第11讲贝塞尔函数

合集下载

贝塞尔函数的有关公式

贝塞尔函数的有关公式

贝塞尔函数的有关公式贝塞尔函数是数学中一类特殊的函数,广泛应用于物理学、工程学和数学物理学等领域。

贝塞尔函数一族的定义包括第一类贝塞尔函数、第二类贝塞尔函数以及修正的贝塞尔函数。

本文将介绍这些贝塞尔函数的基本定义和性质,并给出一些常见的贝塞尔函数公式。

一、第一类贝塞尔函数(Bessel Function of the First Kind)第一类贝塞尔函数是非负整数阶的解特殊二阶常微分方程贝塞尔方程的解。

第一类贝塞尔函数通常用J_n(x)表示,其中n是阶数,x是实数。

它的定义为:J_n(x) = (1/π) ∫[0,π] cos(nθ - xsinθ) dθ其中,J_0(x)是常数函数。

第一类贝塞尔函数有一些重要的性质:1.对于所有的实数x和n≥0,J_n(x)是实函数。

2.J_0(x)在x=0处取得最大值,而在其他地方有若干个零点。

3.J_n(x)在x→0时的行为类似于x^n,即J_n(x)~(x/2)^n/(n!)。

第一类贝塞尔函数的递推公式:J_{n+1}(x)=(2n/x)J_n(x)-J_{n-1}(x)其中J_{1}(x)=(2/x)J_0(x)。

第一类贝塞尔函数的导数计算公式:dJ_n(x)/dx = J_{n-1}(x) - (n/x) J_n(x)利用这个公式可以计算贝塞尔函数的导数。

二、第二类贝塞尔函数(Bessel function of the second kind)第二类贝塞尔函数是贝塞尔方程的另一类解,通常用Y_n(x)表示,其中n是阶数,x是实数。

第二类贝塞尔函数的定义为:Y_n(x) = (1/π) ∫[0,π] sin(nθ - xsinθ) dθ其中,Y_0(x)是称作“诺依曼函数”。

第二类贝塞尔函数的性质如下:1.对于所有的实数x和n≥0,Y_n(x)是实函数。

2.Y_0(x)在x=0处不取得最大值,而在其他地方有若干个零点。

3. Y_n(x)在x→0时的行为类似于(2/π)(ln(x/2) + γ) + O(x^2)。

贝塞尔函数

贝塞尔函数

第一类贝塞尔函数 J (x)的级数表示式为
J
(x)
(1)k
k 0
1
k !( k
1)
( x ) 2k 2
J
(x)
(1)k
k 0
1
k !(
k
1)
( x ) 2k 2
式中 ( x) 是伽马函数.满足关系
(1.2.1)
( k 1) ( k )( k 1) ( 2)( 1)( 1)
H (1)
H(2)
(x) (x)
J J
(x) (x)
iN iN
( (
x) x)
(1.1.9)
分别将
H (1)
,
H(
2
)
称为第一种和第二种汉克尔函数.
于是贝塞尔方程的通解又可以表示为
y(x
A
H (1)
(
x
)
BH(2) ( x)
(1.1.10)
最后,总结 阶贝塞尔方程的通解通常有下列三种形式:
x 和
可以为任意数.
1.1.2 贝塞尔方程的解
通过数学物理方程的幂级数求解方法可以得出结论:
(1)当 整数时,贝塞尔方程(1.1.6)的通解为
y( x) AJ ( x) BJ ( x) (1.1.7)
其中 A, B 为任意常数,J (x) 定义为 阶第一类贝塞尔函数
但是当 n 整数时,有 Jn (x) (1)n Jn (x) 故上述解中的 Jn (x)
Jn (x)
(1)k
k n
1 k !(n
k
( x)n2k 1) 2
(1)n (1)l
1
( x)n2l ,
l0
l !(n l 1) 2

贝塞尔函数表0~2rad

贝塞尔函数表0~2rad

贝塞尔函数表0~2rad摘要:一、贝塞尔函数简介1.贝塞尔函数的定义2.贝塞尔函数在数学和工程领域的应用二、贝塞尔函数表0~2rad1.贝塞尔函数表的构成2.贝塞尔函数值的变化规律3.贝塞尔函数的性质和特点三、贝塞尔函数表在实际问题中的应用1.贝塞尔函数表在数学问题中的应用2.贝塞尔函数表在工程问题中的应用正文:贝塞尔函数是一类在数学和工程领域有着广泛应用的函数。

它们以瑞士数学家卡尔·沃尔夫冈·贝塞尔的名字命名,并因其独特的性质和特点而受到学者们的关注。

贝塞尔函数可以表示为:BesselFunction(x, n, λ) = (1 / (2 * π * √(x^2 + n^2 * λ^2))) * ∫(exp(-(x^2 + n^2 * λ^2) / 2) * (x^2 - n^2 * λ^2) ^ (n - 1/2)) dλ其中,x表示函数的变量,n表示函数的阶数,λ表示函数的参数。

贝塞尔函数表0~2rad是一份详细列出贝塞尔函数值的表格,其中包含了不同阶数和参数下的贝塞尔函数值。

这个表格可以帮助学者们快速查找和计算贝塞尔函数值,为他们的研究和工程应用提供便利。

贝塞尔函数表0~2rad的构成主要包括两部分:一是表格的标题和表头,包括函数名、阶数、参数和函数值;二是表格的主体,详细列出了不同阶数和参数下的贝塞尔函数值。

这个表格是通过对贝塞尔函数进行数值积分计算得到的,因此具有较高的精度和可靠性。

贝塞尔函数值的变化规律可以通过观察贝塞尔函数表0~2rad得出。

一般来说,随着参数λ的增大,贝塞尔函数值会先增大后减小,呈现出一个波浪形的变化趋势。

而随着阶数n的增大,贝塞尔函数值会呈现出一个指数增长的趋势。

这些变化规律对于理解和掌握贝塞尔函数的性质和特点具有重要意义。

贝塞尔函数表0~2rad在实际问题中的应用非常广泛。

在数学领域,贝塞尔函数表可以帮助学者们快速计算贝塞尔函数值,为他们的理论研究和数值模拟提供数据支持。

贝塞尔函数

贝塞尔函数

贝塞尔函数当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。

在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。

如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。

本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。

下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。

贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。

§5.1 贝塞尔方程的引出下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。

设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。

这个问题可以归结为求解下述定解问题:222222222222220(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ϕ=+=∂∂∂=++<>∂∂∂=+≤= (5.3)⎧⎪⎪⎪⎨⎪⎪⎪⎩用分离变量法解这个问题,先令(,,)(,)()u x y t V x y T t =代入方程(5.1)得22222()V V VT a T x y ∂∂'=+∂∂ 或22222 (0)V V T x y a T Vλλ∂∂+'∂∂==-> 由此得到下面关于函数()T t 和(,)V x y 的方程20T a T λ'+= (5.4)22220V V V x yλ∂∂++=∂∂ (5.5) 从(5.4)得2()a t T t Ae λ-= 方程(5.5)称为亥姆霍兹(Helmholtz )方程。

为了求出这个方程满足条件2220x y R V +== (5.6)的非零解,引用平面上的极坐标系,将方程(5.5)与条件(5.6)写成极坐标形式得22222110,,02, (5.7)0,02, (5.8)R V v V V R V ρλρθπρρρρθθπ=⎧∂∂∂+++=<≤≤⎪∂∂∂⎨⎪=≤≤⎩再令 (,)()()V P ρθρθ=Θ,代入(5.7)并分离变量可得()()0θμθ''Θ+Θ= (5.9)22()()()()0P P P ρρρρλρμρ'''++-= (5.10)由于(,,)u x y t 是单值函数,所以(,)V x y 也必是单值得,因此()θΘ应该是以2π为周期的周期函数,这就决定了μ只能等于如下的数:2220,1,2,,,n对应于2n n μ=,有00()2a θΘ=(为常数) ()cos sin ,(1,2,)n n n a nb n n θθθΘ=+=以2n n μ=代入(5.10)得222()()()()0P P n P ρρρρλρρ'''++-= (5.11)这个方程与(2.93)相比,仅仅是两者的自变量和函数记号有差别,所以,它是n 阶贝塞尔方程。

贝塞尔函数详细介绍(全面)

贝塞尔函数详细介绍(全面)

(−1) m x 2 n + 2 m −1 = x n J ( x) = x n ∑ n + 2 m−1 n −1 2 m!⋅Γ(n + m) m =0

d x n J n ( x ) = x n J n −1 ( x ) dx d −n x J n ( x) = − x − n J n +1 ( x) dx
y = AJ n ( x) + BYn ( x)
A、B为任意常数, n为任意实数
数学物理方程与特殊函数
第5章贝塞尔函数
三 贝塞尔函数的性质
(−1) m x J n ( x) = ∑ ⋅ m = 0 m! Γ ( n + m + 1) 2
∞ n+2m
J α ( x) cos απ − J −α ( x) Yn ( x) = lim α →n sin απ
= −3J1 ( x) + 2 J1 ( x) + J1 ( x) − J 3 ( x) = − J 3 ( x)
数学物理方程与特殊函数
第5章贝塞尔函数
(4)
d n x J n ( x) = x n J n −1 ( x) dx = − xJ1 ( x ) + ∫ x −1 J1 ( x )dx 2 = − xJ1 ( x) + 2 ∫ J1 ( x)dx d −n x J n ( x) = − x − n J n +1 ( x) = − xJ1 ( x ) − 2 ∫ dJ 0 ( x) = − xJ1 ( x) − 2 J 0 ( x ) + C dx ′ (5) ∫ x 3 J 0 ( x )dx = ∫ x 2 dxJ1 ( x ) = x 3 J 1 ( x ) − 2 ∫ x 2 J1 ( x)dx J n −1 ( x) − J n +1 ( x) = 2 J n ( x) 2n J n −1 ( x) + J n +1 ( x) = J n ( x) 3 2 3 2 = x J 1 ( x ) − 2 ∫ dx J 2 ( x ) = x J 1 ( x ) − 2 x J 2 ( x ) + C x

贝塞尔函数

贝塞尔函数

xn1Jn1 ax C
7. 证明y Jn (ax)满足 x2 y '' xy ' (a2x2 n2 ) y 0
Jn (t )满足以下Bessel方程
t 2Jn(t ) tJn (t ) (t 2 n2 )Jn(t ) 0
令 t ax, 即可
a2 x2Jn(ax) axJn (ax) (a2 x2 n2 )Jn(ax) 0
在求特征值问题时推导出常微分方程:
ห้องสมุดไป่ตู้
r2F "r r F 'r r2 n2 F r 0
令x r

y(
x)
F
r
x2
d2y dx 2
x
dy dx
x2 n2
yx 0
n 阶贝塞尔方程:
方程的一个特解(n 阶第一类贝塞尔函数)
Jn
x
1m
m0
1 2n2m
m!
n
1 m
1
xn2m
1
lim
m
1m
4(m 1) n m 1
2n2m m!n m!
可以判定这个级数在整个数轴上收敛.

J n
x
m0
2n2m
1m m! n
m
1
xn2m
4.
d dx
J
0
ax
a
d
d (ax)
J
0
ax
aJ1
ax
5.
d dx
[ xJ1
ax
]
d
d (ax)
[axJ1
ax
]
axJ
0
ax
6. (1) xJ2 xdx ?

贝塞尔函数 - 维基百科,自由的百科全书

贝塞尔函数 - 维基百科,自由的百科全书

图1 贝塞尔函数的一个实例:一个紧绷的鼓面在中心受到敲击后的二阶振动振型,其振幅沿半径方向上的分布就是一个贝塞尔函数(考虑正负号)。

实际生活中受敲击的鼓面的振动是各阶类似振动形态的叠加。

贝塞尔函数维基百科,自由的百科全书贝塞尔函数(Bessel functions),是数学上的一类特殊函数的总称。

通常单说的贝塞尔函数指第一类贝塞尔函数(Bessel function of the first kind)。

一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:这类方程的解是无法用初等函数系统地表示。

由于贝塞尔微分方程是二阶常微分方程,需要由两个独立的函数来表示其标准解函数。

典型的是使用第一类贝塞尔函数和第二类贝塞尔函数来表示标准解函数:注意,由于 在 x=0 时候是发散的(无穷),当取 x=0 时,相关系数 必须为0时,才能获得有物理意义的结果。

贝塞尔函数的具体形式随上述方程中任意实数或复数α变化而变化(相应地,α被称为其对应贝塞尔函数的阶数)。

实际应用中最常见的情形为α是整数n,对应解称为n 阶贝塞尔函数。

尽管在上述微分方程中,α本身的正负号不改变方程的形式,但实际应用中仍习惯针对α和−α定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在α=0 点的不光滑性)。

贝塞尔函数也被称为柱谐函数、圆柱函数或圆柱谐波,因为他们是于拉普拉斯方程在圆柱坐标上的求解过程中被发现的。

目录1 历史2 现实背景和应用范围3 定义3.1 第一类贝塞尔函数3.1.1 贝塞尔积分3.1.2 和超几何级数的关系3.2 第二类贝塞尔函数(诺依曼函数)3.3 第三类贝塞尔函数(汉克尔函数)3.4 修正贝塞尔函数3.5 球贝塞尔函数3.6 黎卡提-贝塞尔函数4 渐近形式5 性质6 参考文献7 外部连接历史贝塞尔函数的几个正整数阶特例早在18世纪中叶就由瑞士数学家丹尼尔·伯努利在研究悬链振动时提出了,当时引起了数学界的兴趣。

贝塞尔函数综述

贝塞尔函数综述

第一部分 Bessel 函数(阶数或自变量趋于0或无穷时,各种Bessel 函数的极限值,可以利用Mathematica 试算推得。

)一、Bessel 方程及其通解0)(22222=-++y n x dx dy x dxy d x (1) 上式称为以x 为宗量的n 阶Bessel 方程。

●当n 为整数时,(1)式的通解为)()(x BY x AJ y n n += (2)其中,A 、B 为任意实数;)(x J n 为n 阶第一类Bessel 函数;)(x Y n 为n 阶第二类Bessel 函数(或称为“诺依曼(Neumann)函数”)。

●当n 不为整数时,例如,v n =,(1)式的通解可表示为如下两种形式)()(x BJ x AJ y v v -+= (3) )()(x BY x AJ y v v += (4)其中,A 、B 为任意实数;)(x J v 和)(x J v -分别称为v 阶和v -阶第一类Bessel 函数; )(x Y v 称为v 阶第二类Bessel 函数。

另外,Bessel 方程的通解还可以表示为)()()2()1(x BH x AH y v v +=其中,)()()()1(x iY x J x H v v v +=,)()()()2(x iY x J x H v v v -=分别称为称为第一类和第二类汉克尔(Hankel )函数,或统称为第三类Bessel 函数。

●值得注意的是, ∞=-→)(lim 0x J v x ,∞=→)(lim 0x Y v x ,∞=→)(lim 0x Y n x ,当所研究的问题的区域包含0=x 时,由于要求Bessel 方程的解在0=x 处取有限值,所以,此时对(2)、(3)、(4)式而言,必有0=B 。

此条件称为“Bessel 方程的自然边界条件”。

例1:022=+'+''y x y x y x λ (10<≤x )此式为以x λ为宗量的0阶Bessel 方程,其通解为)()(00x BY x AJ y λλ+=另外,由于所求解问题的区域10<≤x 包含0=x ,根据Bessel 方程的自然边界条件,必然有0=B ,通解最后简化为)(0x AJ y λ=例2:0)413(22=-+'+''y x y x y x 为以x 3为宗量的21阶Bessel 方程,其通解为)3()3(2121x BJ x AJ y -+= 或 )3()3(2121x BY x AJ y +=例3:0)(1222=-+'+''y xm k y x y上式两边同乘以2x ,可将其化为如下的以kx 为宗量的m 阶Bessel 方程0)(2222=-+'+''y m k x y x y x (0≠x ) 例4:012=+'+''y k y xy 上式两边同乘以2x ,可将其化为如下的以kx 为宗量的0阶Bessel 方程0222=+'+''y k x y x y x (0≠x )即:0)0(2222=-+'+''y k x y x y x (0≠x )例5:0)]1([222222=+-++R l l r k rd Rd r r d R d r 令r k x =,xx y r R 2)()(π=,则可以将上式化为如下的21+l 阶Bessel 方程0])21([22222=+-++y l x xd yd x x d y d x 二、虚宗量Bessel 方程及其通解0)(22222=+-+y n x dx dy x dxy d x (5) 上式称为“n 阶虚宗量的Bessel 方程”或“n 阶修正的Bessel 方程”,其通解为)()(x BK x AI y n n += (6)其中,A 、B 为任意实数;)(x I n 为“n 阶第一类修正的Bessel 函数”,或称为“n 阶第一类虚宗量Bessel 函数”; )(x K n 为“n 阶第二类修正的Bessel 函数”,或称为“n 阶第二类虚宗量Bessel 函数”。

贝塞尔函数

贝塞尔函数

贝塞尔函数(Bessel Function),是数学上的一类特殊函数的总称,是贝塞尔方程的解(无法用初等函数系统表示),它们和其他函数组合成柱调和函数。

除初等函数外,在物理和工程中贝塞尔函数是最常用的函数,它们以19世纪德国天文学家F.W.贝塞尔的姓氏命名,他在1824年第一次描述过它们。

一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数 y\left( x \right):
{x^2}\frac{{{d^2}y}}{{d{x^2}}} + x\frac{{dy}}{{dx}} + \left( {{x^2} - {\alpha ^2}} \right)y = 0
或者 {x^2}y'' + xy' + \left( {{x^2} - {\alpha ^2}} \right)y = 0
作为一个二阶常微分方程,上述函数必然存在两个线性无关的解。

并且,贝塞尔函数是在柱坐标/球坐标下使用分离变量法求解拉普拉斯方程或者亥姆霍兹方程式得到,因此贝塞尔函数在波动问题以及各种涉及有势场的问题中占有重要问题。

贝塞尔函数的具体形式随着方程中实数参数 \alpha 变化,且 \alpha 被称为贝塞尔函数的阶数。

实际应用中常见 \alpha 为整数 n ,对应 n 阶贝塞尔函数。

虽然公式中 \alpha 的正负性不改变函数形式,实际应用中习惯针对 \alpha 和 -\alpha 定义两种不同的贝塞尔函数,有一些好处(比如消除函数在 \alpha=0 处的不光滑性),多 \alpha\ge 0。

物理方程中的贝塞尔函数解析振动与波动问题

物理方程中的贝塞尔函数解析振动与波动问题

物理方程中的贝塞尔函数解析振动与波动问题物理学中的方程描述了自然界中发生的各种现象和规律。

其中,贝塞尔函数在解析振动和波动问题中具有重要的应用。

贝塞尔函数是一类特殊的数学函数,它的形式可以通过贝塞尔微分方程得到。

本文将介绍贝塞尔函数的定义、性质以及在物理学中的应用。

一、贝塞尔函数的定义与性质1. 贝塞尔函数的定义贝塞尔函数可由贝塞尔微分方程推导而得,它的一般形式为:\[J_n(x) = \sum_{m=0}^{\infty}\frac{(-1)^m}{m!(m+n)!}\left(\frac{x}{2}\right)^{2m+n}\]其中,\(J_n(x)\)表示贝塞尔函数,\(n\)为整数阶,\(x\)为自变量。

贝塞尔函数常被用来描述振动和波动问题。

2. 贝塞尔函数的性质贝塞尔函数具有以下几个重要的性质:(1)零点:贝塞尔函数\(J_n(x)\)有无穷多个零点,其中第一个正零点记作\(x_{n1}\),第二个正零点记作\(x_{n2}\),以此类推。

(2)正交性:不同阶的贝塞尔函数在一定区间内满足正交条件,即:\[\int_0^1 J_n(x)J_m(x)x\,dx = 0 \quad (n \neq m)\]这个性质在求解物理问题中起到重要的作用。

(3)递推关系:贝塞尔函数满足递推关系,即\[J_{n-1}(x) - \frac{2n}{x}J_n(x) + J_{n+1}(x) = 0 \]二、贝塞尔函数在振动问题中的应用贝塞尔函数在振动问题中广泛应用,尤其是在圆形薄膜和圆柱薄壳的振动中。

通过求解贝塞尔函数的特征值问题,可以得到薄膜或薄壳的固有频率和振动模态。

以圆形薄膜的振动为例,假设薄膜的边界固定,可推导出薄膜的振动方程。

通过将边界条件代入振动方程,并求解贝塞尔函数的特征方程,可以得到薄膜的固有频率和振动模态,这对于研究薄膜的声学性质和结构特性非常重要。

三、贝塞尔函数在波动问题中的应用贝塞尔函数在波动问题中也有广泛的应用。

2.2 贝塞尔函数的性质_11

2.2 贝塞尔函数的性质_11

(7)
其中,m 1,2, , J n (k m a) 0
n
R' ' R'(k n ) R 0
2 2 2 2
2 d dR 2 2 n R 0 k 即 d d
n 2 dJ n (k m ) n 2 d n (k m ) d d
可算出
可算出
如由
由(4) : 知J v ( x)和J v ' ( x) J v 1 ( x)
如由 J1 ( x) J 2 ( x) J1 ' ( x)
仿此继续下去 J v (x)
注:
当v n时亦可用母函数法推得 上述递推公式
③ 用来计算含Jv(x)的积分:
例1: 解:
(3) (4) :
(5)
(6)
2v x
J v ( x) J v 1 ( x) J v 1 ( x)
② 只要查J0(x)和J1(x)表可计算出任一Jn(x)
由(3) :
知J v 1 ( x)和J v ( x) J v ' ( x)
J 0 ( x) J1 ' ( x) J1 ( x)
J n ( x)

1
π
π
e
i( x sin n )
d
(n 0,1,2,....)
或着,J n ( x)
1
π
π
cos( x sin θ-nθ )d
0
二、贝塞尔函数的递推公式
d v v [ x J v ( x)] x J v 1 ( x) (1) dx d [ x v J ( x)] x v J ( x) ( 2) v v 1 dx

贝塞尔函数求导

贝塞尔函数求导

贝塞尔函数求导一、什么是贝塞尔函数贝塞尔函数(Bessel function)是应用广泛的一类特殊函数,它们最早由德国数学家费迪南德·弗朗茨·恩斯特·贝塞尔(Friedrich Ernst Bessel)在19世纪初引入并研究。

贝塞尔函数可以描述电磁波的传播、量子力学的行为、热传导等各种自然现象。

在数学上,贝塞尔函数涉及到一类方程,称为贝塞尔方程。

该方程形式简单,但是解析解并不容易求得,因此科学家们对贝塞尔函数的性质进行了详细研究,并发展出了一系列的逼近方法和数值计算方法。

二、贝塞尔函数的定义贝塞尔函数分为第一类贝塞尔函数(Bessel function of the first kind)和第二类贝塞尔函数(Bessel function of the second kind)两类。

两类贝塞尔函数的定义如下:1. 第一类贝塞尔函数第一类贝塞尔函数通常用符号J_n(x)表示,其中n为贝塞尔函数的阶数,x为自变量。

第一类贝塞尔函数可以通过以下定义得到:J_n(x) = (1/π) ∫[0, π] cos(nθ - x sinθ) dθ其中θ为积分变量。

2. 第二类贝塞尔函数第二类贝塞尔函数通常用符号Y_n(x)表示,其定义如下:Y_n(x) = (1/π) ∫[0, π] sin(nθ - x sinθ) dθ三、贝塞尔函数的性质贝塞尔函数具有许多有趣的性质,下面我们来逐一介绍一些重要的性质。

1. 递归关系贝塞尔函数有一种重要的递归关系,可以用来计算不同阶数的贝塞尔函数:J_{n+1}(x) = (2n/x) J_n(x) - J_{n-1}(x)Y_{n+1}(x) = (2n/x) Y_n(x) - Y_{n-1}(x)2. 趋于无穷大和零点当自变量x趋于无穷大时,贝塞尔函数的行为有一定的规律,可以用渐近展开式来描述。

同样地,贝塞尔函数的零点也是研究的重要问题之一。

贝塞尔函数及其应用

贝塞尔函数及其应用

贝塞尔函数及其应用题目:贝塞尔函数及其应用摘要贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程时得到的,因此它在波动问题以及各种涉及有势场的问题的研究中占有非常重要的地位。

贝塞尔函数是贝塞尔方程的解。

它在物理和工程中,有着十分广泛的应用。

本文首先通过一个物理问题引入贝塞尔方程,并求出贝塞尔方程的解,即贝塞尔函数。

其次列出了贝塞尔函数的几个重要的结论,如递推公式,零点性质等,并对他们进行了深入的分析。

第二部分主要介绍了傅里叶-贝塞尔级数,通过matlab编程对函数按傅里叶-贝塞尔级数展开之后的图像进行分析,得到了它们的逼近情况。

最后一部分介绍了贝塞尔函数的几个重要应用,一个是在物理光学中的应用,着重分析了贝塞尔函数近似公式的误差;一个是在信号处理中调频制的应用,得到了特殊情况下的公式算法。

关键词:贝塞尔函数,傅里叶-贝塞尔级数,渐近公式目录一、起源1(一)贝塞尔函数的提出1(二)贝塞尔方程的引出1二、贝塞尔函数的基本概念4(一)贝塞尔函数的定义41.第一类贝塞尔函数52.第二类贝塞尔函数73.第三类贝塞尔函数104.虚宗量的贝塞尔函数10(二)贝塞尔函数的递推公式11(三)半奇数阶贝塞尔函数13(四)贝塞尔函数的零点14(五)贝塞尔函数的振荡特性16三、Fourier-Bessel级数16(一)傅里叶-贝塞尔级数的定义16(二)将函数按傅里叶-贝塞尔级数展开17四、贝塞尔函数的应用24(一)贝塞尔函数在光学中的应用24(二)贝塞尔函数在调频制中的应用26附录30一、起源(一)贝塞尔函数的提出随着科学技术的发展,数学的应用更为广泛。

在许多科技领域中,微积分及常微分方程已经不能够满足我们的需要,数学物理方程理论已经成为必须掌握的数学工具。

它们反映了未知函数关于时间的导数和关于空间变量的导数之间的制约关系,同时刻画了物理现象和过程的基本规律。

它的重要性,早在18世纪初就被人们认识。

在1715年,泰勒将弦线的横向振动问题归结为著名的弦振动方程。

数学物理方法——贝塞尔函数

数学物理方法——贝塞尔函数

贝赛尔函数摘要:在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。

贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。

关键词:贝塞尔函数,通解,递推关系,正交完全性。

在圆形区域或圆柱形区域内求解定解问题时,就会出现下列形势的二阶线性常微分方程()222220y dy d x y x x n d dx x ++-= 其中n 为常数,这个方程就称为n 阶贝塞尔方程,它有什么特点呢?首先它是一个变系数的二阶线性常微分方程,其次是y ′ 与y ″的系数在0x =处为零,即在0x =处方程退化了,如果用2x 除方程两端,则y 与y ′前的系数在0x =时有奇偶性。

正因为如此,所以在用幂级数法求解时,要设解为 0c n n n y x a x ==∑∞.方程的解就称为n 阶贝赛尔函数。

利用级数解法可得它的两个特解()()()2201!12n mm n n m m x x J m n m ++==-∑++∞Γ, ()()()2201!12n mm n n m m x x J m n m -+--+==-∑-++∞Γ, 其中()x Γ是Γ-函数。

为了和其他类型的贝塞尔函数相区分,我们称()n x J ,()n x J -是第一类贝塞尔函数。

对于贝塞尔方程和贝塞尔函数,应该强调以下几点:(1) 贝塞尔方程的通解当n 不是整数且0n ≠时,可以看出()n x J 与()n x J -是线性无关的,这是因为()00n J =,()0n J -=∞。

所以贝塞尔方程的通解为()()12n n y x x C J C J -=+,其中1C ,2C 是任意常数。

当0x =时,我们只得到了一个特解()0x J ,要想得到通解还必须找到一个与()0x J 线性无关的特解。

当n 为整数时,容易说明()n x J 与()n x J -是线性相关的,所以它们也不能构成通解。

总之,当n 为零及整数时还要找一个与()n x J 线性无关的特解,这个解就是第二类贝塞尔函数,它的定义为()()()()()cos ,sin cos ,lim sin n n n a nx n x J J n z n x Y x x J J n z αααα--→-⎧∉⎪⎪=⎨-⎪∈⎪⎩ππππ 因此,不论n 是否为整数及零,贝塞尔方程的通解均可表示为()()11n n y x x C J C Y =+.特别应该强调的是:()n x J 表示一个在整个数轴上都收敛的幂级数的和,所以它在每个指定的点都取有限值,特别是在0x =处的值()0n J 是有限的,而()n x Y 在0x =处的值为无穷大。

贝塞尔函数

贝塞尔函数

1 2
J 1 2 ( x)
Ynx n1 2 x dx x 2
n
J n1 2 ( x)
(与
J ( n1 2) ( x)
不一样!)
Y( n1 2) ( x)
2
( m 1, 2,) 的正交性。
rJ
0
R
n
(
m
(n)
R
r ) Jn(
k
( n)
R
r )d r
0, 2 2 R R 2 ( n) 2 (n) J ( ) J ( ), n 1 m n1 m 2 2
mk mk.
Jn (
m ( n)
R
r)

m 1 在【0,R】上,带权重r正交。
数值解,再用(1)式求
J v ( x)

当n为正整数或零时, 表达式为
,整数阶Bessel函数
(n k 1) (n k )!
( 2)
k n 2 k
J n ( x)

(1) x J n ( x) k 0 k!(n k )! 2
第一类贝塞尔函数
k
n2k
nv
J v ( x)
k
( 1)
(1) x J v ( x) k 0 k!(v k 1) 2
n 2 k
第一类贝塞尔函数


1.先求的
的方法: J v (x )
2.非整数阶Bessel函数也可以通过递推关系得出。

(v k 1)

当为整数时,例如, v n,
Yn ( x) lim
n

贝塞尔函数课件

贝塞尔函数课件

3
正交性
贝塞尔函数之间具有正交性质,适合用于展开函数。
贝塞尔函数的计算方法
级数展开求解
可以使用贝塞尔函数的级数展开 式近似求解。
径向波动方程求解
使用贝塞尔函数表(示例)
贝塞尔函数是径向波动方程的解, 可用于求解相关问题。
通过查表,可以直接获取贝塞尔 函数的数值。
贝塞尔函数的在物理学中的应用
电磁场问题中的应用
贝塞尔函数用于描述电磁场分 布、辐射和散射等问题。
圆形共振问题中的应 用
贝塞尔函数用于解决圆形共振 腔中的电磁波问题。
量子力学中的应用
贝塞尔函数用于描述量子力学 中的球对称问题和径向波函数。
总结
在本课件中,我们介绍了贝塞尔函数的定义和基本类型,讨论了贝塞尔函数的性质和计算方法,以及它在物理 学中的应用。希望通过这些内容,您对贝塞尔函数有更全面的了解。
贝塞尔函数PPT课件
贝塞尔函数是一种数学函数,常用于解决各种科学领域中的物理和数学问题。 本课件将介绍贝塞尔函数的定义、类型、性质、计算方法以及在物理学中的 应用。
什么是贝塞尔函数
贝塞尔函数是一类特殊的数学函数,它是贝塞尔微分方程的解。它广泛应用 于物理学、工程学和数学等领域,例如波动理论、振动问题和量子力学。
下一步研究方向
贝塞尔函数作为一种重要的数学工具,在各个领域中仍有许多未解决的问题 和有待深入研究的方向。我们鼓励您继续探索和应用贝塞尔函数。
参考文献
1. Jiang, X., & Li, X. (2019). Applications of Bessel functions in physics. Physics Education, 54(6), 065010.

贝塞尔函数的应用

贝塞尔函数的应用

贝塞尔函数的应用1ω1二、按贝塞尔函数展开求定解问题的解下面将举例说明如何用贝塞尔函数求定解问题的解。

例2:有一质量均匀的金属圆柱体,半径为,0r 柱高为l ,圆柱侧面绝热,而上下两底面的温度分别保持为和,)(2r f )(1r f 试求圆柱体内部稳定时的温度分布。

解:由于温度分布趋于稳定,圆柱体内部温度函数),,(z r u 满足定解问题由于边界条件与无关,所以定解问题的解也与无关,只能取常数,这对应于m=0的情况。

ϕϕ)(ϕΦ事实上把),,(z r u ϕ代入边界条件可得12()()(0)(),()()()().R r Z f r R r Z l f r ϕϕΦ=Φ=根据上两个等式可知()ϕΦ只能取常数。

2''()()0(4.3)()(2),'()'(2)m ϕϕϕϕϕϕππ⎧Φ+Φ=⎨Φ=Φ+Φ=Φ+⎩固有值问题求解可得固有值为22,0,1,2,...n n m ==求解可得固有函数为()cos sin n n n n n A B ϕϕϕ=+Φ方程(4.5)的解为),3,2,1(,)(:0,)(:00000 =+=≠+==-n eD eC z ZD z C z Z zn zn n n n n ωωωω根据线性叠加原理,原定解问题(4.2)的一般解为''()()0,(4.5)Z z Z z λ-=2000,0,n nn λλωω=≥==0001(,,)()(),(4.6)n n zzn n n n u r z C z D C eD eJ r ωωϕω∞-==+++∑其中系数将由上下两底面的边界条件确定。

n n D C ,注:例3:设有半径为1的均匀薄圆盘,边界温度为零,ϕ1⎧11441 1比较等式两边系数,得22 21R tω。

贝塞尔函数的基本概念及其实际应用

贝塞尔函数的基本概念及其实际应用

贝塞尔函数的基本概念及其实际应用贝塞尔函数是数学分析中的一类特殊函数,是解决物理、工程、数学等领域中一些具有圆对称性问题的有力工具。

在本文中,我们将介绍贝塞尔函数的基本概念及其实际应用。

一、贝塞尔函数的定义及性质贝塞尔函数最初是由德国数学家贝塞尔在求解一个普遍的圆形问题时发现的。

贝塞尔函数有两类,即第一类和第二类,一般用Jn(x)和Yn(x)表示。

其中Jn(x)表示第一类贝塞尔函数,Yn(x)表示第二类贝塞尔函数。

贝塞尔函数和它们的导数满足贝塞尔微分方程:x^2*d^2y/dx^2 + x*dy/dx + (x^2-n^2)y = 0其中n为贝塞尔函数的度数,它的值可以是任意实数或零。

当n为整数时,贝塞尔函数是一种完整的函数,当n为小数或分数时,贝塞尔函数是一种不完整的函数。

贝塞尔函数具有一些特殊的性质,例如:对于第一类贝塞尔函数Jn(x),当x→0时Jn(x)≠0;当x→∞时,Jn(x)是振荡型函数,即Jn(x)近似于sin(x-nπ/2)。

而对于第二类贝塞尔函数Yn(x),当x→0时Yn(x)是无穷大;当x→∞时,Yn(x)也是振荡型函数。

二、贝塞尔函数的实际应用1.电学中的应用:贝塞尔函数可以用来描述无限长圆筒形导线和矩形波导内部电磁场的分布。

此外,在计算电磁波在介质中传播时,也可以用到第一类贝塞尔函数。

2.声学中的应用:贝塞尔函数可以用来表示大气中声波的传播过程。

同时,它还可以描述圆形共振腔内空气的压力分布和管道内的声波传输。

3.视觉中的应用:贝塞尔函数可以用来刻画景深和焦距。

此外,它还可以指导图像的锐化和去噪。

4.计算机图形学中的应用:贝塞尔函数可以被用来构建连续的Bézier曲线,从而描述出计算机图形学中重要的对于帧的插值和物体的平滑变形。

结语贝塞尔函数是一种特殊的函数,在各个领域中都有着重要的应用,特别是在电学中、声学中、视觉中以及计算机图形学中。

了解贝塞尔函数的基本概念和性质,对于掌握这些领域的相关知识非常重要。

贝塞尔函数的性质

贝塞尔函数的性质

利用递推关系可以证明, N
1 也是初等函数。 m 2
第四章-贝塞尔函数的性质
13
13
三、贝塞尔方程的固有值问题 考虑贝塞尔方程的固有值问题
r 2 R(r ) rR( r ) ( r 2 2 ) R( r ) 0 | R(0) | R( R0 ) 0, (13)
m 2
m 2
证明:由于
1 2n x J 1 ( x ) (1) n ( ) 2 1 2 n 0 2 n ! ( n ) 2
1
1 2n 1 x ( 1) n ( ) 2 (2n 1)!! 2 n 0 n! 2n 1 1 1 2n 1 2n 3 1 1 (2n 1)!! ( n ) ( n ) ( n ) ( ) n 2 2 2 2 2 2 2 2
由(3)和(4)式相加减分别可得
2 J 1 ( x) J 1 ( x) J ( x) (5) x
J 1 ( x) J 1 ( x) 2 J ( x) (6)
第四章-贝塞尔函数的性质
4
4
注:从这些递推关系可以得到 ( x ) J1 ( x ) J0 (把 0 代入(3)即得) 注:对所有正整数m, J m ( x) 都可以用 J 0 ( x) 和
贝塞尔函数的性质
贝塞尔函数的性质

J ( x)
n 0 一、递推公式 J 1 ( x) d J ( x) ( ) (1) dx x x

(1) n
1 x ( ) 2 n n!(n 1) 2
2n d J ( x) d 1 x 证明: ( ) [ (1) n ] 2 n dx x dx n 0 n !( n 1) 2 2 n 1 2 n x (1) n 2 n n ! ( n 1) 2 n 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)
T 't a2T t 0
2V
它的解 为 2
1
V
1
2
2V
2
V 0
0 R
V |R T0 t Aea2 t
再次分离变量,令 V , P ,代入化简得
(2) 亥姆霍兹方程(Helmholtz)
P
"
(
)
1
P
'2V(
x 2
) 2V y 2
12PV
0 "(
)
P
(
)
0
引入由参边数界条件2 P,"P可 知
dr
5.6 应用举例
例1 设有半径为1 的薄均匀圆盘,其侧面绝缘, 边界上的温度始终保持为零度,初始圆盘内温度 分布为1-r2,其中 r 为圆盘内任一点的极半径, 求圆盘的温度分布规律。
分析:由于是在圆域内求解问题, 故采用极坐标.
考虑到定解条件和 无关, 所以温度 只u 能是 和r
的函t 数.
解 根据问题的要求, 即可归结为求下列定
1
a2m
1m
a0
22m m!n 1n
2
n m .
这样,得到方程的一个特解
J n
x
1m
m0
1
1
2n2m m! n m 1
xn2m
m0
m
!
1m
nm
1
(
x 2
)n
2
m
称 J n 为x 阶n 第一类贝塞尔函数(n>=0).
取指标
c
n, a0
1
2n n 1
得方程的另一特解
Jn
J
x
2
Jn
x
(ln
x 2
C)
1
n1 m0
(n
m m!
1)!
x 2
n2m
1
m0
(1)m m !(n m)!
x 2
n2m
nm k 1
1 k
m k 1
1 k
其中C为欧拉常数 C = 0.577216
建微立分不同J0阶的5的.第3贝贝2塞k塞尔+尔2函函项数数之的1间递k递1推2推2公k公2式x式(2kk.2 2)!2
由ur,t 的有界性, 可以知道 C2 0 ,
由条件 u r1 0 得 J0 0 , 即 是 J 0 x
的零点. 用 n0( n=1,2…)表示 J0 x 的正零点, 综合以 上结果可得:
0 n
Fn r J0
0 n
r
Tn t Cnea2 n0 t
从而
un
r,t
xJ1 x 2 J1 x dx
xJ (J0 'xJ1x) 1
x
2
J0 '
x
dx
xJ1 x 2J0 x c
由于 Yn50.4函数, 展由成条贝件塞| P尔(0函) |数的知级D数 0,
从而
题中在,本导章P出开了r 始贝 C,塞J我尔n 们方从程r 薄的圆特盘征温值度问分题布:的定解问
解问题: 设 u ur,t
u t
a
2
2u r 2
1 r
u r
1 r2
2u
2
,
0 r 1
由于u
和 无关,
u
0,可以化简为问题
u
t
a2
2u r 2
1 r
u r
,
0r
1
u t0 1 r 2
u r1 0
由物理意义, u , 且当t 时, u 0
令 ur,t FrT t 代入方程得
(2) Jn(x) 的零点和 Jn+1(x) 的零点是彼此相间分 布.
(3) 设
n
m
(
m
1,2,)为J n x
的正零点,
则有
lim
m
n m1
m n
Jn R 0 的解为
R mn m 1,2,
与这些特征值相应的特征函数为
Pm
r
Jn
mn
R
r
m 1,2,
➢ 贝塞尔函数的正交性
讨论
Pm
对于第二类贝塞尔函数, 也有相应的递推公式.
Yn1
x
Yn1
x
2n x Yn
x
Yn1 x Yn1 x 2Y 'n x

n 为半奇数. J n x可以用初等函数来表示:
J 2m1 x 1m
2
2
m1
x2
1 x
d dx
m
sin x
x
J 2m1 x 2
2
m 1
x2
1 x
d dx
可归结为求解如下定解问题
u t
a
2
2u x 2
2u y 2
,
u x, y t 0
x2 y2 R2
u 0 x2 y2 R2
令 ux, y,t V x, yT t , 代入方程得
进而得
VT'
a
2
2V x 2
2V y 2
T
T ' Vxx Vyy
a 2T
V
0
齐次偏微分方程化为两个微分方程: 在极坐标系下,问题可以写成
xJ 'n x nJn x xJ n1x
两式相加减 分别消去 J n 'x 和 J n x, 可以得到
J n1x
J n1x
2n x
Jn
x
J n1x J n1x 2J 'n x
贝塞尔函数的递推公式
若知道 J n x J n1 x 的值, 就可以求出 J n1 x
进而得到任意正整数阶贝塞尔函数的值.
J n xcosn
sin n
Jn x
当 n 不为整数时, J n x和 Yn x 线性无关. 称 Yn x 为 n 阶第二类贝塞尔函数或者牛曼函数,
方程的通解也可表示为
y CJ n x DYn x
Gamma函数的定义与性质
由广义积分定义
p x p 1e x d x 0 Gamma 函数有如下性质:
24
x4
2!2
26
x6
3!2
1k
x2k
22k k !2
J1 x
x 2
xd3 23d2x!
J
0x25
x5 2!
J1 3!
x
1k
22k
x2k 1
k ! k
1!

d dx
[
xJ1
(
x)]
d dx
x2 2
x4 23 2!
1k
(2k 2)x2k2
22k1k !k 1!
x
x3 22
C e J t a2
n
0
n
0
r 0 n
由叠加原理, 可得原问题的解为
u
r,t
C e J
a2 n0 t
n
0
0 n
r
n1
由初始边界条件得
首先ddx考虑1k零1 2阶2k和2 x一2kk阶2 1贝!塞2 尔 函数1k之2(2间2kk2[关k2系)x12.k!1]2
Jn x
1k
1 x2k1 m m0
22k1k !k 1!
1 2n2m m!
n×1(m-!1x)n2m
分别令n 0 及 n 1得:
J0
所x以 1
x2 22
m
cos x
x
1 d m
1d
这里微分算子
x
dx
表示算子 x dx 连续作用 m 次的缩写.
例 求不定积分 xJ2 x.dx
解 由 xJ '1 x J1 x xJ2 x 可得
xJ2 x dx xJ '1 x dx J1 x dx
x dJ1 x J1 x dx
中,由于m<N时,
N
1
m
1
0
所以级数从m=N开始
JN (x)
mN
1 m 1 2N2m m!
1 N m1
x N 2m
(1)N
xN
2N
N
!
xN 1 2N2 (N 1)!
x N 4 2N4(N
2)!2!
(1)N JN (x)
所以,当n为整数时, J n x 与J n x 线性相关
k)0
(
xk2
n22,)3],ak
x
c
k
0
由选c取akak0z221nkn221aznnka21zkk
ak 2
(

0
p
取c=n
e 0
x
x
p1dx
)
n 由mna1 m01 an12(an31)(n 1a) 2k1n0m 1
因此a2
aa2m4
22412m2ann02n2a2210m
1
m2!nn4 m
P ' "( ) 2 0
P
2 P""Vx2Py2'R2
00
2
P
0
本征值问题
" 0
2
本征值 n n 2,
0
a0 2
本征函数
n an cos n bn sin n ,n 1,2,
将 n n2 代入另一方程得
2 P" P' 2 n2 P 0
此时定义第二类贝塞尔函数为
Yn
x
lim
n
J
x
cos sin
J
x
不为整数.可以证明 J n x 和 Yn x 线性无关,
相关文档
最新文档