华1.四舍五入法求近似数时,要精确到哪一位,只与它下一位的数字有关,而不管再下一位数字的大小是多少.2.精确度的形式有两种:①精确到哪一位;②保留几个有效数字,给定一个近似数,要确定其精确度,主要由该近似数的最后一位有效数字在该数中所处的位置决定.3.一个近似数有时用科学记数法表示较方便,便于确定该数的有效数字.用科学记数法表示的近似数,其有效数字的位数只看乘号前面的部分.五 作业一.选择题1、1.449精确到十分位的近似数是( )A.1.5B.1.45C.1.4D.2.02、由四舍五入法得到的近似数0.002030的有效数字的个数是( )A.3B.4C.5D.63、用四舍五入法,分别按要求取0.06018的近似值,下列四个结果中错误的是( )A.0.1(精确到0.1)B.0.06(精确到0.001)C. 0.06(精确到0.01)D.0.0602(精确到0.0001)4、有效数字的个数是( )A.从右边第一个不是零的数字算起B. 从左边第一个不是零的数字算起C.从小数点后第一个数字算起D. 从小数点前第一个数字算起5、下列数据中,准确数是( )A.王敏体重40.2千克B.初一(3)班有47名学生C.珠穆朗玛峰高出海平面8848.13米D.太平洋最深处低于海平面11023米6、12.30万精确到( )A.千位B.百分位C.万位D.百位7、20000保留三个有效数字近似数是( )A.200B.520010⨯C.4210⨯D.42.0010⨯ 8、208031精确到万位的近似数是( )A. 5210⨯B. 52.110⨯C. 42110⨯ D. 2.08万9、43.1010⨯的有效数字是( )A.3,1B.3,1,0C.3,1,0,0,0D.3,1,0,1,010、由四舍五入法得到的近似数53.2010⨯,下列说法中正确的是( )A.有3个有效数字,精确到百位B.有6个有效数字,精确到个位C.有2个有效数字,精确到万位D. 有3个有效数字,精确到千位11、下列说法中正确的是( )A.近似数3.50是精确到个位的数,它的有效数字是3、5两个B. 近似数35.0是精确到十分位的数,它的有效数字是3、5、0三个C.近似数六百和近似数600的精确度是相同的D.近似数1.7和1.70是一样的12、近似数2.60所表示的精确值x 的取值范围是( )A.2.595 2.605x ≤<B. 2.50 2.70x ≤<C. 2.595 2.605x <≤D. 2.600 2.605x <≤二.填空题1、1.90精确到 位,有 个有效数字,分别是 。

2024年新沪科版七年级上册数学教学课件 第1章 有理数 1.6 有理数的乘方 第3课时 科学记数法

2024年新沪科版七年级上册数学教学课件 第1章 有理数 1.6 有理数的乘方 第3课时 科学记数法

【教材P46 练习 第2题】
2. 下列用科学记数法表示的数原来分别是什么数?
1×107,4×103,8.5×106,7.04×105. 解 1×107 = 10 000 000
4×103 = 4 000 8.5×106 =8 500 000 7.04×105 = 704 000
【教材P46 练习 第3题】
1.从教材习题中选取; 2.完成练习册本课时的习题.
同学们,通过这节课的学习 ,你有什么收获呢?
谢谢 大家
解:216.3米=216 300 000 000纳米
=2.163×1011纳米
答:216.3米等于2.163×1011纳米.
6.已知光的速度为300 000 000米/秒,太 阳光到达地球的时间大约是500秒,试 计算太阳与地球的距离大约为多少千 米.(结果用科学记数法表示)
解:太阳与地球的距离
=300 000 000×500 =150 000 000 000米=1.5×1011千米 答:太阳与地球的距离大约为1.5×1011千米.
你还知道其他的表示方法吗?
你知道101,102,103,104分别等于多少吗?
10n的意义和规律是什么?
10的乘方有如下的特点:
101 10 102 100 103 1 000 104 10 000
一般地,10的n次幂等于10···0(在1 的后面有n个0),所以就可以用10的幂来 表示一些大数.
解 4.2 亿 = 420 000 000 = 4.2×108.
1 000 万= 10 000 000 = 1×107.
试一试 用科学记数法表示下列各数:
1 000 000,57 000 000,-123 000 000 000.

沪科版数学七年级上册 科学记数法

沪科版数学七年级上册  科学记数法
例3 下列用科学记数法表示的数,原来各是什么数? (1)《世界保护益鸟公约》规定每年的 4 月 1 日为
“国际爱鸟日”.因为有 它们,给我们的生活增添了 靓丽的光彩.鸟类最昌盛的时期,约有1.6×106 种;
1.6×106 = 1 600 000. (2) 一套《辞海》大约有 1.7×107 个字.
(4) 2.23×100.
解:(1) 是.
(2) 不是,因为 29>10.
(3) 不是,因为 0.32<1.
(4) 不是,因为 100 不是 10n 的形式.
【变式】 下列求原数不正确的是 ( D ) A. 3.56×104=35 600 B. -4.67×106=-4 670 000
C. 2×102=200
8 000 000 000 000 美元基建投资.将 8 000 000 000 000
用科学记数法表示为 8×10n,则 n 的值为( C )
A. 10
B. 11
C. 12
D. 13
典例精析
例1 下列各数的书写形式是否是科学记数法的形式?
(1) 1.5×103;
(2) 29×104;
(3) 0.32×103;
1.3×107 公顷.
练一练
1. 下面属于科学记数法的是( D )
A.25×103
B.0.3×105
C.300×10
D.5.4×107
2. 用科学记数法表示 3 080 000,正确的是 ( C )
A. 308× 104
B . 30.8 × 105
C. 3.08 ×106
D. 3.8 × 106
还原用科学记数法表示的数
9.6104×1012 原数有_1_3__位整数.

最新沪科版七年级数学上册《科学计数法1》教学设计(精品教案)

最新沪科版七年级数学上册《科学计数法1》教学设计(精品教案)

第2课时:科学记数法教学内容:科学记数法。

教学目的和要求:1.复习和巩固有理数乘方的概念,掌握有理数乘方的运算。

2.使学生了解科学记数法的意义,并会用科学记数法表示比较大的数。

教学重点和难点:重点:正确运用科学记数法表示较大的数。

难点:正确掌握10的幂指数特征。

教学工具和方法:工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。

教学过程:一、复习引入:1.什么叫乘方?说出103,―103,(―10)3、a n 的底数、指数、幂。

2. 把下列各式写成幂的形式: 32×32×32×32; ⎪⎭⎫ ⎝⎛-23⎪⎭⎫ ⎝⎛-23⎪⎭⎫ ⎝⎛-23⎪⎭⎫ ⎝⎛-23;-23×23×23×23;32222⨯⨯⨯。

3.计算:101,102,103,104,105,106,1010。

由第3题计算:105=10000,106=1000000,1010=10000000000,左边用10的n 次幂表示简洁明了,且不易出错,右边有许多零,很容易发生写错的情况,读的时候也是左易右难,这就使我们想到用10的n 次幂表示较大的数,比如一亿,一百亿等等。

又如像太阳的半径大约是696000千米,光速大约是300000000米/秒,中国人口大约13亿等等,我们如何能简单明了地表示它们呢?这就是本节课我们要学习的内容——科学记数法。

二、讲授新课:1.10n 的特征观察第3题:101=10,102=100,103=1000,104=10000,…1010=10000000000。

提问:10n 中的n 表示n 个10相乘,它与运算结果中0的个数有什么关系?与运算结果的数位有什么关系?(1)10n =00100个n ,n 恰巧是1后面0的个数;(2) 10n = 位)1(0100 n ,比运算结果的位数少1反之,1后面有多少个0,10的幂指数就是多少,如070000000个=107。

沪科版七年级数学上册《科学计数法》教案1

沪科版七年级数学上册《科学计数法》教案1

沪科版七年级数学上册《科学计数法》教案1《科学计数法》教案教学目标1、借助身边熟悉的事物进一步体会大数.2、了解科学记数法的意义,并会用科学记数法表示比10大的数.3、通过用科学记数法表示大数的学习,让学生从多种角度感受大数,促使学生重视大数的现实意义,以发展学生的数感.教学重点正确使用科学记数法表示大于10的数.教学难点10的特征以及科学计数法中n与数位的关系教学方法.正确掌握n教学过程一、创设问题情境,引入新课1、长江三峡大坝水库库存量393000000003m;2、光在空气中传播的速度大约是300000000m/s.这样的大数,读、写都不方便,如何用简洁的方法来表示它们?二、攻克新知方法一:用更大的数量级单位表示:如将300000000表示为3亿.观察与探索:1.计算110,1010表示什么?指数与运算结10,并讨论2210,310,5果中的0的个数有什么关系?与运算结果的数位有什么关系?2.练习:(1)把下面各数写成10的幂的形式:1000,10000000,10000000000(2)指出下列各数中是几位数:21010,510,10010,21思考:利用前面的知识,你能把一个比10大的数表示成整数位是一位数的乘以n10的形式吗?试试看.100=1×________;3000=3×________;25000=2.5×________.方法二:科学记数法科学记数法定义:一个大于10的数可以表示成n的形式,其中1≤a<10,n是正整a10数,这种记数方法叫科学记数法.科学记数法也就是把一个数表示成n的形式,其中1≤a<10,n的值等于整数部分a10的位数减1.三、应用迁移,巩固提高例3资料表明,被称为“地球之肺”的森林正以每年约1300万公顷的速度从地球上消失,每年森林的消失量用科学计数法表示应该是多少公顷?注意:用科学记数法表示一个数时,首先要确定这个数的整数部分的位数.一个数的科学记数法中,10的指数比原数的整数位数少1,如原数有6位整数,指数就是5.变式练习:1、判断下列数据的记数方法是科学记数法吗?(是打“√”、否打“×”)(1)3.5×103 ( );(2)0.5×106 ( );(3)30.3×108 ( );(4)10×102 ( ).(自主练习,学生讲评)2、用科学记数法表示下列各数51000000000= ;3705000= ;572.5= ;100000= .3、下列用科学记数法表示的数的原数是什么?(1)3-(3)710763?. .105?1810.(2)59?四、总结反思拓展升华1、生活中我们会遇到读、写都有困难的较大的数,我们可用科学记数法表示它们:任何一个大于10的数都可记成n的形式,其中1≤a<10,n为自然数.a102、科学记数法中,n与数位的关系是:n=数位-1,利用这一关系可以将一个较大的数用科学记数法表示出来,也可以把科学记数法表示的数的原数写出来.五、作业1、用科学记数法表示下列各数:7400000= ___________,40亿= ____________;2、写出下列各数据的原数:(1)一天的时间为8.64×104秒,原数为 __________________ ;(2)全球每年约有5.77×1014立方米水转化为大气中的水蒸气,原数 _______________ ;。

最新2019-2020年沪科版七年级数学上册《科学计数法》教学设计-优质课教案

最新2019-2020年沪科版七年级数学上册《科学计数法》教学设计-优质课教案

第2课时科学记数法【学习目标】1.借助身边熟悉的事物进一步体会大数,了解科学记数法的意义.2.会用科学记数法表示比10大的数.【学习重点】会用科学记数法表示比10大的数.【学习难点】理解10n中n与原数数位的关系.行为提示:点燃激情,引发学生思考本节课学什么.说明:用科学记数法表示一个数时,首先要确定这个数的整数部分的位数.10的指数比原来的整数位数少1.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.方法指导:对于含有记数单位并需转换单位的科学记数法,可以利用1亿=1×108,1万=1×104,1千=1×103来表示,能提高解题的效率.情景导入生成问题旧知回顾:1.什么是乘方?105读作什么?表示什么?结果是什么?答:求n个相同因数积的运算叫乘方,105读作10的5次方,表示5个10相乘.2.我们观看生活中的一些大数:太阳的半径约696000千米;富土山可能爆发,这将造成至少25000亿日元的损失;光的速度大约是300000000米/秒;全世界人口数大约是7100000000.这些数很大,表示起来很不方便,并且不易比较大小,于是人们采用科学记数法来表示它们.知识模块一科学记数法阅读教材P41~P42的内容,回答下列问题:问题1:什么是科学记数法?科学记数法的形式是什么?问题2:科学记数法中10的指数与原数的整数位数之间有什么关系?答:科学记数法:把一个绝对值大于10的数记成±a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法.10的指数n比原来的整数位数少1.典例:用科学记数法记出下列各数:(1)1000000;(2)57000000;(3)123000000000.思路提示:把大数写成a×10n的形式.解:(1)1000000=1×106;(2)57000000=5.7×107;(3)123000000000=1.23×1011.仿例:用科学记数法表示下列各数:740万=7.4×106,40亿=4×109.变例:纳米是一种长度单位,1米=109纳米,则3.2厘米=3.2×107纳米(用科学记数法表示).知识模块二科学记数法的应用典例:“丝绸之路”经济带首个实体平台——中哈物流合作基础在我市投入使用,其最大装卸能力达410000标箱.其中“410000”用科学记数法表示为( B ) A.0.41×106B.4.1×105C.41×104D.4.1×106仿例:根据世界贸易组织(WTO)秘书处初步统计数据,2013年中国货物进出口总额为4160000000000美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以记为________美元.( A )A.4.16×1012B.4.16×1013C.0.416×1012D.416×1010提示:变例3的比较大小,先看10n指数的大小,指数大的数大,若10n指数相同,再看a的大小.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.变例1:用科学记数法把1205000表示为1.205×10n,则n=6.变例2:设有理数A用科学记数法记为A=a×109,则A的整数位数有10位.变例3:用科学记数法表示的数:3.12×107,2.4×108,1.30×107,4.8×108中,最大的数是4.8×108,最小的数是1.30×107.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一科学记数法知识模块二科学记数法的应用检测反馈达成目标【当堂检测】见所赠光盘和学生用书【课后检测】见学生用书课后反思查漏补缺1.收获:________________________________________________________________________ 2.困惑:________________________________________________________________________。

七年级数学上册第1章有理数1、6有理数的乘方3科学记数法授课课件新版沪科版

七年级数学上册第1章有理数1、6有理数的乘方3科学记数法授课课件新版沪科版

感悟新知
总结
知2-讲
把用科学记数法表示的数a ×10n还原后,其整 数位数应为n+1.
感悟新知
例 5 比较大小:9.523×1010与1.002×1011.
知2-练
导引:可先写出原数,再比较大小.
解:9.523×1010=95 230 000 000,1.002×1011=
100 200 000 000,
数-1. (3)用科学记数法表示带有单位的数时,其结果也应
带上相同的单位.
感悟新知
1 用科学记数法表示下列各数: 10 000, 800 000, 56 000 000, 7 400 000.
知1-练
2 将一个数用科学记数法表示为a×10n的形式中,n是整 数,|a|的取值范围是( )
A.1<|a|<10
1. 用科学记数法表示数只是改变数的形式,而没有
改变数的性质和大小;用科学记数法表示一个带有
单位的数时,其表示的结果也应带有单位,并且前
后一致.
2. 用科学记数法表示负数时和正数一样,区别就是
前面多一个“-”号.
感悟新知
知1-练
例 1 资料表明,被称为“地球之肺”的森林正以每年 约 1 300万公顷的速度从地球上消失,每年森林的 消失量用科学记数法表示应是多少公顷?
39 300 000 000 = 3.93 ×10 000 000 000 = 3.93 ×1010, 300
000 000 = 3 × 100 000 000 = 3 × 108.
感悟新知
知1-讲
1.科学记数法:一般地,一个绝对值大于10的数都可记成 ±a×10n的形式,其中1≤a<10,n等于原数的整数位数减1.
们想出如下的简洁方法来表示它们.

七年级上册数学教案《科学计数法》

七年级上册数学教案《科学计数法》

七年级上册数学教案《科学计数法》教学目标1、掌握用科学计数法表示大数。

2、掌握会还原科学计数法表示的数成大数。

教学重难点掌握用科学计数法表示大数。

教学过程一、情境导入现实中,我们会遇到一些比较大的数。

例如,太阳的半径约696000千米、光速约300000000米/秒,世界人口约8000000000人等,怎么读写这些数呢?本节课我们一起学习这些大数的新的表示方法。

二、探究新知1、观察:10的乘方有什么特点?10²= 100 10³ = 1000 10^4=10000 10^5=100000发现:10的n次幂等于10……0(在1的后面有n个0),所以可以利用10的乘方来表示一些大数。

2、尝试用10的乘方来表示567000000567000000= 5.67×10^8像这样,把一个大于10的数表示成a×10^n的形式(其中1≤a<10,n是正整数),使用的是科学记数法。

对于小于-10的数也可以类似表示。

例如-567000000 = -5.67×10^8。

3、用科学计数法表示下列各数:(1)10000001000000 = 1 × 10^6(2)5700000057000000 = 5.7 × 10^7(3)-123000000000-123000000000 = -1.23 × 10^114、思考:上面的式子中,等号左边整数的位数与右边10的指数有什么关系?等号左边整数的位数与右边10的指数相等。

用科学记数法表示一个n位整数,其中10的指数是(n)。

三、巩固练习1、用科学计数法写出下列各数:10000 = 10^4800000 = 8 × 10^556000000 = 5.6 × 10^7-7400000 = -7.4 × 10^62、下列用科学计数法写出的数,原来分别是什么数?1 × 10^7 = 100000004 × 10^3 = 40008.5 × 10^6 = 85000007.04 × 10^5 = 704000-3.96 × 10^4 = -396003、中国的陆地面积约为9600000平方千米,用科学记数法表示这个数字。

【最新沪科版精选】沪科初中数学七上《1.0第1章 有理数》word教案 (3).doc

【最新沪科版精选】沪科初中数学七上《1.0第1章 有理数》word教案 (3).doc

第三课时教学目标:1.了解科学计数法的概念,会用科学计数法表示较大的数;2.了解近似数和有效数字的概念,体会近似数的意义及在生活中的作用;3.能说出一个近似数的精确度或有几个有效数字;能按照要求用四舍五入的方法,取一个数的近似数.教学重点:用科学计数法表示较大的数.理解近似数的精确度和有效数字.教学难点:用科学计数法记一个小于-10的数,正确把握一个近似数的精确度及它的有效数字的个数,用科学记数法表示的近似数的精确度和有效数字的个数.教学程序设计:一知识梳理1.科学记数法也就是把一个数表示成a×10n的形式,其中0≤a<10的数,n的值等于整数部分的位数减1.2.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.换句话说这个近似数最末一个数字所处数位就是它的精确度.如:2.59是精确到百分位.3.对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位.如:所以精确到百位.4.确定有效数字应注意:(1)有效数字是指从左起第一个不是零的数字起,到精确到的数位止的所有数字.从左起第一个不是零的数字左边的零不是有效数字,而从这个数往右的零不论在中间还是末尾都是有效数字如:0.00250有三个有效数字2,5,0.(2)以(科学记数法)形式写成的数的有效数字与数的有效数字完全相同.如:有2个有效数字:2,5.5.取近似数,应看要求精确到的数位的下一位数字,然后按四舍五入的总原则取近似值,而不看其它数位上的数.如:2.598精确到十分位是2.6.6.科学记数法形式写出的数取近似值往往容易出错,按四舍五入原则取值后,舍掉的整数位应补上0,然后把这个数用科学记数法表示出来.二典型例题例1 用科学记数法记出下列各数:(1)1 000 000;(2)57 000 000;(3)123 000 000 000解:(1)1 000 000=1×106.(2)57 000 000=5.7×107(3)123 000 000 000=1.23×1011.注意:一个数的科学记数法中,10的指数比原数的整数位数少1,如原数有6位整数,指数就是5.例2 判断下列各数,哪些是准确数,哪些是近似数:(1)初一(2)班有43名学生,数学期末考试的平均成绩是82.5分;(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;(3)通过计算,直径为10cm的圆的周长是31.4cm;(4)检查一双没洗过的手,发现带有各种细菌80000万个;(5)1999年我国国民经济增长7.8%.解:(1)43是准确数.因为43是质数,求平均数时不一定除得尽,所以82.5一般是近似数;(2)一万二千是近似数;(3)10是准确数,因为3.14是π的近似值,所以31.4是近似数;(4)80000万是近似数;(5)1999是准确数,7.8%是近似数.说明:1.在近似数的计算中,分清准确数和近似数是很重要的,它是决定我们用近似计算法则进行计算,还是用一般方法进行计算的依据.产生近似数的主要原因:(1)“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;(2)用测量工具测出的量一般都是近似数,如长度、重量、时间等等;(3)不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;(4)由于不必要知道准确数而产生近似数.例3 下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)38200 (2)0.040 (3)20.05000 (4)4×104分析:对于一个四舍五入得到的近似数,如果是整数,如38200,就精确到个位;如果有一位小数,就精确到十分位;两位小数,就精确到百分位;象0.040有三位小数就精确到千分位;象20.05000就精确到十万分位;而4×104=40000,只有一个有效数字4,则精确到万位.有效数字的个数应按照定义计算.解:(1)38200精确到个位,有五个有效数字3、8、2、0、0.(2)0.040精确到千分位(即精确到0.001)有两个有效数字4、0.(3)20.05000精确到十万分位(即精确到0.00001),有七个有效数字2、0、0、5、0、0、0.(4)4×104精确到万位,有一个有效数字4.说明:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零.如20.05000的有效数字是2、0、0、5、0、0、0七个.而20.05的有效数字是2、0、0、5四个.因为20.05000精确到0.00001,而20.05精确到0.01,精确度不一样,有效数字也不同,所以右边的三个0不能随意去掉.(2)对有效数字,如0.040,4左边的两个0不是有效数字,4右边的0是有效数字.(3)近似数40000与4×104有区别,40000表示精确到个位,有五个有效数字4、0、0、0、0,而4×104表示精确到万位,有1个有效数字4.例4 下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?(1)70万(2)9.03万(3)1.8亿(4)6.40×105分析:因为这四个数都是近似数,所以(1)的有效数字是2个:7、0,0不是个位,而是“万”位;(2)的有效数字是3个:9、0、3,3不是百分位,而是“百”位;(3)的有效数字是2个:1、8,8不是十分位,而是“千万”位;(4)的有效数字是3个:6、4、0,0不是百分位,而是“千”位.解:(1)70万. 精确到万位,有2个有效数字7、0;(2)9.03万.精确到百位,有3个有效数字9、0、3;(3)1.8亿.精确到千万位,有2个有效数字1、8;(4)6.40×105.精确到千位,有3个有效数字6、4、0.说明:较大的数取近似值时,常用×万,×亿等等来表示,这里的“×”表示这个近似数的有效数字,而它精确到的位数不一定是“万”或“亿”.对于不熟练的学生,应当写出原数之后再判断精确到哪一位,例如9.03万=90300,因为“3”在百位上,所以9.03万精确到百位.例5 用四舍五入法,按括号里的要求对下列各数取近似值.(1)1.5982(精确到0.01) (2)0.03049(保留两个有效数字)(3)3.3074(精确到个位) (4)81.661(保留三个有效数字)分析:四舍五入是指要精确到的那一位后面紧跟的一位,如果比5小则舍,如果比5大或等于5则进1,与再后面各位数字的大小无关.(1)1.5982要精确到0.01即百分位,只看它后面的一位即千分位的数字,是8>5,应当进1,所以近似值为1.60.(2)0.03049保留两个有效数字,3左边的0不算,从3开始,两个有效数字是3、0,再看第三个数字是4<5,应当舍,所以近似值为0.030.(3)、(4)同上.解:(1)1.5982≈1.60 (2)0.03049≈0.030 (3)3.3074≈3 (4)81.661≈81.7说明:1.60与0.030的最后一个0都不能随便去掉.1.60是表示精确到0.01,而1.6表示精确到0.1.对0.030,最后一个0也是表示精确度的,表示精确到千分位,而0.03只精确到百分位.三 课堂反馈1.用科学记数法记出下列各数.(1)30060;(2)15 400 000;(3)123000.2.下列用科学记数法记出的数,原来各是什么数?(1)2×510;(2)7.12×310;(3)8.5×610.3.已知长方形的长为7×105mm ,宽为5×104mm ,求长方形的面积.4.把199 000 000用科学记数法写成1.99×10n -3的形式,求n 的值.5. 由四舍五入得到的近似数0.600的有效数字是 ( )A. 1个B. 2个C. 3个D. 4个6. 用四舍五入法取近似值,3.1415926精确到百分位的近似值是_________,精确到千分位近似值是________.7. 用四舍五入法取近似值,0.01249精确到0.001的近似数是_________,保留三个有效数字的近似数是___________.8. 用四舍五入法取近似值,396.7精确到十位的近似数是______________;保留两个有效数字的近似数是____________.9. 用四舍五入法得到的近似值0.380精确到_____位,48.68万精确到___位.四 总结反思 拓展升华1.四舍五入法求近似数时,要精确到哪一位,只与它下一位的数字有关,而不管再下一位数字的大小是多少.2.精确度的形式有两种:①精确到哪一位;②保留几个有效数字,给定一个近似数,要确定其精确度,主要由该近似数的最后一位有效数字在该数中所处的位置决定.3.一个近似数有时用科学记数法表示较方便,便于确定该数的有效数字.用科学记数法表示的近似数,其有效数字的位数只看乘号前面的部分.五 作业一.选择题1、1.449精确到十分位的近似数是( )A.1.5B.1.45C.1.4D.2.02、由四舍五入法得到的近似数0.002030的有效数字的个数是( )A.3B.4C.5D.63、用四舍五入法,分别按要求取0.06018的近似值,下列四个结果中错误的是( )A.0.1(精确到0.1)B.0.06(精确到0.001)C. 0.06(精确到0.01)D.0.0602(精确到0.0001)4、有效数字的个数是( )A.从右边第一个不是零的数字算起B. 从左边第一个不是零的数字算起C.从小数点后第一个数字算起D. 从小数点前第一个数字算起5、下列数据中,准确数是( )A.王敏体重40.2千克B.初一(3)班有47名学生C.珠穆朗玛峰高出海平面8848.13米D.太平洋最深处低于海平面11023米6、12.30万精确到( )A.千位B.百分位C.万位D.百位7、20000保留三个有效数字近似数是( )A.200B.520010⨯C.4210⨯D.42.0010⨯ 8、208031精确到万位的近似数是( )A. 5210⨯B. 52.110⨯C. 42110⨯ D. 2.08万9、43.1010⨯的有效数字是( )A.3,1B.3,1,0C.3,1,0,0,0D.3,1,0,1,010、由四舍五入法得到的近似数53.2010⨯,下列说法中正确的是( )A.有3个有效数字,精确到百位B.有6个有效数字,精确到个位C.有2个有效数字,精确到万位D. 有3个有效数字,精确到千位11、下列说法中正确的是( )A.近似数3.50是精确到个位的数,它的有效数字是3、5两个B. 近似数35.0是精确到十分位的数,它的有效数字是3、5、0三个C.近似数六百和近似数600的精确度是相同的D.近似数1.7和1.70是一样的12、近似数2.60所表示的精确值x 的取值范围是( )A.2.595 2.605x ≤<B. 2.50 2.70x ≤<C. 2.595 2.605x <≤D. 2.600 2.605x <≤二.填空题1、1.90精确到 位,有 个有效数字,分别是 。

沪科版七年级数学上册全册教案.docx

沪科版七年级数学上册全册教案.docx

沪科版2017-2018学年七年级数学上册全册教案目录1.1 正数和负数1.2 数轴、相反数和绝对值1.3 有理数的大小1.4.1有理数的加法1.4.2有理数的减法1.4.3加、减混合运算1.5.1有理数的乘法1.5.2有理数的除法1.5.3乘、除混合运算1.6.1有理数的乘方1.6.2科学计数法1.7 近似数2.1.1用字母表示数2.1.3单项式与多项式2.1.4代数式的值2.2.1合并同类项2.2.2去括号、添括号及整式加减3.1.1一元一次方程及其解法(1)3.1.2一元一次方程及其解法(2)3.2.1一元一次方程的应用(1)3.2.2一元一次方程的应用(2)3.3.1二元一次方程组3.3.2消元解方程组(1)3.3.3消元解方程(2)3.4.1二元一次方程组的应用(1)3.4.2二元一次方程组的应用(2)3.5 三元一次方程组及其解法3.6 综合与实践4.1 几何图形4.2 线段、射线、直线4.3 线段的长短比较4.4 角4.5 角的比较与补(余)角4.6 用尺规作线段与角5.1 数据的收集5.2 数据的整理5.3 用统计图描述数据5.4 从图表中的数据获取信息5.5 综合与实践1.1 正数和负数【教学目标】1.借助生活中的实例理解有理数的意义,体会和认识引入负数的必要性.整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念.2.能区分两种不同意义的量,会用符号表示正数和负数.【重点难点】重点:两种相反意义的量与对基准的理解. 难点:正数、负数的意义以及对基准的理解.对有理数的分类的理解.1.1 正数和负数有理数⎩⎪⎨⎪⎧整数⎩⎨⎧正整数负整数分数⎩⎨⎧正分数负分数【教学反思】本节课紧密联系实际生活,使学生体会到数学的应用价值,在授课过程中充分体现了学生自主学习、小组合作交流的教学理念.在知识结构上与以前的知识相连接,体现了数学的1.2数轴、相反数和绝对值第1课时数轴【教学目标】了解数轴的概念,会画数轴,知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应.【重点难点】重点:理解数形结合的数学方法,掌握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数和数轴上的点的对应关系.教学过程一、创设情境,导入新课1.古代部落酋长上任时先在绳上打个绳结表示财物往来.从0开始,如捕获一只羊就在红绳结右边顺次打一个结,每向其他部落借一只羊,就在红绳结左边顺次打一个结,你能解读图中A,B,C处绳结的含义吗?2.让学生阅读教科书上机器人走步取物实验.以小组为单位进行讨论.二、师生互动,探究新知【教学小结】【板书设计】第1课时数轴1.数轴2.任意一个有理数,都可以用数轴上的一个点来表示.【教学反思】从历史与现实生活实例引入新课,提高了学生的学习兴趣.在授课过程中教师注重了对学生自学能力的培养,让学生主动探究.在顺利完成本节课的内容之后,让学生预习下一节课的内容,培养学生良好的学习习惯.第2课时相反数【教学目标】1.了解相反数的意义.2.借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系.3.给出一个数,能说出它的相反数.【重点难点】重点:相反数的概念.难点:相反数的识别及理解.【教学过程设计】【教学小结】【板书设计】第2课时相反数1.只有符号不同的两个数互为相反数.2.0的相反数是0.3.两个互为相反数的数在数轴上所表示的点在原点的两旁,与原点的距离相等.【教学反思】借助数轴让学生直观地观察,得出了相反数的特点,充分发挥小组的合作优势,体现了学为主体、教为主导的教学理念.第3课时绝对值【教学目标】1.理解绝对值的意义,会求一个数的绝对值.2.理解绝对值与相反数的联系.3.通过对正数、负数、0的绝对值的学习,体验分类讨论的数学思想.【重点难点】重点:绝对值的意义.难点:绝对值的意义的学习.【教学过程设计】教学过程一、创设情境,导入新课师:如下图所示.小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同)________,他们行走的距离(即路程远近)________.生:口答.二、师生互动,探究新知【教学小结】【板书设计】 第3课时 绝对值1.定义:在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.2.|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)【教学反思】通过数轴设置情境并引导学生观察数轴得出绝对值的意义,在此基础上得出如何求一个数的绝对值,让学生初步感知数形结合思想.通过不同形式的练习题让学生掌握并巩固知识.1.3 有理数的大小【教学目标】1.得出比较有理数的大小的方法并能熟练地应用解决具体问题.2.经历探索比较有理数的大小的方法的过程,培养学生的探索能力.【重点难点】重点:比较有理数的大小的方法.难点:探索比较有理数的大小的方法的过程,熟练地应用解决具体问题.【教学小结】【板书设计】1.3有理数的大小1.数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.2.正数大于0,0大于负数,正数大于负数.3.两个负数比较大小,绝对值大的反而小.【教学反思】从学生已经学习的数轴入手,引导学生探究出了比较有理数大小的方法.在授课过程中充分发挥了小组合作的作用,增强了学生的合作意识.1.4有理数的加减第1课时有理数的加法【教学目标】1.通过实例,了解有理数加法的意义,会根据有理数的加法法则进行有理数的加法运算.2.能运用有理数的加法解决实际问题.【重点难点】重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点:有理数加法中的异号两数如何进行加法运算.【教学过程设计】生:小组讨论之后分别列出算式:(1)(+2)+(+3)=+5.(2)(-2)+(-3)=-5.(3)(+2)+(-3)=-1.(4)(+3)+(-2)=+1.师:引导学生归纳两个有理数相加的几种情况.师:用课件出示以下5个问题:(1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了________米,这个问题用算式表示就是________.如图所示.(2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走了多少米?很明显,两次共向西走了________米,这个问题用算式表示就是______________.如图所示.(3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了________米,写成算式就是____________.这个问题用数轴表示如下图所示.【教学小结】【板书设计】第1课时有理数的加法有理数的加法法则:1.同号两数相加,取与加数相同的符号,并把绝对值相加.2.异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.3.一个数与0相加,仍得这个数.【教学反思】通过足球比赛这个实际例子引入新课,提高了学生的学习兴趣.利用数轴,充分发挥小组的合作优势,引导得出有理数的加法法则.教师设计的一系列问题由浅入深,非常恰当,充分体现了教师的主导作用.1.4有理数的加减第2课时有理数的减法【教学目标】1.掌握有理数的减法法则.2.能运用有理数的减法法则进行运算.3.通过对有理数减法法则的探究,体验数学的转化思想.4.通过对有理数减法法则的探讨,培养学生的创新思维.【重点难点】重点:有理数的减法法则.难点:对有理数的减法法则的探究.【教学过程设计】【教学小结】【板书设计】第2课时有理数的减法有理数减法法则:减去一个数,等于加上这个数的相反数.【教学反思】本节课从生活实例引入新课,提高了学生的学习兴趣.利用减法是加法的逆运算探究得出减法法则,体现了数学的转化思想.在教学中充分发挥学生的积极主动性,体现了学生为主体的教学思想.1.4有理数的加减第3课时加、减混合运算【教学目标】1.理解加减法统一成加法运算的意义.2.会将有理数的加、减混合运算转化为有理数的加法运算.3.通过对有理数的加、减混合运算的学习,体验数学中的转化思想.【重点难点】重点:1.有理数的加、减混合运算.2.将加减法统一成加法的省略括号的形式并读出来.难点:1.有理数的加、减混合运算.2.将加减法统一成加法的省略括号的形式并读出来.【教学过程设计】【教学小结】【板书设计】第3课时加、减混合运算1.加法交换律:a+b=b+a2.加法结合律:(a+b)+c=a+(b+c)【教学反思】本节课是在学生学习了有理数的加法法则和减法法则的基础上进行的,所以本节课的关键是如何引导学生进行转化,这样有理数的加、减混合运算就转化成了有理数的加法运算.然后让学生认识到引入负数后加法的两个运算律仍然适用是本节课的重点,对计算器的使用,因为品种很多,程序和方法不尽相同,所以留作课下作业进行探究.1.5有理数的乘除第1课时有理数的乘法【教学目标】1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算.2.通过教学,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力.【重点难点】重点:有理数的乘法法则.难点:有理数乘法中的符号法则以小组为单位,先独立思考再小组交流.二、师生互动,探究新知问题2:如图,一只蜗牛沿数轴爬行.它现在位置恰在数轴上的点0.(1)如果蜗牛一直以每分2cm的速度向右爬行,3分钟后它在什么位置?(2)如果蜗牛一直以每分2cm的速度向左爬行,3分钟后它在什么位置?(3)如果蜗牛一直以每分2cm的速度向右爬行,3分钟前它在什么位置?(4)如果蜗牛一直以每分2cm的速度向左爬行,3分钟前它在什么位置?以小组为单位交流、讨论.思考:一个数同0相乘,如何解释?问题3:正数乘正数积为________数.负数乘正数积为________数.正数乘负数积为________数.【教学小结】【板书设计】1.5有理数的乘除第2课时有理数的除法【教学目标】1.了解有理数除法的定义.2.经历有理数除法法则的探究过程,会进行有理数的除法运算.3.通过有理数除法法则的导出及运用,让学生体会转化思想.4.培养学生运用数学思想指导数学思维活动的能力.【重点难点】重点:正确运用法则进行有理数的除法运算.难点:怎样根据不同的情况来选取适当的方法求商.【教学小结】【板书设计】第2课时有理数的除法有理数的除法法则:1.两数相除,同号得正,异号得负,并把绝对值相除.2.0除以一个不为0的数仍得0.0不能做除数.3.除以一个不为0的数,等于乘以这个数的倒数.1.5有理数的乘除第3课时乘、除混合运算【教学目标】1.掌握有理数加、减、乘、除运算的法则、运算顺序,能够熟练运算.2.能运用法则解决实际问题.【重点难点】重点:如何按有理数的运算顺序,正确而合理地进行计算.难点:如何按有理数的运算顺序,正确而合理地进行计算.【板书设计】第3课时 乘、除混合运算1.有理数乘、除的混合运算,从左到右依次计算,也可统一化为乘法运算.2.含加、减、乘、除的算式,如没有括号,应先做乘除运算,后做加减运算;如有括号,应先做括号里的运算.3.乘法运算律⎩⎪⎨⎪⎧ab =ba (ab )c =a (bc )a (b +c )=ab +ac1.6有理数的乘方第1课时有理数的乘方【教学目标】1.正确理解有理数的乘方、幂、指数、底数等概念;会进行有理数的乘方运算.2.能确定有理数加、减、乘、除、乘方混合运算的顺序.3.会进行有理数的混合运算.【重点难点】重点:正确理解乘方的意义,掌握有理数乘方的符号规律.难点:幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.【教学过程设计】一、复习旧知,导入新课师:到今天为止我们已经学了哪些运算?生:有理数的加、减、乘、除运算.师:你能说出有理数的乘法法则吗?生:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数与0相乘得0.师:你能说出多个不为0的有理数相乘的符号法则吗?生:几个不为0的有理数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.师:今天我们将继续探究有理数的乘方运算.二、师生互动,探究新知师:用多媒体出示乘方的定义:一般地,几个相同的因数a相乘,记作a n,即这种求n个相同因数的积的运算叫做乘方.乘方的结果叫做幂.在乘方运算a n中,a叫做底数,n叫做a的幂的指数.a n 既表示n个a相乘,又表示n个a相乘的结果.因此a n可读作a的n次方,或a的n次幂,如图所示.师:用多媒体出示:例如,在幂52中,底数是________,指数是________,52读作________(或5的平方)或5的2次幂.23读作【板书设计】第1课时有理数的乘方12.3.乘方法则:非0有理数的乘方,将其绝对值乘方,而结果的符号是:正数的任何次乘方都取______;负数的奇次乘方取________,负数的偶次乘方取________.0的正数次方是0.【教学反思】本节课从已经学过的知识入手,探究有理数的乘方运算,体现了知识之间的前后联系,在教学中先让学生试做,教师再根据实际情况进行校正,体现了先学后教,以学定教的教学思想.第2课时科学计数法【教学目标】1.借助身边熟悉的事物进一步体会大数,并会用科学记数法表示大数.2.知道科学记数法中字母a的规定及10的幂指数与原数整数位数的关系.【重点难点】重点:正确使用科学记数法表示大于10的数.难点:10的幂指数的特征.【教学过程设计】【板书设计】第2课时科学记数法一般地,一个绝对值大于10的数都可记成±a×10n的形式,其中1≤a<10,n 等于原数的整数位数减1.1.6有理数的乘方第2课时科学计数法【教学目标】1.借助身边熟悉的事物进一步体会大数,并会用科学记数法表示大数.2.知道科学记数法中字母a的规定及10的幂指数与原数整数位数的关系.【重点难点】重点:正确使用科学记数法表示大于10的数.难点:10的幂指数的特征.【教学小结】【板书设计】第2课时科学记数法一般地,一个绝对值大于10的数都可记成±a×10n的形式,其中1≤a<10,n等于原数的整数位数减1.1.7近似数【教学目标】1.理解近似数的意义.2.给一个近似数,能说出它精确到哪一位.3.了解近似数是在实践中产生的.【重点难点】重点:理解近似数的精确度.难点:正确把握一个近似数的精确度.【教学小结】【板书设计】1.7近似数1.近似数2.误差3.精确度2.1代数式第1课时用字母表示数【教学目标】1.经历探索规律并用字母表示规律的过程.2.能用字母表示以前学过的运算律和计算公式.3.体会字母表示数的意义,形成初步的符号感.【重点难点】重点:理解字母表示数的意义.难点:探索规律的过程及用字母表示规律的方法.你能继续唱下去吗?二、师生互动,探究新知师:出示问题1.问题12008年9月25日,我国成功发射了“神舟七号”载人飞船.它在椭圆形轨道上环绕地球飞过45周,历时约68h,试求:(1)该飞船绕地球飞行一周约需________min(精确到1min);(2)该飞船绕地球飞行n周约需________min.生:小组讨论回答.师:出示问题2.问题2能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数.设k表示任意一个整数,用含有k的代数式表示:(1)任意一个偶数;(2)任意一个奇数.生:小组讨论回答.师:出示问题3.问题3如图,月历中用长方形框任意框出的3个数错误!之间的关系是________(请用一个等式表示这个关系).生:小组讨论回答.师:从以上三个问题中你有什么发现?生:讨论得出:用字母表示数,可以把一些数量关系更简明地表【教学小结】【板书设计】第1课时用字母表示数1.明确地表明数量关系.2.给计算带来方便.【教学反思】本节课在教学内容上尽可能地以实际生活为问题情境呈现出来,使学生有亲切感,激发学生的学习兴趣,让学生感受到数学来源于生活,并为现实生活而服务,认识到学习数学的实用价值.在整节课中,充分地让学生进行合作学习,共同交流与探索,发现问题、解决问题,使他们在操作过程中建立起“用字母表示数、数量关系等”的数学模型,形成初步的符号感.2.1代数式第3课时单项式与多项式【教学目标】1.理解单项式及单项式系数、次数的概念,并会找出单项式系数、次数.2.掌握多项式的概念,进而理解整式的概念.3.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.【重点难点】重点:1.掌握单项式及单项式系数、次数的概念,并会找出单项式系数、次数.2.多项式的概念及多项式的项数、次数的概念.难点:识别单项式的系数与次数及多项式的次数.【教学小结】【板书设计】第3课时 单项式与多项式整式⎩⎪⎨⎪⎧单项式⎩⎪⎨⎪⎧定义:数与字母的积系数:单项式中的数字因数次数:所有字母的指数之和多项式⎩⎪⎨⎪⎧定义:几个单项式之和次数:次数最高的项的次数2.1代数式第4课时代数式的值【教学目标】1.会求代数式的值.2.通过求代数式的值,体会代数式实际上是由计算关系反映的一种数量间的关系.【重点难点】重点:1.会求代数式的值.2.理解字母表示数的意义,增强符号感.难点:求代数式的值.【教学小结】【板书设计】第4课时代数式的值定义:用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果.步骤:(1)指出字母的值(2)抄写代数式(3)替换字母(4)计算结果2.2整式加减第1课时合并同类项【教学目标】1.理解多项式中同类项的概念,会识别同类项.2.掌握合并同类项法则.3.利用合并同类项法则来化简整式.【重点难点】重点:同类项的概念、合并同类项的法则及应用.难点:正确判断同类项;准确合并同类项.二、师生互动,探究新知师:出示下面两个问题(情景一):问题1:我们到动物园参观时,发现老虎与老虎关在一个笼子里,熊猫与熊猫关在另一个笼子里.为何不把老虎与熊猫关在同一个笼子里呢?问题2:(1)在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.(2)生活中处处有分类的问题,在数学中也有分类的问题吗?生:小组合作交流.师:出示下面的问题让学生议一议:10a和20a;2b2和6b2;-9xy和5xy;5ab和-13ab有什么共同点?生:小组合作交流.师:引导学生归纳同类项的定义.师:用多媒体出示情景二:4+2=64a+2a=(4+2)a4-=34x-x=3x师:通过情景二请同学们思考:如果一个多项式中含有同类项,【教学小结】【板书设计】第1课时合并同类项1.同类项:所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并在一起.3.法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变.2.2整式加减第2课时去括号、添括号及整式加减【教学目标】1.初步掌握去括号、添括号的法则.2.会运用去括号、添括号法则,并根据要求去括号、添括号.3.能利用去括号法则将整式化简.【重点难点】重点:去括号法则;准确应用法则将整式化简.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.【教学小结】【板书设计】第2课时去括号、添括号及整式加减1.去括号法则2.添括号法则3.按某个字母降(升)幂排列3.1一元一次方程及其解法第1课时一元一次方程及其解法(1)【教学目标】1.理解移项法则,知道移项的依据.2.会熟练运用移项法则解方程.【重点难点】重点:会用移项法则解方程.难点:对移项法则的理解与应用.【教学小结】【板书设计】第1课时一元一次方程及其解法(1)定义:只含有一个未知数,未知数的次数都是1,且等式两边都是整式的方程.移项时注意改变符号.3.1一元一次方程及其解法第2课时一元一次方程及其解法(2)【教学目标】1.使学生掌握去括号的方法步骤.2.会把实际问题建成数学模型,会用去分母的方法解一元一次方程.【重点难点】重点:1.去括号解方程.2.会用去分母的方法解一元一次方程.难点:灵活地解含括号与含分母的方程.【教学小结】【板书设计】第2课时一元一次方程及其解法(2)解一元一次方程的一般步骤:①去分母②去括号③移项④合并同类项⑤系数化为13.2一元一次方程的应用第1课时一元一次方程的应用(1)【教学目标】1.通过分析实际问题,探索等积变形问题和行程问题中所体现的数量关系,正确的列出一元一次方程.2.进一步理解一元一次方程在实际生活中的应用.【重点难点】重点:能正确地找出数量之间的等量关系.难点:找出题目中的等量关系并列出一元一次方程.【教学过程设计】。

沪科版七年级数学上册教学设计:1

沪科版七年级数学上册教学设计:1
600 000=6×105。
20 000 000=2×10 000 000=2×107;
570 000 000=5.7×100 000 000=5.7×108;
配合教师完成解答
新知总结
1、科学计数法的定义:
这种把一个数表示成a(1≤a<10)与10的幂相乘的形式,叫做科学记数法。
2、提醒学生注意:
①科学记数法中与10的幂相乘的数a,必须是整数数位只有一位的数,即1≤a<10,这是科学记数法的规定。
10的几次幂就等于10的后面带几个0。即10的n次幂等于1后面带n个0的(n+1)位的数。反之,若把等式右边的整数写成10的幂的形式;
(1)幂指数等于____的个数。
(2)幂的指数比整数的位数少____。
学生听课讨论总结回答
新知探究
提问:怎样借用10的乘方的方法来表示较大的数呢?
教师引导学生完成下列大数的表示,并板书示范
课堂练习
请学生完成教材P43练习1、2、3、4
学生独立完成并举手答问
课时小结
1、什么是科学记数法,以及为什么要学习科学记数法。
2、再次强调科学记数法中字母a的规定及10幂指数与原数整数位数的关系。
回顾本节课所学,对所学知识进行及时梳理和总结。
作业
同步练习上的作业题
板书设计
以课件为主
2、如果某市每人每天节约用水0.5kg,该市约有1千3百万人口,那么该市每天节约用水多少kg?
3、我们经常遇到一些较大的数,怎样使较大的数读写方
新知探究
请学生回答
101=10(10的1次幂等于1后面带1个0)
102=100(10的2次幂等于1后面带2个0)
1.6.2科学计数法
课时主题

2023-2024学年沪科版七年级数学上册教学设计:1.1正数和负数教学设计

2023-2024学年沪科版七年级数学上册教学设计:1.1正数和负数教学设计

2023-2024学年沪科版七年级数学上册教学设计:1.1正数和负数教学设计一. 教材分析《沪科版七年级数学上册》第一章“生活中的数学”第一节“正数和负数”是全册的起始章节,具有举足轻重的地位。

本节内容主要介绍正数、负数的概念,以及它们在实际生活中的应用。

通过本节课的学习,学生能理解正数和负数的含义,掌握它们的性质,并能运用它们解决实际问题。

二. 学情分析七年级的学生已具备了一定的数学基础,但对于正数和负数的概念和应用可能还比较模糊。

因此,在教学过程中,需要注重引导学生从实际生活中发现数学问题,激发他们的学习兴趣,培养他们的观察能力和思维能力。

三. 教学目标1.知识与技能:理解正数和负数的概念,掌握它们的性质;能够运用正数和负数解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的数学思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。

四. 教学重难点1.重点:正数和负数的概念,它们的性质。

2.难点:正数和负数在实际生活中的应用。

五. 教学方法1.情境教学法:通过生活实例,引导学生发现数学问题,激发学习兴趣。

2.启发式教学法:引导学生思考、探索,培养学生的数学思维能力。

3.小组合作学习:鼓励学生互相讨论、交流,共同解决问题。

六. 教学准备1.准备相关的生活实例,如购物、温度等。

2.准备多媒体教学课件,帮助学生直观理解正数和负数。

七. 教学过程1.导入(5分钟)教师通过展示一些生活实例,如购物、温度等,引导学生发现数学问题,激发学生的学习兴趣。

2.呈现(10分钟)教师通过多媒体课件,介绍正数和负数的概念,以及它们的性质。

在此过程中,引导学生积极思考、提问。

3.操练(10分钟)教师设计一些练习题,让学生运用所学的正数和负数知识解决问题。

教师引导学生互相讨论、交流,共同解决问题。

4.巩固(10分钟)教师通过一些实际生活中的问题,让学生运用正数和负数知识进行解答。

沪科版数学七年级上册1科学记数法1教案与反思

沪科版数学七年级上册1科学记数法1教案与反思

第2课时科学记数法祸兮福之所倚,福兮祸之所伏。

《老子·五十八章》原创不容易,【关注】,不迷路!前事不忘,后事之师。

《战国策·赵策》原创不容易,【关注】,不迷路!1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)2.能将用科学记数法表示的数还原为原数.(重点)一、情境导入生活中,我们常会遇到一些比较大的数.例如:1.据报载,2014年我国将发展固定宽带接入新用户25000000户.2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.像这些较大的数据,书写和阅读都有一定的难度,那么有没有这样一种表示方法,使得这些大数易写、易读、易于计算呢?二、合作探究探究点一:用科学记数法表示数我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为( ) A.167×103B.16.7×104C.1.67×105D.1.6710×106解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选C.方法总结:科学记数法的表示形式为a×10n,其中1≤|a|<10,n为正整数,表示时关键要正确确定a的值以及n的值.探究点二:还原用科学记数法表示的数已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105;(3)-3×103.解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大到1000倍即可.解:(1)2.01×104=20100;(2)6.070×105=607000;(3)-3×103=-3000.方法总结:将科学记数法a×10n表示的数,“还原”通常表示的数,就是把a的小数点向右移动n位所得到的数.三、板书设计科学记法:(1)把大于10的数表示成a×10n的形式;(2)a的范围是1≤a<10,n是正整数;(3)n比原数的整数位数少1.本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验自主学习中逐渐展现.【素材积累】指豁出性命,进行激烈的搏斗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新沪科版七年级数学上册第一章《科学计数法》教案
教学目标:
1.借助身边熟悉的事物进一步体会大数.
2.了解科学记数法的意义,并会用科学记数法表示比10大的数.
3.通过用科学记数法表示大数的学习,让学生从多种角度感受大数,促使学生重视大数的现实意义,以发展学生的数感.
教学重点:正确使用科学记数法表示大于10的数.
教学难点:正确掌握10n 的特征以及科学计数法中n 与数位的关系教学方法。

教学程序设计:
一.创设问题情境 引入新课
1.太阳的半径约696 000千米;
2.富士山可能爆发, 这将造成至少25 000亿日元的损失;
3.光的速度大约是300 000 000米/秒;
4.全世界人口数大约是6 100 000 000.
这样的大数,读、写都不方便,如何用简洁的方法来表示它们?
二.攻克新知
方法一:用更大的数量级单位表示:如将300 000 000表示为3亿.
观察与探索:
1.计算110,310,510,1010,并讨论2210表示什么?指数与运算结果中的0的个数有什么关系?与运算结果的数位有什么关系?
2.练习:
(1)把下面各数写成10的幂的形式:1000,10000000,10000000000
(2)指出下列各数中是几位数:210,510,2110,10010
思考:利用前面的知识,你能把一个比10大的数表示成整数位是一位数的乘以n 10的形式吗?试试看.
100=1×________;3000=3×________;25000=2.5×________.
方法二:科学记数法
科学记数法定义:一个大于10的数可以表示成n a 10 的形式,其中1≤a <
10,n 是正整数,这种记数方法叫科学记数法.
科学记数法也就是把一个数表示成n
a 10⨯的形式,其中1≤a <10,n 的值等于整数部分的位数减1.
三.应用迁移 巩固提高
例1 用科学记数法记出下列各数:
(1)1 000 000;(2)57 000 000;(3)123 000 000 000
解:(1)1 000 000=1×106.
(2)57 000 000=5.7×107
(3)123 000 000 000=1.23×1011.
注意:用科学记数法表示一个数时,首先要确定这个数的整数部分的位数. 一个数的科学记数法中,10的指数比原数的整数位数少1,如原数有6位整数,指数就是5.
说明:在实际生活中有非常大的数,同样也有非常小的数。

本节课强调的是大数可以用科学记数法来表示,实际上非常小的数也同样可以用科学记数法表示,如本章引言中有1纳米=910-米,意思是1米是1纳米的10亿倍,也就是说1纳米是1米的十亿分一.
例2 资料表明,被称为“地球之肺”的森林正以每年约1300万公顷的速度从地球上消失,每年森林的消失量用科学记数法表示应是多少公顷?
解:1300万=13 000 000=1.3×107
因此,每年森林的消失量用科学记数法表示应是1.3×107公顷.
变式练习:
1.判断下列数据的记数方法是科学记数法吗?(是打“√”、否打“×”)
(1)3.5×103 ( ); (2)0.5×106 ( );
(3)30.3×108 ( ); (4)10×102 ( ).
(自主练习,学生讲评)
2.用科学记数法表示下列各数
51000000000= ; 3705000= ; 572.5= ; 100000= .
3.下列用科学记数法表示的数的原数是什么?
(1)310189⨯. (2)5105⨯- (3)7
10763⨯.
(4)某整数用科学记数法表示为n a 10⨯,整数位是 位.
4. 怎样用科学记数法表示我们身边的数据呢?
(1)我们会场有3百人,用科学记数法表示为: ;
(2)我们学校有2千人,用科学记数法表示为: ;
(3)13亿又该怎样表示? .
四.总结反思 拓展升华
1.生活中我们会遇到读、写都有困难的较大的数,我们可用科学记数法表示它们:任何一个大于10的数都可记成n a 10⨯的形式,其中1≤a <10,n 为自然数.
2.科学记数法中,n 与数位的关系是:n =数位-1,利用这一关系可以将一个较大的数用科学记数法表示出来,也可以把科学记数法表示的数的原数写出来.
五.作业
课本第43页习题1.6第3—7题
1.用科学记数法表示下列各数:7400000= ,40亿= ;
2.写出下列各数据的原数:
(1)一天的时间为8.64×104秒,原数为 ;
(2)全球每年约有5.77×1014立方米水转化为大气中的水蒸气,
原数 ;
3.我国陆地面积居世界第三位,约为959.7万平方千米,用科学计数法表示为 平方千米, 又可以表示为 平方米.。

相关文档
最新文档