条件概率和概率的乘法公式

合集下载

概率论中的乘法公式(一)

概率论中的乘法公式(一)

概率论中的乘法公式(一)概率论中的乘法公式1. 概述概率论中的乘法公式是计算事件之间相互依存的概率的基本工具。

它描述了多个事件同时发生的概率,是概率论中十分重要的概念。

2. 乘法公式的原理乘法公式是根据条件概率和联合概率的定义推导得出的。

它可以表示为:P(A and B) = P(A) * P(B|A)其中,P(A and B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率。

3. 乘法公式的应用举例硬币抛掷问题假设有两个硬币A和B,分别为正面1/2的概率和正面1/3的概率。

现在将硬币A和B放在袋子中,随机抽取一个硬币,抛掷两次,请问两次都是正面的概率是多少?根据乘法公式,我们可以计算得到:P(两次都是正面) = P(硬币A) * P(两次都是正面|硬币A) +P(硬币B) * P(两次都是正面|硬币B) = 1/2 * (1/2)^2 + 1/2 *(1/3)^2 = 1/4 + 1/18 = 7/36所以两次都是正面的概率是7/36。

球的问题一个箱子中有3个红球和2个白球,随机从中抽取2个球,不放回,求两个球都是红球的概率。

根据乘法公式,我们可以计算得到:P(两个球都是红球) = P(第一次抽到红球) * P(第二次抽到红球|第一次抽到红球) = 3/5 * 2/4 = 3/10所以两个球都是红球的概率是3/10。

4. 总结概率论中的乘法公式是计算多个事件同时发生的概率的基本工具。

它通过条件概率和联合概率的定义,能够准确计算出多个事件同时发生的概率。

在实际问题中,我们可以利用乘法公式来解决各种与概率相关的计算问题。

概率计算公式

概率计算公式

概率计算公式概率计算是数理统计学中的重要内容,通过运用概率计算公式,我们可以对事件发生的可能性进行精确的预测和分析。

本文将介绍几种常用的概率计算公式,帮助读者更好地理解和应用概率计算。

一、频率法频率法是概率计算中最直观和常用的方法之一,它是通过实验数据的频率来估计事件发生的概率。

频率法概率计算公式如下:```P(A) = n(A) / n```其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的次数,n表示实验总次数。

通过观察事件发生的实际频率,可以得出事件发生的概率近似值。

二、古典概型古典概型指的是指定试验中所有可能结果等可能的情况。

在古典概型中,可以使用以下概率计算公式:```P(A) = n(A) / n(S)```其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的有利次数,n(S)表示样本空间的大小。

三、总概率定理总概率定理用于计算在多个条件下的概率。

当有多个互斥事件B1、B2、…、Bn,且它们的并集等于样本空间S时,可以使用总概率定理进行计算。

总概率定理公式如下:```P(A) = P(A|B1) * P(B1) + P(A|B2) * P(B2) + ... + P(A|Bn) * P(Bn)```其中,P(A)表示事件A发生的概率,P(A|Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率。

总概率定理在实际问题中具有广泛的应用,通过将复杂问题分解为简单事件的条件下的概率计算,可以更好地解决实际问题。

四、条件条件概率是指在已知事件B发生的条件下,事件A发生的概率。

条件概率计算公式如下:```P(A|B) = P(A∩B) / P(B)```其中,P(A|B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

条件概率的计算可以帮助我们更好地理解事件之间的相关性,当我们已经了解到某个条件下的概率时,可以通过条件概率公式计算其他事件的概率。

大学概率论必背公式

大学概率论必背公式

,使对任意实数 x,都有
F ( x)=P( X x)=x f (u)du
则称 X 为连续型随机变量,f (x)为 X 的概率密度函数,简称概率密度或密度函数。 记为 X~ f (x) , (- < x <+)
2. 密度函数的性质
(3)

x是
f(x )
f (x)的连续点,
dF(x dx
)
.
(4)
P(a X b)= b f (u)du a
P{X xk } pk ,k 1,2,
数学期望 E(X)是一个常数,而非变量.它是一种以概率为权的加权平均值 (1)X ~(0—1)分布
(2)X~B(n,p)二项分布 (3)X~(或)Poisson 分布
2. 连续型随机变量的数学期望
(1)X~U(a,b)均匀分布 其概率密度函数为:
f(x )
5. 边缘分布 6. 二维连续型随机变量及其密度函数 联合密度 f (x , y )的性质
7. 边缘密度函数
8. 条件密度函数
1)fX|Y (x
y)
f (x, y) 称为Y fY ( y)
y下, X的条件密度函数
2)fY|X ( y
x)
f (x, y) 称为X fX (x)
x下,Y的条件密度函数
8、相关系数: 若 r.v. X,Y 的方差和协方差均存在, 且 D(X )> 0, D(Y )> 0,则
称为 X 与 Y 的相关系数. X 与 Y 不相关 Cov(X, Y )=0 E(XY )= E(X )E (Y )。
8、矩 (1)k 阶原点矩 E(X k ), k=1, 2, … 而 E(|X|k)称为 X 的 k 阶绝对原点矩; (2)k 阶中心矩 E[XE(X )]k, k=1, 2, … 而 E|X-E(X )|k 称为 X 的 k 阶绝对中心矩;

全概率公式、贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有:P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1)(3)全概率公式1. 如果事件组B1,B2,.... 满足1.B1,B2....两两互斥,即B i ∩ B j = ∅,i≠j ,i,j=1,2,....,且P(B i)>0,i=1,2,....;2.B1∪B2∪....=Ω ,则称事件组B1,B2,...是样本空间Ω的一个划分设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则:上式即为全概率公式(formula of total probability)2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。

思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事件AB1,AB2,...AB n分解成了n部分,即A=AB1+AB2+...+AB n, 每一B i发生都可能导致A发生相应的概率是P(A|B i),由加法公式得P(A)=P(AB1)+P(AB2)+....+P(AB n)=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|B n)P(PB n)3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。

条件概率与概率的三个基本公式

条件概率与概率的三个基本公式

球”, 则事件 A “第一次取到黑球”, 事件 B “第二次取到黑球”. (1)法一 已知第一次取到白球,那么袋中剩 4 个球,其中 2 个
白球, 2 个黑球,则已知第一次取到白球的条件下,第二次取到的是黑
球的概率为
P(B |
A)
2
1

42
法二 由古典概率知 P( A) 3 , P( AB) P31 P21 3 .
注意 ① P(B) 表示“事件 B 发生”的概率,计算时,是
在整个样本空间 上考察事件 B 发生的概率;②而 P(B | A)
为已知事件 A 发生的条件下,事件 B 发生的条件概率,计算 时,实际上仅限于在事件 A 发生的范围内,来考察事件 B 的 概率.一般地, P(B | A) P(B) .
§1.4 条件概率与概率的三个基本公式
条件概率是概率论的基本概念之一,同时又是计算概率 的重要工具.概率的三个基本公式(乘法公式、全概率公式
和贝叶斯 (Bayes) 公式)都建立在条件概率的概念之上.本
节重要学习以下内容: 一、条件概率
二、乘法公式
三、全概率公式
四、贝叶斯(Bayes)公式
第一章 随机事件与概率 1
3 这是因为事件 A 的发生,排除了 bb 发生的可能性,这时样本空间 也 随 之 缩 小 为 A , 而 在 A 中 事 件 B 只 含 2 个 样 本 点 , 故 P(B | A) 2 . 事实上,以上条件概率还可写成
3 P(B | A) 2 2 / 4 P( AB) . 3 3 / 4 P( A)
公式(1.5)和(1.6)都称为两个事件积的概率的乘法公式.这 两个乘法公式还可推广到有限个事件积的概率的情形:
设 A1, A2 , , An 是任意 n 个事件,且 P( A1A2 An ) 0 ,则 P( A1A2 An ) P( A1)P( A2 | A1)P( A3 | A1A2 ) . P( An | A1A2 An1)

条件概率与概率的乘法公式

条件概率与概率的乘法公式

B {活到25岁}
显然, B A {现龄为 20岁的这种动物活到 25岁} 因为,“活到25岁”一定要“活过20岁”,所以
C ( A B)
AB
PC P( A B) P A PB 0.85
例3Байду номын сангаас
某人有5把钥匙,其中有一把是办公室门的,但他忘 了是哪一把,只好逐把试开(试完不放回),求三次内把 办公室门打开的概率
解: 设: Ai 恰好第 i次打开门
B 三次内把门打开
B A1 A2 A3




有 :
A1 , A2 , A3
两两互不相容
1 p( A1 ) 5 4 1 1 p( A2 ) 5 4 5
4 3 1 1 p( A3 ) 5 4 3 5
P(B) P( A1 A2 A3 ) PA1 PA2 PA3 0.6
例6
某地区气象资料表明,邻近的甲乙两城市中的甲市全 年雨天比例为12%,乙市全年雨天比例为9%,两城市 中至少有一市为雨天比例为16.8%,试求下列事件的概率

(1)甲市为雨天的条件下,乙市也为雨天 (2)在乙市为无雨的条件下,甲市也无雨
解 设
A {甲市为雨天 }
B {乙市为雨天 }
P( A) 0.12
固A 包含的基本事件数为:P P P 16 P( A) 125
1 1 1 4 4 1
16
由加法公式推论2可知:
16 109 P A 1 P( A) 1 125 125
注意在概率的计算问题中,有的直接运算比较困难 ,可以把直接问题转化成相反问题计算容易的多。

概率论公式

概率论公式


n
注:如果有 n 个变量服从同一个 0-1 分布, Xi ~ b(1, p) ,则其和 X Xi 服从二项 i
分布 X ~ b(n, p)
11. Poisson 分布
X ~ P() P( X k) k e , k 0,1,...
F
(x)

0, 1,
x x

c c
E(X ) c
Var( X ) 0
9. 二项分布
X ~ b(n, p)
P( X k) Cnk pk (1 p)nk E(X ) np
Var( X ) np(1 p)
10. 二点分布(0-1 分布)
X ~ b(1, p)
P( X x) px (1 p)1x , x 0,1
p(
x)


2
n 2
1 (
n
)
e

x 2
x
n 2
1
,
x

0
2

0, x 0
E(X ) n
Var( X ) 2n
Gamma 分布变为 2 分布:
当 X ~ Ga(,) ,则 2 X ~ Ga(, 1) 2 (2 ) 2
20. 严格单调函数Y g(X )
pY ( y) px[h(x)] | h '(x) |
21. K 阶原点矩和中心矩
k E(X k ) k E( X E( X ))k
中心矩和原点矩关系:
k
k Cik i (i )ki i0
22. 变异系数
Cv
(
X
)

( E(

考研数学五大重要概率运算公式归纳

考研数学五大重要概率运算公式归纳

考研数学五大重要概率运算公式归纳概率论与数理统计在考研数学中占22%,约34分,在396经济联考中占14分,事件概率计算的五大公式是数一、数三,396考纲中都有要求的内容,所以比较基础也比较重要。

今天来和大家谈谈概率计算的五大公式。

五大公式包括减法公式、加法公式、乘法公式、全概率公式、贝叶斯公式。

1、减法公式,P(A-B)=P(A)-P(AB)。

此公式来自事件关系中的差事件,再结合概率的可列可加性总结出的公式。

2、加法公式,P(A+B)=P(A)+P(B)-P(AB)。

此公式来自于事件关系中的和事件,同样结合概率的可列可加性总结出来。

学生还应掌握三个事件相加的加法公式。

以上两个公式,在应用当中,有时要结合文氏图来解释会更清楚明白,同时这两个公式在考试中,更多的会出现在填空题当中。

所以记住公式的形式是基本要求。

3、乘法公式,是由条件概率公式变形得到,考试中较多的出现在计算题中。

在复习过程中,部分同学分不清楚什么时候用条件概率来求,什么时候用积事件概率来求。

比如“第一次抽到红球,第二次抽到黑球”时,因为第一次抽到红球也是未知事件,所以要考虑它的概率,这时候用积事件概率来求;如果“在第一次抽到红球已知的情况下,第二次抽到黑球的概率”,这时候因为已知抽到了红球,它已经是一个确定的事实,所以这时候不用考虑抽红球的概率,直接用条件概率,求第二次取到黑球的概率即可。

4、全概率公式5、贝叶斯公式以上两个公式是五大公式极为重要的两个公式。

结合起来学习比较容易理解。

首先,这两个公式首先背景是相同的,即,完成一件事情在逻辑或时间上是需要两个步骤的,通常把第一个步骤称为原因。

其次,如果是“由因求果”的问题用全概率公式;是“由果求因”的问题用贝叶斯公式。

例如;买零件,一个零件是由A、B、C三个厂家生产的,分别次品率是a%,b%,c%,现在求买到次品的概率时,就要用全概率公式;若已知买到次品了,问是A厂生产的概率,这就要用贝叶斯公式了。

高等数学概率的基本公式

高等数学概率的基本公式
B={使用15000小时无故障} 所求概率为:
P(B/A)= P( AB) P(B) P( A) P( A)
=0.6/0.95=0.63
返回
三、全概率公式及Bayes公式
完备事件组:
n 事件A1 , A2 ,,… , An两两互不相容,且P(Ai)>0;
Ai U.
i 1
全概率公式
设事件A1 , A2 ,,… , An为一完备事件组,则对任 一事件B,都有:
伯努利(Bernoulli) 试验: 每次试验结果只有A与A的独立重复试验。
例:扔硬币;射击等
返回
定理: n次Bernoulli试验中,事件A出现k次的概率为:
Pn (k) Cnk pk qnk
n
并且 Pn (k) 1 k 0
k 0,1,2,, n
其中P(A)=p,p+q=1
例1:扔5次硬币正面出现3次的概率为:
)
4
0.46
返回
n
P(B) P( Ai )P(B Ai )
i 1
返回
证明:
B
A1 A2 … Ai … An
P(B) P(BU ) P(B( A1 A2 An )) P( A1B A2B AnB) P( A1B) P( A2B) P( AnB)
P(A1)P(B A1) P(An )P(B An )
AB
P(A+B+C)=P(A)+P(B)+P(C)–P(AB)-P(AC)-
P(BC)+P(ABC)
返回
例题1Leabharlann A右图A,B开关的开与
关概率均为1/2 , 求
B
灯亮的概率.
解:
P(灯亮) = P(A+B)

概率论-1-5条件概率,乘法公式,全概率公式,贝叶斯公式

概率论-1-5条件概率,乘法公式,全概率公式,贝叶斯公式
3
P ( B) P ( Ai )P ( B|Ai )
i 1
1 1 1 2 1 1 8 3 5 3 5 3 15
将此例中所用的方法推广到一般的情形,就 得到在概率计算中常用的全概率公式.
2. 样本空间的划分及全概率公式
定义 设S为试验E的样本空间, B1 B1, B2,, Bn 为E的一组事件,若
注意P(AB)与P(A | B)的区别! 请看下面的例子
例4 甲、乙两厂共同生产1000个零件,其中 300 件是乙厂生产的. 而在这300个零件中,有189个是标准 件,现从这1000个零件中任取一个,问这个零件是乙厂 生产的标准件的概率是多少?
解 设B={零件是乙厂生产}, A={是标准件}
PBi PA | Bi
i 1
当 n=2 时,划分 B1, B2 可写成划分 B, B ,于是 P( A) P(B)P( A | B) P(B)P( A | B))
3. 全概率公式的理解
n
PA PBi PA | Bi
i 1
全概率公式 .
全概率公式的基本思想 是把一个未知的复杂事 件
样本空间中的任一事件 A ,恒有
n
PA PBi PA | Bi
i 1
证明 因为 A AS AB1 B2 Bn
AB1 AB2 ABn
并且 ABi AB j , i j ,所以
PA PAB1 PAB2 PABn
P n
B1
P
A
|
B1
PBn PA | Bn
解 记 Ai={球取自i号箱}, i=1,2,3;
B ={取得红球}
12 3
其中 A1、A2、A3两两互斥 B发生总是伴随着A1,A2,A3 之一同时发生,

条件概率与全概率公式

条件概率与全概率公式

P ( A )= P ( B 1 ) P ( A | B 1 )+ P ( B 2 ) P ( A | B 2 )+ P ( B 3 ) P ( A | B
3 )+
P ( B 4 ) P ( A | B 4 )=0.15×0.05+0.20×0.04+0.30×0.03+
0.35×0.02=0.031 5,

∑ ()(|)
=1
, i =1,2,···, n .
[小题诊断]
1.
1
1
若 P ( A | B )= , P ( B )= ,则 P ( AB )的值是(
9
3
A )
1
1
1
由 P ( AB )= P ( A | B ) P ( B ),可得 P ( AB )= × = .
9
3
27
2. 某人忘记了一个电话号码的最后一个数字,只好去试拨,他第一次失
[解]
设第1次抽到舞蹈节目为事件 A ,第2次抽到舞蹈节目为事件 B ,
则第1次和第2次都抽到舞蹈节目为事件 AB .
(3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞
()
蹈节目的概率为 P ( B | A )=

()
2
5
2
3
法二:因为 n ( AB )=12, n ( A )=20,
总产量的15%,20%,30%和35%,且四条流水线的产品不合格率分别
为0.05,0.04,0.03和0.02,现从该厂的这一产品中任取一件,问抽到不
合格品的概率是多少?
解:设 A =“任取一件这种产品,抽到不合格品”,
B i =“任取一件这种产品,结果是第 i 条流水线的产品”( i =1,

条件概率有关条件概率的三个重要计算公式

条件概率有关条件概率的三个重要计算公式

第二周条件概率和独立性2.2条件概率有关条件概率的三个重要计算公式上一讲中我们引入了条件概率,有了这一概念,我们对事件的表达就有了更丰富的工具。

下面我们就希望能够有效地计算条件概率,得到我们想要的概率结果。

对于条件概率而言呢,主要有三个计算公式,分别是乘法公式、全概率公式和贝叶斯公式。

这三个计算公式的应用贯穿概率论的始终,是非常基本和重要的计算工具。

下面我们看第一个乘法公式。

*********************************************************乘法公式(1)设B A ,是两个事件,()0>B P ,则()()()B A P B P AB P |=证明:()()()()()()||P AB P A B P AB P B P A B P B =⇒=(2)设n A A A ,,,21 为n 个事件,且()0121>-n A A A P ,则()()()()()12121312121|||-⋅⋅=n n n A A A A P A A A P A A P A P A A A P 。

证明:数学归纳法,设()()()()111211||-⋅⋅=k k k A A A P A A P A P A A P ,()()()1112112|k k k kP A A P A A A P A A A A ++=⋅ ()()()121112||.k k P A P A A P A A A A +=⋅⋅ 直接验证:()()()()121312121|||n n P A P A A P A A A P A A A A -⋅⋅ ()()()()()()()12312121112121n n P A A A P A A A P A A P A P A P A A P A A A -= ()12.n P A A A =*********************************************************例2.2.1设箱子内有a 个白球,b 个黑球,在其中不放回地连取3次,问前2次取到白球而第3次取到黑球的概率。

条件概率的三种求解方法

条件概率的三种求解方法

条件概率的三种求解方法:
在概率论中,条件概率表示一个事件发生的条件下另一个事件发生的概率。

常见的三种求解条件概率的方法如下:
1.通过贝叶斯公式求解: 贝叶斯公式是P(A|B) = P(B|A) * P(A) / P(B),其中P(A|B) 表示
条件概率,P(B|A) 表示B 在A 发生的条件下发生的概率,P(A) 表示A 发生的概率,P(B) 表示B 发生的概率。

2.通过乘法公式求解: 乘法公式是P(A and B) = P(A|B) * P(B) = P(B|A) * P(A),其中P(A
and B) 表示A 和B 同时发生的概率。

3.通过联合概率公式求解: 联合概率公式是P(A and B) = P(A) * P(B|A) = P(B) * P(A|B),
其中P(A and B) 表示A 和B 同时发生的概率。

这三种方法都可以求解条件概率,但是要根据具体情况选择使用哪一种方法。

概率的计算公式-

概率的计算公式-
B所选人是 .求 一 下 班 列 的 事件
P(A)
P(AB)
P(B)
P(B| A)
条件概率计算公式
当 P(A)0,P(BA)P(AB ) P(A)
当 P(B)0,P(AB)P(AB ) P(B)
Note 条件概率是概率吗?
条件概率满足概率三公 理。
2. 乘法公式
P(A)B P(A )P(BA )P(B)P(AB).
§1.3 概率的计算公式
一、加法公式 二、条件概率与乘法公式 三、全概率公式 四、贝叶斯(Bayes)公式
二.条件概率与乘法公 式
1.条件概率
Def 已知事 B出件现的条 A出 件现 下的
称为条件概率。记作 P(A B).
eg 班级 男生 女生 总数
1班
16
16
32
2班
18
10
28
从这两个班 ,A 中 令 选 任得 选是 ,
P (Y )P (A 1A 1B 1A 2)P (A 1)P (A 1B 1A 2)
0 .2 P (A 1 ) P (B 1 /A 1 ) P (A 2 /A 1 B 1 )
0 .2 0 .8 0 .7 0 .4 0.424
三.全概率公式
设A1,A2, ,An为一互不相容完 组备 ,
eg 4.
在空战 ,甲中机先向乙,击 机毁 开率 火 0.2为 ,
若乙机未 ,就 被 向 击 甲 毁 ,机 击反 中0击 率 .3,
若甲机又未被击毁就 乙向 机再次反,击
击毁率为0.4, 求在这3个回合中, 甲机被击毁的概机率被与击乙毁的?概
解 令 X 甲被 ,Y击 乙毁 被 , 击毁
四.贝叶 (Ba斯 ye)公 s 式

概率论 第四节条件概率 全概率公式

概率论 第四节条件概率 全概率公式

乙、丙三个厂中哪个厂生产的可能性大?
解 设事件A表示“取到的产品为正
B1, B2品, B”3 分,别表示“产品由甲、乙、丙厂生产”
由已知 P(B1 ) 0.2, P(B2 ) 0.3, P(B3 ) 0.5
P( A B1 ) 0.95, P( A B2 ) 0.9, P( A B3 ) 0.8
当有了新的信息(知道B发生),人们对
诸事件发生可能性大小P(Ai|B)有了新的估计。 贝叶斯公式从数量上刻划了这种变化。
例8 同一种产品由甲、乙、丙三个厂供应。 由长期的经验知,三家的正品率分别为0.95、 0.90、0.80,三家产品数所占比例为2:3:5,混 合在一起。
(1)从中任取一件,求此产品为正品的概率; (2)现取到一件产品为正品,问它是由甲、
我们也称A ,B,C 是相互独立的事件。 定理 若事件A与B是相互独立的,则
A与B ,A与 B , A与 都B 是相互独立的。
例 3 一个均匀的正四面体,将第一面染成
红色,第二面染成白色,第三面染成黑色,第四
面同时染上红、白、黑三种颜色,如果以A、
B、C分别表示投掷一次正四面体时红、白、
黑颜色着地的事件,由于在四个面中两面上
冒病毒是相互独立的,则所求概率为
P1500 Ai 1 PA1A2 A1500
i1
1 PA1PA2 PA1 1 1 0.002 1500 1 e1500 ln 10.002
1 e15000.002 1 e3 0.95
从这个例子可见,虽然每个带有感冒病 毒的可能性很小,但许多聚集在一起时空气 中含有感冒病毒的概率可能会很大,这种现 象称为小概率事件的效应。卫生常识中,不让 婴儿到人多的公共场所去就是这个道理。

高等数学概率的基本公式

高等数学概率的基本公式

=0.3*0.9/0.97=0.278
返回
例题2
甲.乙.丙三人能破译某密码的概率分别为 1 , 1 , 1 .问密码能被破译出来的概率.
534
解: P(A B C) 1 P(A B C)
1 P(ABC)
1 P(A)P(B)P(C)
1 4 2 3 3 534 5
例题3 (见142页例6-18)
例题1
甲打中的概率为0.7,乙打中的概率为0.9。 设A={甲打中};B={乙打中},则:
P(A)=0.7; P(B)=0.9 1.甲乙两人都打中的概率为:
P(AB)=P(A)P(B)=0.7*0.9=0.63 2.目标被打中的概率为:
P(A+B)=1-(1-0.7)(1-0.9)=0.97
3.P(甲脱靶/目标击中) P(A/( A B)) P(A)P(B) P(A B)
i 1
返回
证明:
B
A1 A2 … Ai … An
P(B) P(BU ) P(B( A1 A2 An )) P( A1B A2B AnB) P( A1B) P( A2B) P( AnB)
P(A1)P(B A1) P(An )P(B An )
n
P(Ai )P(B Ai )
i 1
解:P(恰好1只白球)=P(A)
C C C = 1 1 / 2 0.2032
4
32
36
P(恰好2只白球)=P(B)
C C = 2 2 0.0095
4
36
P(至少1只白球)=P(A+B) =P(A)+P(B)
解法2:
=0.2032+0.0095 =0.2127
C C P(D) 1 P(D) 1 2 32
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

条件概率 P(A|B)的样本空间
BA
BA
Sample space
P( AB)
Reduced sample space given event B
P(A | B)
概率 P(A|B)与P(AB)的区别与联系
联系:事件A,B都发生了 区别: (1)在P(A|B)中,事件A,B发生有时间上的差异, B先A后;在P(AB)中,事件A,B同时发生。
条件概率 Conditional Probability
抛掷一颗骰子,观察出现的点数 A={出现的点数是奇数}={1,3,5}
B={出现的点数不超过3}={1,2,3}
若已知出现的点数不超过3,求出现的点数是 奇数的概率
即事件 B 已发生,求事 件 A 的概率 P(A|B)
A B 都发生,但样本空间 缩小到只包含B的样本点
则 P(A) 0.7, P(B) 0.56 所求概率为 P(B A) P( AB) P(B) 0.8
P( A) P( A)
甲,乙,丙3人参加面试抽签,每人的试题通过
不放回抽签的方式确定。假设被抽的10个试题签中有4
个是难题签,按甲先,乙次,丙最后的次序抽签。试求
1)甲抽到难题签,2)甲和乙都抽到难题签,3)甲没
P( A B) P( AB) P(B)
P(ABC) P(A)P(B A) P(C | AB)
P( A1A2 L An ) P( A1)P( A2 A1)P( A3 ( A1A2 )) L P( An ( A1 A2 L An1))
一批产品中有 4% 的次品,而合格品中一等品占 45% .从这批产品中任取一件,求该产品是一等品的概 率.
例 考虑恰有两个小孩的家庭.若已知某一家有男孩, 求这家有两个男孩的概率;若已知某家第一个是男孩, 求这家有两个男孩(相当于第二个也是男孩)的概率. (假定生男生女为等可能)
解 Ω={ (男, 男) , (男 , 女) , (女 , 男) , (女 , 女) }
设 B= “有男孩” , 则 B={(男, 男) , (男 , 女) , (女 , 男) }
抽到难题签而乙抽到难题签,4)甲,乙,丙都抽到难
题签的概率。解 设ABiblioteka B,C分别表示“甲、乙、丙抽到难签”
则 P(1) P(A) 4 10
P(3) P(AB) 6 4 10 9
P(2) P(AB) 4 3 10 9
P(4) P(ABC) 4 3 2 10 9 8
一、全概率公式
P(A), P(B), P(A B), P(B A), P(AB),
80 20
12
12
12
100 100
20
80
100
P(C), P(C A), P(A B), P(AC)
40
32
100
80
12
32
80
100
某种动物出生之后活到20岁的概率为0.7,活 到25岁的概率为0.56,求现年为20岁的这种动 物活到25岁的概率。 解 设A表示“活到20岁”,B表示“活到25岁”
解 设A表示第一次取得白球, B表示第二次取得白球, 则
(1) P( A) 6 0.6 10
(2)P( AB) P(A)P(B A) 6 5 0.33 10 9
(3)P( AB) P( A)P(B A) 4 6 0.27 10 9
全年级100名学生中,有男生(以事件A表示) 80人,女生20人; 来自北京的(以事件B表示) 有20人,其中男生12人,女生8人;免修英语 的(以事件C表示)40人中,有32名男生,8名 女生。求
例 一个盒子中有6只白球、4只黑球,从中不放回 地每次任取1只,连取2次,求第二次取到白球 的概率

A={第一次取到白球}
因为 B=AB∪ AB ,且AB与 AB
互不相容,所以
P(B) P( AB) P( AB)
P( A)P(B A) P( A)P(B A)
6 5 4 6 10 9 10 9

0.6
全概率公式
AB AB
A
BA
P(B) P( AB AB) P(AB) P(AB)
P( A)P(B | A) P( A)P(B | A)
全概率公式
设A1 ,A2 ,...,An 构成一个完备事件组,且 P(Ai )>0 ,i=1,2,...,n,则对任一随机事件B, 有
解 设A表示取到的产品是一等品,B表示取
出的产品是合格品, 则
P(A | B) 45%
P(B ) 4%
于是 P(B) 1 P(B ) 96%
所以 P(A) P(AB) P(B)P(A | B)
96%45% 43.2%
一个盒子中有6只白球、4只黑球,从中不放回地 每次任取1只,连取2次,求 (1) 第一次取得白球的概 率; (2) 第一、第二次都取得白球的概率; (3) 第一次取 得黑球而第二次取得白球的概率.
P( A | B) AB 2 B 3
AB
A (AB ) B
(A)
(B )
(n)
条件概率 Conditional Probability
定义 设A,B为同一个随机试验中的两个随机事件 ,
且P(B)>0, 则称
P( A B) P( AB) P(B)
为在事件B发生的条件下,事件A发生的条件概率.
(2)样本空间不同,在P(A|B)中,事件B成为样本
空间;在P(AB)中,样本空间仍为 。
因而有 P(A B) P(AB)
例 设 100 件产品中有 70 件一等品,25 件二等品,
规定一、二等品为合格品.从中任取1 件,求 (1) 取得 一等品的概率;(2) 已知取得的是合格品,求它是一等 品的概率.
A= “有两个男孩” , A={(男, 男) },
B1 =“第一个是男孩” B1 ={(男, 男) , (男 , 女) }
于是得 PB 3
4
PBA PA 1
4
PB1
1 2
PB1 A
PA
1 4
乘法法则
P( AB) P( A)P(B A) P(B)P(A B)
推广
P(B A) P( AB) P( A)
解 设A表示取得一等品,B表示取得合格品,则
(1)因为100 件产品中有 70 件一等品,所以 P( A) 70 0.7 100
(2)方法1:因为95 件合格品中有 70 件一等品,所以
P( A B) 70 0.7368 95
方法2:
P(A B) P(AB) 70 100 0.7368 P(B) 95 100
相关文档
最新文档