高中数学必修四《二倍角的正弦、余弦、正切公式》优秀教学设计

合集下载

二倍角的正弦、余弦和正切教案北师大版必修四

二倍角的正弦、余弦和正切教案北师大版必修四

二倍角的正弦、余弦和正切一.教学目标:1.知识与技能(1)能够由和角公式而导出倍角公式;(2)能较熟练地运用公式进行化简、求值、证明,增强学生灵活运用数学知识和逻辑推理能力;(3)能推导和理解半角公式;(4)揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识. 并培养学生综合分析能力.2.过程与方法让学生自己由和角公式而导出倍角公式和半角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;通过例题讲解,总结方法.通过做练习,巩固所学知识.3.情感态度价值观通过本节的学习,使同学们对三角函数各个公式之间有一个全新的认识;理解掌握三角函数各个公式的各种变形,增强学生灵活运用数学知识、逻辑推理能力和综合分析能力.提高逆用思维的能力.二.教学重、难点重点:倍角公式的应用.难点:公式的推导.三.学法与教学用具学法:(1)自主+探究性学习:让学生自己由和角公式导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。

(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.教学用具:电脑、投影机.四.教学设想【探究新知】1、复习两角和与差的正弦、余弦、正切公式:2、提出问题:公式中如果β=α,公式会变得如何?3、让学生板演得下述二倍角公式:α-=-α=α-α=ααα=α2222sin 211cos 2sin cos 2cos cos sin 22sin ααα2tan 1tan 22tan -=[展示投影]这组公式有何特点?应注意些什么?注意:1.每个公式的特点,嘱记:尤其是“倍角”的意义是相对的,如:4α是8α的倍角.2.熟悉“倍角”与“二次”的关系(升角——降次,降角——升次)3.特别注意公式的三角表达形式,且要善于变形: 22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式今后常用. [展示投影]例题讲评(学生先做,学生讲,教师提示或适当补充)例1.(公式巩固性练习)求值:①.sin22︒30’cos22︒30’=4245sin 21= ②.=-π18cos 22224cos =π ③.=π-π8cos 8sin 22224cos -=π- ④.=ππππ12cos 24cos 48cos 48sin 8216sin 12cos 12sin 212cos 24cos 24sin 4=π=ππ=πππ例2.化简 ①.=π-ππ+π)125cos 125)(sin 125cos 125(sin 2365cos 125cos 125sin 22=π-=π-π ②.=α-α2sin 2cos 44α=α-αα+αcos )2sin 2)(cos 2sin 2(cos 2222 ③.=α+-α-tan 11tan 11α=α-α2tan tan 1tan 22 ④.=θ-θ+2cos cos 21221cos 2cos 2122=+θ-θ+例3、已知),2(,135sin ππ∈α=α,求sin2α,cos2α,tan2α的值。

高中数学_二倍角的正弦余弦正切公式教学设计学情分析教材分析课后反思

高中数学_二倍角的正弦余弦正切公式教学设计学情分析教材分析课后反思

“二倍角的正弦、余弦、正切”教学设计设计理念:根据皮亚杰的认知发展理论,在个体从出生到成熟的发展过程中,智力发展可以分为具有不同的质的四个主要阶段:激活原有认知结构、构建新的认知结构、尝试新的认知结构、发展新的认知结构。

发展的各个阶段顺序是一致的,前一阶段总是达到后一阶段的前提。

阶段的发展不是间断性的跳跃,而是逐渐、持续的变化。

皮亚杰的认知发展阶段论为发展中学生智力发展水平的评估和诊断,提供了重要的理论依据。

教学内容:《普通高中课程标准实验教科书(数学)》必修4(人教A版),第三章、第一节、第132-135页。

“二倍角的正弦、余弦、正切”是在研究了两角和与差的三角函数的基础上研究具有“二倍角”关系的正弦、余弦、正切公式,它既是两角和的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简和证明提供了非常有用的理论工具,通过对二倍角公式的推导知道:二倍角公式的内涵是“揭示具有倍数关系的两个角的三角函数的运算规律”,通过推导还让学生了解高中数学中由“一般”到“特殊”的化归数学思想,因此这节课也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力都有重要意义。

教学目标:根据新课程标准的要求、本节教材的特点和学生对三角函数的认知特点,我们把本节课的教学目标确定为:1、能从两角和的正弦、余弦、正切公式出发推导出二倍角的正弦、余弦、正切公式,理解它们的内在联系,从中体会数学的化归思想和数学规律的发现过程。

2、掌握二倍角的正弦、余弦、正切公式,通过对二倍角公式的正用、逆用、变形使用,提高三角变形的能力,以及应用转化、化归、换元等数学思想方法解决问题的能力。

3、通过一题多解、一题多变,激发学生的学习兴趣,培养学生的发散性思维、创新意识和数学情感,提高数学素养。

学情分析:我们的学生从认知角度上看,已经比较熟练的掌握了两角和与差的三角函数。

从学习情感方面看,大部分学生愿意主动学习。

从能力上看,学生主动学习能力、探究的能力较弱。

高中数学必修4《二倍角的正弦、余弦、正切公式》教案

高中数学必修4《二倍角的正弦、余弦、正切公式》教案

课题: 二倍角的正弦、余弦、正切公式教材:人教A版高中数学必修4§3.1.3第一课时一、教学目标1.知识目标:以两角和的正弦、余弦、正切公式为基础,推导二倍角的正弦、余弦、正切公式,掌握二倍角公式,运用二倍角公式解决有关问题。

2.能力目标:灵活运用二倍角公式,培养学生观察分析问题的能力,寻找数学规律的能力,同时注意渗透由一般到特殊的化归的数学思想及问题转化的数学思想,提高学生分析问题、解决问题的能力。

3.德育目标:激发学生的学习兴趣,培养学生认真参与、积极交流的主体意识,培养学生的发散性思维、创新意识,提高数学素养。

二、教学重点与难点重点:掌握二倍角公式,灵活运用二倍角公式解决有关问题。

难点:二倍角公式的灵活运用,培养学生的转化、化归的数学思想。

三、教学方法与手段教学中,我遵循以学生为主体,教师为主导的教学原则,采用启发式教学并通过多媒体辅助教学。

四、教学过程二倍角的正弦、余弦、正切公式教案说明在教学中,我遵循以学生为主体,教师为主导的教学原则,采用启发式教学,逐步设疑、诱导、解疑,指导学生去“发现”。

整个教学过程的设计主要体现以下五点:第一、提出问题,纠正学生常犯直觉性错误,激发学生新的求知欲。

引导学生自主探究二倍角公式,让学生亲身经历公式的“发现”过程。

这样设计突出学生的主体地位,能够让学生明白知识的来龙去脉,加深对知识的理解,培养学生的探究意识和丰富的联想能力。

第二、在学生推导出二倍角公式后,立即让学生做些简单练习,目的是为了使学生更好的理解、运用和记忆二倍角公式,以及让学生感到找出C公式变形的必要性。

2第三、在解题教学过程中,启发学生先分析条件与求解目标之间的差异,然后选择适当的公式,明确解题思路,最后严格规范解答过程,培养逻辑思维能力。

通过一题多解训练学生发散性思维,培养学生创新意识,提高学生的数学素养。

第四、为巩固所学知识,本设计通过设置多重练习,让学生能更深刻的认识公式特点,感受公式的各种形式运用,提高灵活运用公式的能力。

高中数学 3.1.3 二倍角的正弦、余弦、正切公式教案 新人教A版必修4

高中数学 3.1.3 二倍角的正弦、余弦、正切公式教案 新人教A版必修4

3.1.3 二倍角的正弦、余弦、正切公式整体设计教学分析“二倍角的正弦、余弦、正切公式”是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具、通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律、通过推导还让学生加深理解了高中数学由一般到特殊的化归思想、因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义.本节课通过教师提出问题、设置情境及对和角公式中α、β关系的特殊情形α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师要引导学生自己去做,因为,《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验”.在实际教学过程中不要过多地补充一些高技巧、高难度的练习,更不要再补充一些较为复杂的积化和差或和差化积的恒等变换,否则就违背了新课标在这一章的编写意图和新课改精神.三维目标1.通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.2.通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.使学生进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.重点难点教学重点:二倍角公式推导及其应用.教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式. 课时安排1课时教学过程导入新课思路 1.(复习导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后让学生默写这六个公式.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课.思路2.(问题导入)出示问题,让学生计算,若sin α=53,α∈(2,π),求sin2α,cos2α的值.学生会很容易看出:sin2α=sin(α+α)=sin αcos α+cos αsin α=2sin αcos α的,以此展开新课,并由此展开联想推出其他公式.推进新课新知探究提出问题①还记得和角的正弦、余弦、正切公式吗?(请学生默写出来,并由一名学生到黑板默写) ②你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式? ③在得到的C 2α公式中,还有其他表示形式吗?④细心观察二倍角公式结构,有什么特征呢?⑤能看出公式中角的含义吗?思考过公式成立的条件吗?⑥让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一组,做填数游戏:sin( )=2sin( )cos( ),cos( )=cos 2( )-sin 2( ).⑦思考过公式的逆用吗?想一想C 2α还有哪些变形?⑧请思考以下问题:sin2α=2sin α吗?cos2α=2cos α吗?tan2α=2tan α?活动:问题①,学生默写完后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α,β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α,β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题②,然后找一名学生到黑板进行简化,其他学生在自己的座位上简化、教师再与学生一起集体订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉.sin(α+β)=sin αcos β+cos αsin β sin2α=2sin αcos α(S 2α);cos(α+β)=cos αcos β-sin αsin β cos2α=cos 2α-sin 2α(C 2α);tan(α+β)=)(tan 1tan 22tan tan tan 1tan tan 22ααααβαβαT -=⇒-+ 这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”、教师适时提出问题③,点拨学生结合sin 2α+cos 2α=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式.这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了α的三角函数与2α的三角函数之间的关系.问题④,教师指导学生,这组公式用途很广,并与学生一起观察公式的特征与记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角、二倍角的正弦是单项式,余弦是多项式,正切是分式.问题⑤,因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;(Ⅳ)公式(S 2α),(C 2α)中的角α没有限制,都是α∈R .但公式(T 2α)需在α≠21k π+4π和α≠k π+2π(k∈Z )时才成立,这一条件限制要引起学生的注意.但是当α=k π+2π,k∈Z 时,虽然tan α不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.问题⑥,填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,2a 是4a 的二倍,3α是23a 的二倍,3a 是6a 的二倍,2π-α是4π-2a 的二倍等,所有这些都可以应用二倍角公式. 例如:sin 2a =2sin 4a cos 4a ,cos 3a =cos 26a -sin 26a 等等. 问题⑦,本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.如:sin3αcos3α=21sin6α,4sin 4a cos 4a =2(2sin 4a cos 4a )=2sin 2a ,40tan 140tan 22-=tan80°,cos 22α-sin 22α=cos4α,tan2α=2tan α(1-tan 2α)等等. 问题⑧,一般情况下:sin2α≠2sin α,cos2α≠2cos α,tan2α≠2tan α.若sin2α=2sin α,则2sin αcos α=2sin α,即sin α=0或cos α=1,此时α=k π(k∈Z ). 若cos2α=2cos α,则2cos 2α-2cos α-1=0,即cos α=231-(cos α=231+舍去). 若tan2α=2tan α,则aa 2tan 1tan 2-=2tan α,∴tan α=0,即α=k π(k∈Z ). 解答:①—⑧(略)应用示例思路1例1 已知sin2α=135,4π<α<2π,求sin4α,cos4α,tan4α的值. 活动:教师引导学生分析题目中角的关系,观察所给条件与结论的结构,注意二倍角公式的选用,领悟“倍角”是相对的这一换元思想.让学生体会“倍”的深刻含义,它是描述两个数量之间关系的.本题中的已知条件给出了2α的正弦值.由于4α是2α的二倍角,因此可以考虑用倍角公式.本例是直接应用二倍角公式解题,目的是为了让学生初步熟悉二倍角的应用,理解二倍角的相对性,教师大胆放手,可让学生自己独立探究完成.解:由4π<α<2π,得2π<2α<π. 又∵sin2α=135,∴cos2α=a 2sin 12--=1312)135(12-=--. 于是sin4α=sin[2×(2α)]=2sin2αcos2α=2×135×(1312-)=169120-; cos4α=cos[2×(2α)]=1-2sin 22α=1-2×(135)2=129119; tan4α=a a 4cos 4sin =(-169120)×119169=119120-. 点评:学生由问题中条件与结论的结构不难想象出解法,但要提醒学生注意,在解题时注意优化问题的解答过程,使问题的解答简捷、巧妙、规范,并达到熟练掌握的程度.本节公式的基本应用是高考的热点.变式训练1.不查表,求值:sin15°+cos15°.解:原式=2615cos 15sin 215sin )15cos 15(sin 222=++=+ 点评:本题在两角和与差的学习中已经解决过,现用二倍角公式给出另外的解法,让学生体会它们之间的联系,体会数学变化的魅力.2.(2007年高考海南卷,9) 若22)4sin(2cos -=-πa a,则cos α+sin α的值为…… ( ) A.27- B.21- C.21 D.27 答案:C3.(2007年高考重庆卷,6) 下列各式中,值为23的是( ) A.2sin15°-cos15° B.cos 215°-sin 215°C.2sin 215°-1D.sin 215°+cos 215° 答案:B例2 证明θθθθ2cos 2sin 12cos 2sin 1++-+=tan θ. 活动:先让学生思考一会,鼓励学生充分发挥聪明才智,战胜它,并力争一题多解.教师可点拨学生想一想,到现在为止,所学的证明三角恒等式的方法大致有几种:从复杂一端化向简单一端;两边化简,中间碰头;化切为弦;还可以利用分析综合法解决,有时几种方法会同时使用等.对找不到思考方向的学生,教师点出:可否再添加一种,化倍角为单角?这可否成为证明三角恒等式的一种方法?再适时引导,前面学习同角三角函数的基本关系时曾用到“1”的代换,对“1”的妙用大家深有体会,这里可否在“1”上做做文章?待学生探究解决方法后,可找几个学生到黑板书写解答过程,以便对照点评及给学生以启发.点评时对能够善于运用所学的新知识解决问题的学生给予赞扬;对暂时找不到思路的学生给予点拨、鼓励.强调“1”的妙用很妙,妙在它在三角恒等式中一旦出现,在证明过程中就会起到至关重要的作用,在今后的证题中,万万不要忽视它.证明:方法一:左=)1cos 21(cos sin 2)cos 211(cos sin 2)2cos 1(2sin )2cos 1(2sin 22-++-++=+-+θθθθθθθθθθ =θθθθθθ22cos cos sin cos 1cos sin +-+ =θθθθθθ22cos cos sin sin cos sin ++ )cos (sin cos )sin (cos sin θθθθθθ++=tan θ=右. 所以,原式成立.方法二:左=θθθθθθθθθθθθθθ22222222222cos 22sin sin 22sin sin cos 2sin cos sin cos sin sin cos sin ++=-+++-+++ =)cos (sin cos 2)cos (sin sin 2θθθθθθ++=tan θ=右. 方法三:左=)sin (cos )cos sin 2cos (sin )sin (cos )cos sin 2cos (sin 2cos )2sin 1(2cos )2sin 1(22222222θθθθθθθθθθθθθθθθ-+∙++--∙++=++-+ =)sin )(cos sin (cos )cos (sin )sin )(cos sin (cos )cos (sin 22θθθθθθθθθθθθ-+++-+-+ =)sin cos cos )(sin cos (sin )cos sin cos )(sin cos (sin θθθθθθθθθθθθ-+++-+++ =θθθθθθcos 2)cos (sin sin 2)cos (sin ∙+∙+=tan θ=右. 点评:以上几种方法大致遵循以下规律:首先从复杂端化向简单端;第二,化倍角为单角,这是我们今天刚刚学习的;第三,证题中注意对数字的处理,尤其“1”的代换的妙用,请同学们在探究中仔细体会这点.在这道题中通常用的几种方法都用到了,不论用哪一种方法,都要思路清晰,书写规范才是.思路2例1 求sin10°sin30°sin50°sin70°的值.活动:本例是一道灵活应用二倍角公式的经典例题,有一定难度,但也是训练学生思维能力的一道好题.本题需要公式的逆用,逆用公式的先决条件是认识公式的本质,要善于把表象的东西拿开,正确捕捉公式的本质属性,以便合理运用公式.教学中教师可让学生充分进行讨论探究,不要轻易告诉学生解法,可适时点拨学生需要做怎样的变化,又需怎样应用二倍角公式.并点拨学生结合诱导公式思考.学生经过探索发现,如果用诱导公式把10°,30°,50°,70°正弦的积化为20°,40°,60°,80°余弦的积,其中60°是特殊角,很容易发现40°是20°的2倍,80°是40°的2倍,故可考虑逆用二倍角公式.解:原式=cos80°cos60°cos40°cos20° =20sin 2280cos 40cos 20cos 20sin 233∙∙ =.16120sin 1620sin 20sin 16160sin == 点评:二倍角公式是中学数学中的重要知识点之一,又是解答许多数学问题的重要模型和工具,具有灵活多变,技巧性强的特点,要注意在训练中细心体会其变化规律. 例2 在△ABC 中,cosA=54,tanB=2,求tan(2A+2B)的值. 活动:这是本节课本上最后一个例题,结合三角形,具有一定的综合性,同时也是和与差公式的应用问题.教师可引导学生注意在三角形的背景下研究问题,会带来一些隐含的条件,如A+B+C=π,0<A<π,0<B<π,0<C<π,就是其中的一个隐含条件.可先让学生讨论探究,教师适时点拨.学生探究解法时教师进一步启发学生思考由条件到结果的函数及角的联系.由于对2A+2B 与A,B 之间关系的看法不同会产生不同的解题思路,所以学生会产生不同的解法,不过它们都是对倍角公式、和角公式的联合运用,本质上没有区别.不论学生的解答正确与否,教师都不要直接干预.在学生自己尝试解决问题后,教师可与学生一起比较各种不同的解法,并引导学生进行解题方法的归纳总结.基础较好的班级还可以把求tan(2A+2B)的值改为求tan2C 的值.解:方法一:在△ABC 中,由cosA=54,0<A<π,得 sinA=.53)54(1cos 122=-=-A 所以tanA=A A cos sin =53×45=43, tan2A=724)43(1432tan 1tan 222=-⨯=-A A 又tanB=2,所以tan2B=.342122tan 1tan 222-=-⨯=-B B 于是tan(2A+2B)=.17744)34(7241347242tan 2tan 12tan 2tan =-⨯--=-+B A B A 方法二:在△ABC 中,由cosA=54,0<A<π,得sinA=.53)54(1cos 122=-=-A 所以tanA==A A cos sin 53×45=43.又tanB=2, 所以tan(A+B)=2112431243tan tan 1tan tan -=⨯-+=-+B A B A 于是tan(2A+2B)=tan[2(A+B)] =.11744)211(1)211(2)(tan 1)tan(222=---⨯=+-+B A B A 点评:以上两种方法都是对倍角公式、和角公式的联合运用,本质上没有区别,其目的是为了鼓励学生用不同的思路去思考,以拓展学生的视野.变式训练 化简:.4sin 4cos 14sin 4cos 1aa a a +-++ 解:原式=aa a a a a 2cos 2sin 22sin 22cos 2sin 22cos 222++ =)2cos 2(sin 2sin 2)2sin 2(cos 2cos 2a a a a a a ++ =cot2α.知能训练(2007年高考四川卷,17) 已知cos α=71,cos(α-β)=1413,且0<β<α<2π, (1)求tan2α的值;(2)求β.解:(1)由cos α=71,0<α<2π,得sin α=a 2cos 1-=.734)71(12=- ∴tan α=a a cos sin =17734⨯=43.于是tan2α=.4738tan 1342tan 1tan 222-=-⨯--aa a (2)由0<α<β<2π,得0<α-β<2π. 又∵cos (α-β)=1413,∴sin(α-β)=.1433)1413(1)(cos 122=-=--βa 由β=α-(α-β),得cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=71×1413+1433734⨯=21. ∴β=3π. 点评:本题主要考查三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力.作业课本习题3.1 A 组15、16、17.课题小结1.先由学生回顾本节课都学到了什么?有哪些收获?对前面学过的两角和公式有什么新的认识?对三角函数式子的变化有什么新的认识?怎样用二倍角公式进行简单三角函数式的化简、求值与恒等式证明.2.教师画龙点睛:本节课要理解并掌握二倍角公式及其推导,明白从一般到特殊的思想,并要正确熟练地运用二倍角公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.设计感想1.新课改的核心理念是:以学生发展为本.本节课的设计流程从回顾→探索→应用,充分体现了“学生主体、主动探索、培养能力”的新课改理念,体现“活动、开放、综合”的创新教学模式.本节在学生探究和角公式的特殊情形中得到了二倍角公式,在这个活动过程中,由一般化归为特殊的基本数学思想方法就深深的留在了学生记忆中.本节课的教学设计流程还是比较流畅的.2.纵观本教案的设计,学生发现二倍角后就是应用,至于如何训练二倍角公式正用,逆用,变形用倒成了次要的了.而学生从探究活动过程中学会了怎样去发现数学规律,又发现了怎样逆用公式及活用公式,那才是深层的,那才是我们中学数学教育的最终目的.3.教学矛盾的主要方面是学生的学,学是中心,会学是目的,根据高中三角函数的推理特点,本节主要是教给学生“回顾公式、探索特殊情形、发现规律、推导公式、学习应用”的探索创新式学习方法.这样做增加了学生温故知新的空间,增强了学生的参与意识,教给了学生发现规律、探索推导、获取新知的途径,让学生真正尝试到探索的喜悦,真正成为教学的主体.学生会体会到数学的美,产生一种成功感,从而提高了学习数学的兴趣.。

2019-2020年高中数学 3.1.3《二倍角的正弦、余弦和正切公式》教学设计 新人教A版必修4

2019-2020年高中数学 3.1.3《二倍角的正弦、余弦和正切公式》教学设计 新人教A版必修4

2019-2020年高中数学 3.1.3《二倍角的正弦、余弦和正切公式》教学设计 新人教A 版必修4一、教学目标以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.二、教学重、难点教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式;教学难点:二倍角的理解及其灵活运用.三、学法与教学用具学法:研讨式教学四、教学设想:(一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式,()sin sin cos cos sin αβαβαβ+=+;()cos cos cos sin sin αβαβαβ+=-;()tan tan tan 1tan tan αβαβαβ++=-. 我们由此能否得到的公式呢?(学生自己动手,把上述公式中看成即可),(二)公式推导:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;思考:把上述关于的式子能否变成只含有或形式的式子呢?22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--. 注意:(三)例题讲解例1 已知求的值.解:由得.又因为12cos213α===-.于是512120sin42sin2cos221313169ααα⎛⎫==⨯⨯-=-⎪⎝⎭;225119cos412sin21213169αα⎛⎫=-=-⨯=⎪⎝⎭;120sin4120169tan4119cos4119169ααα-===-.例2已知求的值.解:,由此得解得或.点评.在涉及两角和与差的三角函数公式的应用时,常用到如下变形(1)21sin(sin cos)22ααα±=±;(2)角的变换;(3)sin cos)a bθθθϕ+=+。

高中数学 3.1.3 二倍角的正弦、余弦和正切公式教案 新人教A版必修4

高中数学 3.1.3   二倍角的正弦、余弦和正切公式教案 新人教A版必修4

3.1.3 二倍角的正弦、余弦和正切公式一、教学目标以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.二、教学重、难点教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用.三、教学设想:(一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式,βαβαβαsin cos cos sin )sin(-=- βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- βαβαβαtan tan 1tan tan )tan(⋅-+=+ 练习:(1)在△ABC 中,B A B A cos cos sin sin <,则△ABC 为( )A .直角三角形B .钝角三角形C .锐角三角形D .等腰三角形(2) 的值为12sin 12cos 3ππ-( )A . 0B .2C .2D .2- 思考:已知432παβπ<<<,1312)cos(=-βα,53)sin(-=+βα,求α2sin 我们由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手,把上述公式中β看成α即可),(二)公式推导:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos 2cos cos cos sin sin cos sin ααααααααα=+=-=-;思考:把上述关于cos 2α的式子能否变成只含有sin α或cos α形式的式子呢? 22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--. 注意:2,22k k ππαπαπ≠+≠+ ()k z ∈(三)例题讲解例1、已知5sin 2,,1342ππαα=<<求sin 4,cos 4,tan 4ααα的值. 解:由,42ππα<<得22παπ<<. 又因为5sin 2,13α=12cos 213α===-. 于是512120sin 42sin 2cos 221313169ααα⎛⎫==⨯⨯-=- ⎪⎝⎭; 225119cos 412sin 21213169αα⎛⎫=-=-⨯= ⎪⎝⎭;120sin 4120169tan 4119cos 4119169ααα-===-. 例2.在△ABC 中,54cos =A ,。

高中数学必修四《二倍角的正弦、余弦、正切公式》优秀教学设计

高中数学必修四《二倍角的正弦、余弦、正切公式》优秀教学设计
问题1:让学生把和角公式填在学案上,同时让一名学生到黑板展演。学生填写完后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的 , ,既然可以是任意角,你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.
问题2:请同学们思考一下,在和角公式中若令 ,你能得到怎样的式子?
请一名学生到黑板进行简化,其他学生在自己的座位上简化,教师再与学生一起集体订正黑板的书写,接着让学生将正确的书写结果填在学案上。
问题6:用二倍角公式填空:老师给出等号左边的二倍角的正弦、余弦和正切,学生填出等号的左边。
公式理解(公式巩固性练习)
1.将适当的角填入下列空格:
(1)
(2)
(3)
应用示例
例1:已知 求 的值.
活动:教师引导学生分析题目中角的关系,观察所给条件与结论的结构,注意二倍角公式的选用,领悟“倍角”是相对的这一换元思想.让学生体会“倍”的深刻含义,它是描述两个数量之间关系的.本题中的已知条件给出了 的正弦值.由于 是 的二倍角,因此可以考虑用倍角公式.
解:由 ,得 。
又 , .
于是


点评:学生由问题中条件与结论的结构不难想象出解法,但要提醒学生注意,在解题时注意优化问题的解答过程,使问题的解答简捷、巧妙、规范,并达到熟练掌握的程度.
课题小结
本节我们通过对二倍角公式的推导及应用,学习了二倍角的正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用公式.
这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,然后教师适时提出问题3。
问题3:在得到的 公式中,还有其他表示形式吗?怎样才能使表示式仅含 的正弦(余弦)?
点拨学生结合 思考,前后桌学生交流,并将讨论结果向全班展示。

高中数学3.1.3二倍角的正弦、余弦、正切公式教案新人教A版必修4

高中数学3.1.3二倍角的正弦、余弦、正切公式教案新人教A版必修4




教学内容
教学环节与活动设计
例2 求证: =tan4A.
例3若cos =- , <x< ,求 的值
跟踪训练3 已知sin = ,0<x< ,求 的值.




1.对“二倍角”应该有广义上的理解,如:
8α是4α的二倍;6α是3α的二倍;4α是2α的二倍;3α是 α的二倍; 是 的二倍; 是 的二倍; = (n∈N*).
课题
3.1.3二倍角的正弦、余弦、正切公式
重点
1.会从两角和的正弦、余弦、正切公式导出二倍角的正弦、余弦、正切公式;
难点
2.能熟练运用二倍角的公式进行简单的恒等变换,并能灵活地将公式变形运
知识要点




教学内容
教学环节与活动设计
问题1 二倍角的正弦、余弦、正切公式就是用α的三角函数表示2α的三角函数的公式.根据前面学过的两角和与差的正弦、余弦、正切公式.你能推导出二倍角的正弦、余弦、正切公式吗?试一
练习1:函数f(x)= sin xcos x+cos2x- 的最小正周期是________.
教学内容
教学பைடு நூலகம்节与活动设计
cos2α= 称作降幂公式, =sin2 , =cos2 称作升幂公式.这些公式在统一角或函数名时非常有用.
练习1:函数f(x)= sin xcos x+cos2x- 的最小正周期是________.
2.二倍角的余弦公式的运用
在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛.二倍角的常用形式:①1+cos 2α=2cos2α,②cos2α= ,③1-cos 2α=2sin2α,④sin2α=

二倍角正弦、余弦、正切公式教案

二倍角正弦、余弦、正切公式教案

二倍角正弦、余弦、正切公式教案一、教学目标:1. 让学生掌握二倍角正弦、余弦、正切公式的推导过程。

2. 使学生能够灵活运用二倍角正弦、余弦、正切公式解决相关问题。

3. 培养学生的逻辑思维能力和运算能力。

二、教学内容:1. 二倍角正弦公式:sin2α= 2sinαcosα2. 二倍角余弦公式:cos2α= cos^2αsin^2α= 2cos^2α1 = 1 2sin^2α3. 二倍角正切公式:tan2α= (tanα+ tan(α+π))/(1 tanαtan(α+π)) = (tanα+ tanα)/(1 tan^2α) = 2tanα/(1 tan^2α)三、教学重点与难点:1. 教学重点:二倍角正弦、余弦、正切公式的推导过程及应用。

2. 教学难点:二倍角正切公式的推导过程及应用。

四、教学方法:1. 采用讲解法,引导学生理解二倍角正弦、余弦、正切公式的推导过程。

2. 运用例题,让学生在实践中掌握二倍角正弦、余弦、正切公式的应用。

3. 组织小组讨论,培养学生合作学习的能力。

五、教学步骤:1. 导入新课,回顾一倍角正弦、余弦、正切公式。

2. 引导学生利用已知公式,推导二倍角正弦、余弦、正切公式。

3. 通过例题,演示二倍角正弦、余弦、正切公式的应用。

4. 组织学生进行练习,巩固所学知识。

六、课后作业:(1)已知sinα= 1/2,求sin2α的值。

(2)已知cosα= √2/2,求cos2α的值。

(3)已知tanα= 1,求tan2α的值。

七、教学反思:在教学过程中,要注意引导学生掌握二倍角正弦、余弦、正切公式的推导过程,培养学生逻辑思维能力和运算能力。

针对不同学生的学习情况,给予适当的辅导,提高教学质量。

注重培养学生的合作学习意识,提高课堂参与度。

六、教学拓展:1. 引导学生探讨二倍角公式的推广,例如三倍角、四倍角公式。

2. 分析二倍角公式在实际问题中的应用,如测量、导航等领域。

七、课堂小结:2. 强调二倍角公式在解决实际问题中的重要性。

高中数学必修四二倍角正弦、余弦和正切公式教案

高中数学必修四二倍角正弦、余弦和正切公式教案

3.1.3 二倍角的正弦、余弦、正切公式
【课题】:二倍角的正弦、余弦、正切公式
【学情分析】:同学们已经有了前两节的学习经验,所以学习这节知识并不困难。

可以放手让同学自己完成学习任务。

进一步培养同学解决问题的能力、探究问题的能力。

【教学目标】:
1.知识与技能目标:能从两角和的正弦、余弦、正切公式出发推导出二倍角的正弦、余弦、正切公式,并理解它们的内在联系;能正确地对二倍角公式进行正用、逆用、变形使用,使学生初步理解公式的结构及其功能,提高三角变形的能力以及应用转化、化归、换元等数学思想方法解决问题的能力。

2.过程与方法目标:通过二倍角的正弦、余弦、正切公式的推导,理解它们的内在联系,从中体会数学的化归思想和数学规律的发现过程;通过对二倍角公式的正用、逆用、变形使用,使学生初步理解公式的结构及其功能,提高三角变形的能力,以及应用转化、化归、换元等数学思想方法解决问题的能力。

3.情感、态度与价值观目标:通过两角和与差的正弦、余弦、正切公式的推导,让学生感受事物之间的普遍联系规律,运用化归原理,揭示事物的本质属性,培养学生的唯物史观;在公式的推导和转化过程中,让学生体会到数学的简洁美;通过一题多解、一题多变,激发学生的学习兴趣,培养学生的发散思维、创新意识和数学情感,提高数学素养。

【教学重点】:二倍角公式的应用。

【教学难点】:二倍角公式的综合应用及公式的变形。

【课前准备】:指导学生预习、准备课件
【教学过程设计】:。

二倍角的正弦、余弦、正切公式》教案

二倍角的正弦、余弦、正切公式》教案

二倍角的正弦、余弦、正切公式》教案教学设计:二倍角的正弦、余弦、正切公式一、教学目标1.知识目标:1)理解两角和的正弦、余弦和正切公式,能够推导二倍角的正弦、余弦和正切公式,并能运用这些公式解决简单的三角函数问题。

2)通过公式的应用(正用、逆用、变形用),使学生掌握有关化简技巧,提高分析、解决问题的能力。

2.能力目标:通过二倍角公式的推导,了解知识之间的内在联系,完善知识结构,培养逻辑推理能力。

3.情感目标:通过二倍角公式的推导,感受二倍角公式是和角公式的特例,进一步体会从一般化归为特殊的基本数学思想。

在运用二倍角公式的过程中体会换元的数学思想。

二、教学重难点、关键1.教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角的正弦、余弦和正切公式。

2.教学难点:二倍角的理解及其正用、逆用、变形用。

3.关键:二倍角的理解。

三、学法指导学法:研讨式教学。

四、教学设想1.问题情境复回顾两角和的正弦、余弦、正切公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α+β)=cosαcosβ-sinαsinβ;tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)。

思考:在这些和角公式中,如果令β=α,会有怎样的结果呢?2.建构数学公式推导:sin2α=sin(α+α)=sinαcosα+cosαsinα=2sinαcosα;cos2α=cos(α+α)=cosαcosα-sinαsinα=cos2α-sin2α;思考:把上述关于cos2α的式子能否变成只含有sinα或cosα的式子呢?cos2α=cos2α-sin2α=1-si n2α-sin2α=1-2sin2α;cos2α=cos2α-sin2α=cos2α-(1-cos2α)=2cos2α-1.以上这些公式都叫做倍角公式,从形式上看,倍角公式给出了α与2α的三角函数之间的关系。

既公式中等号左边的角是右边角的2倍。

所以,确切地说,这组公式是二倍角的正弦、余弦、正切公式,这正是本节课要研究的内容。

高中数学 必修四 二倍角的正弦 余弦 正切教案1

高中数学  必修四 二倍角的正弦 余弦 正切教案1
备课人
授课时间
课题
§3.1.3二倍角的正弦、余弦和正切公式
课标要求
二倍角正弦、余弦和正切公式




知识目标
以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式
技能目标
理解推导过程,掌握其应用
情感态度价值观
培Байду номын сангаас严谨的学习态度
重点
以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式;
例1、已知 求 的值.
解:由 得 .
又因为 .
于是 ;
; .
例2、已知 求 的值.
解: ,由此得
解得 或 .
(四)小结:本节我们学习了二倍角的正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.
(五)作业:
学生回答







问题与情境及教师活动
学生活动
注意:
(三)例题讲解
例1、已知
求 的值.
解:由 得 .
又因为

于是 ;
; .
例2、已知 求 的值.
解: ,
由此得
解得 或 .
例3在 ABC中, , ,求 的值.
解法1:在 ABC中,
由 , ,得
(四)作业:
学生完成







问题与情境及教师活动
学生活动
.
所以 ,
.

所以
于是
解法2: .
在 中,
由 , ,得
所以 .
又 ,所以 .

二倍角的正弦余弦正切公式教学设计

二倍角的正弦余弦正切公式教学设计

二倍角的正弦余弦正切公式教学设计教学设计:二倍角的正弦、余弦、正切公式一、教学目标1.知识目标:掌握二倍角的正弦、余弦、正切公式的推导和应用。

2.能力目标:能够运用二倍角的正弦、余弦、正切公式解决与角的问题相关的实际问题。

3.情感目标:培养学生对数学的兴趣和学习的主动性,增强学生解决数学问题的能力和自信心。

二、教学重点和难点1.教学重点:二倍角的正弦、余弦、正切公式的推导和应用。

2.教学难点:如何合理组织教学过程,使学生能够深入理解和掌握推导的过程。

三、教学准备1.教学工具:教学投影仪、电脑等。

2.教学材料:教材、课件、作业等。

四、教学过程步骤一:导入与激发兴趣(5分钟)通过呈现一个有趣的问题或实例,引导学生思考与角度相关的问题,如:正方形的对角线与边的关系。

步骤二:引入新知识(10分钟)1.提问:角的划分方式有哪些,我们平时常用到哪些角?2.引导学生探讨正弦、余弦、正切函数的定义、性质及其在解决实际问题中的应用。

3.引出二倍角的概念,引导学生思考二倍角的特点和应用场景。

步骤三:推导公式(15分钟)1.通过图形、实例等方式,引导学生发现二倍角的公式特点。

2.带领学生一起推导二倍角的正弦、余弦、正切公式,并将推导过程记录在板书或课件上。

3.解释推导过程中的关键步骤和思路,确保学生理解推导的逻辑性和连贯性。

步骤四:应用与实践(25分钟)1.师生共同解答一些典型的二倍角问题,通过这些问题巩固学生对二倍角公式的理解和应用。

2.引导学生合作解决一些与角度相关的实际问题,如海上航行问题、建筑物的阴影问题等,通过应用二倍角公式解决实际问题。

3.教师还可以设计一些拓展问题,让学生自主思考,并分享解题思路和方法。

步骤五:巩固与拓展(15分钟)1.出示一些相关的练习题,让学生独立或小组完成,拓展学生对二倍角公式的应用能力。

2.引导学生总结二倍角的相关知识点和公式,整理笔记,加深理解。

步骤六:课堂小结与反思(5分钟)对本堂课的重点内容进行小结,并提问学生是否有任何疑问或不明白的地方。

二倍角的正弦余弦正切公式教学设计

二倍角的正弦余弦正切公式教学设计

二倍角的正弦余弦正切公式教学设计教学设计:二倍角的正弦、余弦、正切公式一、教学目标1.掌握二倍角的概念和性质。

2.掌握二倍角的正弦、余弦、正切公式及其推导过程。

3.能够灵活运用二倍角的公式求解相关题目。

二、教学内容1.二倍角的概念和性质。

2.二倍角的正弦、余弦、正切公式及其推导过程。

3.二倍角公式的应用。

三、教学过程步骤一:导入与引入1.导入通过展示一道简单的题目引入二倍角的概念。

例如:已知角α的弧度为π/6,求角2α的弧度。

2.引入引导学生思考,当已知一些角的弧度时,如何求解其二倍角的弧度。

步骤二:二倍角的定义与性质1.定义向学生阐述二倍角的概念:设θ为任意角,则它的二倍角记作2θ。

2.性质向学生介绍二倍角的几个重要性质:(1) 正弦:sin2θ = 2sinθcosθ(2) 余弦:cos2θ = cos²θ - sin²θ(3) 正切:tan2θ = (2tanθ)/(1-tan²θ)步骤三:二倍角公式的推导1.正弦二倍角公式的推导(1)推导思路:利用三角函数的和差化简公式进行推导。

(2)按照推导步骤依次进行:a. sin2θ = sin(θ+θ)b. 根据和差化简公式 sin(A+B) = sinAcosB + cosAsinB,展开得到sin(θ+θ) = sinθcosθ + cosθsinθc. 化简得sin2θ = 2sinθcosθ2.余弦二倍角公式的推导(1)推导思路:同样利用三角函数的和差化简公式进行推导。

(2)按照推导步骤依次进行:a. cos2θ = cos(θ+θ)b. 根据和差化简公式 cos(A+B) = cosAcosB - sinAsinB,展开得到cos(θ+θ) = cos²θ - sin²θc. 化简得cos2θ = cos²θ - sin²θ3.正切二倍角公式的推导(1)推导思路:利用相除消去的方法进行推导。

二倍角的正弦、余弦、正切公式优秀教案

二倍角的正弦、余弦、正切公式优秀教案

二倍角的正弦、余弦、正切公式
一.教学内容:3.1.3二倍角的正弦、余弦、正切公式,新课改必修4. 二.课型:新授课
三.教学目标
ααα公式的推导;
1.知识目标:①掌握sin2,cos2,tan2
②灵活运用二倍角公式求值、化简、证明.
2.能力目标:①通过对公式的推导,使学生发现知识点之间的内在联系,
培养学生自主学习、自主探究的能力.
②通过对公式的理解,提高学生化归、分析、概括等数学思
想,提高学生的思维品质.
3.情感目标:由和角公式推导出倍角公式,从一般到特殊使学生领会数学
中的奥妙,发现数学中的美,激发学生学习数学的兴趣,培
养学生的思维品质.
四.教学重点、难点、关键点
1.教学重点:二倍角的正弦、余弦、正切公式的推导以及二倍角余弦公式
的两种变形及应用.
2.教学难点:倍角公式与以前学过同角三角函数的基本关系式、诱导公式、和角公式的综合应用;
3.关键点:从一般到特殊推导二倍角.
五.教学方法
1.教法:主要以探究法为主,以讲解法为辅.
2.学法:学生观察分析、主动思考、主动探究、讨论交流,在积极的学习中解决问题.
3.教学手段:充分运用多媒体,彩色粉笔来突出本节课的重点,突破本节课的难点.
六.教学过程设计
七.板书设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二倍角的正弦、余弦、正切公式
【学习目标】:
1、掌握二倍角公式的推导,能够正确运用公式.
2、通过公式推导,培养学生的逻辑推理能力。

3、发现数学规律,激发学习兴趣,提高综合分析、应用数学的能力。

【学习重点与难点】:
重点:二倍角正弦、余弦、正切公式的推导。

难点:二倍角公式的综合应用。

一、复习两角和的三角公式
二、二倍角公式的推导
利用公式 cos2α可变形为:1. ;
注: 2. 。

1.“二倍角” 是一种相对的数量关系。

如:2α是α的二倍角;α是 的二倍角。

2.二倍角公式是从两角和的三角函数公式中,取两角相等时推导出来,记忆时可联想相应角
公式。

练习1:
练习2:
判断:
三、例题教学(公式正用)
思维小结: 公式正用技巧:
从条件出发,顺着问题的线索,以展开公式的方法使用。

()=+βαcos ()=+βαsin ()=+βαtan ??,: ,
,:有什么发现你得到什么启示即到特殊的两个角相等由一般的问题αββα=+()?=+ααsin ()?=+ααcos ()?=+ααtan 1cos sin 22=+αα 2αcos__sin__24sin )1(=α__sin __cos 2
cos )2(22-=α_________(3)cos 213α=-22tan__(5)tan 31tan __α=-23cos 23sin 3sin )1(ααα=1sin 22cos )2(2-=αα232tan 3(3)tan 21tan 3ααα=-α的值.cos2α、tan2 .求α,135已知sinα例1.),2(ππ∈=sin2α、 (1) 本题求出cos α的值是关键,要注意象限定号; (2)在求tan2α时,直接用切化弦 也可先求出tan α=sin αcos α,再求tan2α=2tan α1-tan 2α
的值.
四、例题教学(公式逆用) 计算
公式逆用技巧:
观察式子的结构特点,对公式有一个整体感知,将公式进行等价变形。

五、自我检测
1.(江西高考)若sin α2=3
3,则cos α=( )
A .-2
3 . B .-1
3 C.1
3
D.23 2.若tan α=3,则sin 2αcos 2α的值等于( )
A .2
B .3
C .4
D .6 3.若sin α+cos α
sin α-cos α=1
2,则tan 2α=( )
A .-3
4 B. 3
4 C .-4
3
D. 43 4.=π
πππ12cos 24cos 48cos 48sin 8________
六、课堂总结
七、布置作业
1、课本:第138页 14、15题
2、课堂检测
''30cos2230sin22(1).例2. 8π cos 8π sin (2)22-
22.5 tan 1tan22.5 3)2-(。

相关文档
最新文档