八年级上期末模拟数学试题

合集下载

上海市崇明区2023-2024学年八年级上学期期末数学模拟试题(五四制)

上海市崇明区2023-2024学年八年级上学期期末数学模拟试题(五四制)

上海市崇明区2023-2024学年八年级上学期期末数学模拟试题(五四制)一、单选题1.下列二次根式中,为最简二次根式的是( )A B C D2x 的取值范围是( )A .25x >B .25x ≥C .25x <D .25x ≤ 3.一元二次方程220x x --=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根4.已知函数y kx =,y 随x 的增大而减小,另有函数k y x=-,两个函数在同一平面直角坐标系内的大致图象可能是( )A .B .C .D .5.在ABC V 中,6AB =,5BC =,4AC =,AD 平分BAC ∠交BC 于点D ,EF 垂直平分线段AD 交AD 于点E ,交BC 的延长线于点F ,则AF 之长为( )A .5B .6C .345D .76.在ABC V 中,A B C ∠∠∠、、的对边分别是a ,b ,c .下列条件中,不能说明ABC V 是直角三角形的是( )A .::3:4:5ABC ∠∠∠=B .C A B ∠=∠-∠ C .222b a c =-D .::5:12:13a b c =二、填空题7=. 8.2.9.方程2x x =-的根是 .10.在实数范围内分解因式421449a a -+=.11.在函数52y x =-中,自变量x 的取值范围是. 12.一次函数21y x =-在y 轴上的截距b =,它与y 轴的交点坐标是.13.某县为做大旅游产业,在2018年投入资金3.2亿元,预计2020年投入资金6亿元,设旅游产业投资的年平均增长率为x ,则可列方程为.14.在Rt △ABC 中,∠C =90°,两锐角的度数之比为2:1,其最短边为1,射线CP 交AB 所在的直线于点P ,且∠ACP =30°,则线段CP 的长为.15.如图,在ABC V 中,O 是三条角平分线的交点,过点O 作DE BC ∥交AB 于点D ,交AC 于点E ,若6AB =,4AC =,则ADE V 的周长为.16.点P 的横坐标是1,纵坐标比横坐标小2,则点P 的坐标是.17.在平面直角坐标系中,若函数21a y x--=(a 为常数)的图象经过(2,3),(1,6),(4,)A B C m --其中的两点,则m =.18.如图,一张矩形纸片ABCD 的长8cm AD =,宽4cm AB =,现将其折叠,使点D 与点B 重合,折痕为EF ,则折痕EF 的长是cm .三、解答题19 20.解方程:(1)228=0x x --;(2)(3)3x x x -=-.21.已知关于x 的一元二次方程()()220b c x ax b c +-+-=,其中a ,b ,c 分别为ABC V 三边的长.(1)已知1x =是方程的根,求证:ABC V 是等腰三角形;(2)如果ABC V 是直角三角形,其中90B ??,请你判断方程的根的情况,并说明理由. 22.如图所示,已知ABC V ,求作点I ,使点I 到ABC V 三边的距离相等.23.求证:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 24.如图所示,在ABC V 中,AD 平分BAC ∠,DE AB ⊥于E ,DF AC ⊥于F ,8AB =厘米,6AC =厘米.已知ABC V 的面积为21平方厘米,求DE 的长度.25.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y (千克)与销售x (元/千克)之间函数关系如图所示.(1)求y 与x 函数关系式;(2)商店想在销售成本不超过3800元的情况下,使销售利润达到3000元,销售单价应定为多少?26.已知y 是关于z 的正比例函数,比例系数是2;z 是关于x 的反比例函数,比例系数是3-.(1)写出此正比例函数和反比例函数的表达式.(2)求当5z =时,x ,y 的值.(3)求y 关于x 的函数表达式,这个函数是反比例函数吗?27.如图,ABC V 和ADE V 中,AB AD =,B D ∠=∠,BC DE =.边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧.(1)若30B ∠=︒,70APC ∠=︒,求CAE ∠的度数;(2)当30B ∠=︒,AB AC ⊥,6AB =时,设AP x =,请用含x 的式子表示PD ,并写出PD 的最大值.。

2022-2023学年八年级(上)期末数学模拟试卷(三)

2022-2023学年八年级(上)期末数学模拟试卷(三)

2022-2023学年八年级(上)期末数学模拟试卷(三)一、选择题(本大题共12小题,每小题3分,共36分。

在每小题所给的四个选项中,有且只有一项是符合题目要求的)1.(3分)下列体育运动图标中,是轴对称图形的是()A.B.C.D.2.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A.三角形的稳定性B.长方形的对称性C.长方形的四个角都是直角D.两点之间线段最短3.(3分)光刻机采用类似照片冲印的技术,把掩膜版上的精细图形通过光线的曝光印制到硅片上,是制造芯片的核心装备.ArF准分子激光是光刻机常用光源之一,其波长为0.000000193米,该光源波长用科学记数法表示为()A.193×106米B.193×10﹣9米C.1.93×10﹣7米D.1.93×10﹣9米4.(3分)如图,用直尺和圆规作一个三角形O1A1B1,使得△O1A1B1≌△OAB 的示意图,依据()定理可以判定两个三角形全等.A.SSS B.SAS C.ASA D.AAS5.(3分)下列由左边到右边的变形中,是因式分解的为()A.10x2y3=5xy2•2xy B.m2﹣n2=(m+n)(m﹣n)C.3m(R+r)=3mR+3mr D.x2﹣x﹣5=(x+2)(x﹣3)+1 6.(3分)已知一个正多边形的每个外角的度数都是60°,则该多边形的对角线条数为()A.6B.9C.12D.187.(3分)如图,AE,BE,CE分别平分∠BAC,∠ABC,∠ACB,ED⊥BC于点D,ED=3,△ABC的周长为24,则△ABC的面积为()A.18B.24C.36D.728.(3分)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80D.=9.(3分)如图,点D为△ABC的边BC上一点,且满足AD=DC,作BE⊥AD 于点E,若∠BAC=70°,∠C=40°,AB=6,则BE的长为()A.2B.3C.4D.510.(3分)下列说法:①三角形中至少有一个内角不小于60°;②三角形的重心是三角形三条中线的交点;③周长相等的两个圆是全等图形;④到三角形的三条边距离相等的点是三角形三条高的交点.其中正确说法的个数是()A.1B.2C.3D.411.(3分)如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为49,小正方形的面积为4,若分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是()A.x2+2xy+y2=49B.x2﹣2xy+y2=4C.x2+y2=25D.x2﹣y2=1412.(3分)如图,已知∠ABC=120°,BD平分∠ABC,∠DAC=60°,若AB =2,BC=3,则BD的长是()A.5B.7C.8D.9二、填空题(本大题共4小题,每小题4分,共16分)13.(4分)当x=时,分式的值为0.14.(4分)已知点P(4,2a﹣3)关于x轴对称的点在第一象限,则a的取值范围是.15.(4分)已知a=+2021,b=+2022,c=+2023,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值为.16.(4分)如图,△ABC中,BF是高,延长CB至点D,使BD=BA,连接AD,过点D作DE⊥AB交AB的延长线于点E,当AF=BE,∠CAD=96°时,∠C=.三、解答题(本大题共9小题,共98分。

江苏省苏州市吴中学、吴江、相城区2024届八年级数学第一学期期末监测模拟试题含解析

江苏省苏州市吴中学、吴江、相城区2024届八年级数学第一学期期末监测模拟试题含解析

江苏省苏州市吴中学、吴江、相城区2024届八年级数学第一学期期末监测模拟试题 注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.分式2232-x x y 中的x 、y 同时扩大2倍,则分式值( )A .不变B .是原来的2倍C .是原来的4倍D .是原来的122.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=40°,则∠2=( )A .40°B .50°C .60°D .70°3.点(2,-3)关于原点对称的点的坐标是( )A .(-2,3)B .(2,3)C .(-3,-2)D .(2,-3) 4.已知264x kx ++是完全平方式,则常数k 等于( )A .8B .±8C .16D .±165.已知三角形的两边长分别为3cm 和8cm ,则这个三角形的第三边的长可能是( )A .4cmB .5cmC .6cmD .13cm6.如图,在正方形网格中,线段A ′B ′是线段AB 绕某点逆时针旋转角α得到的,点A ′与A 对应,则角α的大小为()A .30°B .60°C .90°D .120°7.人体中红细胞的直径约为0.000 007 7m ,将数0.000 007 7用科学记数法表示为( )A .7.7×-510B .-70.7710⨯C .-67.710⨯D .-77.710⨯8.到三角形三个顶点距离相等的点是( )A .三条角平分线的交点B .三边中线的交点C .三边上高所在直线的交点D .三边的垂直平分线的交点9.如图1,甲、乙两个容器内都装了一定数量的水,现将甲容器中的水匀速注入乙容器中.图2中的线段AB ,CD 分别表示容器中的水的深度h(厘米)与注入时间t(分钟)之间的函数图象.下列结论错误的是( )A .注水前乙容器内水的高度是5厘米B .甲容器内的水4分钟全部注入乙容器C .注水2分钟时,甲、乙两个容器中的水的深度相等D .注水1分钟时,甲容器的水比乙容器的水深5厘米10.长为12、6、5、2的四根木条,选其中三根为边组成三角形,共有( )选法A .4种B .3种C .2种D .1种二、填空题(每小题3分,共24分)11.比较大小:7 _______ 3(填“˃”或“=”或“<”).12.若点P 关于x 轴的对称点为P1(2a+b, -a+1),关于y 轴对称点的点为P2(4-b,b+2),则点P 的坐标为13.繁昌到南京大约150千米,由于开通了高铁,动车的的平均速度是汽车的2.5倍,这样乘动车到南京比坐汽车就要节省1.2小时,设汽车的平均速度为x 千米/时,根据题意列出方程_____.14.如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是 .15.若4a 2+b 2﹣4a +2b +2=0,则ab =_____.16.若2m =a ,32n =b ,m ,n 为正整数,则22m+15n = (结果用含a 、b 的式子表示)17.如图,已知ABC ∆中,ABC ∠45=︒,F 是高AD 和BE 的交点,4CD =,则线段DF 的长度为_____.18.一组数据3,4,x ,6,7的平均数为5.则这组数据的方差是______.三、解答题(共66分)19.(10分)某校在八年级开展环保知识问卷调查活动,问卷一共10道题,每题10分,八年级(三)班的问卷得分情况统计图如下图所示:(1)扇形统计图中,a 的值为 ________.(2)根据以上统计图中的信息,求这问卷得分的众数和中位数分别是多少分?(3)已知该校八年级共有学生600人,请估计问卷得分在80分以上(含80分)的学生约有多少人?20.(6分)某居民小区为了绿化小区环境,建设和谐家园,准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示,计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?21.(6分)化简分式222442342a a a a a a-+-÷--+,并在0、1、1-、2、2-中选一个你喜欢的数作为a 的值,求代数式的值22.(8分)如图1是甲、乙两个圆柱形水槽的轴截面示意图.乙槽中有一圆柱形铁块放在其中(圆柱形铁块的下底面完全落在水槽底面上),现将甲槽中的水匀速注人乙槽.甲、乙两个水槽中水的深度()(),y cm y cm 甲乙与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示 槽中的水的深度与注水时间的关系,线段DE 表示 槽中的水的深度与注水时间的关系(填“甲”或“乙”),点B 的纵坐标表示的实际意义是 ;(2)当04x ≤≤时,分别求出y 甲和y 乙与x 之间的函数关系式;(3)注水多长时间时,甲、乙两个水槽中的水深度相同?(4)若乙槽底面积为36平方厘米(壁厚不计) ,求乙槽中铁块的体积.23.(8分)根据记录,从地面向上11km 以内,每升高1km ,气温降低6℃;又知在距离地面11km 以上高空,气温几乎不变.若地面气温为m (℃),设距地面的高度为x (km )处的气温为y (℃)(1)写出距地面的高度在11km 以内的y 与x 之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12km 的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12km 时,飞机外的气温.24.(8分)如图,D ,E 分别是等边三角形ABC 边BC 、AC 上的一点,且BD CE =,连接AD 、BE 相交于点O .(1)求证:ABD BCE ∆∆≌;(2)求AOE ∠的度数.25.(10分)在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为()()()2,4,0,4,2,1--A B C ,DEF ∆与ABC ∆关于x 轴对称,A 与,D B 与,E C 与F 对应.(1)在平面直角坐标系中画出ABC ∆;(2)在平面直角坐标系中作出DEF ∆,并写出D E F 、、的坐标.26.(10分)如图,在ABC ∆中,90ACB ∠=︒,点D 是直线BC 上一点.(1)如图1,若2AC BC ==,点D 是BC 边的中点,点M 是线段AB 上一动点,求CMD ∆周长的最小值.(2)如图2,若4AC =,8BC =,是否存在点D ,使以A ,D ,B 为顶点的三角形是等腰三角形,若存在,请直按写出线段CD 的长度:若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分)1、B 【解题分析】试题解析:∵分式2232x x y-中的x ,y 同时扩大2倍, ∴分子扩大4倍,分母扩大2倍,∴分式的值是原来的2倍.故选B .2、B【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.【题目详解】解:∵直尺对边互相平行,∴∠3=∠1=40°,∴∠2=180°−40°−90°=50°.故选:B .【题目点拨】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.3、A【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案. 【题目详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,∴点(2,-3)关于原点对称的点的坐标是(-2,3).故选A .【题目点拨】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.4、D【分析】根据完全平方公式:()2222a b a ab b ±=±+,即可求出k 的值.【题目详解】解:∵264x kx ++是完全平方式,∴()2222226488168x kx x kx x x x ++=++±±+==∴k= ±16 故选D .【题目点拨】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.5、C【题目详解】根据三角形两边之和大于第三边,两边之差小于第三边,可知第三边应大于5且小于11,故选C6、C【题目详解】分析:先根据题意确定旋转中心,然后根据旋转中心即可确定旋转角的大小.详解:如图,连接A′A,BB′,分别A′A,BB′作的中垂线,相交于点O.显然,旋转角为90°,故选C.点睛:考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.7、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.0000077=7.7×10﹣6,故答案选C.8、D【分析】根据垂直平分线的性质定理的逆定理即可做出选择.【题目详解】∵到一条线段两端点的距离相等的点在这条线段的垂直平分线上,∴到三角形三个顶点距离相等的点是三边的垂直平分线的交点,故选:D.【题目点拨】本题考查了线段垂直平分线,理解线段垂直平分线的性质的逆定理是解答的关键.9、D【解题分析】根据题意和函数图象,可以判断各个选项中的说法是否正确,从而可以解答本题.【题目详解】解:由图可得,注水前乙容器内水的高度是5厘米,故选项A正确,甲容器内的水4分钟全部注入乙容器,故选项B正确,注水2分钟时,甲容器内水的深度是20×=10厘米,乙容器内水的深度是:5+(15﹣5)×=10厘米,故此时甲、乙两个容器中的水的深度相等,故选项C正确,注水1分钟时,甲容器内水的深度是20﹣20×=15厘米,乙容器内水的深度是:5+(15﹣5)×=7.5厘米,此时甲容器的水比乙容器的水深15﹣7.5=7.5厘米,故选项D 错误,故选:D .【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.10、D【分析】根据题目给的四根木条进行分情况讨论,利用三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【题目详解】解:选其中三根为边组成三角形有以下四种选法:12、6、5,12、6、2,12、5、2,6、5、2;能组成三角形的有:6、5、2只有一种.故选:D .【题目点拨】本题主要考查的三角形的形成条件,正确的运用三角形的形成条件,把题目进行分类讨论是解题的关键.二、填空题(每小题3分,共24分)11、<【分析】利用平方法即可比较. 【题目详解】解:∵27)7=,239=,7<9, 73<,故答案为:<.【题目点拨】本题主要考查了无理数的大小比较.掌握平方法比较实数大小的方式是解题关键.12、(2a+b,b+2)【解题分析】答案应为(-9,-3)解决此题,先要根据关于x 轴的对称点为P 1(2a+b ,-a+1)得到P 点的一个坐标,根据关于y 轴对称的点P 2(4-b ,b+2)得到P 点的另一个坐标,由此得到一个方程组,求出a 、b 的值,即可得到P 点的坐标.解:∵若P 关于x 轴的对称点为P 1(2a+b ,-a+1),∴P 点的坐标为(2a+b ,a-1),∵关于y 轴对称的点为P 2(4-b ,b+2),∴P 点的坐标为(b-4,b+2),则2a b b 4{a 1b 2+=--=+, 解得a 2{b 5=-=-. 代入P 点的坐标,可得P 点的坐标为(-9,-3).13、150150 1.22.5x x=+. 【分析】设汽车的平均速度为x 千米/时,则动车的平均速度为2.5x ,根据题意可得:由乘动车到南京比坐汽车就要节省1.2小时,列方程即可.【题目详解】设原来火车的平均速度为x 千米/时,则动车运行后的平均速度为1.8x , 由题意得,150150 1.22.5x x=+. 故答案为:150150 1.22.5x x =+. 【题目点拨】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.14、12°.【解题分析】设∠A=x ,∵AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,∴∠A=∠AP 2P 1=∠AP 13P 14=x .∴∠P 2P 1P 3=∠P 13P 14P 12=2x ,∠P 2P 3P 4=∠P 13P 12P 10=3x ,……,∠P 7P 6P 8=∠P 8P 9P 7=7x .∴∠AP 7P 8=7x ,∠AP 8P 7=7x .在△AP 7P 8中,∠A+∠AP 7P 8+∠AP 8P 7=180°,即x+7x+7x=180°.解得x=12°,即∠A=12°.15、﹣0.5【分析】利用完全平方公式进行因式分解得到2个完全平方式,通过平方的非负性质推导出,n 个非负项相加为0,则每一项为0.【题目详解】解:∵2244220a b a b +-++=,∴()()222110a b -++=,∴21010a b -=⎧⎨+=⎩解得1,12a b ==-, ∴12ab =-. 故答案为:12-. 【题目点拨】利用完全平方公式因式分解,通过平方非负的性质为本题的关键.16、23a b【分析】同底数幂相乘,底数不变,指数相加【题目详解】原式=215253232322(2)(2)(2)(32)m n m n m n a b ⨯=⨯=⨯=.故答案为23a b考点:同底数幂的计算17、1【分析】根据90ADC ∠=︒和45ABC ∠=︒得出ABD △为等腰直角三角形,从而有BD AD =,通过等量代换得出∠=∠EBC CAD ,然后利用ASA 可证BDF ADC ≅,则有DF CD =.【题目详解】AD BC ⊥90ADB ADC ∴∠=∠=︒45ABC ∠=︒∴ABD △为等腰直角三角形BD AD ∴=BE AC ⊥90BEC ∴∠=︒90EBC C ∴∠+∠=︒90CAD C ∠+∠=︒EBC CAD ∠∠∴=在BDF 和ADC 中,EBC CAD BD ADBDA ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩()BDF ADC ASA ∴≅4DF CD ∴==故答案为:1.【题目点拨】本题主要考查等腰直角三角形的性质,全等三角形的判定及性质,掌握全等三角形的判定方法及性质是解题的关键. 18、2 【分析】先根据平均数的公式121()n x x x x n =+++ 求出x 的值,然后利用方差的公式2222121[()()()]n s x x x x x x n=-+-++- 计算即可. 【题目详解】∵3,4,x ,6,7的平均数为5,∴346755x ++++= 解得5x =2222221[(35)(45)(55)(65)(75)]25s ∴=⨯-+-+-+-+-= 故答案为:2【题目点拨】本题主要考查平均数与方差,掌握平均数与方差的求法是解题的关键.三、解答题(共66分)19、(1)14%;(2)90分,85分;(3)420【分析】(1)利用60分的百分比a 等于1减去其他部分的百分比即可得到;(2)先计算得出调查的总人数,找到这组数据从低到高排列的第25、26个得分,即可即可得到中位数; (3)用600乘以80分及以上的百分比即可得到答案.【题目详解】(1)120%30%20%16%14%a =﹣﹣﹣﹣=;(2)①问卷得分的众数是90分,②问卷调查的总人数为: 714%50÷=(人),第25、26个人的得分分别为80分、90分,问卷得分的中位数是8090852+=(分); (3)600(20%30%20%)⨯++=6000.7420⨯=(人)答:估计问卷得分在80分以上(含80分)的学生约有420人.【题目点拨】此题考查数据的整理计算,能正确计算部分的百分比,求数据的总数,中位数,利用样本的数据计算总体的对应数据.20、要完成这块绿化工程,预计花费75600元.【分析】设小长方形的长为x 米,宽为y 米,根据大长方形周长为76米,小长方形宽的5倍等于长的2倍,据此列方程组求解,然后求出面积,最终求得花费.【题目详解】设小长方形的长为x 米,宽为y 米,由题意得,522(22)76y x x x y =⎧⎨++=⎩, 解得:104x y =⎧⎨=⎩, 则大长方形的长为20米,宽为18米,面积为:20×18=360平方米,预计花费为:210×360=75600(元),答:要完成这块绿化工程,预计花费75600元.【题目点拨】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,根据图形,设出未知数,找出合适的等量关系,列方程组求解.21、a -3当a =1时,原式=-2【分析】先将分式进行约分,再将除法转化为乘法进行约分,代值时,a 的取值不能使原式的分母,除式为0.【题目详解】解:原式=(2)(2)(2)(2)a a a a --+-÷2(2)a a a -+-3 =22a a -+⨯(2)2a a a +--3 =a -3当a =1时,原式=1-3=-2.【题目点拨】本题考查了分式的化简求值.关键是根据分式混合运算的顺序解题,代值时,字母的取值不能使分母,除式为0.22、(1)乙;甲;乙槽中圆柱形铁块的高度是14厘米;(2)y 甲=-2x+12,y 乙=3x+2;(3)注水2分钟;(4)84cm 3【分析】(1)根据题目中甲槽向乙槽注水可以得到折线ABC 是乙槽中水的深度与注水时间之间的关系,点B 表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平;(2)根据题意分别求出两个水槽中y 与x 的函数关系式即可;(3)根据(2)中y 与x 的函数关系式,令y 相等即可得到水位相等的时间;(4)用水槽的体积减去水槽中水的体积即可得到铁块的体积;【题目详解】解:(1)由题意可得:∵乙槽中含有铁块,∴乙槽中水深不是匀速增长,∴折线ABC 表示乙槽中水深与注水时间的关系,线段DE 表示甲槽中水深与注水时间的关系,由点B 的坐标可得:点B 的纵坐标表示的实际意义是:乙槽中圆柱形铁块的高度是14厘米;故答案为:乙;甲;乙槽中圆柱形铁块的高度是14厘米;(2)设线段AB 、DE 的解析式分别为:y 甲=k 1x+b 1,y 乙=k 2x+b 2,∵AB 经过点(0,2)和(4,14),DE 经过(0,12)和(6,0),∴1112414b k b =⎧⎨+=⎩, 解得:1132k b =⎧⎨=⎩, 2221260b k b =⎧⎨+=⎩, 解得:22212k b =-⎧⎨=⎩, ∴当04x ≤≤时, y 甲=-2x+12,y 乙=3x+2;(3)由(2)可知:令y 甲=y 乙,即3x+2=-2x+12,解得x=2,∴当2分钟时两个水槽水面一样高.(4)由图象知:当水槽中没有没过铁块时4分钟水面上升了12cm ,即1分钟上升3cm ,当水面没过铁块时,2分钟上升了5cm ,即1分钟上升2.5cm ,设铁块的底面积为acm 2,则乙水槽中不放铁块的体积为:2.5×36cm 3, 放了铁块的体积为3×(36-a )cm 3,∴1×3×(36-a )=1×2.5×36, 解得a=6,∴铁块的体积为:6×14=84(cm 3).【题目点拨】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,解题的关键是理解题意,学会构建方程或方程组解决问题.23、 (1)y =m -6x ;(2)当时飞机距地面12km 时,飞机外的气温为-50℃【分析】(1)根据从地面向上11km 以内,每升高1km ,气温降低6℃即可写出函数表达式;(2)将x =7,y =-26代入(1)中的解析式可求得当时地面的气温;根据地面气温以及飞机的高度利用(1)中的解析式即可求得飞机距离地面12km 时,飞机外的气温.【题目详解】(1) ∵从地面向上11km 以内,每升高1km ,气温降低6℃,地面气温为m(℃),距地面的高度为x(km)处的气温为y(℃),∴y 与x 之间的函数表达式为:y =m -6x(0≤x ≤11);(2)将x =7,y =-26代入y =m -6x ,得-26=m -42,∴m =16,∴当时地面气温为16℃;∵x =12>11,∴y =16-6×11=-50(℃),假如当时飞机距地面12km 时,飞机外的气温为-50℃.【题目点拨】本题考查了一次函数的应用,弄清题意,正确分析各量间的关系是解题的关键.24、(1)见解析;(2)60AOE =︒∠【分析】(1)根据等边三角形的性质,三条边都相等、三个内角都是60︒,即可根据边角边定理判定出ABD BCE ∆∆≌. (2)根据全等三角形的性质、三角形的外角定理进行转化即可得出AOE ∠的度数.【题目详解】(1)证明:∵ABC ∆是等边三角形∴AB BC =,ABC C ∠=∠在ABD ∆和BCE ∆中AB BC ABD C BD CE =⎧⎪∠=∠⎨⎪=⎩∴()ABD BCE SAS ∆∆≌(2)解:∵ABD BCE ∆∆≌∴CBE BAD ∠=∠∵60CBE ABE ABC ∠+∠=∠=︒∴60AOE BAD ABE ∠=∠+∠=︒【题目点拨】本题考查了等边三角形的性质、全等三角形的判定以及性质、三角形的外角定理等知识点,较为基础.25、(1)详见解析;(2)图详见解详, ()()()2,4,0,4,2,1---D E F【分析】(1)根据三点的坐标,在直角坐标系中分别标出位置即可;(2)关于x 轴对称的点的坐标,横坐标不变,纵坐标互为相反数,从而可得出D 、E 、F 的坐标.【题目详解】(1)如图所示:(2)如图所示:()()()2,4,0,4,2,1---D E F【题目点拨】考查了坐标与图形性质、轴对称作图,解答本题的关键是正确的找出三点的位置,另外要掌握关于x 轴对称的点的坐标的特点.26、(1)15+;(2)存在,CD =1或8或58或458.【分析】(1)本小题是典型的“将军饮马”问题,只要作点C 关于直线AB 的对称点E ,连接BE 、DE ,DE 交AB 于点M ,如图1,则此时CMD ∆的周长最小,且最小值就是CD+DE 的长,由于CD 易求,故只要计算DE 的长即可,由轴对称的性质和等腰直角三角形的性质可得BE=BC =2,∠DBE =90°,然后根据勾股定理即可求出DE ,问题即得解决;(2)由于点D 是直线BC 上一点,所以需分三种情况讨论:①当AB=AD 时,如图4,根据等腰三角形的性质求解即可;②当BD=BA 时,如图5,根据勾股定理和等腰三角形的定义求解;③当DA=DB 时,如图6,设CD =x ,然后在直角△ACD 中根据勾股定理求解即可.【题目详解】解:(1)作点C 关于直线AB 的对称点E ,连接BE 、DE ,DE 交AB 于点M ,连接CM ,如图1,则此时CMD ∆的周长最小.∵90ACB ∠=︒,2AC BC ==,点D 是BC 边的中点,∴∠CBA =45°,BD=CD =1,∵点C 、E 关于直线AB 对称,∴BE=BC =2,∠EBA =∠CBA =45°,∴∠DBE =90°, ∴2222215DE BE BD =+=+=.∴CMD ∆的周长的最小值=CD+DE =15+;(2)由于点D 是直线BC 上一点,所以需分三种情况讨论:①当AB=AD 时,如图4,此时CD=CB =8;②当BD=BA 时,如图5,在直线BC 上存在两点符合题意,即D 1、D 2,∵22224845AB AC BC =+=+=,∴1458CD =-,2458CD =+;③当DA=DB 时,如图6,此时点D 为线段AB 的垂直平分线与直线BC 的交点,设CD =x ,则BD=AD =8-x ,在直角△ACD 中,根据勾股定理,得:()22248x x +=-,解得:x =1,即CD =1.综上,在直线BC上存在点D,使以A,D,B为顶点的三角形是等腰三角形,且CD=1或8或458或58.【题目点拨】本题考查了等腰直角三角形的性质、两线段之和最小、等腰三角形的性质和勾股定理等知识,属于常考题型,正确分类、熟练掌握上述基本知识是解题的关键.。

山东省临沂市兰陵县2022-2023学年八年级数学第一学期期末教学质量检测模拟试题含解析

山东省临沂市兰陵县2022-2023学年八年级数学第一学期期末教学质量检测模拟试题含解析

2022-2023学年八上数学期末模拟试卷考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每题4分,共48分)1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,则可列方程组为( )A .100131003x y x y +=⎧⎪⎨+=⎪⎩B .100131003x y x y +=⎧⎪⎨+=⎪⎩C .1003100x y x y +=⎧⎨+=⎩D .1003100x y x y +=⎧⎨+=⎩2.如图,∠AOB =150°,OC 平分∠AOB ,P 为OC 上一点,PD ∥OA 交OB 于点D ,PE ⊥OA 于点E .若OD =4,则PE 的长为( )A .2B .2.5C .3D .43.如图,将一块含有30角的直角三角尺的两个顶点放在长方形直尺的一组对边上,如果268∠=︒,那么1∠的度数为( )A .38︒B .35︒C .34︒D .304.如图钢架中,∠A=a ,焊上等长的钢条P 1P 2,P 2P 3,P 3P 4,P 4P 5来加固钢架,若P 1A=P 1P 2,∠P 5P 4B=95°,则a 等于( )A.18°B.23.75°C.19°D.22.5°5.如图,在△ABC中,AB=AC,以B为圆心,BC长为半径画弧,交AC于点D,则下列结论一定正确的是()A.AD=DC B.AD=BD C.∠DBC=∠A D.∠DBC=∠ABD6.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是( )A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC⋅AH D.AB=AD7.在投掷一枚硬币100次的试验中,“正面朝下”的频数45,则“正面朝下”的频率为( )A.0.45B.0.55C.45D.558.下列因式分解结果正确的有( )①32-(-1)x x x x =;②2-9(3)(-3)a a a =+;③2224(2)x x x ++=+;④322-412-(4-12)m m m m += A .1个B .2个C .3个D .4个9.等腰三角形是轴对称图形,它的对称轴是( ) A .中线 B .底边上的中线C .中线所在的直线D .底边上的中线所在的直线10.给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ; ②AB=DE ,∠B=∠E .BC=EF ; ③∠B=∠E ,AC =DF ,∠C=∠F ; ④AB=DE ,AC=DF ,∠B=∠E . 其中,能使△ABC ≌△DEF 的条件共有( ) A .1组B .2组C .3组D .4组11.下列计算正确的是( ) A .339x x x = B .224x x x +=C .()()257xx x--= D .632x x x ÷=12.如图,观察图中的尺规作图痕迹,下列说法错误的是( )A .DAE EAC ∠=∠B .C EAC ∠=∠ C .//AE BCD .DAE B ∠=∠二、填空题(每题4分,共24分)13.函数x 1的自变量x 的取值范围是 .14.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________ 15.一粒大米的质量约为0.000021千克,将0.000021这个数用科学记数法表示为____________16.如图,已知一次函数()0y ax b a =+≠和()0y kx k =≠的图象交于点P ,则二元一次方程组220y ax by kx --=⎧⎨--=⎩的解是 _______.17.比较大小23______5(填“>”或“<”) . 18.点P (3,-4)到 x 轴的距离是_____________. 三、解答题(共78分) 19.(8分)解方程: (1)4x 2=25 (2)(x ﹣2)3+27=020.(8分)小明在学了尺规作图后,通过“三弧法”作了一个ACD △,其作法步骤是: ①作线段AB ,分别以,A B 为圆心,取AB 长为半径画弧,两弧的交点为C ; ②以B 为圆心,AB 长为半径画弧交AB 的延长线于点D ; ③连结,,AC BC CD .画完后小明说他画的ACD △的是直角三角形,你认同他的说法吗,请说明理由.21.(8分)小慧根据学习函数的经验,对函数11y x =-+图像与性质进行了探究,下面是小慧的探究过程,请补充完整:(1)若()8,8A ,(),8B m 为该函数图像上不同的两点,则m = ,该函数的最小值为 .(2)请在坐标系中画出直线1132y x =+与函数11y x =-+的图像并写出当1y y ≤时x 的取值范围是 .22.(10分)一辆汽车开往距离出发地300km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.2倍匀速行驶,并比原计划提前半小时到达目的地.求汽车前一小时的行驶速度. 23.(10分)计算: (1231(2)510683-- (33224332⎛÷ ⎝a ab a b bb 24.(10分)新华中学暑假要进行全面维修,有甲、乙两个工程队共同完成,甲队单独完成这项工程所需天数是乙队单独完成所需天数的23,若由甲队先做10天,剩下的工程再由甲、乙两队合作,再做30天可以完成. (1)求甲、乙两队单独完成这项工程各需多少秀?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,若由甲、乙两队合作,则工程预算的施工费用50万元是否够用?若不够用,需追加多少万元?25.(12分)(1)化简 22221244a b a b a b a ab b ---÷+++ (2)解方程21333x x x--=-- (3)分解因式 228168ax axy ay -+-26.如图,ABC ∆三个顶点的坐标分别为()1,1A 、()4,2B 、()3,4C .(1)若111A B C ∆与ABC ∆关于y 轴成轴对称,则111A B C ∆三个顶点坐标分别为1A _________,1B ____________,1C ____________;(2)若P 为x 轴上一点,则PA PB +的最小值为____________; (3)计算ABC ∆的面积.参考答案一、选择题(每题4分,共48分) 1、B【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可. 【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:B . 【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组. 2、A【解析】分析:根据平行线的性质,可得∠PDO 的度数,然后过O 作OF⊥PD 于F ,根据平行线的推论和30°角所在的直角三角形的性质可求解. 详解:∵PD ∥OA ,∠AOB=150° ∴∠PDO+∠AOB=180°∴∠PDO=30° 过O 作OF⊥PD 于F ∵OD=4 ∴OF=12×OD=2 ∵PE ⊥OA ∴FO=PE=2. 故选A.点睛:此题主要考查了直角三角形的性质,关键是通过作辅助线,利用平行线的性质和推论求出FO=PE. 3、A【分析】先根据两直线平行内错角相等得出2=3∠∠,再根据外角性质求出1∠即得. 【详解】如下图:∵a ∥b ,268∠=︒ ∴2=3=68︒∠∠ ∵3=1+30︒∠∠ ∴1=330=38-︒︒∠∠故选:A . 【点睛】本题考查了平行线的性质及三角形外角性质,抓住直尺两边平行的性质是解题关键. 4、C【分析】已知∠A=α,根据等腰三角形等边对等角的性质以及三角形一个外角等于与它不相邻的两个内角和求出∠P 5P 4B=5α,且∠P 5P 4B=95°,即可求解. 【详解】∵P 1A=P 1P 2=P 2P 3=P 3P 4=P 4P 5 ∴∠A=∠AP 2P 1=α∴312132122P PP PP P A PP A ααα∠=∠=∠+∠=+=32434213223P P P P P P A PP P ααα∠=∠=∠+∠=+= 53435434234P P P P P P A P P P ααα∠=∠=∠+∠=+=∵∠P 5P 4B=3544595A P P P ααα∠+∠=+==︒ ∴19α=︒ 故选:C 【点睛】本题考查了等腰三角形等边对等角的性质以及三角形一个外角等于与它不相邻的两个内角和. 5、C【分析】根据等腰三角形的性质可得,ACB ABC ACB BDC ∠=∠∠=∠,再结合三角形的内角和定理可得DBC A ∠=∠. 【详解】AB AC =ACB ABC ∴∠=∠∵以B 为圆心,BC 长为半径画弧DB BC ∴=ACB BDC ∴∠=∠ACB BDC ABC ∴∠=∠=∠ 180180ACB ABC A ACB BDC DBC ∠+∠+∠=︒⎧⎨∠+∠+∠=︒⎩DBC A ∴∠=∠故选:C . 【点睛】本题考查了等腰三角形的性质(等边对等角)、三角形的内角和定理,熟记等腰三角形的相关性质是解题关键. 6、A【详解】解:如图连接CD 、BD ,∵CA=CD ,BA=BD ,∴点C 、点B 在线段AD 的垂直平分线上, ∴直线BC 是线段AD 的垂直平分线, 故A 正确.B 、错误.CA 不一定平分∠BDA .C 、错误.应该是S △ABC =12•BC•AH . D 、错误.根据条件AB 不一定等于AD . 故选A . 7、A【分析】根据事件发生的频率的定义,求得事件“正面朝下”的频率即可. 【详解】解:“正面朝下”的频数45,则“正面朝下”的频率为45=0.45100, 故答案为:A . 【点睛】本题考查了频率的定义,解题的关键是正确理解题意,掌握频率的定义以及用频数计算频率的方法. 8、A【分析】根据提公因式法和公式法因式分解即可.【详解】①32(1)(1)(1)x x x x x x x -=-=+-,故①错误; ②()293(3)a a a =+--,故②正确;③2224(2)x x x ++≠+,故③错误; ④3224124(3)m m m m -+=--,故④错误. 综上:因式分解结果正确的有1个 故选A . 【点睛】此题考查的是因式分解,掌握提公因式法和公式法因式分解是解决此题的关键,需要注意的是因式分解要彻底. 9、D【分析】根据等腰三角形的三线合一的性质,可得出答案.【详解】解:等腰三角形的对称轴是顶角的角平分线所在直线,底边高所在的直线,底边中线所在直线, A 、中线,错误; B 、底边上的中线,错误; C 、中线所在的直线,错误; D 、底边上的中线所在的直线,正确. 故选D . 【点睛】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称及对称轴的定义. 10、C【分析】根据全等三角形的判定方法逐一判断即得答案.【详解】解:①若AB=DE ,BC=EF ,AC=DF ,则根据SSS 能使△ABC ≌△DEF ; ②若AB=DE ,∠B=∠E ,BC=EF ,则根据SAS 能使△ABC ≌△DEF ; ③若∠B=∠E ,AC =DF ,∠C=∠F ,则根据AAS 能使△ABC ≌△DEF ; ④若AB=DE ,AC=DF ,∠B=∠E ,满足有两边及其一边的对角对应相等,不能使△ABC ≌△DEF ;综上,能使△ABC ≌△DEF 的条件共有3组. 故选:C . 【点睛】本题考查了全等三角形的判定,属于基础题型,熟练掌握判定三角形全等的方法是解题的关键. 11、C【解析】直接利用同底数幂的乘除法运算法则、合并同类项法则分别化简求出答案. 【详解】A. 336x x x =,故此项错误; B. 2222x x x +=,故此项错误; C. ()()257xx x --=,故此项正确;D. 633x x x ÷=,故此项错误.故选:C【点睛】本题是考查计算能力,主要涉及同底数幂的乘除法运算法则、合并同类项法则,掌握这些运算法则是解题的关键.12、A【分析】由作法知,∠DAE=∠B ,进而根据同位角相等,两直线平行可知AE ∥BC ,再由平行线的性质可得∠C=∠EAC.【详解】由作法知,∠DAE=∠B ,∴AE ∥BC ,∴∠C=∠EAC ,∴B 、C 、D 正确;无法说明A 正确.故选A.【点睛】本题主要考查了尺规作图,平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.二、填空题(每题4分,共24分)13、x≥1【解析】试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1. 考点:二次根式有意义14、1【分析】根据正比例函数的定义,m-1=0,从而求解.【详解】解:根据题意得:m-1=0,解得:m=1,故答案为1.【点睛】本题主要考查了正比例函数的定义,形如y =kx (k 是常数,k ≠0)的函数,其中k 叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.15、-52.110【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数,0.000021=2.1×10-5,故答案为2.1×10-5. 16、40x y =-⎧⎨=⎩【分析】2y ax b --=是()0y ax b a =+≠图像上移2个单位,20y kx --=是()0y kx k =≠图像上移2个单位,所以交点P 也上移两个单位,据此即可求得答案.【详解】解:∵2y ax b --=是()0y ax b a =+≠图像上移2个单位得到, 20y kx --=是()0y kx k =≠图像上移2个单位得到,∴ 交点P (-4,-2),也上移两个单位得到P '(-4,0),∴++2+2y ax b y kx =⎧⎨=⎩的解为40x y =-⎧⎨=⎩, 即方程组220y ax b y kx --=⎧⎨--=⎩ 的解为40x y =-⎧⎨=⎩, 故答案为:40x y =-⎧⎨=⎩. 【点睛】此题主要考查了一次函数与二元一次方程(组):函数图像的交点坐标为两函数解析式组成的方程组的解.17、<【分析】根据算术平方根的意义,将,将5比较.【详解】解:∵又∵1225<,<即5<.故答案为:<.【点睛】本题考查实数的大小比较,掌握算术平方根的意义正确将,将5写成18、4【解析】试题解析:根据点与坐标系的关系知,点到x 轴的距离为点的纵坐标的绝对值, 故点P (3,﹣4)到x 轴的距离是4.三、解答题(共78分)19、(1)x =±52;(2)x =﹣1【分析】(1)由直接开平方法,即可求解;(2)先移项,再开立方,即可求解.【详解】(1)4x 2=25,x 2=254, ∴x =±52;(2)(x ﹣2)3+27=0,(x ﹣2)3=﹣27,x ﹣2=﹣3,∴x =﹣1.【点睛】本题主要考查解方程,掌握开平方和开立方运算,是解题的关键.20、同意,理由见解析【分析】利用等边对等角可得,A ACB D BCD ∠=∠∠=∠,再根据三角形内角和定理即可证明.【详解】同意,理由如下:解:∵AC=BC=BD ,∴,A ACB D BCD ∠=∠∠=∠,∵180A ACD D ∠+∠+∠=︒,∴2()180A ACB BCD D ACB BCD ∠+∠+∠+∠=∠+∠=︒,∴180ACB BCD ∠+∠=︒,∴∠ACD=90° ,即△ACD 是直角三角形.【点睛】本题考查等边对等角,三角形内角和定理.能利用等边对等角把相等的边转化为相等的角是解题关键.21、(1)6-,1;(2)作图见解析,23x ≤或6x ≥ 【分析】(1)将(),8B m 代入函数解析式,即可求得m ,由10x -≥可知1y ≥; (2)采用描点作图画出图象,再根据图象判断直线1132y x =+在函数11y x =-+图象下方时x 的取值范围,即可得到1y y ≤时x 的取值范围.【详解】(1)将(),8B m 代入11y x =-+得:118-+=m ,解得8m =或-6∵()8,8A ,(),8B m 为该函数图像上不同的两点∴6m =-∵10x -≥∴111=-+≥y x 即函数的最小值为1,故答案为:-6,1.(2)当1x ≥时,函数11==-+y x x ,当1x <时,函数11=2=-+-y x x如图所示,设y 1与y 的图像左侧交点为A ,右侧交点为B解方程组1322y x y x ⎧=+⎪⎨⎪=-⎩得2383x y ⎧=-⎪⎪⎨⎪=⎪⎩,则A 点坐标为2833,⎛⎫- ⎪⎝⎭, 解方程组132y x y x⎧=+⎪⎨⎪=⎩得66x y =⎧⎨=⎩,则B 点坐标为()66, 观察图像可得:当直线1132y x =+在函数11y x =-+图象下方时, x 的取值范围为23x ≤-或6x ≥, 所以当1y y ≤时x 的取值范围是23x ≤-或6x ≥. 故答案为:23x ≤-或6x ≥. 【点睛】 本题考查了一次函数的图像与性质,熟练掌握一次函数交点的求法以及一次函数与不等式的关系是解题的关键.22、汽车前一小时的速度是75km/时【分析】设汽车前一小时的行驶速度为km/x 时,则一小时后的速度为1.2xkm/时,根据“原计划所需时间=1小时+提速后所用时间+半小时”的等量关系列方程求解.【详解】解:设汽车前一小时的行驶速度为km/x 时 根据题意得,30030011 1.22x x x -=++ 去分母得,360 1.23000.6x x x =+-+解得75x =经检验75x =是原方程的根答:汽车前一小时的速度是75km/时.【点睛】本题考查分式方程的应用,理解题意找准等量关系是解题关键,注意分式方程结果要检验.23、(1)42-;(2)2-【分析】(1)先进行二次根式的乘除法运算,再将二次根式化简,同时求出立方根,最后合并化简;(2)根据二次根式的性质和乘除法法则计算化简即可.【详解】解:(1)原式22422 ==+=-;(2)原式314()22 23=⨯-⨯==--【点睛】本题考查的知识点是二次根式的混合运算,掌握二次根式混合运算的运算顺序以及运算法则是解此题的关键.24、(1)甲乙两队单独完成这项工程雷要60天和90天;(2)工程預算费用不够,需追要0.4万元.【分析】(1)由题意设乙队单独完成这项工程需要x天,则甲队单独完戒这项工程需要23x天,根据题意列出方程求解即可;(2)由题意设甲乙两队合作完成这项工程需要y天,并根据题意解出y的值,进而进行分析即可.【详解】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完戒这项工程需要2 3 x天,依题意则有111 10301 2233xx x⎛⎫⎪++⨯⨯=⎪⎪⎝⎭解得90x=经检验,90x=是原分式方程的解,且符合题意22=90=6033x⨯(天)故甲乙两队单独完成这项工程雷要60天和90天.(2)设甲乙两队合作完成这项工程需要y天,则111 6090y⎛⎫+= ⎪⎝⎭解得y=36所需费用36(0.840.56)50.4⨯+=(万元)50.450∴>,∴工程預算费用不够,需追要0.4万元.【点睛】本题考查分式方程的应用,根据题意找到合适的等量关系列出方程是解决问题的关键.25、(1)b a b-+;(2)无解;(3)()28a x y -- 【分析】(1)直接根据分式知识化简即可;(2)去分母然后解方程即可;(3)先提公因式,再根据完全平方因式分解即可.【详解】解:(1)()()()2221a b a b a a a b b b --+++-· =21a b a b-++ =()()2a b a b a b+--+ =()()2a b a b a b+-++ =b a b-+; (2)21333x x x -+=-- 2139x x -+=-3x =检验:把x=3代入得:x-3=0,则x=3为方程的增根,故原方程无解;(3)原式=228168ax axy ay -+-=()2282a x xy y--+=()28a x y --.【点睛】 本题是对计算的综合考查,熟练掌握分式化简,分式方程及因式分解是解决本题的关键.26、(1)作图见解析,A 1(-1,1)、B 1(-4,2)、C 1(-3,4);(2)(3)72. 【分析】(1)分别作出点A ,B ,C 关于x 轴的对称点,再首尾顺次连接即可得; (2)作出点A 的对称点,连接A'B ,则A'B 与x 轴的交点即是点P 的位置,则PA+PB 的最小值=A′B ,根据勾股定理即可得到结论;(3)根据三角形的面积公式即可得到结论.【详解】(1)如图所示,△A 1B 1C 1即为所求,由图知,A1的坐标为(-1,1)、B1的坐标为(-4,2)、C1的坐标为(-3,4);(2)如图所示:作出点A的对称点,连接A'B,则A'B与x轴的交点即是点P的位置,则PA+PB的最小值=A′B,∵223332+=∴PA+PB的最小值为32(3)△ABC的面积=1117 333112232222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及利用轴对称性质求最短路径.。

人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)

人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)

2022-2023学年八年级数学上册期末模拟测试题(附答案)一、选择题(共计24分)1.点P(1,2)关于y轴对称点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(﹣1,﹣2)2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、63.如图,点D为△ABC的边BC延长线上一点,关于∠B与∠ACD的大小关系,下列说法正确的是()A.∠B>∠ACD B.∠B=∠ACD C.∠B<∠ACD D.无法确定4.明明在对一组数据:9,1■,25,25,进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.众数B.中位数C.平均数D.方差5.代入法解方程组时,代入正确的是()A.x﹣2﹣x=7B.x﹣2﹣2x=7C.x﹣2+2x=7D.x﹣2+x=7 6.下列计算不正确的是()A.3﹣=2B.×=C.+==3D.÷==27.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头y两,根据题意可列方程组为()A.B.C.D.8.下表中列出的是一个一次函数的自变量x与函数y的几组对应值:x…﹣2﹣11…y…﹣128…若将该一次函数的图象向下平移2个单位,得到一个新一次函数,下列关于新一次函数的说法中,正确的是()A.函数值y随自变量x的增大而减小B.函数图象不经过第四象限C.函数图象经过原点D.当x=2时,y的值为7二、填空题(共计15分)9.请写出一个大于3的无理数.10.命题“同位角相等”是命题(填“真”或“假”).11.甲,乙两人进行射击比赛,每人射击5次,所得平均环数相等,其中甲所得环数的方差为 2.1,乙所得环数分别为:8,7,9,7,9,那么成绩较稳定的是(填“甲”或“乙”).12.如图,点P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,若四边形OMPN是边长为5的正方形,则mn的值为.13.如图,长方体的高为9dm,底面是边长为6dm的正方形,一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为dm.三、解答题(计81分)14.计算:(π﹣3)0﹣×+|﹣1|.15.解方程组:16.如图,求图中x的值.17.若是二元一次方程4x﹣3y=10的一个解,求m的值.18.某校招聘一名数学老师,对应聘者分别进行了教学能力、教研能力和组织能力三项测试,并按教学能力占70%,教研能力占20%,组织能力占10%,计算加权平均数,作为最后评定的总成绩.王伟和李婷都应聘了该岗位,经计算,王伟的最后评定总成绩为87.8分,已知李婷的教学能力、教研能力和组织能力三项成绩依次为88分、84分、86分.若该校要在李婷和王伟两人中录用一人,谁将被录用?19.已知a+b是25的算术平方根,2a﹣b是﹣8的立方根,c是的整数部分,求a+bc的平方根.20.已知:如图:∠BEC=∠B+∠C.求证:AB∥CD.21.2021年12月12日是西安事变85周年纪念日,西安事变及其和平解决在中国社会发展中占有重要的历史地位,为中国社会的发展起到了无可替代的作用.为此,某社区开展了系列纪念活动,如图,有一块三角形空地ABC,社区计划将其布置成展区,△BCD区域摆放花草,阴影部分陈列有关西安事变的历史图片,现测得AB=20米,AC=10米,BD=6米,CD=8米,且∠BDC=90°.(1)求BC的长;(2)求阴影部分的面积.22.为巩固“精准扶贫”成果,市农科院专家指导李大爷种植某种优质水果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的函数图象,其中x(天)表示上市时间,y(千克)表示日销售量.(1)当12≤x≤20时,求日销售量y与上市时间x的函数关系式;(2)求出第15天的日销售量.23.如图,在平面直角坐标系中,已知四边形ABCD的四个顶点都在网格的格点上.(1)在图中画出四边形ABCD关于x轴对称的四边形A'B'C'D';(2)在(1)的条件下,分别写出点A、B、D的对应点A'、B'、D'的坐标.24.某公司对消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回,根据调查问卷,将消费者年收入情况整理后,制成如下表格(被调查的消费者年收入情况):年收入/万元38102050被调查的消费者数/人1005003005050(1)根据表中数据,被调查的消费者平均年收入为多少万元?(2)被调查的消费者年收入的中位数和众数分别是和万元.(3)在平均数、中位数这两个数据中,谁更能反映被调查的消费者的收入水平?请说明理由.25.某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,求初三年级学生可捐助的贫困中小学生人数.26.如图,已知直线AB经过点(1,﹣2),且与x轴交于点A(2,0),与y轴交于点B,作直线AB关于y轴对称的直线BC交x轴于点C,点P为OC的中点.(1)求直线AB的函数表达式和点B的坐标;(2)若经过点P的直线l将△ABC的面积分为1:3的两部分,求所有符合条件的直线l的函数表达式.参考答案一、选择题(共计24分)1.解:∵点P(1,2)关于y轴对称,∴点P(1,2)关于y轴对称的点的坐标是(﹣1,2).故选:A.2.解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠B<∠ACD.故选:C.4.解:这组数据的平均数、方差和中位数都与被涂污数字有关,而这组数据的众数为25,与被涂污数字无关.故选:A.5.解:把②代入①得,x﹣2(1﹣x)=7,去括号得,x﹣2+2x=7.故选:C.6.解:A.3﹣=2,故此选项不合题意;B.×=,故此选项不合题意;C.+无法合并计算,故此选项符合题意;D.÷==2,故此选项不合题意.故选:C.7.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:A.8.解:设原来的一次函数解析式为y=kx+b(k≠0),代入(﹣2,﹣1),(﹣1,2),得,解得,∴原来的一次函数解析式为y=3x+5,将该一次函数图象向下平移2个单位,得到新的一次函数的解析式为y=3x+3,∵k=3>0,∴函数值y随自变量x的增大而增大,故A选项不符合题意;∵函数y=3x+3经过第一、二、三象限,不经过第四象限,故B选项符合题意;∵函数y=3x+3不是正比例函数,不经过原点,故C选项不符合题意;当x=2时,y=3×2+3=9,故D选项不符合题意,故选:B.二、填空题(共计15分)9.解:由题意可得,>3,并且是无理数.故答案为:.10.解:两直线平行,同位角相等,命题“同位角相等”是假命题,因为没有说明前提条件.故答案为:假.11.解:∵乙的平均环数为=8,∴乙射击成绩的方差为×[2×(7﹣8)2+(8﹣8)2+2×(9﹣8)2]=0.8,∵甲所得环数的方差为2.1,0.8<2.1,∴成绩比较稳定的是乙,故答案为:乙.12.解:∵P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,∴PN=m+n,PM=4m﹣n,∵四边形OMPN是边长为5的正方形,∴PM=PN=5,,∴,则mn的值为6.故答案为:6.13.解:如图,(1)AB===3;(2)AB==15,由于15<3;则蚂蚁爬行的最短路程为15dm.故答案为:15.三、解答题(共计81分)14.解:(π﹣3)0﹣×+|﹣1|=1﹣3+﹣1=﹣2.15.解:①×2得:4x+6y=16③,③﹣②得:11y=22,解得:y=2,把y=2代入②,得4x﹣10=﹣6,解得:x=1,故原方程组的解为:.16.解:由题意得:x°+(x+10)°=(x+70)°,解得:x=60.即x的值为60.17.解:把代入方程4x﹣3y=10,可得:12m+4﹣6m+6=10,解得:m=0.18.解:李婷的最后评定总成绩为:88×70%+84×20%+86×10%=87(分),∵王伟的最后评定总成绩为87.8分,87<87.8,∴王伟将被录用.19.解:∵a+b是25的算术平方根,2a﹣b是﹣8的立方根,∴,解得:,∵4<5<9,∴2<<3,∴的整数部分是2,∴c=2,∴a+bc=1+4×2=1+8=9,∴a+bc的平方根为±3.20.证明:如图,过点E作EM∥AB,∴∠B=∠BEM,∵∠BEC=∠B+∠C,∠BEC=∠BEM+∠CEM,∴∠C=∠CEM,∴EM∥CD,∴AB∥CD.21.解:(1)∵BD=6米,CD=8米,∠BDC=90°,∴BC===10(米),答:BC的长为10米;(2)∵AB=20米,AC=10米,BC=10米,∴AB2+BC2=202+102=(10)2=AC2,∴△ABC是直角三角形,且∠ABC=90,∴S阴影=S△ABC﹣S△BCD=AB•BC﹣BD•CD=×20×10﹣×6×8=76(平方米).22.解:(1)当12≤x≤20时,设y与x的函数关系式为y=kx+b,由题意得:,解得:,∴当12≤x≤20时,y与x的函数关系式为:y=﹣120x+2 400;(2)当x=15时,y=﹣120×15+2 400=600,所以第15天的日销售量为600千克.23.解:(1)如图所示:四边形A'B'C'D'即为所求;(2)点A、B、D的对应点:A'(﹣5,﹣6),B'(﹣5,﹣2),D'(3,﹣7).24.解:(1)==10.8(万元),答:被调查的消费者平均年收入约为10.8万元;(2)这组数据从小到大排列后,处在中间位置的两个数都是8万元,因此中位数为8万元;这组数据中出现次数最多的是8万元,因此众数为8万元;故答案为:8,8;(3)中位数更能反映被调查的消费者的收入水平,理由:虽然平均数,中位数均能反映一组数据的集中程度,但平均数易受极端数值影响,所以中位数更能反映被调查的消费者的收入水平.25.解:(1)依题意得:,解得:.答:a的值为800,b的值为600.(2)设初三年级学生可捐助贫困中学生x人,小学生y人,依题意得:,解得:.答:初三年级学生可捐助贫困中学生4人,小学生7人.26.解:(1)设直线AB的函数表达式为y=kx+b(h≠0).把点(1,﹣2),(2,0)代入得,解得,∴直线AB为y=2x﹣4.当x=0时,y=2x﹣4=﹣4,∴B(0,﹣4).(2)①当直线l经过点B时,如图1.∵直线AB关于y轴对称的直线BC交x轴于点C,∴OA=OC=2,∴C(﹣2,0).∵P为OC的中点,∴P(﹣1,0),∴AP=3CP,∴S△BCP:S△BAP=1:3.设此时直线l的表达式为y=mx+n(m≠0).将点P(﹣1,0)、B(0,﹣4)代入得,解得,∴此时直线l的表达式为y=﹣4x﹣4;②当直线l与AB的交点D在第四象限时,如图2.∵A(2,0),C(﹣2,0),B(0,﹣4),∴AC=4,OB=4,∴S△ABC=AC•OB=×4×4=8.∵直线l将△ABC的面积分为1:3的两部分,∴S△APD=S△ABC=2,∴•AP•|y D|=2,即×3×|y D|=2,解得|y D|=,将y=﹣代入y=2x﹣4,得x=,∴D(,﹣).设此时直线l的函数表达式为y=m2x+n2(m2≠0).将点D(,﹣)、P(﹣1,0)代入得,解得,∴此时直线l的函数表达式为y=﹣.综上所述,所有符合条件的直线l的函数表达式为y=﹣4x﹣4或y=﹣x﹣.。

2022-2023学年人教版八年级数学上册期末模拟测试题含答案

2022-2023学年人教版八年级数学上册期末模拟测试题含答案

2022-2023学年八年级上册期末数学模拟试卷一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x63.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±15.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm6.(3分)下列各式中,正确的是()A.B.C.D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x210.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或711.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a212.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为.14.(3分)计算:=.15.(3分)分解因式:3a3﹣12a=.16.(3分)若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为.17.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 .18.(3分)约分:=.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = °.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 .三、解答题:(本题共14分,第21题9分,第22题5分) 21.(9分)(1)因式分解:3m 2﹣24m +48. (2)计算:. (3)解关于x 的方程:.22.(5分)已知,y =﹣2,求代数式(x +2y )2﹣(x ﹣2y )(x +2y )的值.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F 、C 在BE 上,BF =CE ,AB =DE ,∠B =∠E .求证:∠A =∠D .24.(5分)列方程解应用题2014年11月,APEC (“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC 会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC 会议期间这路公交车每天运行多少车次? 五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.(5分)已知:如图,△ABC ,射线AM 平分∠BAC .(1)尺规作图(不写作法,保留作图痕迹)作BC 的中垂线,与AM 相交于点G ,连接BG 、CG . (2)在(1)的条件下,∠BAC 和∠BGC 的等量关系为 ,证明你的结论.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 ; (2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1= ,x 2= ;(3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D为边BC上一点,并且CD=CA,x=40,y=30时,则AB AC(填“=”或“≠”);(2)如果把(1)中的条件“CD=CA”变为“CD=AB”,且x,y的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.2022-2023学年八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,不合题意,故本选项错误;C、轴对称图形,不合题意,故本选项错误;D、轴对称图形,不合题意,故本选项错误;故选:A.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x6【解答】解:A、2x和5y不是同类项,不能合并,故本选项错误;B、x8÷x2=x6,原式计算错误,故本选项错误;C、(x2y)3=x6y3,计算正确,故本选项正确;D、2x3•x2=2x5,原式计算错误,故本选项错误.故选:C.3.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)【解答】解:∵关于x轴对称的两点的横坐标相等,纵坐标互为相反数∴点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).故选:D.4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±1【解答】解:∵分式的值为0,∴x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故选:C.5.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm【解答】解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,∵AC=5cm,△ADC的周长为17cm,∴AD+CD=BC=17﹣5=12(cm).故选:C.6.(3分)下列各式中,正确的是()A.B.C.D.【解答】解:A分母中的a没除以b,故A错误;B异分母分式不能直接相加,故B错误;C分式的分子分母没同乘或除以同一个不为零整式,故C错误;D分式的分子分母都乘以(a﹣2),故D正确;故选:D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.【解答】解:设原计划平均每天植树棵x棵,现在每天植树(x+50)棵,依题意得,=.故选:B.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∴∠FEB+∠EFC=360°﹣120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°﹣120°=120°,∵∠1=95°,∴∠2=120°﹣95°=25°,故选:B.9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x2【解答】解:A、不是同类项,不能合并,故选项错误;B、正确;C、(ab3)2=a2b6,故选项错误;D、(y﹣2x)(y+2x)=y2﹣4x2,故选项错误.故选:B.10.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或7【解答】解:①7是腰长时,三角形的三边分别为7、7、3,能组成三角形,所以,第三边为7;②7是底边时,三角形的三边分别为3、3、7,∵3+3=6<7,∴不能组成三角形,综上所述,第三边为7.故选:A.11.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【解答】解:==﹣ab.故选:B.12.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014【解答】解:因为+=+=0,即当x分别取值,n(n为正整数)时,计算所得的代数式的值之和为0;而当x=0时,==﹣1.因此,当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加和﹣1,故选:A.二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为3.【解答】解:x﹣3=0,且x+2≠0,x=3,故答案为:3. 14.(3分)计算:= ﹣1.【解答】解:==﹣1.故答案为:﹣1.15.(3分)分解因式:3a 3﹣12a = 3a (a +2)(a ﹣2) . 【解答】解:3a 3﹣12a =3a (a 2﹣4), =3a (a +2)(a ﹣2).故答案为:3a (a +2)(a ﹣2).16.(3分)若关于x 的二次三项式x 2+kx +b 因式分解为(x ﹣1)(x ﹣3),则k +b 的值为 ﹣1 . 【解答】解:由题意得:x 2+kx +b =(x ﹣1)(x ﹣3)=x 2﹣4x +3, ∴k =﹣4,b =3, 则k +b =﹣4+3=﹣1. 故答案为:﹣117.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 70° .【解答】解:根据三角形内角和可得∠2=180°﹣50°﹣60°=70°, 因为两个全等三角形, 所以∠1=∠2=70°, 故答案为:70°.18.(3分)约分:=. 【解答】解:原式==.故答案为.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = 74 °.【解答】解:∵△ABC ≌△DEF , ∴∠E =∠B =37°, ∵PB =PF ,∴∠PFB =∠B =37°, ∴∠APF =37°+37°=74°, 故答案为:74.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 4 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 S =L ﹣1 .【解答】解:(1)由图形可知当内空格点多边形边上的格点数为10时,此多边形的面积=4个小正方形的面积=4×1=4,(2)当格点为3时,内空格点三边形的面积为=×3﹣1;当格点为4时,内空格点四边形的面积为1=×4﹣1; 当格点为5时,内空格点五边形的面积为=×5﹣1; …依此类推,当内空格点多边形边上的格点数为L ,面积为S =L ﹣1,故答案为:4;S=L﹣1.三、解答题:(本题共14分,第21题9分,第22题5分)21.(9分)(1)因式分解:3m2﹣24m+48.(2)计算:.(3)解关于x的方程:.【解答】解:(1)3m2﹣24m+48,=3(m2﹣8m+16),=3(m﹣4)2;(2)÷•,=••,=;(3)=1+,方程两边都乘(x﹣1)(x+3),得x(x﹣1)=(x﹣1)(x+3)+2(x+3),解得:x=﹣,检验,当x=﹣时,(x﹣1)(x+3)≠0,所以x=﹣是原方程的解,即原方程的解是x=﹣.22.(5分)已知,y=﹣2,求代数式(x+2y)2﹣(x﹣2y)(x+2y)的值.【解答】解:原式=x2+4xy+4y2﹣(x2﹣4y2)=x2+4xy+4y2﹣x2+4y2=4xy+8y2,当x=,y=﹣2时,原式=4××(﹣2)+8×(﹣2)2=﹣4+32=28.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠A=∠D.24.(5分)列方程解应用题2014年11月,APEC(“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC会议期间这路公交车每天运行多少车次?【解答】解:设APEC会议期间这路公交车每天运行x车次,则原来的运行为(x﹣30)车次,由题意得,=,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:APEC会议期间这路公交车每天运行100车次.五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分)25.(5分)已知:如图,△ABC,射线AM平分∠BAC.(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG.(2)在(1)的条件下,∠BAC和∠BGC的等量关系为互补,证明你的结论.【解答】解:(1)如图1;(2)互补.证明:作GD ⊥AB ,GK ⊥AC , ∵AG 为∠BAC 的平分线, ∴GD =GK ,∵EF 为BC 的垂直平分线, ∴GB =GC ,在△GBD 与△GCK 中,,∴△GBD ≌△GCK (HL ), ∴∠BGC =∠DGK , ∵∠DGK +∠BAC =180°, ∴∠BGC +∠BAC =180°, ∴∠BAC 和∠BGC 互补. 故答案为:互补.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 4 ;(2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1=,x 2= 2 ; (3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.【解答】解:(1)方程x +=6变形得:x +=2+4,根据题意得:x 1=2,x 2=4, 则方程较大的一个解为4;(2)方程变形得:x +=+2,由题中的结论得:方程有一根为2,另一根为, 则x 1=,x 2=2;故答案为:(1)4;(2);2(3)方程整理得:2x ﹣1+=n ﹣1+n +3,得2x ﹣1=n ﹣1或2x ﹣1=n +3,可得x 1=,x 2=,则原式==.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D 为边BC 上一点,并且CD =CA ,x =40,y =30时,则AB = AC (填“=”或“≠”); (2)如果把(1)中的条件“CD =CA ”变为“CD =AB ”,且x ,y 的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.【解答】解:(1)∵CD =CA ,∠ABC =x °=40°,∠BAD =y °=30°,∴∠ADC=∠ABC+∠BAD=70°,∵CD=CA,∴∠CAD=∠CDA=70°,∴∠C=40°,∴∠C=∠ABC,∴AB=AC;故答案为:=;(2)成立.理由:在BC上取点E,使BE=CD=AB,连接AE,则∠AEB=∠EAB=(180°﹣40°)=70°,∴∠AEB=∠ADE=70°,∴AD=AE,∴∠ADB=∠AEC=180°﹣70°=110°,∵BD=BE﹣DE,CE=CD﹣DE,∴BD=EC,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴AB=AC.∴AB=AC=CD,由(1)可知,3x+2y=180.。

2022-2023学年八年级(上)期末数学模拟试卷(一)

2022-2023学年八年级(上)期末数学模拟试卷(一)

2022-2023学年八年级(上)期末数学模拟试卷(一)一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾管理,维护公共环境和节约资源是全社会共同的责任.下列四个垃圾分类标识中的图形是轴对称图形的是()A.B.C.D.2.(3分)下列长度的三条线段(单位:cm),能组成三角形的是()A.4,5,9B.8,8,15C.5,5,11D.3,6,9 3.(3分)下列运算正确的是()A.(m+1)(m﹣1)=m2﹣1B.(﹣3a2)2=6a4C.a2⋅a3=a6D.4.(3分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8 5.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.76.(3分)如图,已知AB=AC,添加下列条件仍不能使△ABD≌△ACD的是()A.∠B=∠C=90°B.AD平分∠BAC C.AD平分∠BDCD.BD=CD7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 8.(3分)如图,把一张长方形纸片沿对角线BD折叠,∠CBD=25°,则∠ABF 的度数是()A.25°B.30°C.40°D.50°9.(3分)在△ABC中,AC<BC,用尺规作图的方法在BC上确定一点D,使AD+CD=BC.根据作图痕迹判断,符合要求的是()A.B.C.D.10.(3分)如图,在△ABC中,∠ACB=90°,AC>BC,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多可画()A.9个B.7个C.6个D.5个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.14题图11.(4分)要使分式有意义,则x的取值范围为.12.(4分)分解因式:3y2﹣12=.13.(4分)计算:=.14.(4分)如图是两个边长分别为2a,a的正方形,则△ABC的面积是.15.(4分)全国最长、珠海最美的板障山慢行隧道自开通以来迅速成为网红打卡点,隧道全长约为1200米,小海慢跑的速度是a米/秒(a>0),小东骑车的速度是小海慢跑速度的3倍,两人匀速通过隧道,那么小海花的时间比小东花的时间多秒(用含字母a的式子表示).16.(4分)如图,Rt△ABC中,∠ABC=90°,AB=6,BC=8,BD为△ABC 的角平分线,则点D到边AB的距离为.17.(4分)对于两个不相等的实数a,b,我们规定符号Min{a,b}表示a,b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min(其中x≠0)的解为.三.解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)化简:2x(x﹣3y)+(5xy2﹣2x2y)÷y.19.(6分)如图,在△ABC中,AN是∠BAC的角平分线,∠B=50°,∠ANC =80°.求∠C的度数.20.(6分)先化简再求值:,其中x=1.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴对称的图形△A1B1C1,并写出点A1的坐标;(2)求△ABC的面积;(3)在x轴上有一点P使得P A+PB的值最小,则点P的坐标是.22.(8分)为了帮助湖北省武汉市防控新冠肺炎,某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物资共2000件送往灾区,已知每件甲种物资的价格比每件乙种物资的价格贵10元,用350元购买甲种物资的件数恰好与用300元购买乙种物资的件数相同.(1)求甲、乙两种救灾物资每件的价格各是多少元?(2)经调查,灾区对甲种物资的需求量不少于乙种物资的1.5倍,该爱心组织共需要购买2000件物资,请问乙种物资最多能购买多少件?23.(8分)如图,△ABC,△ADE均是等边三角形,点B,D,E三点共线,连接CD,CE,且CD⊥BE.(1)求证:BD=CE;(2)若线段DE=3,求线段BD的长.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.25.(10分)如图,在平面直角坐标系中,△ABC的顶点A在y轴上,顶点C 在x轴上,∠BAC=90°,AB=AC,点E为边AC上一点,连接BE交y轴于点F,交x轴于点G,作CD⊥BE交BE延长线于点D,且CD=BF,连接AD,CF.(1)求证:△ABF≌△ACD;(2)若∠ACF=2∠CBF,求证:∠ACO=∠FCO;(3)在(2)的条件下,若点A的坐标为(0,2),求OC的长.2022-2023学年八年级(上)期末数学模拟试卷(一)参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾管理,维护公共环境和节约资源是全社会共同的责任.下列四个垃圾分类标识中的图形是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.2.(3分)下列长度的三条线段(单位:cm),能组成三角形的是()A.4,5,9B.8,8,15C.5,5,11D.3,6,9【解答】解:A、4+5=9,不能构成三角形;B、8+8>15,能构成三角形;C、5+5<11,不能够组成三角形;D、3+6=9,不能构成三角形.故选:B.3.(3分)下列运算正确的是()A.(m+1)(m﹣1)=m2﹣1B.(﹣3a2)2=6a4C.a2⋅a3=a6D.【解答】解:(m+1)(m﹣1)=m2﹣1,故选项A正确;(﹣3a2)2=9a4,故选项B错误;a2⋅a3=a5,故选项C错误;2ab•(﹣ab)=﹣a2b2,故选项D错误;故选:A.4.(3分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8【解答】解:数0.00 000 0007用科学记数法表示为7×10﹣9.故选:A.5.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.6.(3分)如图,已知AB=AC,添加下列条件仍不能使△ABD≌△ACD的是()A.∠B=∠C=90°B.AD平分∠BAC C.AD平分∠BDCD.BD=CD【解答】解:A、符合HL定理,能推出△ABD≌△ACD,故本选项错误;B、符合SAS定理,能推出△ABD≌△ACD,故本选项错误;C、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;D、符合SSS定理,能推出△ABD≌△ACD,故本选项错误;故选:C.7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.8.(3分)如图,把一张长方形纸片沿对角线BD折叠,∠CBD=25°,则∠ABF 的度数是()A.25°B.30°C.40°D.50°【解答】解:由折叠可得:∠CBD=∠EBD=25°,则∠EBC=∠CBD+∠EBD=50°.∵四边形ABCD是长方形,∴∠ABC=90°,∴∠ABF=90°﹣∠EBC=40°.故选:C.9.(3分)在△ABC中,AC<BC,用尺规作图的方法在BC上确定一点D,使AD+CD=BC.根据作图痕迹判断,符合要求的是()A.B.C.D.【解答】解:A、BD=BA,不能得到AD+CD=BC,所以A选项错误;B、DA=DC,AD+CD=2CD,所以B选项错误;C、CD=CA,不能得到AD+CD=BC,所以C选项错误;D、BD=AD,则AD+CD=BD+CD=BC,所以D选项正确.故选:D.10.(3分)如图,在△ABC中,∠ACB=90°,AC>BC,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多可画()A.9个B.7个C.6个D.5个【解答】解:如图:①以B为圆心,BC长为半径画弧,交AB于点D,△BCD 就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE 就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,交AB 于H,△BCF,△BCH就是等腰三角形;④分别作AB,BC,AC的垂直平分线,也可以得到三个分别以AB,BC,AC为底的等腰三角形.所以一共有1+1+2+3=7(个)三角形.故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.14题图11.(4分)要使分式有意义,则x的取值范围为x≠﹣2.【解答】解:由题意可知:x+2≠0,∴x≠﹣2故答案为:x≠﹣212.(4分)分解因式:3y2﹣12=3(y+2)(y﹣2).【解答】解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).13.(4分)计算:=4.【解答】解:原式=3+1=4,故答案为:4.14.(4分)如图是两个边长分别为2a,a的正方形,则△ABC的面积是.【解答】解:∵两个正方形的边长分别为2a,a,∴△ABC的高为:2a+a,底边为:BC=a,∴△ABC的面积是:(2a+a)•a=a2.故答案为:a2.15.(4分)全国最长、珠海最美的板障山慢行隧道自开通以来迅速成为网红打卡点,隧道全长约为1200米,小海慢跑的速度是a米/秒(a>0),小东骑车的速度是小海慢跑速度的3倍,两人匀速通过隧道,那么小海花的时间比小东花的时间多秒(用含字母a的式子表示).【解答】解:小海慢跑的速度是a米/秒(a>0),则小东骑车的速度是3a米/秒,小海花的时间比小东花的时间多:﹣==(秒); 故答案为:. 16.(4分)如图,Rt △ABC 中,∠ABC =90°,AB =6,BC =8,BD 为△ABC 的角平分线,则点D 到边AB 的距离为 .【解答】解:过D 作DE ⊥AB 于E ,DF ⊥BC 于F ,∵BD 为△ABC 的角平分线,∴DE =DF ,设DE =DF =R ,∵∠ABC =90°,AB =6,BC =8,∴S △ABC ===24, ∴S △ABD +S △DBC =24,∵AB =6,BC =8,∴R +=24, 解得:R =,即DF =,∴点D 到边AB 的距离是, 故答案为:.17.(4分)对于两个不相等的实数a ,b ,我们规定符号Min {a ,b }表示a ,b 中的较小的值,如Min {2,4}=2,按照这个规定,方程Min(其中x ≠0)的解为 4 .【解答】解:(1)x>0时,∵Min(其中x≠0),∴﹣=﹣1,∴=1,解得:x=4.(2)x<0时,∵Min(其中x≠0),∴=﹣1,∴=1,解得:x=2,∵2>0,∴x=2不符合题意.综上,可得:方程Min(其中x≠0)的解为4.故答案为:4.三.解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)化简:2x(x﹣3y)+(5xy2﹣2x2y)÷y.【解答】解:原式=2x2﹣6xy+5xy﹣2x2=﹣xy.19.(6分)如图,在△ABC中,AN是∠BAC的角平分线,∠B=50°,∠ANC =80°.求∠C的度数.【解答】解:∵∠ANC=∠B+∠BAN,∴∠BAN=∠ANC﹣∠B=80°﹣50°=30°,∵AN是∠BAC角平分线,∴∠BAC=2∠BAN=60°,在△ABC中,∠C=180°﹣∠B﹣∠BAC=70°.20.(6分)先化简再求值:,其中x=1.【解答】解:原式=(﹣)×=×=,当x=1时,原式==﹣.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴对称的图形△A1B1C1,并写出点A1的坐标;(2)求△ABC的面积;(3)在x轴上有一点P使得P A+PB的值最小,则点P的坐标是(2,0).【解答】解:(1)如图所示,△A1B1C1即为所求,点A1(﹣1,1).(2)S=3×3﹣×1×2﹣×1×3﹣×2×3=.△ABC(3)如图,点P即为所求作,P(2,0).22.(8分)为了帮助湖北省武汉市防控新冠肺炎,某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物资共2000件送往灾区,已知每件甲种物资的价格比每件乙种物资的价格贵10元,用350元购买甲种物资的件数恰好与用300元购买乙种物资的件数相同.(1)求甲、乙两种救灾物资每件的价格各是多少元?(2)经调查,灾区对甲种物资的需求量不少于乙种物资的1.5倍,该爱心组织共需要购买2000件物资,请问乙种物资最多能购买多少件?【解答】解(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,∴x+10=60+10=70,答:甲、乙两种救灾物资每件的价格分别为70元、60元;(2)设购买乙种物品件数为m件,根据题意得:2000﹣m≥1.5m,解得:m≤800,∴乙种物资最多能购买800件.答:乙种物资最多能购买800件.23.(8分)如图,△ABC,△ADE均是等边三角形,点B,D,E三点共线,连接CD,CE,且CD⊥BE.(1)求证:BD=CE;(2)若线段DE=3,求线段BD的长.【解答】证明:(1)∵△ABC、△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)∵△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=120°,∵△ABD≌△ACE,∴∠AEC=∠ADB=120°,∴∠CED=∠AEC﹣∠AED=60°,∵CD⊥BE,∴∠CDE=90°,∴∠DCE=30°,∴BD=CE=2DE=6.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=﹣1,n=﹣6;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.【解答】解:(1)将a=﹣3,b=2代入(x+a)(x+b)得:(x+a)(x+b)=(x﹣3)(x+2)=x2﹣x﹣6=x2+mx+n,∴m=﹣1,n=﹣6.故答案为:﹣1,﹣6.(2)∵(x+a)(x+b)=x2+(a+b)x+ab=x2+mx+n.∴,∴+====﹣4.(3)∵a+b=m,ab=n=﹣1,,∴,∴,∴,∴m2﹣2×(﹣1)+4m+2=0,∴m2+4m+4=0,∴(m+2)2=0,∴m=﹣2.25.(10分)如图,在平面直角坐标系中,△ABC的顶点A在y轴上,顶点C 在x轴上,∠BAC=90°,AB=AC,点E为边AC上一点,连接BE交y轴于点F,交x轴于点G,作CD⊥BE交BE延长线于点D,且CD=BF,连接AD,CF.(1)求证:△ABF≌△ACD;(2)若∠ACF=2∠CBF,求证:∠ACO=∠FCO;(3)在(2)的条件下,若点A的坐标为(0,2),求OC的长.【解答】解(1)证明:∵CD⊥BE,∴∠CDE=∠BAC=90°,∵∠CED=∠AEB,∴∠DCE=∠ABF,在△ABF和△ACD中,,∴△ABF≌△ACD(SAS);(2)∵△ABF≌△ACD,∴AF=AD,∠BAF=∠CAD,∴∠BAC=∠F AD=90°,∴∠ADF=45°,∵∠ACB=∠ADB=45°,∠AED=∠BEC,∴∠DAE=∠CBE,∵∠DAF=∠COF=90°,∴AD∥OC,∴∠DAE=∠ACO,∴∠CBE=∠ACO,∵∠ACF=2∠CBF,∴∠ACF=2∠ACO,∴∠FCO=∠ACO.(3)过点D作DH⊥OC交OC于点H,∵∠AOC=∠COF=90°,∠ACO=∠FCO,∴∠OAC=∠OFC,∴AC=CF,∵CA=CF,CO⊥AF,∴OA=OF=2,∴AD=AF=4,∵AD∥OC,∴AO=DH=2,∵DH⊥OC,∠DCG=45°,∴DH=HC=2,∴OC=OH+HC=6.。

2023-2024学年江西省南昌市南昌县八年级上册期末数学模拟试题(有答案)

2023-2024学年江西省南昌市南昌县八年级上册期末数学模拟试题(有答案)

....八年级数学试题答案及评分意见一、选择题(本大题共8小题,每小题3分,共24分)1.C 2.A 3.D 4.B 5.C 6.A 7.D 8.B二、填空题(本大题共8小题,每小题3分,共24分)9.6;10.;62.510-⨯11.(写对1个给2分,全对给3分);8±12.39;13.7;14.①③④(写对1个给1分,写错酌情扣分).三、解答题(本大题共4小题,每小题6分,共24分)15.(1)解:;...3分24x y y -()24y x =-()()22=+-y x x (2)解:.()()2223423xy x y x y -⋅÷-()2423443x y x y x y =÷-⋅()453412x y x y =÷-12xy =-16.解:原式()()2252223x x x x x x ⎡⎤+--=-⋅⎢⎥--+⎣⎦245223x x x x ---=⋅-+()()33223x x x x x -+-=⋅-+.3x =-将x=1代入原式x -3=-217.解:,21111x x x +=--方程的两边同乘(x+1)(x -1),得,x (x+1)+1=x 2-1,解得x=-2.检验:当x=-2时,(x+1)(x -1)=3≠0.∴原方程的解为x=-2.18.(1)如图,△A'B'C'即为所求;(2)由图可得,,()3,3A '--(2,B '-故,.()3,3--()2,5-(3)P'的坐标为(a,-2-b ).四、解答题(本大题共3小题,每小题19.(1)证明:∵△ABC 是等边三角形,,AB AC ∴=20.解(1)设种图书的单价为元,则种图书的单价为元,B x A 1.5x 依题意,得:,30001600201.5x x -=解得:,20x =经检验,是所列分式方程的解,且符合题意,20x =∴.1.530x =答:种图书的单价为30元,种图书的单价为20元.A B (2)(元).300.820200.825880⨯⨯+⨯⨯=答:共花费880元.21.(1)解:图2中阴影部分的正方形的边长是,a b -故...2分a b -(2)图2中阴影部分面积可以表示为,还可以表示为,()2a b -()24a b ab +-∴之间的数量关系是,22(),(),a b a b ab +-()()224a b ab a b +-=-故.()()224a b ab a b +-=-(3)由(2)可知,,()()224x y xy x y +-=-当时,,32,4x y xy -==()223424x y +-⨯=∴,()27x y +=∴的值为;...8分x y +7±五、(本大题共1小题,每小题10分,共10分)22.(1),;...3分1115656=-⨯111(1)1n n n n =-⨯++(2)原式=;...6分111111111122334111n n n n n -+-+-++-=-=+++ (3)原方程可化为,11111111()2224485050x x x x x x x -+-++-=++++++ 即,1111()25050x x x -=++解得x=25,。

八年级上册数学期末考试模拟试卷北师大版2024—2025学年八年级上册

八年级上册数学期末考试模拟试卷北师大版2024—2025学年八年级上册

八年级上册数学期末考试模拟试卷北师大版2024—2025学年八年级上册一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.在实数、0、、906、π、0.101中,无理数的个数是()A.2个B.3个C.4个D.5个2.在英文句“We like math”中,字母“e”出现的频率为()A.0.1B.0.2C.0.3D.0.43.下列四组长度的线段中,首尾相连后能构成直角三角形的是()A.a=2,b=2,B.a=2,b=3,c=4C.a=1,,D.a=2,b=2,c=24.在平面直角坐标系中,点P的坐标是(3,﹣5),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.已知m,n为两个连续的整数,且,则m+n的值是()A.5B.6C.7D.86.在校园歌手比赛中,6位评委给某位选手打分,在统计数据时,发现其中一位评委给了这位选手一个特别高的评分,则下列统计量中能比较恰当地反映该选手水平的是()A.平均数B.众数C.中位数D.方差7.如图,AB∥CD,∠AEC=40°,CB平分∠DCE,则∠ABC的度数为()A.10°B.20°C.30°D.40°8.已知:点B的坐标为(3,﹣4),而直线AB平行于y轴,那么A点坐标有可能为()A.(3,﹣2)B.(2,4)C.(﹣3,2)D.(﹣3,﹣4)9.直线y=kx﹣k与直线y=﹣kx在同一坐标系中的大致图象可能是()A.B.C.D.10.已知关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.﹣1B.7C.1D.2二、填空题(6小题,每题3分,共18分)11.已知一组数据:4,5,5,6,5,4,7,x,若这组数据的众数只有一个,则x的值不能为.12.已知方程(m﹣3)x|m﹣2|+y=0是关于x,y的二元一次方程,则m=.13.如果一次函数y=kx+3(k是常数,k≠0)的图象过点(1,0),那么该函数图象不经过第象限.14.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则方程组的解是.15.已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为4,则k=.16.如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.第14题第15题第II卷八年级上册数学期末考试模拟试卷北师大版2024—2025学年八年级上册姓名:____________ 学号:____________准考证号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算:(1);(2).18.解方程组:(1)(2).19.已知2a﹣7和a+4是某正数的两个平方根,b﹣12的立方根为﹣2.(1)求a,b的值;(2)求a+b的平方根.20.某学生会向全校2000名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图两幅不完整的统计图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图①中m的值是.(2)补全条形统计图.(3)本次调查获取的样本数据的众数是元,中位数是元.(4)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.21.如图,将长方形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.22.春节快到了,学校“慈善小组”计划筹集善款购买面包,到福利院送给老人.已知购买2箱豆沙口味面包和2箱大枣口味面包共需110元;购买3箱豆沙口味面包和1箱大枣口味面包共需105元.(1)求豆沙口味面包和大枣口味面包每箱的单价;(2)若该小组计划用375元经费购买两种蛋糕且每种蛋糕最少1箱,经费恰好用完,共有几种购买方案.23.在平面直角坐标系中,△ABC的顶点坐标A(﹣1,5),B(﹣3,1),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)在y轴上找一个点P,使得△ABP的周长最小,在图中标出点P的位置;(3)求△ABC的面积.24.已知直线AB∥CD,在三角形纸板EFG中,∠F=90°.(1)将三角形EFG按如图1放置,点E和点G分别在直线AB、CD上,若∠DGF=25°,则∠AEF=°;(2)将三角形EFG按如图2放置,点E和点G分别在直线AB、CD上,GF 交AB于点H,若∠DGF=α,∠BEF=β,试求α、β之间的数量关系;(3)在图2中,若∠AEF=20°,∠AEG=40°,将三角形EFH绕点F以每秒10°的速度顺时针旋转一周,设运动时间为t秒,当三角形EFH两条直角边分别与GE平行时,求出相应t的值(直接写出答案).25.如图,在平面直角坐标系中,正方形OABC的边长为6,两边OA、OC在坐标轴上,D为线段OA上一点,且,连接CD、AC.(1)点D的坐标为;(2)若点M从点C出发以每秒2个单位的速度沿折线C→B→A的方向运动,当与点A重合时运动停止设点M的运动时间为t秒,连接AM,将△CAM的面积记为S,请用含t的式子表示S;(3)在(2)的条件下,当△CDM为等腰三角形时,请直接写出点M的坐标.。

上海市协和双语学校2025届八年级数学第一学期期末经典模拟试题含解析

上海市协和双语学校2025届八年级数学第一学期期末经典模拟试题含解析

上海市协和双语学校2025届八年级数学第一学期期末经典模拟试题经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.计算12a 2b 4•(﹣332a b )÷(﹣22a b )的结果等于( ) A .﹣9a B .9a C .﹣36a D .36a2.如果一个数的平方根与立方根相同,那么这个数是( ).A .0B .±1C .0和1D .0或±13.把19547精确到千位的近似数是( )A .31.9510⨯B .41.9510⨯C .42.010⨯D .41.910⨯4.已知等腰三角形的两边长分别为3和6,则它的周长等于( ) A .12 B .12或15 C .15 D .15或185.若分式211a a --有意义,则a 满足的条件是( ) A .a≠1的实数 B .a 为任意实数 C .a≠1或﹣1的实数 D .a=﹣16.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()22a b a b -=- D .()2222a b a ab b -=-+ 7.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a+2b ),宽为(a+b )的大长方形,则需要C 类卡片 张.( )A .2B .3C .4D .68.把分式11361124x x +-的分子与分母各项系数化为整数,得到的正确结果是( ) A .3243x x +- B .4263x x +- C .2121x x +- D .4163x x +- 9.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 410.直角坐标系中,我们定义横、纵坐标均为整数的点为整点.在03x <<的范围内,直线2y x =+和y x =-所围成的区域中,整点一共有( )个.A .12B .13C .14D .15二、填空题(每小题3分,共24分)11.医学研究发现一种新病毒的直径约为0.000043毫米,这个数0.000043用科学记数法表为______________.12.若,则.13.已知一次函数3y kx =+与2y x b =+的图像交点坐标为(−1,2),则方程组32y kx y x b=+⎧⎨=+⎩的解为____. 14.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是_____15.已知一个角的补角是它余角的3倍,则这个角的度数为_____.16.已知△ABC为等边三角形,BD为△ABC的高,延长BC至E,使CE=CD=1,连接DE,则BE=___________,∠BDE=_________ .17.如图正方形ABCD分割成为七巧板迷宫,点E,F分别是CD,BC的中点,一只蚂蚁从D处沿图中虚线爬行到出口F处,若AB=2,则它爬行的最短路径长为_____.18.用四舍五入法将2.056精确到十分位的近似值为________.三、解答题(共66分)19.(10分)如图,分别是4×4的正方形网格,请只用无刻度的直尺完成下列作图:(1)在图1中,A,B是网格的格点,请以AB为边作一个正方形;(2)在图2中,A是网格的格点,请以A为一个顶点,B,C,D三点分别在网格的格点上,在网格内作一个面积最大的正方形ABCD.20.(6分)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数中位数众数A校选手成绩85B校选手成绩8580(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.21.(6分)某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?22.(8分)某射击队有甲、乙两名射手,他们各自射击7次,射中靶的环数记录如下:甲:8,8,8,9,6,8,9乙:10,7,8,8,5,10,8(1)分别求出甲、乙两名射手打靶环数的平均数;(2)如果要选择一名成绩比较稳定的射手,代表射击队参加比赛,应如何选择?为什么?23.(8分)因汽车尾气污染引发的雾霾天气备受关注,经市大气污染防治工作领导组研究决定,在市区范围实施机动车单双号限行措施限行期间为方便市民出行,某路公交车每天比原来的运行增加20车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客7000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?24.(8分)(1)如图1.在△ABC中,∠B=60°,∠DAC和∠ACE的角平分线交于点O ,则∠O = °,(2)如图2,若∠B =α,其他条件与(1)相同,请用含α的代数式表示∠O 的大小;(3)如图3,若∠B =α,11,PAC DAC PCA E n nAC ∠=∠∠=∠,则∠P = (用含α的代数式表示).25.(10分)如图,有三个论断:①∠1=∠2;②∠B =∠C ;③∠A =∠D ,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.26.(10分)如图,在ABC ∆中,AD 是BC 边上的高,AE 是ABC ∆的角平分线,,40BE AE B ︒=∠=.(1)求EAD ∠的度数;(2)若1CD =,求AC 的长.参考答案一、选择题(每小题3分,共30分)1、D【分析】通过约分化简进行计算即可.【详解】原式=12a 2b 4•(﹣332a b )·(﹣22a b) =36a.故选D.【点睛】本题考点:分式的化简.2、A【分析】根据平方根、立方根的定义依次分析各选项即可判断.【详解】∵1的平方根是±1,1的立方根是1,0的平方根、立方根均为0,-1没有平方根,-1的立方根是-1,∴平方根与它的立方根相同的数是0,故选A.【点睛】本题属于基础应用题,只需学生熟练掌握平方根、立方根的定义,即可完成. 3、C【分析】先把原数化为科学记数法,再根据精确度,求近似值,即可.【详解】19547=41.954710⨯≈42.010⨯.故选C .【点睛】本题主要考查求近似数。

山东省济南市2022-2023学年八年级上学期期末 数学模拟检测

山东省济南市2022-2023学年八年级上学期期末 数学模拟检测

2022-2023学年度上学期期末学业水平检测八年级数学期末模拟试题第I 卷(选择题) 共30分一、单选题(共30分 每题3分)1.下面的图形中对称轴最多的是()A .B .C .D .2.下列长度的四根木棒中,能与长为5,10的两根木棒围成一个三角形的是()A .4B .5C .9D .15 3.下列各组图形中,BD 是ABC 的高的图形是()A .B .C .D .4.下列运算正确的是()A .232496b a b a b ⋅= B .2312332b b ab a ÷= C .11223a a a+= D .2112111a a a -=-+- 5.如图,在△ABC 中,AB =3,AC =4,BC =5,EF 是BC 的垂直平分线,P 是直线EF 上的任意一点,则PA +PB 的最小值是()A .3B .4C .5D .6 6.分式293x x --,当x 等于()时分式的值为零. A .3B .3-C .3或3-D .无法确定 7.如图,在△MPN 中,H 是高MQ 和NR 的交点,且PM =HN ,已知MH =3,PQ =2,则PN 的长为()A .5B .7C .8D .118.如图,在四边形ABCD 中,∠C =40°,∠B=∠D =90°,E ,F 分别是BC ,DC 上的点,当ΔAEF 的周长最小时,∠EAF 的度数为()A .100°B .90°C .70°D .80°(第5题图)(第7题图)(第8题图) 9.当2021a =时,()211111a a a a a -⎛⎫-÷ ⎪++⎝⎭+的值是() A .2022B .2022.5C .2021D .2021.5 10.如图,在平面直角坐标系中,对ABC 进行循环往复的轴对称变换,若原来点A 坐标是(1,2),则经过第2021次变换后点A 的对应点的坐标为()A .(1,2)-B .(1,2)--C .(1,2)-D .(1,2)第II 卷(非选择题) 共70分二、填空题(共15分 每题3分)11. 若一个多边形外角和与内角和相等,则这个多边形是_____.12.若二次三项式x 2+mx+14为完全平方式,则m 的值为_____.13.如图,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,∠CPE 的度数是_____.14在△ABC 中,AC =5cm ,AD 是△ABC 中线,若△ABD 周长比△ADC 的周长大2cm ,则BA =_______.15.装裱在我国具有悠久的历史和鲜明的民族特色,是我国特有的一种保护和美化书画以及碑帖的技术.如图,整个画框的长()3m n +分米,宽为()2m n +分米,中间部分是长方形的画心,长和宽均是()m n +分米,则画心外阴影部分面积是_________平方分米,并求当2m =,1n =时的阴影部分面积是_________平方米.第13题图第 15题图三、解答题(共55分)16.(本题6分)解分式方程231233x x x x -=--17.(本题6分)证明:若2220a b c ab bc ac ++---=,则a b c ==18.(本题6分)先化简,再求值()22x y xy -•222x x xy y -+÷222x yx y -,其中x =-1,y =1.19.(本题7分)如图,在ABC 中,BAC ∠的角平分线交BC 于D ,且AB AC CD =+.求证:2C B ∠=∠.20.(本题8分)如图,求:(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出△A1B1C1顶点的A1坐标________,线段CC1的长度为________;(2)在y轴上存在一点P,使得AP+BP的值最小,则AP+BP的最小值为________;(3)在x轴正半轴上存在一点M,使得S△ABM=S△ABC,则点M的坐标为________.21.(本题10分)阅读材料,并完成下列问题:观察分析下列方程:①x+2x=3;②x+6x=5;③x+12x=7.由①得,方程的根为x=1或x=2,由②得,方程的根为x=2或x=3,由③得,方程的根为x=3或x=4.(1)观察上述方程及其根,可猜想关于x的方程x+2x=a+2a的根为________;(2)请利用你猜想的结论,解关于x的方程22211x xax a-+=+--.22.(本题12分)Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图1所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图2所示,则∠α、∠1、∠2之间的关系为;(3)如图3,若点P在斜边BA的延长线上运动(CE<CD),请写出∠α、∠1、∠2之间的关系式,并说明理由.。

浙江省杭州余杭区2023-2024学年八年级数学第一学期期末考试模拟试题含答案

浙江省杭州余杭区2023-2024学年八年级数学第一学期期末考试模拟试题含答案

浙江省杭州余杭区2023-2024学年八年级数学第一学期期末考试模拟试题学校_______ 年级_______ 姓名_______注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题4分,共48分)1.小李家装修地面,已有正三角形形状的地砖,现打算购买不同形状的另一种正多边形地砖,与正三角形地砖一起铺设地面,则小李不应购买的地砖形状是( )A.正方形B.正六边形C.正八边形D.正十二边形2.下列各数中,无理数是()A.0.101001B.0C.5D.2 3 -3.下列条件中,能确定三角形的形状和大小的是()A.AB=4,BC=5,CA=10 B.AB=5,BC=4,∠A=40°C.∠A=90°,AB=8 D.∠A=60°,∠B=50°,AB=54.下列各式中,能用完全平方公式进行因式分解的是() .A.2x4x4-+B.2x1+C.2x2x2--D.2x4x1++5.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC 的大小为()A.30°B.34°C.36°D.40°6.如图为某居民小区中随机调查的10户家庭一年的月平均用水量(单位:t)的条形统计图,则这10户家庭月均用水量的众数和中位数分别是().A.6.5,7B.6.5,6.5C.7,7D.7,6.57.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60 70 80 90 100人数(人)7 12 10 8 3A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.在平面直角坐标系中,点(-1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限9.在下列交通标识图案中,不是轴对称图形的是()A.B.C.D.+⨯的值应在()10.估计5210A.5和6之间B.6和7之间C.7和8之间D.8和9之间11.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCAC.AC=DB D.AB=DC12.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A .作∠APB 的平分线PC 交AB 于点C B .过点P 作PC ⊥AB 于点C 且AC=BC C .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C 二、填空题(每题4分,共24分) 13.若112x y+=,则分式22x xy y x xy y -+++的值为__________.14.一个样本的40个数据分别落在4个组内,第1、2、3组数据的个数分别是7、8、15,则第4组数据的频率分别为_______.15.已知点A (x ,2),B (﹣3,y ),若A ,B 关于x 轴对称,则x +y 等于_____. 16.分解因式:3x 2-6x+3=__.17.如图,在ABC ∆中,90BAC ∠=︒,点D 、E 分别在AB 、BC 上,连接DE 并延长交AC 的延长线于点F ,若AF AB BE =+,2BCA BED ∠=∠,5AB =,3CE =,则BD 的长为_________.18.如图,ABC ∆和EBD ∆都是等腰三角形,且100ABC EBD ∠=∠=︒,当点D 在AC 边上时,BAE ∠=_________________度.三、解答题(共78分)19.(8分)已知,如图,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线,若∠B =20°,∠C =60°.求∠DAE 的度数.20.(8分)已知:∠AOB 和两点C 、D ,求作一点P ,使PC=PD ,且点P 到∠AOB 的两边的距离相等.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明)21.(8分)如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.(1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm .(2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由; (3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等? (4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?22.(10分)在Rt ABC △中,90BAC ∠=︒,2AB AC ==,AD BC ⊥于点D .(1)如图1所示,点,M N 分别在线段,AD AB 上,且90BMN ∠=︒,当30AMN =︒∠时,求线段AM 的长;(2)如图2,点M在线段AD的延长线上,点N在线段AC上,(1)中其他条件不变.①线段AM 的长为;②求线段AN的长.23.(10分)用消元法解方程组35,43 2.x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.(2)请选择一种你喜欢的方法,完成解答.24.(10分)某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),已知每辆汽车可装运甲种家电20台,乙种家电30台.(1)若用8辆汽车装运甲、乙两种家电共190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?(2)如果每台甲种家电的利润是180元,每台乙种家电的利润是300元,那么该公司售完这190台家电后的总利润是多少?25.(12分)龙人文教用品商店欲购进A、B两种笔记本,用160元购进的A种笔记本与用240元购进的B种笔记本数量相同,每本B种笔记本的进价比每本A种笔记本的进价贵10元.(1)求A、B两种笔记本每本的进价分别为多少元?(2)若该商店准备购进A、B两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进A种笔记本多少本26.(12分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(1,a),点B(b,1),且a、b满足a2-4a+4+22b =1.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x轴交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC 交x轴于点F.①求证:CF=12 BC;②直接写出点C到DE的距离.参考答案一、选择题(每题4分,共48分)1、C2、C3、D4、A5、B6、B7、C8、B9、D10、B11、D12、B二、填空题(每题4分,共24分)13、114、0.115、﹣1.16、3(x-1)217、118、1三、解答题(共78分)19、20°20、见详解.21、(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3)154;(4)经过803s点P与点Q第一次相遇.22、(13;(223、(1)解法一中的计算有误;(2)原方程组的解是12 xy=-⎧⎨=-⎩.24、(1)装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆;(2)该公司售完这190台家电后的总利润是45000元.25、(1)A、B两种笔记本每本的进价分别为20 元、30 元;(2)至少购进A种笔记本35 本26、(2)a=2,b=-2;(2)满足条件的点C(2,2)或(2,-2);(3)①证明见解析;②2.。

重庆市凤鸣山中学2023-2024学年八年级上学期期末数学模拟试题

重庆市凤鸣山中学2023-2024学年八年级上学期期末数学模拟试题

重庆市凤鸣山中学2023-2024学年八年级上学期期末数学模拟试题一、单选题1.下列各数中是无理数的是( )A .3.14B .2-C .π-D .172.下列说法中,正确的是( )A .1的平方根是1B .1-是1的平方根C .8的立方根是2±D 3=± 3.下列运算中,正确的是( )A .236x x x ⋅=B .()333ab a b =C .2224a a a +=D .623a a a ÷= 4.下列从左到右的运算是因式分解的是( )A .()()()2111ab ab ab -=+-B .()()22a b a b a b -+=-C .()2222a b a b ab +=-+D .()2221211a a a a -+=-+5.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带去( )A .第1块B .第2块C .第3块D .第4块 6.如图,ABF ACE ≌△△,已知7AB =,4AF =,则BE 的长为( )A .2B .3C .4D .57.具备下列条件的ABC V 中,不是直角三角形的是( )A .AB ACB ∠∠∠+= B .A BC ∠∠∠-=C .123A B C ∠∠∠=::::D .3A B C ∠∠∠==8.某校在一次演讲比赛中,将所有参赛学生的成绩绘制成如图所示的折线统计图,则下列说法错误的是( )A .95分的人数最多B .最高分与最低分的差是15分C .参赛学生人数为8人D .最高分为100分9.如图,当秋千静止时,踏板离地的垂直高度1m =BE ,将它往前推4m 至C 处时(即水平距离4m CD =,CD AB ⊥),踏板离地的垂直高度3m CF DE ==,它的绳索始终拉直,则绳索AC 的长是( )A .4mB .5mC .6mD .8m10.关于x 的二次三项式2M x ax b =++(a ,b 均为非零常数),关于x 的三次三项式()()()32322410111N x x c x d x e x f =-+=-+-+-+(其中c ,d ,e ,f 均为非零常数),下列说法中正确的个数有( )①当1x =-时,4N =;②当M N +为关于x 的三次三项式时,则10b =-;③当多项式M 与N 的乘积中不含4x 项时,则2a =;④6e f +=;A .1个B .2个C .3个D .4个二、填空题11.2516的算术平方根是.12.若30a -=,则a b -的立方根是.13.若关于x 的代数式()22425x k x +++是一个完全平方式,则实数k =.14.如图,在ABC V 中,点F 是高AD 、BE 的交点,且BF AC =,则ABC ∠=度.15.如图,在ABC V 中,DE 是AC 的垂直平分线.若3AE =,ABD △的周长为14,则ABC V 的周长为.16.葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如图,如果把树干看成圆柱体,它的底面周长是2.4m ,当一段葛藤绕树干盘旋1圈升高为1m 时,这段葛藤的长为m .17.如图,在ABC V 中,13AB AC ==,10BC =,AB 的垂直平分线EF 分别交AB ,AC 于点E ,F ,点P 在线段EF 上.若D 为BC 的中点,则BDP V 的周长的最小值为.18.如果一个自然数M 的各位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,各位数字之和为8,则称数M 为“优数”,并把数M 分解成M A B =⨯的过程,称为“最优分解”.例如:数195“优数”(填:是或不是);若把一个“优数”M 进行“最优分解”,即M A B =⨯,A 与B 之和记为()P M ,A 与B 之差的绝对值记为()Q M ,令()()()P M G M Q M =,当()G M 能被8整除时,则满足条件的M 的最大值是.三、解答题19.计算:(1)()352a a b ⋅-;(2)()322a a ÷20.为落实“双减”政策,优化作业管理.某中学在八年级随机抽取部分学生对作业完成时间进行调查,调查他们每天完成书面作业的时间t (单位:分钟)按照完成时间分成五组:A 组“45t ≤”;B 组“4560t <≤”;C 组“6075t <≤”;D 组“7590t <≤”;E 组“90t >”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)求本这次调查的总人数.(2)请补全条形统计图.(3)求A 组人数占本次调查人数的百分比.(4)在扇形统计图中,B 组所对应的圆心角度数为________度.21.(1)已知:a 、b 满足222220a b a b +-++=,求a b +的值.(2)已知:2b a -=-,222a b +=,求a b +的值.22.在学习了矩形后,小雨借助尺规找到了直角三角形斜边的中点,通过倍长中线构造了矩形,然后利用矩形对角线的性质探究出了直角三角形斜边上的中线与斜边的数量关系.请根据她的思路完成以下作图与填空:(1)已知在Rt ABC △中,90ABC ∠=︒,用直尺和圆规,作AC 的垂直平分线交BC 于点E ,垂足为点O ,连接BO 并延长,在射线BO 上截取OD OB =,连接AD 、CD .(不写作法,保留作图痕迹)(2)在(1)问所作的图形中,求证:12OB AC =. 证明:∵OE 垂直平分AC ,∴点O 是AC 的中点.∴OA =_____.∵OB OD =,∴四边形ABCD 是平行四边形.∵ABC ∠=_____,∴四边形ABCD 是_____.∴_____. ∵12OB BD =, ∴OB =_____.23.某校在商场购进A ,B 两种品牌的篮球,购买A 品牌篮球花费了2500元,购买B 品牌篮球花费了2000元,且购买A 品牌篮球的数量是购买B 品牌篮球数量的2倍,已知购买一个B 品牌篮球比购买一个A 品牌篮球多花30元.(1)问购买一个A 品牌,一个B 品牌的篮球各需多少元?(2)该校决定再次购进A ,B 两种品牌篮球共50个,恰逢商场对两种品牌篮球的售价进行调整,A 品牌篮球售价比第一次购买时提高了8%,B 品牌篮球按第一次购买时售价的9折出售,如果该校此次购买A ,B 两种品牌篮球的总费用不超过3060元,那么该校此次最多可购买多少个B 品牌篮球?24.如图,在Rt ABC △中,90BCA ∠=︒,12AC =,13AB =,点D 是Rt ABC △外一点,连接,DC DB ,且4,3DC DB ==(1)求BC 的长;(2)求证:BCD △是直角三角形.25.对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如,由图1可以得到:()()22232a b a b a ab b ++=++(1)由图2可以得到:_____(2)利用图2所得的等式解答下列问题:①若实数a ,b ,c 满足11a b c ++=,38ab bc ac ++=,求222a b c ++的值; ②若实数x ,y ,z 满足2484x y z ⨯÷=,2224944x y z ++=,求236xy xz yz --的值. 26.如图,在Rt ABC △中,90ACB ∠=︒,点D 为斜边AB 上一点,连接CD ,将CD 绕点C 顺时针旋转90︒,得到CE ,连接DE 交AC 于点F .(1)如图1,若2BC =,30A ∠=︒,D 为AB 的中点,求CF 的长度.(2)如图2,ED AB ⊥于点D ,G 为DE 边上一点,且12FG AB =,求证:CG AD EG =+. (3)如图3,若2BC =,30A ∠=︒,当线段CE 值最小时,直接写出DFC △的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上期末模拟数学试题一、选择题1.在平面直角坐标系中,下列各点位于第四象限的点是( ) A .(2,3)-B .()4,5-C .(1,0)D .(8,1)--2.下列二次根式中属于最简二次根式的是( ) A .8B .36C .ab(a >0,b >0) D .7 3.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .4.若分式242x x -+的值为0,则x 的值为( )A .-2B .0C .2D .±25.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中能使△ABC ≌△DEF 的条件有( )A .1组B .2组C .3组D .4组 6.在直角坐标系中,将点(-2, -3)向左平移2个单位长度得到的点的坐标是( ) A .(-2,-5)B .(-4,-3)C .(0,-3)D .(-2,1)7.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( )A .B .C .D .8.2x -x 的取值范围( ) A .x≥2 B .x≤2 C .x >2 D .x <29.将直线y =12x ﹣1向右平移3个单位,所得直线是( )A .y =12x +2 B .y =12x ﹣4 C .y =12x ﹣52D .y =12x +1210.下列各组数是勾股数的是( ) A .6,7,8 B .1,3,2 C .5,4,3D .0.3,0.4,0.5二、填空题11.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.12.如图,在ABC ∆中,AB AC =,点P 为边AC 上一动点,过点P 作PD BC ⊥,垂足为点D ,延长DP 交BA 的延长线于点E ,若10AC =,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为__________.(不需写出x 的取值范围)13.已知10个数据:0,1,2,6,2,1,2,3,0,3,其中 2 出现的频数为____. 14.如果2x -有意义,那么x 可以取的最小整数为______. 15.若关于x 的方程233x mx +=-的解不小于1,则m 的取值范围是_______. 16.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.17.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______18.如图,ABC ∆中,B C ∠=∠,D ,E ,F 分别是BC ,AC ,AB 上的点,且BF CD =,BD CE =,55FDE ∠=︒,则A ∠=__________︒.19.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .20.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.三、解答题21.如图,一次函数y =﹣x +7的图象与正比例函数y =34x 的图象交于点A ,点P (t ,0)是x 正半轴上的一个动点.(1)点A 的坐标为( , );(2)如图1,连接PA ,若△AOP 是等腰三角形,求点P 的坐标: (3)如图2,过点P 作x 轴的垂线,分别交y =34x 和y =﹣x +7的图象于点B ,C .是否存在正实数,使得BC =32OA ,若存在求出t 的值;若不存在,请说明理由.22.如图,在Rt ABC ∆中,90C ∠=︒,BD 是ABC ∆的一条角平分线.点O 、E 、F 分别在BD 、BC 、AC 上,且四边形OECF 是正方形.(1)求证:点O 在BAC ∠的平分线上;(2)若5AC =,12BC =,且正方形OECF 的面积为4,求ABO ∆的面积. 23.解方程: (1)4x 2﹣8=0; (2)(x ﹣2)3=﹣1.24.已知A 、B 两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止甲、乙两车相距的路程y (千米)与甲车的行驶时间x (时)之间的函数关系如图所示:(1)乙年的速度为______千米/时,a =_____,b =______.(2)求甲、乙两车相遇后y 与x 之间的函数关系式,并写出相应的自变量x 的取值范围. 25.已知:如图点A 、B 、C 、D 在一条直线上,EA ∥FB ,EC ∥FD ,AB=CD ,求证:EA=FB .四、压轴题26.问题背景:(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE .拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE 、BD 、CE 三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),请直接写出B 点的坐标.27.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.28.阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E .求证:△BEC ≌△CDA . (模型应用)应用1:如图②,在四边形ABCD 中,∠ADC =90°,AD =6,CD =8,BC =10,AB 2=200.求线段BD 的长.应用2:如图 ③,在平面直角坐标系中,纸片△OPQ 为等腰直角三角形,QO =QP ,P (4,m ),点Q 始终在直线OP 的上方.(1)折叠纸片,使得点P 与点O 重合,折痕所在的直线l 过点Q 且与线段OP 交于点M ,当m =2时,求Q 点的坐标和直线l 与x 轴的交点坐标;(2)若无论m 取何值,点Q 总在某条确定的直线上,请直接写出这条直线的解析式 .29.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )30.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC与BD之间的数量关系是_________,请写出理由;(2)如图②,若P是线段CB上一动点(点P不与点B、C重合),连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,请猜想BF,BP,BD三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF,BP,BD三者之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.2.D解析:D【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】解:(A)原式=,故A不符合题意;(B)原式=6,故B不符合题意;(C)ab是分式,故C不符合题意;故选:D.【点睛】本题考查最简二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.3.D解析:D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.4.C解析:C【解析】由题意可知:24020xx=⎧-⎨+≠⎩,解得:x=2,故选C.5.C解析:C【解析】【分析】根据全等三角形的判定方法:SSS、SAS、ASA及AAS,即可判定.【详解】①满足SSS,能判定三角形全等;②满足SAS,能判定三角形全等;③满足ASA,能判定三角形全等;④的条件是两边及其一边的对角分别对应相等,不能判定三角形全等.∴能使ABC DEF△≌△全等的条件有3组.故选:C.【点睛】本题考查全等三角形的判定,解题关键是熟练掌握各种判定方法并注意“两边及其一边的对角分别对应相等”不能判定三角形全等.6.B解析:B【解析】【分析】直接利用平移的性质得出答案.【详解】(−2,−3)向左平移2个单位长度得到的点的坐标是:(−4,−3).故选B.【点睛】考查点的平移,掌握上下改变纵坐标,左右横左标变化是解题的关键.7.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.8.A解析:A【解析】【分析】二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x的取值范围.【详解】∴x−2≥0,解得x≥2.故答案选A.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 9.C解析:C【解析】【分析】直接根据“左加右减”的原则进行解答即可. 【详解】由“左加右减”的原则可知,将直线y =12x ﹣1向右平移3个单位,所得直线的表达式是y =12(x ﹣3)﹣1, 即y =12x ﹣52. 故选:C . 【点睛】此题主要考查一次函数的平移,熟练掌握平移规律,即可解题.10.C解析:C 【解析】 【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可. 【详解】解:A 、222768+≠,故此选项错误;BC 、222345+=,故此选项正确;D 、0.3,0.4,0.5,勾股数为正整数,故此选项错误. 故选:C . 【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.二、填空题11.y=2x+1. 【解析】由“上加下减”的原则可知,将函数y=2x 的图象向上平移1个单位所得函数的解析式为y=2x+1, 故答案为y=2x+1.解析:y=2x+1. 【解析】由“上加下减”的原则可知,将函数y=2x 的图象向上平移1个单位所得函数的解析式为y=2x+1,12.【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E=∠CPD ,再根据对顶角相等得到∠E=∠APE ,根据等角对等边得到AE=AP ,即可得到结论.【详解】∵AB=AC ,∴∠B解析:20y x =-【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E =∠CPD ,再根据对顶角相等得到∠E =∠APE ,根据等角对等边得到AE =AP ,即可得到结论.【详解】∵AB =AC ,∴∠B =∠C .∵PD ⊥BC ,∴∠EDB =∠PDC =90°,∴∠B +∠E =90°,∠C +∠CPD =90°,∴∠E =∠CPD .∵∠APE =∠CPD ,∴∠E =∠APE ,∴AE =AP .∵AB =AC =10,PC =x ,∴AP =AE =10-x .∵BE =AB +AE ,∴y =10+10-x =20-x .故答案为:y =20-x .【点睛】本题考查了等腰三角形的性质和判定以及直角三角形的性质.解题的关键是得到∠E =∠CPD .13.3【解析】【分析】直接利用频数的定义得出答案.【详解】10个数据:0,1,2,6,2,1,2,3,0,3,其中2出现3次,所以2出现的频数为:3.【点睛】此题主要考查解析:3【解析】【分析】直接利用频数的定义得出答案.【详解】10个数据:0,1,2,6,2,1,2,3,0,3,其中2出现3次,所以2出现的频数为:3.故答案为:3.【点睛】此题主要考查了频数,正确把握频数的定义是解题关键.14.2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据解析:2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据被开方数大于等于列式求解即可,比较简单.15.m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程的解,然后根据解不小于1列出不等式,即可求出. 【详解】解:解关于x的方程得x=m+9因为的方程的解不小于,且x≠3所以m+解析:m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程233x mx+=-的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x的方程233x mx+=-得x=m+9因为x的方程233x mx+=-的解不小于1,且x≠3所以m+9≥1 且m+9≠3解得m≥-8 且m≠-6 .故答案为:m≥-8 且m≠-6【点睛】此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.16.【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,解析:【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt△A′OE中根据勾股定理列出方程求解即可.【详解】解:如图,∵四边形OABC 是矩形,∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,∵CD=3DB ,∴CD=6,BD=2,∴CD=AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,∴A′D=AD ,A′E=AE ,在Rt △A′CD 与Rt △DBA 中,CD AB A D AD '=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),∴A′C=BD=2,∴A′O=4,∵A′O 2+OE 2=A′E 2,∴42+OE 2=(8-OE )2,∴OE=3,故答案是:3.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.17.—1【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴AC=,∵A 点表示-1,∴E 点表示的数为: 51【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴=∵A 点表示-1,∴E ,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.18.【解析】【分析】根据SAS 定理判定△FBD≌△DCE,然后根据全等三角形的性质求得∠FDB=∠DEC,从而求得∠DEC+∠EDC 的度数,然后求出∠C 的度数,最后利用等腰三角形的性质求∠A.【解析:70︒【解析】【分析】根据SAS 定理判定△FBD ≌△DCE ,然后根据全等三角形的性质求得∠FDB=∠DEC ,从而求得∠DEC+∠EDC 的度数,然后求出∠C 的度数,最后利用等腰三角形的性质求∠A.【详解】解:∵BF CD =,B C ∠=∠,BD CE =∴△FBD ≌△DCE∴∠FDB=∠DEC∵55FDE ∠=︒∴∠FDB++∠EDC=∠DEC+∠EDC=180°-55°=125°∴∠C=180°-125°=55°∴∠A=180°-2×55°=70°【点睛】本题考查全等三角形的判定和性质及等腰三角形的性质,掌握判定定理正确推理论证是本题的解题关键.19.50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD ,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三解析:50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.20.−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y1>0,当x<2时,y2>0,∴使y1、y2的值都大于0的x的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0三、解答题21.(1)(4,3);(2)P(5,0)或(8,0)或(258,0);(3)t=587.【解析】【分析】(1)解方程组即可得到结论;(2)根据勾股定理得到OA5,当OP=OA=5时,△AOP是等腰三角形,当AP=OA=5时,△AOP是等腰三角形,当OP=PA时,△AOP是等腰三角形,于是得到结论;(3)由P(t,0),得到B(t,34t),C(t,﹣t+7),根据BC=32OA,解方程即可得到结论.【详解】解:(1)解734y xy x=-+⎧⎪⎨=⎪⎩得43xy=⎧⎨=⎩,∴点A的坐标为(4,3),故答案为:(4,3);(2)∵A(4,3),∴OA5,当OP=OA=5时,△AOP是等腰三角形,∴P(5,0),当AP=OA=5时,△AOP是等腰三角形,则OP=8,∴P(8,0);当OP=PA时,△AOP是等腰三角形,则点P在OA的垂直平分线上,如图1,设OA的垂直平分线交OA于H,∴OH=12OA=52,过A作AG⊥x轴于G,∴△OPH∽△OAG,∴OH OP OG OA=,∴5245OP =,∴OP=25 8,∴P(258,0),综上所述,P(5,0)或(8,0)或(258,0);(3)∵P(t,0),∴B(t,34t),C(t,﹣t+7),∵BC=32 OA,∴﹣t+7﹣34t=32×5或34t+t﹣7=32×5,解得:t=﹣27或t=587,∵t>0,∴t=587.【点睛】本题考查了一次函数的综合题,解方程组求点的坐标,等腰三角形的性质,相似三角形的判定和性质,正确的识别图形是解题的关键.22.(1)证明见解析;(2)13.【解析】【分析】(1)过点O作OM⊥AB,由正方形的性质可得OE=OF,OE⊥BC,OF⊥AC,根据角平分线上的点到角两边距离相等可得OM=OG,所以OM=OF,于是根据角平分线的判定定理可得点O在∠BAC的平分线上;(2)由勾股定理得AB的长,根据正方形的面积可求OE的长,于是可得OM的长,根据三角形的面积计算公式可求.【详解】解:(1)证明:过点O作OM⊥AB,∵四边形OECF是正方形,∴OE=OF,∠OEC=∠OFC =90°,∴OE ⊥BC ,OF ⊥AC,∵BD 是∠ABC 的一条角平分线,OM ⊥AB,∴OE=OM ,∴OF=OM ,∴点O 在∠BAC 的平分线上;(2)∵5AC =,12BC =,90C ∠=︒,∴在Rt △ABC 中,根据勾股定理13AB ==, ∵正方形OECF 的面积为4,∴OM=OE=2, ∴1113213.22ABO S AB OM ∆=⋅⋅=⨯⨯= 【点睛】本题考查角平分线的性质和判定,正方形的性质,勾股定理.熟记角平分线的性质定理和判定定理是解决此题的关键.23.(1)=x (2)1x =【解析】【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解.【详解】解:(1)4x 2﹣8=0,移项得:4x 2﹣8=0,即x 2=2,开方得:=x ;(2)(x ﹣2)3=﹣1,开立方得:x ﹣2=﹣1,解得:x =1.【点睛】本题主要考查一元二次方程的解法及立方根,熟练掌握运算法则是解题的关键.24.(1)75;3.6;4.5;(2) 当2 3.6x <≤时,135270y x =-;当3.6 4.5x <≤时,60y x =.【解析】【分析】(1)根据图像可知两车2小时候相遇,根据路程和为270千米即可求出乙车的速度,然后根据“路程、速度、时间”的关系确定a 、b 的值;(2)根据图像可知相遇后图像分为两段,将相遇后点的坐标和分段处以及到达B 地后的坐标分别表示出来,然后运用待定系数法解决即可;【详解】解:(1)乙车的速度为:(270-60×2)÷2=75(千米/时);a=270÷75=3.6,b=270÷60=4.5故答案为:75;3.6;4.5;(2)60×3.6=216(千米),如图,可得(2,0)M,(3.6,216)N,(4.5,270)Q.设当2 3.6x<≤时的解析式为11y k x b=+,1111203.6216k bk b+=⎧⎨+=⎩,解得11135270kb=⎧⎨=-⎩∴当2 3.6x<≤时,135270y x=-,设当3.6 4.5x<≤时的解析式为22y k x b=+,则22223.62164.5270k bk b+=⎧⎨+=⎩,解得2260kb=⎧⎨=⎩,当3.6 4.5x<≤时,60y x=.【点睛】本题考查了分段函数实际问题,解决本题的关键是能够读懂函数图像,从函数图像中找到相关的量,能够熟练运用待定系数法求函数解析式.25.用ASA证明△EAC≌△FBD即可.【解析】【分析】首先利用平行线的性质得出,∠A=∠FBD,∠D=∠ECA,根据AB=CD即可得出AC=BD,进而得出△EAC≌△FBD.【详解】证明:∵EA∥FB,∴∠A=∠FBD,∵EC ∥FD ,∴∠D =∠ECA ,∵AB =CD ,∴AC =BD ,在△EAC 和△FBD 中,ECA D A FBD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EAC ≌△FBD (AAS),∴EA =FB .【点睛】考查全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定方法是解题的关键.四、压轴题26.(1)证明见解析;(2)DE =BD +CE ;(3)B(1,4)【解析】【分析】(1)证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE ,证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(3)根据△AEC ≌△CFB ,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴∠ADB =∠CEA =90°∵∠BAC =90°∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°∴∠CAE =∠ABD∵在△ADB 和△CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△CEA (AAS )∴AE =BD ,AD =CE∴DE =AE +AD =BD +CE即:DE =BD +CE(2)解:数量关系:DE=BD+CE理由如下:在△ABD中,∠ABD=180°-∠ADB-∠BAD,∵∠CAE=180°-∠BAC-∠BAD,∠BDA=∠AEC,∴∠ABD=∠CAE,在△ABD和△CAE中,ABD CAEBDA AECAB CA∠∠⎧⎪∠∠⎨⎪⎩===∴△ABD≌△CAE(AAS)∴AE=BD,AD=CE,∴DE=AD+AE=BD+CE;(3)解:如图,作AE⊥x轴于E,BF⊥x轴于F,由(1)可知,△AEC≌△CFB,∴CF=AE=3,BF=CE=OE-OC=4,∴OF=CF-OC=1,∴点B的坐标为B(1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.27.90︒,45︒;20︒,30︒;2aγβ+=,2aγβ-=.【解析】【分析】(1)①如图①知1112EMC BMC∠=∠,1112C MF C MC∠=∠得()1112EMF BMC C MC∠=∠+∠可求出解.②由图②知111111,22EBA ABC C BF C BC∠=∠∠=∠得()1112EBF ABC C BC∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB∠=∠∠=∠,可推出11()BMC EMF EMF C MB∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=,()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.28.模型建立:见解析;应用1:652:(1)Q(1,3),交点坐标为(52,0);(2)y=﹣x+4【解析】【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP 相交于点H,易得:△OKQ≌△QHP,设H(4,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(4,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+4,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=200,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=14,∵BH⊥DC,∴BD=22260BH DH+==265;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(4,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=4﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(4,2),∴M(2,1),设直线Q M的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:213k bk b+=⎧⎨+=⎩,解得:25kb=-⎧⎨=⎩∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(52,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=4,∴y=﹣x+4,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+4,故答案为:y=﹣x+4.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.29.(1)∠AFE=60°;(2)见解析;(3)75【解析】【分析】(1)通过证明BCE CAD≌得到对应角相等,等量代换推导出60AFE∠=︒;(2)由(1)得到60AFE∠=︒,CE AD=则在Rt AHF△中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明ABK和ACF全等,利用对应边相等,等量代换得到比值.(通过将ACF顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC , 在ABK 和ACF 中,AB AC KAB ACF AK AF =⎧⎪∠=∠⎨⎪=⎩,∴ ABK ACF ≌(SAS ),BK CF =∴∠AKB =∠AFC =120°,∴∠BKE =120°﹣60°=60°,∵∠BPC =30°,∴∠PBK =30°,∴29BK CF PK CP ===, ∴79PF CP CF CP =-=, ∵45()99AF KF CP CF PK CP CP CP ==-+=-= ∴779559CP PF AF CP == . 【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.30.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【解析】【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论;(2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠-∠=∠-∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BP BC +=,BF BP BC ∴+=,BC BD =,BF BP BD ∴+=;(3)如图③,BF BD BP =+,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠+∠=∠+∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BC BP =+,BF BC BP ∴=+,BC BD =,BF BD BP ∴=+.【点睛】 此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF ∆≅∆,是一道中等难度的中考常考题.。

相关文档
最新文档