离散数学(第33讲习题课6)
离散数学左孝凌答案
![离散数学左孝凌答案](https://img.taocdn.com/s3/m/84ea4a4c854769eae009581b6bd97f192279bf2b.png)
离散数学左孝凌第七章答案【篇一:离散数学(左孝凌)课后习题解答(详细)】1.下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。
⑴中国有四大发明。
⑵计算机有空吗⑶不存在最大素数。
⑷ 21+3 V5。
(5)老王是山东人或河北人。
⑹2与3都是偶数。
⑺小李在宿舍里。
⑻这朵玫瑰花多美丽呀!⑼请勿随地吐痰!⑽圆的面积等于半径的平方乘以。
何只有6是偶数,3才能是2的倍数。
⑫雪是黑色的当且仅当太阳从东方升起。
㈣如果天下大雨,他就乘班车上班。
解:⑴⑶⑷⑸⑹⑺⑽⑪㈣㈣是命题,其中(1)(3)⑽㈣是真命题,⑷⑹⑫是假命题,⑸⑺㈣的真值目前无法确定;⑵⑻⑼不是命题。
2.将下列复合命题分成若干原子命题。
⑴李辛与李末是兄弟。
⑵因为天气冷,所以我穿了羽绒服。
⑶天正在下雨或湿度很高。
⑷刘英与李进上山。
⑸王强与刘威都学过法语。
⑹如果你不看电影,那么我也不看电影。
⑺我既不看电视也不外出,我在睡觉。
⑻除非天下大雨,否则他不乘班车上班。
解:⑴本命题为原子命题;⑵p:天气冷;q:我穿羽绒服;⑶p:天在下雨;q:湿度很高;⑷p:刘英上山;q:李进上山;⑸p:王强学过法语;q:刘威学过法语;⑹p:你看电影;q:我看电影;⑺p:我看电视;q:我外出;r:我睡觉;⑻p:天下大雨;q:他乘班车上班。
3.将下列命题符号化。
⑴他一面吃饭,一面听音乐。
⑵3是素数或2是素数。
⑶若地球上没有树木,则人类不能生存。
⑷8是偶数的充分必要条件是8能被3整除。
⑸停机的原因在于语法错误或程序错误。
⑹四边形abcd是平行四边形当且仅当它的对边平行。
⑺如果a和b是偶数,则a+b是偶数。
解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p人q⑵p:3是素数;q:2是素数;原命题符号化为:pv q⑶p:地球上有树木;q:人类能生存;原命题符号化为:?p-?q⑷p:8是偶数;q:8能被3整除;原命题符号化为:p?q⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:qv r—p⑹p:四边形abcd是平行四边形;q:四边形abcd的对边平行;原命题符号化为:p?q。
离散数学答案(尹宝林版)第三章习题解答
![离散数学答案(尹宝林版)第三章习题解答](https://img.taocdn.com/s3/m/401e31be561252d381eb6ec9.png)
第三章 公理系统1. 证明:(1) ))()(()(|C A C B B A →→→→→- (2) ))(())((|C A B C B A →→→→→- (3) A A →⌝⌝-| (4) A A ⌝⌝→-|(5) )()(|A B B A ⌝→⌝→→- (6) ))((|B A B A →⌝→⌝→- (7) B A A ∨→-| (8) A B A ∨→-| (9) A B A →∧-| (10) B B A →∧-| 解 (1) B A →,C B →,A A -|B A →,C B →,A B A →-| B A →,C B →,A B -| B A →,C B →,A C B →-|B A →,C B →,A C -|最后,使用3次演绎定理得到:))()(()(|C A C B B A →→→→→- (2) )(C B A →→,B ,A A -|)(C B A →→,B ,A )(|C B A →→- )(C B A →→,B ,A C B →-|)(C B A →→,B ,A B -|)(C B A →→,B ,A C -|最后,使用3次演绎定理得到:))(())((|C A B C B A →→→→→- (3) )(|A A A ⌝⌝→⌝⌝⌝⌝→⌝⌝- 公理一 A ⌝⌝ A A ⌝⌝→⌝⌝⌝⌝-|演绎定理 A ⌝⌝ )()(|A A A A ⌝⌝⌝→⌝→⌝⌝→⌝⌝⌝⌝- 公理三 A ⌝⌝ A A ⌝⌝⌝→⌝-|MP 规则 A ⌝⌝ )()(|A A A A →⌝⌝→⌝⌝⌝→⌝- 公理三 A ⌝⌝ A A →⌝⌝-| MP 规则A ⌝⌝A ⌝⌝-|A ⌝⌝ A -|MP 规则最后,由演绎定理得到:A A →⌝⌝-|(4) A A ⌝→⌝⌝⌝-|本题 (3) )()(|A A A A ⌝⌝→→⌝→⌝⌝⌝- 公理三 A A ⌝⌝→-|MP 规则(5) B A →-|A A →⌝⌝ 本题 (3) B A →, A ⌝⌝-| A 演绎定理B A →, A ⌝⌝-|B A → B A →, A ⌝⌝-| B MP 规则 B A →, A ⌝⌝-|B B ⌝⌝→ 本题 (4) B A →, A ⌝⌝-|B ⌝⌝ MP 规则 B A →-|B A ⌝⌝→⌝⌝演绎定理B A →-|)()(A B B A ⌝→⌝→⌝⌝→⌝⌝公理三B A →-|A B ⌝→⌝MP 规则 )()(|A B B A ⌝→⌝→→- 演绎定理(6) A ,B A →-| A A ,B A →-|B A → A ,B A →-|B MP 规则 A -|B B A →→)(演绎定理 A -|))(())((B A B B B A →⌝→⌝→→→ 本题 (5) A -|)(B A B →⌝→⌝ MP 规则 ))((|B A B A →⌝→⌝→-演绎定理 (7) )(|B A A →→⌝- 例3.4 B A A -⌝|, 演绎定理)(|B A A →⌝→-演绎定理即B A A ∨→-|(8) )(|A B A →⌝→-公理一即A B A ∨→-|(9) )(|B A A ⌝→→⌝- 例3.4 A ⌝B A ⌝→-|演绎定理 A ⌝)()(|B A B A ⌝→⌝⌝→⌝→- 本题 (4) A ⌝)(|B A ⌝→⌝⌝- MP 规则 )(|B A A ⌝→⌝⌝→⌝-演绎定理 ))(())((|A B A B A A →⌝→⌝→⌝→⌝⌝→⌝- 公理三A B A →⌝→⌝-)(|MP 规则即A B A →∧-|(10) )(|B A B ⌝→→⌝- 公理一 B A B ⌝→-⌝|演绎定理 )()(|B A B A B ⌝→⌝⌝→⌝→-⌝ 本题 (4) )(|B A B ⌝→⌝⌝-⌝ MP 规则 )(|B A B ⌝→⌝⌝→⌝-演绎定理 ))(())((|B B A B A B →⌝→⌝→⌝→⌝⌝→⌝- 公理三 B B A →⌝→⌝-)(|MP 规则即B B A →∧-|2. 以下结论对吗?若对,加以证明;若不对,举出反例。
离散数学.第1章
![离散数学.第1章](https://img.taocdn.com/s3/m/a3bb4c36580216fc700afd42.png)
例4
设P:我们去看电影。Q:房间里有十张桌子。则
P ∧ Q表示“我们去看电影并且房间里有十张桌子。”
10
3. 析取“∨”(相容或)[讲解教材P3-5关于或]
4. 定义1.3
由命题P和Q利用“∨”组成的复合命题,称 为析取式复合命题,记作“P∨Q”(读作“P或Q”)。 当且仅当P和Q至少有一个取值为真时,P∨Q取值为真。
练习1-1
1. 判断下列语句哪些是命题,若是命题,则指出其真值。
(1) (2) 只有小孩才爱哭。 X+6=Y ( 是 假 ) ( 不是 ) (是 真) ( 不是 )
(3)
银是白的。
(4) 起来吧,我的朋友。 2. 将下列命题符号化
(1) 我看见的既不是小张也不是老李。 解 令P:我看见的是小张;Q:我看见的是老李。 则该命题可表示为¬ P∧¬ Q (2) 如果晚上做完了作业并且没有其它的事,他就会 看电视或听音乐。 解 令 P:他晚上做完了作业;Q:他晚上有其它的事; R:他看电视; S:他听音乐。 则该命题可表示为(P∧¬ Q)→(R∨S)
28
1.3 等值演算
• 定义1.10 设A和B是两个命题公式, 若等价式A↔B 是重言式,则称公式A 和B等值,记为A B,称 AB为等 值式。
• 注意: (1)符号“”与“↔”的区别与联系 “”不是联结词,AB不表示一个公式, 它表示两个公式间的一种关系,即等值关系。 “↔”是联结词,A↔B是一个公式。 AB 当且仅当 A↔B 是永真公式。
1 0 1 0 1 0 1 0
0 0 1 1 1 1 1 1
0 0 0 1 0 0 0 1
1 1 0 1 0 0 0 1
离散数学左孝陵版答案公开课一等奖优质课大赛微课获奖课件
![离散数学左孝陵版答案公开课一等奖优质课大赛微课获奖课件](https://img.taocdn.com/s3/m/9bbc8430793e0912a21614791711cc7931b778b8.png)
§1 谓词概念与表示法
(1)谓词填式:谓词字母后填以客体所得式子。
例:H(a, b)
(2)若谓词字母联系着一个客体,则称作一元谓词;若谓 词字母联系着二个客体,则称作二元谓词;若谓词字母联 系着n个客体,则称作n元谓词。
(3)客体顺序必须是有要求。 例:河南省北接河北省。
nL
b
写成二元谓词为:L(n,b),但不能写成L(b,n) 。
例:P(x)表示x是质数。这是一个命题函数。 其值取决于个体域。 能够将命题函数命题,有两种办法:
第7页
§2 命题函数与量词
a)将x取定一个值。如:P(4),P(5) b)将谓词量化。如:xP(x),xP(x) 个体域给定形式有二种: ①详细给定。 如:{j, e, t} ②全总个体域任意域:所有个体从该域中取得。
第13页
§3谓词公式与翻译
写成符号形式:
x(M(x) D(x)), M(s) D(s)
2.因为对个体描述性质刻划深度不同,可翻译 成不同形式谓词公式。
第14页
§4变元约束
1.辖域:紧接在量词后面括号内谓词公式。 例: xP(x) , x(P(x) Q(x)) 。 若量词后括号内为原子谓词公式,则括号能够省去。
第18页
§4变元约束
6.个体域(叙述域,客体域):用特定集合表示 被约束变元取值范围。
(1)个体域不同,则表示同一命题谓词公式形 式不同。 例:“全部人必死。”令D(x),x是要死。
下面给出不同个体域来讨论:
(ⅰ)个体域为:{人类},
则可写成 xD(x);
(ⅱ)个体域为任意域(全总个体域),则人必 须首先从任意域中分离出来,
(b)每一个自然数都是偶数 x(N(x) E(x))
全版离散数学 练习题及答案.ppt
![全版离散数学 练习题及答案.ppt](https://img.taocdn.com/s3/m/7fd3c34f4431b90d6d85c72d.png)
课件
例3 对任意两个集合A, B,试证 A (A B) A B
证明 对于任意的x
x A (A B)
x {x x A x ( A B)} x {x x A (x A B)} x {x x A (x A x B)} x {x x A (x A x B)} x {x x A x B}
课件
例10 求图的最小生成树
A 1B34 Nhomakorabea5
2 E
6
1A 2
B
E
4
6
C7 D
C
D
课件
例11
• 无向树T有7片树叶, 3个3度顶点,其余的 都是4度顶点,则T有几个4度顶点?
• 解:设T有x个4度顶点 顶点度数之和: 7+3*3+4x 由树的性质可得总边数: 7+3+x-1 由握手原理可得: 7+3*3+4x=2(7+3+x-1)
求g f
g f { 1,b , 2,b , 3,b }
课件
例12 求复合函数
X {1,2,3}, Y {p, q}, Z {a,b} f { 1, p , 2, p , 3, q } g { p,b , q,b }
求g f
g f { 1,b , 2,b , 3,b }
课件
例: 求幺元、零元、逆元
x A B 因为 x 是任意的,所以有
x ((x A (A B)) (x A B)) 的真值为T,
因此 A ( A B)课件 A B
例4 判断关系的性质
R1 { a, a , a,b , b,b , c,c }
a
1 1 0
M R 1 0 1 0
0 0 1
离散数学 31集合概念表示法
![离散数学 31集合概念表示法](https://img.taocdn.com/s3/m/0c07817d9e31433238689307.png)
两个集合A和B相等,记作A=B,两个集合 不相等,记作AB。 {0,1}={x|x(x2-2x+1)=0,x I} {0,1}{1,2}
➢2.包含关系(子集) ➢定义3-1.1 设A、B是任意两个集合,如果A的每一 个元素都是B的元素,则称集合A是集合B的子集合( 或子集,subsets),或称A包含在B内,记为AB ; 或称B包含A,记为BA 。 ➢即
所以|A1|+|A2|=|A1~A2|+|A1A2|+
|~A1A2|+|A1A2|
=|A1~A2|+|~A1A2|+2|A1A2|
而|A1~A2|+|~A1A2|+|A1A2|=|A1A2|
故|A1A2|=|A1|+|A2|-|A1A2|
例1:求从1到500的整数中,能被3或5除尽的数的个数。
3、差集、补集
定义3-2.3:设A、B是任意两个集合,所有属 于A而不属于B的元素组成的集合称为B对A 的补集,或相对补,(或A和B差集)记作A-B 。
A-B={x|xA∧xB} 文氏图
定义3-2.4:设E为全集,任一集合A关于E的补 ,称为A的绝对补,记作A。 A=E-A={x|xE∧xA}
文氏图
属于S,同样根据定义,S就 可以属说于,S这。一无悖论论如就何象都在平是静矛的盾的 数学。水面上投下了一块巨石,而
它所引起的巨大反响则导致了第 三次数学危机。
危机产生后,数学家纷纷提出自己的
解决方案:
人们希望能够通过对康托尔的集合论进行改造,通过 对集合定义加以限制来排除悖论,这就需要建立新 的原则。“这些原则必须足够狭窄,以保证排除一 切矛盾;另一方面又必须充分广阔,使康托尔集合 论中一切有价值的内容得以保存下来。”
33离散数学0604x
![33离散数学0604x](https://img.taocdn.com/s3/m/38ff06164431b90d6c85c7e8.png)
11
实例
无欧拉通路
欧拉图
欧拉图
有欧拉通路 非欧拉图
有欧拉通路 非欧拉图
无欧拉通路
12
欧拉图判别定理(续)
定理6.9 有向图D有欧拉回路当且仅当D是连通的且所有 顶点的入度等于出度. 有向图D有欧拉通路、但没有欧拉回路当且仅当D是连通 的且有一个顶点的入度比出度大1、一个顶点的入度比出 度小1, 其余的顶点的入度等于出度. 推论 有向图D是欧拉图当且仅当D是连通的且所有顶点的 入度等于出度.
16
实例
(1)
(2)
(3)
(4)
在上图中, • (1),(2) 是哈密顿图; • (3)是半哈密顿图; • (4)既不是哈密顿图,也不是半哈密顿图,为什么?
17
应用
例4 有7个人, A会讲英语, B会讲英语和汉语, C会讲英语、 意大利语和俄语, D会讲日语和汉语, E会讲德语和意大利 语, F会讲法语、日语和俄语, G会讲法语和德语. 问能否将 他们沿圆桌安排就坐成一圈, 使得每个人都能与两旁的人 交谈? 解 作无向图, 每人是一个顶点, 2人之间有边他们有共同的语言. F ACEGFDBA是一条哈密顿回路, 按此顺序就坐即可. E
3
实例
非二部图
非二部图
4
例1 某中学有3个课外活动小组:数学组, 计算机组和生物 组. 有赵,钱,孙,李,周5名学生, 问分别在下述3种情况下, 能 否选出3人各任一个组的组长? (1) 赵, 钱为数学组成员, 赵,孙,李为计算机组成员, 孙,李, 周为生物组成员. (2) 赵为数学组成员, 钱,孙,李为计算机组成员, 钱,孙,李,周 为生物组成员. (3) 赵为数学组和计算机组成员, 钱,孙,李,周为生物组成员. 解
离散数学第6讲置换群和循环群
![离散数学第6讲置换群和循环群](https://img.taocdn.com/s3/m/486ed3dbc281e53a5902ff03.png)
i个
例如k=4时, 这个群如右表 所示, 其中[0]是么元, [1]或 [3]是生成元。
二、循环群
定理11:设<G,*>是由g∈G为生成元的循环群。 (a)若G是无限集,则<G,*>与<I,+>同构。 (b)若G是有限集且|G|=k,则<G,*>与<Nk, +k>同构。
定理9:任何一个循环群必定是阿贝尔群(可交换群)。 证明: 设<G,*>是一个循环群,它的生成元为g,那么对于任意的a, b∈G, 必有i, j∈I,使得
gi=a, gj=b 那么a*b=gi*gj=gi+j=gj+i=gj*gi=b*a,因此,<G,*>是一个阿贝尔群。
二、循环群
定理10:设<G, *>是由g∈G生成的有限循环群, 如果|G|=n,则gn=e, G ={g, g2, g3, …, gn=e}且n是使 gn=e的最小正整数。 证明: (1)先证gm=e而m<n是不可能的。
所以<Sn, ◇>是一个群。
一、置换群
给定n个元素组成的集合A: A上的若干置换所构成的群称为n次置换群; A上所有置换构成的群称为n次对称群, <Sn,◇>。 n次对称群<Sn,◇>的子群即为n次置换群。
例1 令A={1,2,3},A上置换的全体S3={pi i = 1,2,3,4,5,6}。
(pa◇pb)(x) = (x * a) * b =x * (a * b) =pa*b(x)∈P
(1)
(b) 存在幺元 设e是<G , *>的么元, a∈G是任一元素,则有
(完整版)洪帆《离散数学基础》(第三版)课后习题答案
![(完整版)洪帆《离散数学基础》(第三版)课后习题答案](https://img.taocdn.com/s3/m/3ed075f8cf2f0066f5335a8102d276a2002960a3.png)
(完整版)洪帆《离散数学基础》(第三版)课后习题答案第1章集合1、列举下列集合的元素 (1) 小于20的素数的集合 (2) 小于5的非负整数的集合(3) 2{|,10240515}i i I i i i ∈--<≤≤且答:(1) {1,3,5,7,11,13,17,19}(2) {0,1,2,3,4} (3) {5,6,7,8,9,10,11}2、用描述法表示下列集合 (1) 12345{,,,,}a a a a a 答:{|,15}i a i Ii ∈≤≤ (2) {2,4,8,}L 答:{2|}i i N ∈ (3) {0,2,4,100}L答:{2|,050}i i Z i ∈≤≤3、下面哪些式子是错误的?(1) {}{{}}a a ∈ 答:正确 (2) {}{{}}a a ? 答:错误(3) {}{{},}a a a ∈ 答:正确 (4) {}{{},}a a a ? 答:正确4、已给{2,,{3},4}S a =和{{},3,4,1}R a =,指出下面哪些论断是正确的?哪些是错误的?(1) {}a S ∈ 错误(2) {}a R ∈ 正确 (3) {,4,{3}}a S ? 正确 (4) {{},1,3,4}a R ? 正确 (5)R S = 错误 (6) {}a S ? 正确 (7) {}a R ?错误(8) R φ?正确(9) {{}}a R φ?? 正确(10) {}S φ?错误(11) R φ∈错误(12) {{3},4}φ?正确5、列举出集合,,A B C 的例子,使其满足A B ∈,B C ∈且A C ?答:{}A a =,{{}}B a =,显然A B ∈,{{{}}}C a =,显然B C ∈,但是A C ?。
6、给出下列集合的幂集 (1) {,{}}a b答:幂集{,{},{{}},{,{}}a b a b φ (2) {,,{}}a a φ答:幂集{,{},{},{{}},{,},{,{}},{,{}},{,,{}}}a a a a a a a a φφφφφ 7、设{}A a =,给出A 和2A 的幂集答:2{,{}}A a φ= 22{,{{}},{{}},{,{}}}Aa a φφφ=8、设128{,,,}A a a a =L 由17B 和31B 所表示的A 的子集各是什么?应如何表示子集2,67{,}a a a 和13{,}a a 答:170001000148{,}B B a a ==310001111145678{,,,,}B B a a a a a ==2,670100011070{,}a a a B B ==,1310100000160{,}a a B B ==9、设{1,2,3,4,5}U =,{1,4}A =,{1,2,5}B =,{2,4}C =,确定集合: (1) A B '? (2) ()A B C '?? (3) ()A B C ?? (4)()()A B A C (5) ()A B '? (6) A B ''? (7) ()B C '? (8)B C ''? (9) 22A C - (10)22A C ? 答:(1) {3,4}B '=,{4}A B '?=(2) {1}A B ?=,{1,3,5}C '=,(){1,3,5}A B C '??= (3) {2}B C ?=,(){1,2,4}A B C ??=(4) {1,2,4,5}A B ?=,{1,2,4}A C ?=,()(){1,2,4}A B A C = (5) (){2,3,4,5}A B '?= (6) {2,3,5}A '=,{2,3,4,5}A B ''?= (7) {1,2,4,5}BC ?=,(){3}B C '?= (8) {3,4}B '=,{1,3,5}C '=,{3}B C ''?=(9) 2{,{1},{4},{1,4}}A φ=,2{,{2},{4}{24}}C φ=,,,22{{1},{1,4}}A C -= (10) 22{,{4}}A C φ?=10、给定自然数集N 的下列子集:{1,2,7,8}A =,2{|50}B i i =<,{|330}C i i i =≤≤可被整数,0{|2,,06}k D i i k Z k ==∈≤≤求下列集合: (1) (())A B C D 答:{1,2,3,4,5,6,7}B =,{0,3,6,9,12,15,18,21,24,27,30}C =,{1,2,4,8,16,32,64}D =(()){0,1,2,3,4,5,6,7,8,9,12,15,16,18,21,24,27,30,32,64}A B CD = (2) (())A B C D φ=(3) ()B A C -?解:{0,1,2,3,6,7,8,9,12,15,18,21,24,27,30}A C ?=,(){4,5}B A C -?= (4) ()A B D '??解:{3,4,5,6}A B B A '?=-=,(){1,2,3,4,5,6,8,16,32,64}A B D '??=11、给定自然数集N 的下列子集{|12}A n n =<,{|8}B n n =≤,{|2,}C n n k k N ==∈,{|3,}D n n k k N ==∈ {|21,}E n n k k N ==-∈将下列集合表示为由,,,,A B C D E 产生的集合:(1) {2,4,6,8} (2){3,6,9} (3){10} (4){|369}n n n n ==≥或或(5) {|109}n n n n n ≤>是偶数且或是奇数且 (6) {|6}n n 是的倍数答:{1,2,3,4,5,6,7,8,9,10,11}A =,{1,2,3,4,5,6,7,8}B ={2,4,6,8,}C =L ,{3,6,9,12,}D =L ,{1,3,5,7,}E =L {2,4,6,8}B C =? {3,6,9}=A D ? {10}=(())A B D E ---(4){|369}n n n n ==≥=或或{3}{6}{9,10,11,12,}??L{3,6,9,10,11,12,}()A D B '==??L(5) {2,4,6,8,10,11,13,15,}(()())(())A E E B A D B =-?--?-L (6) {|6}{6,12,18,24,30}n n ==L 是的倍数C D ?12、判断以下哪些论断是正确的,哪些论断是错误的,并说明理由。
word版,《离散数学(第三版)》方世昌期末复习知识点总结,文档
![word版,《离散数学(第三版)》方世昌期末复习知识点总结,文档](https://img.taocdn.com/s3/m/727a9505f8c75fbfc67db257.png)
《失散数学》期末复习概要《失散数学》是中央电大“数学与数学应用专业”(本科)的一门选修课。
该课程使用新的教课纲领,在原有失散数学课程的基础上减少了教课内容(主假如群与环、格与布尔代数这两章及图论的后三节内容),使用的教材为中央电大第一版的《失散数学》(刘叙华等编)和《失散数学学习指导书》(虞恩蔚等编)。
失散数学主要研究失散量构造及互相关系,使学生获得优秀的数学训练,提升学生抽象思想和逻辑推理能力,为从事计算机的应用供给必需的描绘工具和理论基础。
其先修课程为:高等数学、线性代数;后续课程为:数据构造、数据库、操作系统、计算机网络等。
课程的主要内容1、会合论部分(会合的基本观点和运算、关系及其性质);2、数理逻辑部分(命题逻辑、谓词逻辑);3、图论部分(图的基本观点、树及其性质)。
学习建议失散数学是理论性较强的学科,学习失散数学的要点是对失散数学(会合论、数理逻辑和图论)相关基本观点的正确掌握,对基来源理及基本运算的运用,并要多做练习。
教课要求的层次各章教课要求的层次为认识、理解和掌握。
认识即能正确鉴别相关观点和方法;理解是能正确表达相关观点和方法的含义;掌握是在理解的基础上加以灵巧应用。
一、各章复习要求与要点第一章集合[复习知识点]1、会合、元素、会合的表示方法、子集、空集、全集、会合的包含、相等、幂集2、会合的交、并、差、补等运算及其运算律(互换律、联合律、分派律、汲取律、DeMorgan律等),文氏(Venn)图3、序偶与迪卡尔积本章要点内容:会合的观点、会合的运算性质、会合恒等式的证明[复习要求]11、理解会合、元素、子集、空集、全集、会合的包含、相等、幂集等基本观点。
2、掌握会合的表示法和会合的交、并、差、补等基本运算。
3、掌握会合运算基本规律,证明会合等式的方法。
4、认识序偶与迪卡尔积的观点,掌握迪卡尔积的运算。
[本章要点习题]P5~6,4、6;P14~15,3、6、7;P20,5、7。
离散数学课后习题答案(左孝凌版)演示教学
![离散数学课后习题答案(左孝凌版)演示教学](https://img.taocdn.com/s3/m/eed64077192e45361166f542.png)
离散数学课后习题答案(左孝凌版)离散数学课后习题答案 (左孝凌版)1-1,1-2(1)解:a)是命题,真值为T。
b)不是命题。
c)是命题,真值要根据具体情况确定。
d)不是命题。
e)是命题,真值为T。
f)是命题,真值为T。
g)是命题,真值为F。
h)不是命题。
i)不是命题。
(2)解:原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。
(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q↔ (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)设R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5) 解:a)设P:王强身体很好。
Q:王强成绩很好。
P∧Qb)设P:小李看书。
Q:小李听音乐。
P∧Qc)设P:气候很好。
Q:气候很热。
P∨Qd)设P: a和b是偶数。
Q:a+b是偶数。
P→Qe)设P:四边形ABCD是平行四边形。
Q :四边形ABCD的对边平行。
P↔Qf)设P:语法错误。
Q:程序错误。
R:停机。
(P∨ Q)→ R(6) 解:a)P:天气炎热。
Q:正在下雨。
P∧Qb)P:天气炎热。
R:湿度较低。
P∧Rc)R:天正在下雨。
S:湿度很高。
R∨Sd)A:刘英上山。
B:李进上山。
A∧Be)M:老王是革新者。
N:小李是革新者。
M∨Nf)L:你看电影。
M:我看电影。
┓L→┓Mg)P:我不看电视。
Q:我不外出。
R:我在睡觉。
P∧Q∧Rh)P:控制台打字机作输入设备。
Q:控制台打字机作输出设备。
P∧Q(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。
(完整word版)离散数学习题解答(耿素云屈婉玲)北京大学出版社
![(完整word版)离散数学习题解答(耿素云屈婉玲)北京大学出版社](https://img.taocdn.com/s3/m/d3a39b926294dd88d0d26bec.png)
习题一1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.答:此命题是简单命题,其真值为1.(2)5是无理数.答:此命题是简单命题,其真值为1.(3)3是素数或4是素数.答:是命题,但不是简单命题,其真值为1.x+<(4)235答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2与3是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的面积等于半径的平方乘以π.答:此命题是简单命题,其真值为1.(11)只有6是偶数,3才能是2的倍数.答:是命题,但不是简单命题,其真值为0.(12)8是偶数的充分必要条件是8能被3整除.答:是命题,但不是简单命题,其真值为0.(13)2008年元旦下大雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四大发明.(2)p:错误!未找到引用源。
是无理数.(7)p:刘红与魏新是同学.(10)p:圆的面积等于半径的平方乘以π.(13)p:2008年元旦下大雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5是有理数.答:否定式:5是无理数. p:5是有理数.q:5是无理数.其否定式q的真值为1.(2)25不是无理数.答:否定式:25是有理数. p :25不是无理数. q :25是有理数. 其否定式q 的真值为1.(3)2.5是自然数.答:否定式:2.5不是自然数. p :2.5是自然数. q :2.5不是自然数. 其否定式q 的真值为1.(4)ln1是整数.答:否定式:ln1不是整数. p :ln1是整数. q :ln1不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值. (1)2与5都是素数答:p :2是素数,q :5是素数,符号化为p q ∧,其真值为1.(2)不但π是无理数,而且自然对数的底e 也是无理数.答:p :π是无理数,q :自然对数的底e 是无理数,符号化为p q ∧,其真值为1. (3)虽然2是最小的素数,但2不是最小的自然数.答:p :2是最小的素数,q :2是最小的自然数,符号化为p q ∧⌝,其真值为1. (4)3是偶素数.答:p :3是素数,q :3是偶数,符号化为p q ∧,其真值为0. (5)4既不是素数,也不是偶数.答:p :4是素数,q :4是偶数,符号化为p q ⌝∧⌝,其真值为0. 5.将下列命题符号化,并指出真值. (1)2或3是偶数. (2)2或4是偶数. (3)3或5是偶数.(4)3不是偶数或4不是偶数. (5)3不是素数或4不是偶数.答: p :2是偶数,q :3是偶数,r :3是素数,s :4是偶数, t :5是偶数 (1) 符号化: p q ∨,其真值为1. (2) 符号化:p r ∨,其真值为1. (3) 符号化:r t ∨,其真值为0. (4) 符号化:q s ⌝∨⌝,其真值为1.(5) 符号化:r s ⌝∨⌝,其真值为0. 6.将下列命题符号化.(1)小丽只能从筐里拿一个苹果或一个梨.答:p :小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨,符号化为: p q ∨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:p :刘晓月选学英语,q :刘晓月选学日语,符号化为: ()()p q p q ⌝∧∨∧⌝. 7.设p :王冬生于1971年,q :王冬生于1972年,说明命题“王冬生于1971年或1972年”既可以化答:列出两种符号化的真值表:p q0 0 0 00 1 1 11 0 1 11 1 0 1根据真值表,可以判断出,只有当p与q同时为真时两种符号化的表示才会有不同的真值,但结合命题可以发现,p与q不可能同时为真,故上述命题有两种符号化方式.8.将下列命题符号化,并指出真值.(1)只要错误!未找到引用源。
左孝凌离散数学
![左孝凌离散数学](https://img.taocdn.com/s3/m/d80e1b083c1ec5da50e27067.png)
第一章 命题逻辑(Propositional Logic) 1.2
则上述命题可符号化为:(P∧ Q) ∨( P∧Q)
第一章 命题逻辑(Propositional Logic)
1.1 命题及其表示方法
例如: P:罗纳尔多是球星。 Q:5是负数。 P3:明天天气晴。 (2):太阳从西方升起。
皆为符号化的命题,其真值依次为1、0、1或0、0。 命题标识符又有命题常量、命题变元和原子变元
之分。
命题常量:表示确定命题的命题标识符。
❖ 数理逻辑是用数学方法研究推理的形式结构和推理的 规律的数学学科。它的创始人Leibniz,为了实现把推 理变为演算的想法,把数学引入了形式逻辑。其后, 又经多人努力,逐渐使得数理逻辑成为一门专门的学 科。
❖ 上个世纪30年代以后,数理逻辑进入一个崭新的发展 阶段,逻辑学不仅与数学结合,还与计算机科学等密 切关联。
第一章 命题逻辑(Propositional Logic)
1.1 命题及其表示方法
(11). 今天天气多好啊! 感叹句,不是命题 (12). 请你关上门! 祁使句,不是命题, (13). 别的星球上有生物。 是命题,客观上能判断真
假。
说明:
(1)只有具有确定真值的陈述句才是命题。一 切没有判断内容的句子,无所谓是非的句子, 如感叹句、祁使句、疑问句等都不是命题。
第一部分 数理逻辑(Mathematical Logic)
离散数学 左孝凌 课后习题解答 详细
![离散数学 左孝凌 课后习题解答 详细](https://img.taocdn.com/s3/m/3ae3d41df7ec4afe04a1df7c.png)
第1章 习题解答
⑶ p:我们划船;q:我们跑步;原命题符号化为:(p∧q)。 ⑷ p:你来了;q:他唱歌;r:你伴奏;原命题符号化为:p→(q↔r)。 5. 用符号形式写出下列命题。 ⑴假如上午不下雨,我去看电影,否则就在家里读书或看报。 ⑵我今天进城,除非下雨。 ⑶仅当你走,我将留下。 解:⑴ p:上午下雨;q:我去看电影;r:我在家读书;s:我在家看报;原命题符 号化为:(p→q)∧(p→r∨s)。 ⑵ p:我今天进城;q:天下雨;原命题符号化为:q→p。 ⑶ p:你走;q:我留下;原命题符号化为:q→p。
第1章 习题解答
离散数学~
习题 1.1
1. 下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。 ⑴ 中国有四大发明。 ⑵ 计算机有空吗? ⑶ 不存在最大素数。 ⑷ 21+3<5。 ⑸ 老王是山东人或河北人。 ⑹ 2 与 3 都是偶数。 ⑺ 小李在宿舍里。 ⑻ 这朵玫瑰花多美丽呀! ⑼ 请勿随地吐痰! ⑽ 圆的面积等于半径的平方乘以 。 ⑾ 只有 6 是偶数,3 才能是 2 的倍数。 ⑿ 雪是黑色的当且仅当太阳从东方升起。 ⒀如果天下大雨,他就乘班车上班。 解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺ ⒀的真值目前无法确定;⑵⑻⑼不是命题。 2. 将下列复合命题分成若干原子命题。 ⑴ 李辛与李末是兄弟。 ⑵ 因为天气冷,所以我穿了羽绒服。 ⑶ 天正在下雨或湿度很高。 ⑷ 刘英与李进上山。 ⑸ 王强与刘威都学过法语。 ⑹ 如果你不看电影,那么我也不看电影。 ⑺我既不看电视也不外出,我在睡觉。 ⑻ 除非天下大雨,否则他不乘班车上班。 解:⑴本命题为原子命题; ⑵ p:天气冷;q:我穿羽绒服; ⑶ p:天在下雨;q:湿度很高; ⑷ p:刘英上山;q:李进上山; ⑸ p:王强学过法语;q:刘威学过法语; ⑹ p:你看电影;q:我看电影; ⑺ p:我看电视;q:我外出;r:我睡觉; ⑻ p:天下大雨;q:他乘班车上班。
离散数学第三版-屈婉玲-课后习题答案
![离散数学第三版-屈婉玲-课后习题答案](https://img.taocdn.com/s3/m/98dc3de9f111f18582d05a46.png)
离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语p q解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是(9)只有天下大雨,他才乘班车上班q p解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是(11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是(p q)r15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(p q r)((p q)r)(4)解:p=1,q=1,r=0,(p q r)(110)1,((p q)r)((11)0)(00)1 (p q r)((p q)r)111 19、用真值表判断下列公式的类型:(p p)q(2)解:列出公式的真值表,如下所示:p p qq(p p)(p p)q0 0 1 1 1 10 1 1 0 1 01 0 0 1 0 11 1 0 0 0 1由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:(4)(p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:p0(p q) 1q0q0成真赋值有:01,10,11。
所以公式的习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)(p q)(q r)解:原式(p q)q r(p p)q rq r,此即公式的主析取范式,m m(p q r)(p q r)37所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值:(2)(p q)(p r)解:原式,此即公式的主合取范式,M(p p r)(p q r)(p q r)4所以成假赋值为100。
7、求下列公式的主析取范式,再用主析取范式求主合取范式:(1)(p q)r解:原式p q(r r)((p p)(q q)r)(p q r)(p q)r(p q)r(p q)r(p q)r(pq r(p q r)(p q)r(p q)r(p q)r(pq r,此即主析取范式。
左孝凌离散数学课后题答案最新版
![左孝凌离散数学课后题答案最新版](https://img.taocdn.com/s3/m/91e95239580216fc700afd69.png)
1a)设S:他犯了错误。
R:他神色慌张。
前提为:S→R,R因为(S→R)∧R⇔(┐S∨R)∧R⇔R。
故本题没有确定的结论。
实际上,若S →R为真,R为真,则S可为真,S也可为假,故无有效结论。
b)设P:我的程序通过。
Q:我很快乐。
R:阳光很好。
S:天很暖和。
(把晚上十一点理解为阳光不好)前提为:P→Q,Q→R,┐R∧S(1) P→Q P(2) Q→R P(3) P→R (1)(2)T,I(4) ┐R∨S P(5) ┐R (4)T,I(6) ┐P (3)(5)T,I结论为:┐P,我的程序没有通过习题2-1,2-2(1)解:a)设W(x):x是工人。
c:小张。
则有¬W(c)b)设S(x):x是田径运动员。
B(x):x是球类运动员。
h:他则有 S(h)∨B(h)c) 设C(x):x是聪明的。
B(x):x是美丽的。
l:小莉。
则有 C(l)∧ B(l)d)设O(x):x是奇数。
则有 O(m)→¬ O(2m)。
e)设R(x):x是实数。
Q(x):x是有理数。
则有(∀x)(Q(x)→R(x))f) 设R(x):x是实数。
Q(x):x是有理数。
则有(∃x)(R(x)∧Q(x))g) 设R(x):x是实数。
Q(x):x是有理数。
则有¬(∀x)(R(x)→Q(x))h)设P(x,y):直线x平行于直线yG(x,y):直线x相交于直线y。
则有 P(A,B) ¬G(A,B)(2)解:a)设J(x):x是教练员。
L(x):x是运动员。
则有(∀x)(J(x)→L(x))b)设S(x):x是大学生。
L(x):x是运动员。
则有(∃x)(L(x)∧S(x))c)设J(x):x是教练员。
O(x):x是年老的。
V(x):x是健壮的。
则有(∃x)(J(x)∧O(x)∧V(x))d)设O(x):x是年老的。
V(x):x是健壮的。
j:金教练则有¬ O(j)∧¬V(j)e)设L(x):x是运动员。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a 1 2 a ,a * a 1 a 2 a 1 1 ∴a的逆元存在
∵ a*b=a+b-1=b*a
∴ I,* 是交换群
2020/4/10
计算机学院
8
2) 证 I,是含幺交换半群
a b a b a b ,a ,b I ,a b I ,
∴I关于是封闭的
2020/4/10
计算机学院
3
▪ 6、会求循环群的生成元及其子群; ▪ 7、掌握Lagrange 定理及推论,学习使用该定
理解决简单的问题; ▪ 8、熟悉n元置换群 ▪ 9、熟练掌握环、域的基本性质和证明方法(
按定义证明和反证法)
2020/4/10
计算机学院
4
例1
证明下述代数结构是整环 <I[x],+, ×>
故 I,*, 是具有幺元的可交换环。
2020/4/10
计算机学院
11
习题十五
▪ 4、设半群A,中任何两个不同元素关于运
算“”不可交换。证明:对任何aA,aa=a。
▪ 证:(反证法)
▪
设 a A ,a•aa
▪
构造 ba•a ,
▪
则 a • b a • a • a b • a
▪
即 a、b 可交换,与已知条件相矛盾
其中I[x]是所有的x的整系数多项式的集合, “+”、“×”表示多项式的加法和乘法。 证明:(1) 证明<I[x],+>是交换群(按定义证明) +在I[x]上结合律和封闭性成立 显然0∈ I[x] ,且对任意的 f(x)∈ I[x] ,显然- f(x)∈ I[x] ,且 f(x)+(- f(x))=0=(- f(x))+ f(x) 所以单位元和逆元存在,且+满足交换律, 所以 <I[x],+>是交换群。
主要内容
2020/4/10
计算机学院
1
第十四、十五、十六章
▪ 一、基本概念
代数系统、单位元或幺元、零元、幂等元、
逆元、半群、含幺半群、群、子半群、群的阶、
子群、交换群、循环群、生成元、元素的周期、
右陪集、左陪集、子群的指数、不变子群(或
正规子群) 、群的单一同态、满同态、同构、
同态核、环、含零因子环、交换环、含幺环、
∴ I, 是含幺交换半群
3)证明对 可 分配
a(b*c)a(bc1)
abc1a(bc1)
2020/4/10
计算机学院
10
(ab)*(ac) (abab)*(acac)
a b c 1 a ( b c 1 )
a(b*c)(ab)*(ac)
同理 (b * c ) a (b a )* (c a )
2020/4/10
计算机学院
13
11、 设<S,·>和<T,·>都是<G,·>的子群,令
S∩T= {x|x∈S∧x∈T},ST= {st|s∈S∧t∈T}
。证明:<S∩T,·>和<ST,·>也都是<G,·>的子群 。
证明:
1)∵ S、T是G的子群
∴ eS , eT 即 eS∩T
设 a,bS ∩T,即a,bS 和a,bT
如果f(x)≠0和g(x)≠0, 则必有f(x)×g(x)≠0 , 所以<I[x],+, ×>无零因子 故<I[x],+, ×>是整环。
2020/4/10
计算机学院
6
例2
▪ 给定代数系统 I,,,且和定义
为:a b a b 1 ; a b a b a b 。
▪ 其中,I是整数集合, ,, 分别是通常 数的加法、减法和法,证明 I,, 是具
有幺元的可交换环。
证:1)证 I,*是交换群
对a, bI
a * b a b 1 ,a ,b I , a * b I
即I是封闭的
2020/4/10
计算机学院
7
∵(a*b)*c=a+b-1+c-1=a+b+c-2
a*(b*c)=a+b+c-1-1=a+b+c-2
∴*是可结合的
∵a*1=a+1-1=a ∴1是<I,*>的幺元
2020/4/10
计算机学院
5
(2)证明<I[x], ×>是含幺交换半群 普通乘法满足结合律,且对任意的 f(x),g(x)∈ I[x] ,显然有f(x)×g(x)∈I[x] 封闭性成立,整数1是单位元,且满足交换律,所以 <I[x], ×>是含幺交换半群 (3)普通乘法对加法的分配律显然成立,所以 <I[x],+, ×>是环。 (4)对任意的f(x),g(x)∈I[x],
整环、子环、环的同构与同态、域
2020/4/10
计算机学院
2
▪ 二、基本要求 ▪ 1、会求二元运算的特异元素; ▪ 2、判断或者证明给定集合和运算是否构成半
群、含幺半群和群; ▪ 3、会运用群的基本性质证明相关的命题; ▪ 4、熟悉陪集的定义和性质; ▪ 5、熟练掌握不变子群、循环群的基本性质和
证明方法(按定义证明和反证法)
(ab)cababc(abab)c abcabacbcabc
a(bc)abcbca(bcbc) abcabacbcabc
∴I关于是可结合的Fra bibliotek2020/4/10
计算机学院
9
▪ ∵令 b 0 , a 0 a 0 a 0 a , ∴ 0是 I, 的幺元
a b a b a b b a
∴cd-1= a1b1b2-1a2-1= a1a2-1b1b2-1 ST 即 ST是子群
2020/4/10
计算机学院
15
16 、 证明:每个阶数大于1的群必含有阶数大于1 的交换子群。
证明: 设G是阶数大于1的群, 则 a≠eG 构造G′=(a)G, 则 G′是G的交换群。
2020/4/10
计算机学院
16
17、 证明:循环群的子群必是循环群。
▪
∴ a A , a •a a
2020/4/10
计算机学院
12
6、证明:群中只有幺元是幂等元。 证:(反证法)
设 aA,ae,a2a
a1 , aa2•a1a•a1e
矛盾
10、写出<S3, 。>中的全部子群。 解:(1),(1 2),(1),(1 3),
(1),(2 3), (1),(1 2 3),(1 3 2)和 二个平凡子群。
b-1 S 和b-1T ∴ ab-1 S 和ab-1T
即 ab-1 S∩T ∴〈S∩T,〉是G的子群
2020/4/10
计算机学院
14
2) eST,设c、dST 则 a1S,b1T , c=a1b1, a2S,b2T , d=a2b2, ∵ d-1=b2-1a2-1 又 ∵S和T中的元素关于“” 可交换