离散数学考试 必备大全 看完不低于90分

合集下载

离散数学考前综合复习资料

离散数学考前综合复习资料

《离散数学》综合复习资料一、判断题1. A 、B 、C 是任意命题公式,如果A ∧C ⇔B ∧C ,一定有A ⇔B 。

( )2.设<A ,*>是一个代数系统,且集合A 中元素的个数大于1。

如果该代数系统中存在幺元e 和零元θ,则e ≠θ。

( )3. A 、B 、C 为任意集合,已知A ⋃B=A ⋃C ,必须有B=C 。

( ) 4. 自然数集是可数的。

( )5. 命题联结词{⌝,∧,∨}是最小联结词组。

( ) 6. 有理数集是可数的。

( ) 7. 交换群必是循环群。

( )8. 图G 的邻接矩阵A ,A l 中的i 行j 列表示结点v i 到v j 长度为l 路的数目。

( ) 二、解答题1.求命题公式⌝(P →Q)的主析取范式。

2.举出A={a,b,c}上的二元关系R 和S 满足:(1)R 既不是自反的又不是反自反的,既是对称的又是反对称的; (2)S 既不是对称的又不是反对称的,是传递的。

3.以下哪些是函数?哪些是入射?哪些是满射?对任意一个双射,写出它们的逆函数。

(1) f: N →Q, f(x) = 1/x(2) f: R ⨯R →R ⨯R, f(x,y)=<y+1,x+1> 4.判断下列代数系统是否是群,并说明理由:(1) <R ,->:实数集关于减法; (2) <I ,+>:整数集关于加法;5.构造一非空偏序集,它存在一子集有上界,但没有最小上界。

它还有一子集,存在最大下界但没有最小元。

6.画一个有欧拉回路,但没有汉密尔顿回路的图。

d ︒ b ︒︒e ︒c︒a7.将下列命题符号化(1)如果张三和李四都不去,她就去。

((⌝P ∧⌝Q )→R ) (2)今天要么是晴天,要么是雨天。

(P ∀Q ) 8.设G=<V,E>,V={V1,V2,V3,V4}的邻接矩阵:(1)试画出该图。

(2)V2的入度d -(V2)和出度d +(V2)是多少?(3)利用邻接矩阵的性质求从V1到V2长度为3的路有几条? 9.将下列命题符号化(1)除非你走否则我留下。

离散数学图论(图、树)常考考点知识点总结

离散数学图论(图、树)常考考点知识点总结

离散数学图论(图、树)常考考点知识点总结图的定义和表示1.图:一个图是一个序偶<V , E >,记为G =< V ,E >,其中:① V ={V1,V2,V3,…, Vn}是有限非空集合,Vi 称为结点,V 称为节点集② E 是有限集合,称为边集,E中的每个元素都有V中的结点对与之对应,称之为边③与边对应的结点对既可以是无序的,也可以是有序的表示方法集合表示法,邻接矩阵法2.邻接矩阵:零图的邻接矩阵全零图中不与任何结点相邻接的结点称为孤立结点,两个端点相同的边称为环或者自回路3.零图:仅有孤立节点组成的图4.平凡图:仅含一个节点的零图无向图和有向图5.无向图:每条边都是无向边的图有向图:每条边都是有向边的图6.多重图:含有平行边的图(无向图中,两结点之间包括结点自身之间的几条边;有向图中同方向的边)7.线图:非多重图8.重数:平行边的条数9..简单图:无环的线图10.子图,真子图,导出子图,生成子图,补图子图:边和结点都是原图的子集,则称该图为原图的子图真子图(该图为原图的子图,但是不跟原图相等)11.生成子图:顶点集跟原图相等,边集是原图的子集12.导出子图:顶点集是原图的子集,边集是由顶点集在原图中构成的所有边构成的图完全图(任何两个节点之间都有边)13.完全图:完全图的邻接矩阵主对角线的元素全为0,其余元素都是114.补图:完全图简单图15.自补图:G与G的补图同构,则称自补图16.正则图:无向图G=<V,E>,如果每个顶点的度数都是k,则图G称作k-正则图17.结点的度数利用邻接矩阵求度数:18.握手定理:图中结点度数的总和等于边数的两倍推论:度数为奇数的结点个数为偶数有向图中,所有结点的入度=出度=边数19.图的度数序列:出度序列+入度序列20.图的同构:通俗来说就是两个图的顶点和边之间有双射关系,并且每条边对应的重数相同(也就是可任意挪动结点的位置,其他皆不变)21.图的连通性及判定条件可达性:对节点vi 和vj 之间存在通路,则称vi 和vj 之间是可达的22.无向图的连通性:图中每两个顶点之间都是互相可达的23..强连通图:有向图G 的任意两个顶点之间是相互可达的判定条件:G 中存在一条经过所有节点至少一次的回路24.单向连通图:有向图G 中任意两个顶点之间至少有一个节点到另一个节点之间是可达的判定条件:有向图G 中存在一条路经过所有节点25.弱连通图:有向图除去方向后的无向图是连通的判定条件:有向图邻接矩阵与转置矩阵的并是全一的矩阵26.点割:设无向图G=<V,E>为联通图,对任意的顶点w  V,若删除w及与w相关联的所有边后,无向图不再联通,则w称为割点;27.点割集:设无向图G=<V,E>为连通图,若存在点集 ,当删除 中所有顶点及与V1顶点相关联的所有边后,图G不再是联通的;而删除了V1的任何真子集 及与V2中顶点先关的所有边后,所得的子图仍是连通图,则称V1是G的一个点割集设无向图G=<V,E>为连通图,任意边e  E,若删除e后无向图不再联通,则称e 为割边,也成为桥28.边割集:欧拉图,哈密顿图,偶图(二分图),平面图29.欧拉通路(回路):图G 是连通图,并且存在一条经过所有边一次且仅一次的通路(回路)称为拉通路(回路)30.欧拉图:存在欧拉通路和回路的图31.半欧拉图:有通路但没有欧拉回路32.欧拉通路判定:图G 是连通的,并且有且仅有零个或者两个奇度数的节点欧拉回路判定:图G 是连通的,并且所有节点的度数均为偶数有向欧拉图判定:图G 是连通的,并且所有节点的出度等于入度33.哈顿密图:图G 中存在一条回路,经过所有点一次且仅一次34..偶图:图G 中的顶点集被分成两部分子集V1,V2,其中V1nV2= o ,V1UV2= V ,并且图G 中任意一条边的两个端点都是一个在V1中,一个在V2中35.平面图:如果把无向图G 中的点和边画在平面上,不存在任何两条边有不在端点处的交叉点,则称图G 是平面图,否则是非平面图36.图的分类树无向树和有向树无向树:连通而不含回路的无向图称为无向树生成树:图G 的某个生成子图是树有向树:一个有向图,略去所有有向边的方向所得到的无向图是一棵树最小生成树最小生成树:设G -< V . E 是连通赋权图,T 是G 的一个生成树,T 的每个树枝所赋权值之和称为T 的权,记为W ( T . G 中具有最小权的生成树称为G 的最小生成树最优树(哈夫曼树)设有一棵二元树,若对所有的树叶赋以权值w1,w2… wn ,则称之为赋权二元树,若权为wi 的叶的层数为L ( wi ),则称W ( T )= EWixL ( wi )为该赋权二元树的权,W )最小的二元树称为最优树。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1. 用命题逻辑把下列命题符号化a) 假如上午不下雨,我去看电影,否则就在家里读书或看报。

b) 我今天进城,除非下雨。

c) 仅当你走,我将留下。

2. 用谓词逻辑把下列命题符号化a) 有些实数不是有理数b) 对于所有非零实数x,总存在y使得xy=1。

c) f是从A到B的函数当且仅当对于每个a€ A存在唯一的b € B ,使得f(a)=b.二、简答题(共6道题,共32分)1. 求命题公式(P T(Q T R)).r(R T(Q T P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2. 设个体域为{1,2,3},求下列命题的真值(4分)a) -x y(x+y=4)b) y -x (x+y=4)3. 求-x(F(x) T G(x)) T ( xF(x) T-I X G(X))的前束范式。

(4 分)4. 判断下面命题的真假,并说明原因。

(每小题2分,共4分)a) (A _.B)—C=(A-B) (A-C)b) 若f是从集合A到集合B的入射函数,则|A| < |B|5. 设A是有穷集,|A|=5,问(每小题2分,共4分)a) A上有多少种不同的等价关系?b) 从A到A的不同双射函数有多少个?6. 设有偏序集<A, < >,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)7. 已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数K IS;P(S);N,N ;P(N);R,R X R,{o,1}(写出即可)(6 分)三、证明题(共3小题,共计40分)1. 使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a) A T (B A C),(E T—F) T—C, B T (A A ~S)二B T Eb) -x(P(x) T—Q(x)), -x(Q(x) V R(x)) , x—R(x)二x~P(x)2. 设R1是A上的等价关系,R2是B上的等价关系,A工._且B =_,关系R满足:<<X1,y1>,<X2,y2>>€ R,当且仅当< x 1, X2> € R1 且<y 1,y2> € R2。

考试必备离散数学定理总结

考试必备离散数学定理总结

2.8、C1∧C2≈Res(C1,C2)2.10、(消解的完全性)一个合取范式是不可满足的当且仅当它有否证.3.1、由命题公式A1, A2, …, Ak推B的推理正确当且仅当A1∧A2∧…∧Ak→B为重言式.(推理正确不能保证结论一定正确)4.1、闭式在任何解释下都是命题5.1、(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式6.1、空集是任何集合的子集。

(推论:空集是唯一的)6.2、(包含排斥原理)设集合S上定义了n条性质,其中具有第i 条性质的元素构成子集Ai, 那么集合中不具有任何性质的元素数为:6.3、德摩根律:A-(B⋃C)=(A-B)⋂(A-C)A-(B⋂C)=(A-B)⋃(A-C)~(B⋃C)=~B~⋂C~(B⋂C)=~B~⋃C7.9、设R为A上的关系, 则(1) R 在A上自反当且仅当IA ⊆R(2) R 在A上对称当且仅当R=R^(-1)(3) R 在A上传递当且仅当R︒R ⊆R7.10、设R为A上的关系, 则有(1) r(R)=R∪R^0(2) s(R)=R∪R^(-1)(3) t(R)=R∪R^2∪R^3∪…9.1、设◦为S上的二元运算,el和er分别为S中关于运算的左和右单位元,则el = er = e为S上关于◦运算的惟一的单位元.9.2、设◦为S上的二元运算,θl和θr分别为S中关于运算的左和右单位元,则θl = θr = θ为S上关于◦运算的惟一的零元.9.3、设◦为S上的二元运算,e和θ分别为◦运算的单位元和零元,如果S至少有两个元素,则e≠θ.9.4、设◦为S上可结合的二元运算, e为该运算的单位元, 对于x∈S 如果存在左逆元yl 和右逆元yr, 则有yl = yr= y, 且y是x 的惟一的逆元.10.2、G为群,∀a,b∈G,方程ax=b和ya=b在G中有解且仅有惟一解. (G中适合消去律)10.3、G为群,a∈G且|a| = r. 设k是整数,则(1) a^k = e当且仅当r | k(r整除k)(2 )|a^-1| = |a|10.4、(子群判定定理一)设G为群,H是G的非空子集,则H是G的子群当且仅当(1) ∀a,b∈H有ab∈H(2) ∀a∈H有a^-1∈H.10.5、(子群判定定理二)设G为群,H是G的非空子集. H是G的子群当且仅当∀a,b∈H有ab^-1∈H.10.6、(子群判定定理三)设G为群,H是G的非空有穷子集,则H是G的子群当且仅当∀a,b∈H有ab∈H.10.7、设H是群G的子群,则He=H,∀a∈G有a∈Ha10.8、设H是群G的子群,则∀a,b∈G有:a∈Hb ⇔ab-1∈H ⇔Ha=Hb10.9、设H是群G的子群,在G上定义二元关系R:∀a,b∈G, <a,b>∈R ⇔ab-1∈H则R是G上的等价关系,且[a]R = Ha.推论:设H是群G的子群, 则(1) ∀a,b∈G,Ha = Hb或Ha∩Hb = ∅(2) ∪{Ha | a∈G} = G10.10、(Lagrange)设G是有限群,H是G的子群,则:|G| = |H|·[G:H]其中[G:H] 是H在G中的不同右陪集(或左陪集) 数,称为H在G 中的指数.推论1:设G是n阶群,则∀a∈G,|a|是n的因子.推论2:对阶为素数的群G,必存在a∈G使得G = <a>.10.11、(循环群的生成元)设G=<a>是循环群. :(1) 若G是无限循环群,则G只有两个生成元,即a和a-1.(2) 若G是n 阶循环群,则G含有φ(n)个生成元. 对于任何小于n且与n 互质的数r∈{0,1,…,n-1}, ar是G的生成元.10.12、(循环群的子群)设G=<a>是循环群.(1) 设G=<a>是循环群,则G的子群仍是循环群.(2) 若G=<a>是无限循环群,则G的子群除{e}以外都是无限循环群.(3) 若G=<a>是n阶循环群,则对n的每个正因子d,G恰好含有一个d 阶子群.14.1、(握手定理)在任何无向图中,所有顶点的度数之和等于边数的2倍.14.2、(握手定理)在任何有向图中,所有顶点的度数之和等于边数的2倍;所有顶点的入度之和等于所有顶点的出度之和,都等于边数.推论:任何图(无向或有向) 中,奇度顶点的个数是偶数.14.5、在n 阶图G中,若从顶点vi 到vj(vi≠vj)存在通路,则从vi 到vj 存在长度小于或等于n-1 的通路.推论:在n 阶图G中,若从顶点vi 到vj(vi≠vj)存在通路,则从vi 到vj 存在长度小于或等于n-1的初级通路(路径).14.7、对任意无向图G中,有:κ(G)λ≤(G)δ≤(G)14.8、D强连通当且仅当D中存在经过每个顶点至少一次的回路14.9、D单向连通当且仅当D中存在经过每个顶点至少一次的通路14.10、无向图G=<V,E>是二部图当且仅当G中无奇圈15.1、无向图G是欧拉图当且仅当G连通且无奇度数顶点.15.2、无向图G是半欧拉图当且仅当G 连通且恰有两个奇度顶点.15.5、G是非平凡的欧拉图当且仅当G是连通的且是若干个边不重的圈的并.15.6、设无向图G=<V,E>是哈密顿图,对于任意V1⊂V且V1∅≠,均有p(G-V1) ≤ |V1|设无向图G=<V,E>是半哈密顿图,对于任意的V1⊂V且V1∅≠均有p(G-V1) ≤ |V1|+1 15.7、设G是n阶无向简单图,若对于任意不相邻的顶点vi,vj,均有d(vi)+d(vj) ≥n-1则G 中存在哈密顿通路.推论:设G为n(n≥3) 阶无向简单图,若对于G中任意两个不相邻的顶点vi,vj,均有d(vi)+d(vj) ≥n则G中存在哈密顿回路,从而G为哈密顿图.16.1、设G=<V,E>是n阶m条边的无向图,则下面各命题是等价的:(1) G 是树(2) G 中任意两个顶点之间存在惟一的路径.(3) G 中无回路且m=n-1.(4) G 是连通的且m=n-1.(5) G 是连通的且G 中任何边均为桥.(6) G 中没有回路,但在任何两个不同的顶点之间加一条新边,在所得图中得到惟一的一个含新边的圈.16.2、设T是n阶非平凡的无向树,则T 中至少有两片树叶.16.3、无向图G具有生成树当且仅当G连通.推论1 :G为n阶m条边的无向连通图,则m≥n-1.推论2 :余树的边数为m-n+1.推论3 :余树为G的生成树T的余树,C为G中任意一个圈,则C与余树一定有公共边17.3、平面图各面次数之和等于边数的两倍.17.4、极大平面图是连通的,并且n(n≥3)阶极大平面图中不可能有割点和桥.17.5、设G为n(n≥3)阶极大平面图,则G的每个面的次数均为3.17.6、(欧拉公式)设G为n阶m条边r个面的连通平面图,则n-m+r=217.7、(欧拉公式的推广)设G是具有k(k≥2)个连通分支的平面图,则n-m+r=k+117.8、设G为连通的平面图,且deg(Ri)≥l, l≥3,则m≤ l(n-2)/( l-2)推论:K5,K3,3不是平面图17.10、设G为n(n≥3)阶m条边的简单平面图,则m≤3n-6.17.11、设G为n(n≥3)阶m条边的极大平面图,则m=3n-6.17.12、设G 为简单平面图,则δ(G)≤5.17.13、G是平面图⇔G中不含与K5或K3,3同胚的子图.17.14、G是平面图⇔G中无可收缩为K5或K3,3的子图18.3、设n阶图G中无孤立顶点.(1) 设M为G中一个最大匹配,对于G中每个M非饱和点均取一条与其关联的边,组成边集N,则W=M⋃N为G中最小边覆盖.(2) 设W1为G中一个最小边覆盖;若W1中存在相邻的边就移去其中的一条,设移去的边集为N1,则M1=W1-N1为G中一个最大匹配.(3) G中边覆盖数α1与匹配数β1满足α1+β1=n.推论:设G是n阶无孤立顶点的图. M为G中的匹配,W是G中的边覆盖,则|M| ≤ |W|,等号成立时,M为G中完美匹配,W为G中最小边覆盖.18.4、M为G中最大匹配当且仅当G中不含M的可增广交错路径.18.5、(Hall定理)设二部图G=<V1,V2,E>中,|V1|≤|V2|. G中存在从V1到V2的完备匹配当且仅当V1中任意k(k=1,2,…,|V1|)个顶点至少与V2中的k个顶点相邻.本定理中的条件常称为“相异性条件”.18.6、设二部图G=<V1,V2,E>中,V1中每个顶点至少关联t (t≥1)条边,而V2中每个顶点至多关联t 条边,则G 中存在V1到V2的完备匹配.18.7、对于任意无向图G,均有χ(G) ≤∆(G)+1几个相关性质:χ(G)=1当且仅当G为零图χ(Kn)=n若G为奇圈或奇阶轮图,则χ(G)=3,若G为偶阶轮图,则χ(G)=4.若G的边集非空,则χ(G)=2当且仅当G为二部图18.8、(Brooks定理)若连通无向图G不是Kn,(n≥3),也不是奇数阶的圈,则χ(G) ≤∆(G) 18.10、(四色定理)任何平面图都是4-可着色的。

离散数学必备知识点总结资料

离散数学必备知识点总结资料

离散数学必备知识点总结资料离散数学是指离散的数学概念和结构,独立于连续的数学。

它是在计算机科学、信息科学、数学基础研究、工程技术等领域中的基础课程之一。

以下是离散数学必备的一些知识点总结。

一、逻辑与集合1. 命题与谓词:命题是一个陈述,可以被判断为真或假,而谓词是一种用来描述命题所涉及实体之间关系的语句。

2. 命题逻辑:重点关注命题真假和与或非等运算关系,包括真值表和主范式。

3. 一阶谓词逻辑:注意包含全称量词和存在量词,也包括a|b, a//b等符号的理解。

4. 集合与运算:集合是指不同元素组成的一个整体。

基本的集合运算包括并、交、差等。

5. 关系与函数:关系是一种元素之间的对应关系,而函数是一种具有确定性的关系,即每一个自变量都对应唯一的函数值。

6. 等价关系与划分:等价关系是指满足自反性、对称性和传递性的关系。

划分是指将一个集合分成若干个不相交的子集,每个子集称为一个等价类。

二、图论1. 图的定义和基本概念:图由节点和边构成,节点间的连线称为边。

包括度、路径、连通性等概念。

2. 图的表示方法:邻接矩阵和邻接表。

3. 欧拉图与哈密顿图:欧拉图是指能够一笔画出的图,哈密顿图是指含有一条经过每个节点恰好一次的路径的图。

4. 最短路径与最小生成树:最短路径问题是指在图中找出从一个节点到另一个节点的最短路径。

最小生成树问题是指在图中找出一棵覆盖所有节点的树,使得边权之和最小。

三、代数系统1. 代数结构:包括群、环、域等概念。

2. 群的定义和基本概念:群是在一个集合中定义一种二元运算满足结合律、单位元存在和逆元存在的代数结构。

四、组合数学1. 排列、组合和二项式系数:排列是指从n个元素中任选r个进行排序,组合是指从n个元素中任选r个但不考虑排序,二项式系数是指组合数。

2. 生成函数:将组合数与多项式联系起来的一种工具,用于求出某种算法或结构的某些特定函数。

3. 容斥原理:一个集合的容斥原理指在集合的并、交、补之间的关系。

考试必备离散数学概念总结

考试必备离散数学概念总结

考试必备离散数学概念总结1.1、单个命题变项和命题常项是合式公式, 称作原子命题公式2.1、若等价式A?B是重言式,则称A与B等值,记作A?B,并称A?B是等值式2.2、(1) 文字——命题变项及其否定的总称2.3、设C1=l∨C1', C2=lc∨C2', C1'和C2'不含l和lc, 称C1∨'C2'为C1和C2(以l和lc为消解文字)的消解式或消解结果, 记作Res(C1,C2)2.4、设S是一个合取范式, C1,C2,?,Cn是一个简单析取式序列. 如果对每一个i(1≤i≤n), Ci是S的一个简单析取式或者是Res(Cj,Ck)(1≤j<k<=""></k3.1、设A1, A2, …, Ak, B为命题公式. 若对于每组赋值,A1∧A2∧…∧Ak为假,或当A1∧A2∧…∧Ak为真时,B也为真,则称由前提A1, A2, …, Ak推出结论B的推理是有效的或正确的, 并称B是有效结论.4.1、个体词——所研究对象中可以独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域(论域)——个体变项的取值范围4.2、谓词——表示个体词性质或相互之间关系的词谓词常项:如, F(a):a是人谓词变项:如, F(x):x具有性质F一元谓词(n=1)——表示性质多元谓词(n≥2)——表示事物之间的关系0元谓词——不含个体变项的谓词, 即命题常项或命题变项4.3、设L是一个非逻辑符集合, 由L生成的一阶语言L 的字母表包括下述符号:非逻辑符号(个体常项符号、函数符号、谓词符号)和逻辑符号(个体变项符号、量词符号、联结词符号、括号与逗号)4.4、设R(x1, x2, …, xn)是L的任意n元谓词,t1, t2, …, tn 是L 的任意n个项,则称R(t1,t2, …, tn)是L的原子公式.4.5、在公式?xA 和?xA 中,称x为指导变元,A为相应量词的辖域. 在?x和?x的辖域中,x的所有出现都称为约束出现,A中不是约束出现的其他变项均称为是自由出现.4.6、若公式A中不含自由出现的个体变项,则称A为封闭的公式,简称闭式.6.1、A?B??x ( x∈A →x∈B )6.2、A = B?A?B∧B?A6.3、A?B?A?B∧A≠BA?B??x ( x∈A ∧x?B )6.4、幂集:P(A)={ x | x ?A } (一定包含空集)6.5、并A?B = {x | x∈A∨x∈B}交A?B = {x | x∈A∧x∈B}相对补A-B = {x | x∈A∧x?B}对称差A⊕B = (A-B)?(B-A)绝对补~A = E-A6.6、广义并?A = { x | ?z ( z∈A∧x∈z )}广义交?A= { x | ?z ( z∈A →x∈z )}7.1、设A,B为集合,A与B的笛卡儿积记作A?B,且A?B = {| x∈A∧y∈B}.7.2、设A,B为集合, A×B的任何子集所定义的二元关系叫做从A 到B的二元关系, 当A=B时则叫做A上的二元关系.(计数:|A|=n, |A×A|=n^2, 所以A上有2^(n^2)个不同的二元关系。

离散数学复习要点

离散数学复习要点

离散数学复习要点第一章命题逻辑一、典型考查点1、命题的判断方法:陈述句真值唯一,特殊:反问句也是命题。

其它疑问句、祈使句、感叹句、悖论等皆不是。

详见教材P12、联结词运算定律┐∧∨→记住特殊的:1∧1⇔1,0∨0⇔0,1→0⇔0,11⇔1,00⇔1详见P53、命题符号化步骤:A划分原子命题,找准联结词。

特殊自然语言:不但而且,虽然但是用∧,只有P才Q,应为Q→P;除非P否则Q,应为┐P→Q。

B设出原子命题写出符号化公式。

详见P54、公式的分类判定(重言式、矛盾式、可满足式)方法:其一根据所有真值赋值情况,其二根据等价演算来判断。

详见P95、真值表的构造步骤:①命题变元按字典序排列,共有2n个真值赋值。

②对每个指派,以二进制数从小到大或从大到小顺序列出。

③若公式较复杂,可先列出各子公式的真值(若有括号,则应从里层向外层展开),最后列出所求公式的真值。

详见P8。

6、基本概念:置换规则,P规则,T规则,详见P24;合取范式,析取范式,详见P15;小项详见P16;大项详见P18,最小联结词组详见P157、等价式详见P22表1.6.2 证明方法:①真值表完全相同②用等价演算③利用A⇔B的充要条件是A⇒B且B⇒A。

主要等价式:(1)双否定:⎤⎤A⇔A。

(2)交换律:A∧B⇔B∧A,A∨B⇔B∨A,A↔B⇔B↔A。

3)结合律:(A∧B)∧C⇔A∧(B∧C),(A∨B)∨C⇔A∨(B∨C),(A↔B)↔C⇔A↔(B↔C)。

(4) 分配律:A∧(B∨C)⇔(A∧B)∨(A∧C),A∨(B∧C)⇔(A∨B)∧(A∨C)。

(5) 德·摩根律:⎤(A∧B)⎤⇔A∨⎤B,⎤(A∨B)⎤⇔A∧⎤B。

(6) 等幂律:A∧A⇔A,A∨A⇔A。

(7) 同一律:A∧T⇔A,A∨F⇔A。

(8) 零律:A∧F⇔F,A∨T⇔T。

(9) 吸收律:A∧(A∨B)⇔A,A ∨(A∧B)⇔A。

(10) 互补律:A∧⎤A⇔F,(矛盾律),A∨⎤A⇔T。

离散数学试题总汇及答案

离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。

A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。

B. 有些狗不会游泳。

C. 所有的狗都不会游泳。

D. 以上都不是真命题。

4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。

A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。

B. 有些鸟不会飞。

C. 所有的哺乳动物都是温血动物。

D. 以上都不是假命题。

9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。

A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。

A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。

2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。

离散数学必备知识点总结汇总

离散数学必备知识点总结汇总

总结离散数学知识点第二章命题逻辑1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则,T规则①真值表法;②直接证法;③归谬法;④附加前提法;第三章谓词逻辑1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,不包括0;2.基:集合A中不同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一个分划都是由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现,没有要求只出现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数2种不同的关系;为mn,A到B上可以定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;8.covA={<x,y>|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数1.若|X|=m,|Y|=n,则从X到Y有mn2种不同的关系,有m n种不同的函数;2.在一个有n个元素的集合上,可以有22n种不同的关系,有n n种不同的函数,有n!种不同的双射;3.若|X|=m,|Y|=n,且m<=n,则从X到Y有A m n种不同的单射;4.单射:f:X-Y,对任意x,2x属于X,且1x≠2x,若f(1x)≠f(2x);1满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;双射:f:X-Y,若f既是单射又是满射,则f是双射;5.复合函数:fºg=g(f(x));6.设函数f:A-B,g:B-C,那么①如果f,g都是单射,则fºg也是单射;②如果f,g都是满射,则fºg也是满射;③如果f,g都是双射,则fºg也是双射;④如果fºg是双射,则f是单射,g是满射;第七章代数系统1.二元运算:集合A上的二元运算就是2A到A的映射;2. 集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为2*22=42=16种;3. 判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f为由<A,*>到<B,^>的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶avb≥aA^b≤b 对偶avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b => c≥avb6) 结合律a^(b^c)=(a^b)^c对偶av(bvc)=(avb)vc7) 等幂律a^a=a 对偶ava=a8) 吸收律a^(avb)=a 对偶av(a^b)=a9) a≤b <=> a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c <=> av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格<A,<=>的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格<A,<=>的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一个有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必定是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点v,j v,若存在连接i v到j v的路,则称i vi与v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v的j路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为列;ij17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列;P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为列;i19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只访问每个节点一次,经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点v;②选择一个与v邻接且未被访问过的节点1v;③从v出发按邻接方向继续访问,当遇到一个节点所1有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;广度优先:①选定起始点v;②访问与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一个节点v为起点;1④重复②③,直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被访问过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,如果最小边值2比v邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v,1连接v现在的最小边值(除已连接的边值);1③重复操作,直到所有节点都被访问过一次;24.关键路径例2 求PERT图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径.解:最早完成时间TE(v1)=0TE(v2)=max{0+1}=1TE(v3)=max{0+2,1+0}=2TE(v4)=max{0+3,2+2}=4TE(v5)=max{1+3,4+4}=8TE(v6)=max{2+4,8+1}=9TE(v7)=max{1+4,2+4}=6TE(v8)=max{9+1,6+6}=12 最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2TL(v2)=min{2-0,10-3,6-4}=2TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1-v3-v7-v825.欧拉路:经过图中每条边一次且仅一次的通路;欧拉回路:经过图中每条边一次且仅一次的回路;欧拉图:具有欧拉回路的图;单向欧拉路:经过有向图中每条边一次且仅一次的单向路;欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;26.(1)无向图中存在欧拉路的充要条件:①连通图;②有0个或2个奇数度节点;(2)无向图中存在欧拉回路的充要条件:①连通图;②所有节点度数均为偶数;(3)连通有向图含有单向欧拉路的充要条件:①除两个节点外,每个节点入度=出度;②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1;(4)连通有向图含有单向欧拉回路的充要条件:图中每个节点的出度=入度;27.哈密顿路:经过图中每个节点一次且仅一次的通路;哈密顿回路:经过图中每个节点一次且仅一次的回路;哈密顿图:具有哈密顿回路的图;28.判定哈密顿图(没有充要条件)必要条件:任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;充分条件:图中每一对节点的度数之和都大于等于图中的总节点数;29.哈密顿图的应用:安排圆桌会议;方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图;31.面次:面的边界回路长度称为该面的次;32.一个有限平面图,面的次数之和等于其边数的两倍;33.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则v-e+r=2;34.判断是平面图的必要条件:(若不满足,就一定不是平面图)设图G是v个节点,e条边的简单连通平面图,若v>=3,则e<=3v-6;35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的;36.判断G是平面图的充要条件:图G不含同胚于K3.3或K5的子图;37.二部图:①无向图的节点集合可以划分为两个子集V1,V2;②图中每条边的一个端点在V1,另一个则在V2中;完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:图中每条回路经过边的条数均为偶数;38.树:具有n个顶点n-1条边的无回路连通无向图;39.节点的层数:从树根到该节点经过的边的条数;40.树高:层数最大的顶点的层数;41.二叉树:①二叉树额基本结构状态有5种;②二叉树内节点的度数只考虑出度,不考虑入度;③二叉树内树叶的节点度数为0,而树内树叶节点度数为1;④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;⑤二叉树内节点的总数=边的总数+1;⑥位于二叉树第k层上的节点,最多有12 k个(k>=1);⑦深度为k的二叉树的节点总数最多为k2-1个,最少k个(k>=1);⑧如果有n个叶子,2n个2度节点,则0n=2n+1;42.二叉树的节点遍历方法:先根顺序(DLR);中根顺序(LDR);后根顺序(LRD);43.哈夫曼树:用哈夫曼算法构造的最优二叉树;44.最优二叉树的构造方法:①将给定的权值按从小到大排序;②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;③重复②,直达所有权值构造完毕;45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值;每个节点的编码:从根到该节点经过的0和1组成的一排编码;。

离散数学部分概念和公式总结(考试专用)

离散数学部分概念和公式总结(考试专用)

命题:称能判断真假的陈述句为命题。

命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。

命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。

给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。

若指定的一组值使A的值为真,则称成真赋值。

真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。

将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。

命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。

(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。

(3)若A至少存在一组赋值是成真赋值,则A是可满足式。

主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。

主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。

命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。

约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。

一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。

前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。

集合的基本运算:并、交、差、相对补和对称差运算。

笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。

二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。

离散数学复习资料

离散数学复习资料

离散数学复习资料离散数学是计算机科学与工程中的一门重要课程,对于学生来说离不开的内容就是集合、关系、图、逻辑等等。

由于离散数学的知识点比较多,所以需要用心复习备考。

本文就是为了给大家提供一些离散数学的复习资料,希望对大家的备考有所帮助。

1. 《离散数学及其应用》(Discrete Mathematics and its Applications)这本书是一本经典的教材,由美国著名数学家Kenneth H. Rosen编写,已经出版了七版。

书中内容系统、全面、深入,并且重视应用。

里面讲解的内容包括集合论、命题逻辑、谓词逻辑、证明技巧、图论、组合数学等等,每个知识点都有大量的例题和习题,适用于各个层次的学生。

此外,书中还有详细的解答和答案解析,让学生能够深入理解各个知识点的含义和应用,是一本很好的复习资料。

2. 离散数学MOOCMOOC是全称为Massive Open Online Course,中文名为大规模开放式在线课程,是指通过互联网向全球提供大规模课程,任何人都可以免费参加。

目前国内外各大高校都推出了MOOC课程,离散数学也不例外。

学生可以通过其官网或各大视频站搜索离散数学相关的MOOC,比如中国大学MOOC、Coursera等。

只要积极参与学习,基本可以达到一个不错的学习效果,同时也是一种便捷的复习方式。

3. 常见错题整理离散数学复习也需要练题,但是很多同学在复习时会出现死记硬背的情况,对于一些基础知识点掌握的不够扎实,导致在做题时出现错误。

所以整理自己的错题也是一种很好的复习方式。

学生可以以章节为单位,把做错的题目整理出来,并进行分析总结,找出其中的规律和易错点,以便更好地消化和理解这些知识点,提高做题的准确率。

4. 参考资料在复习时,参考资料也是非常重要的。

学生可以准备一本参考书或棕色折页,里面可以收集相关的定理、公式、图像等,方便随时查阅。

同时也可以利用网络资源,比如百度学术、Google Scholar等,搜索相关的论文和文献,从专业角度深入了解离散数学的各个方面,提高学习的水平和技巧。

离散数学期末复习要点与重点

离散数学期末复习要点与重点

离散数学期末复习要点与重点离散数学是中央广播电视大学开放教育本科电气信息类计算机科学与技术专业的一门统设必修学位课程,共72学时,开设一学期.该课程的主要内容包括:集合论、图论、数理逻辑等.下面按章给出复习要点与重点.第1章 集合及其运算复习要点1.理解集合、元素、集合的包含、子集、相等,以及全集、空集和幂集等概念,熟练掌握集合的表示方法.具有确定的,可以区分的若干事物的全体称为集合,其中的事物叫元素..集合的表示方法:列举法和描述法.注意:集合的表示中元素不能重复出现,集合中的元素无顺序之分.掌握集合包含(子集)、真子集、集合相等等概念.注意:元素与集合,集合与子集,子集与幂集,∈与⊂(⊆),空集∅与所有集合等的关系. 空集∅,是惟一的,它是任何集合的子集.集合A 的幂集P (A )=}{A x x ⊆, A 的所有子集构成的集合.若∣A ∣=n ,则∣P (A )∣=2n .2.熟练掌握集合A 和B 的并A ⋃B ,交A ⋂B ,补集~A (~A 补集总相对于一个全集).差集A -B ,对称差⊕,A ⊕B =(A -B )⋃(B -A ),或A ⊕B =(A ⋃B )-(A ⋂B )等运算,并会用文氏图表示.掌握集合运算律(见教材第9~11页)(运算的性质).3.掌握用集合运算基本规律证明集合恒等式的方法.集合的运算问题:其一是进行集合运算;其二是运算式的化简;其三是恒等式证明. 证明方法有二:(1)要证明A =B ,只需证明A ⊆B ,又A ⊇B ;(2)通过运算律进行等式推导.重点:集合概念,集合的运算,集合恒等式的证明.第2章 关系与函数复习要点1.了解有序对和笛卡儿积的概念,掌握笛卡儿积的运算.有序对就是有顺序二元组,如<x , y >,x , y 的位置是确定的,不能随意放置.注意:有序对<a ,b >≠<b , a >,以a , b 为元素的集合{a , b }={b , a };有序对(a , a )有意义,而集合{a , a }是单元素集合,应记作{a }.集合A ,B 的笛卡儿积A ×B 是一个集合,规定A ×B ={<x ,y >∣x ∈A ,y ∈B },是有序对的集合.笛卡儿积也可以多个集合合成,A 1×A 2×…×A n .2.理解关系的概念:二元关系、空关系、全关系、恒等关系.掌握关系的集合表示、关系矩阵和关系图,掌握关系的集合运算和求复合关系、逆关系的方法.二元关系是一个有序对集合,},{B y A x y x R ∈∧∈><=,记作xRy .关系的表示方法有三种:集合表示法,关系矩阵:R ⊆A ×B ,R 的矩阵⎪⎪⎭⎫ ⎝⎛==⎪⎩⎪⎨⎧/==⨯n j m i b R a Rb a r r M j i j i ij n m ij R ,...,2,1,...,2,101,)(. 关系图:R 是集合上的二元关系,若<a i , b j >∈R ,由结点a i 画有向弧到b j 构成的图形.空关系∅是唯一、是任何关系的子集的关系; 全关系},,{A b a b a E A ∈><=A A ⨯≡; 恒等关系},{A a a a I A ∈><=,恒等关系的矩阵M I 是单位矩阵.关系的集合运算有并、交、补、差和对称差. 复合关系}),,(,{2121R c b R b a b c a R R R >∈<∧>∈<∃><=∙=;复合关系矩阵:21R R R M M M ⨯=(按布尔运算);有结合律:(R ∙S )∙T =R ∙(S ∙T ),一般不可交换. 逆关系},,{1R y x x y R >∈<><=-;逆关系矩阵满足:T R R M M =-1;复合关系与逆关系存在:(R ∙S )-1=S -1∙R -1.3.理解关系的性质(自反性和反自反性、对称性和反对称性、传递性的定义以及矩阵表示或关系图表示),掌握其判别方法(利用定义、矩阵或图,充分条件),知道关系闭包的定义和求法.注:(1)关系性质的充分必要条件:① R 是自反的⇔I A ⊆R ;②R 是反自反的⇔I A ⋂R =∅;③R 是对称的 ⇔R =R -1;④R 是反对称的⇔R ⋂R -1⊆I A ;⑤R 是传递的⇔R ∙R ⊆R .(2)I A 具有自反性,对称性、反对称性和传递性.E A 具有自反性,对称性和传递性.故I A ,E A 是等价关系.∅具有反自反性、对称性、反对称性和传递性.I A 也是偏序关系.4.理解等价关系和偏序关系概念,掌握等价类的求法和作偏序集哈斯图的方法.知道极大(小)元,最大(小)元的概念,会求极大(小)元、最大(小)元、最小上界和最大下界. 等价关系和偏序关系是具有不同性质的两个关系. ⎩⎨⎧==+⎭⎬⎫⎩⎨⎧+偏序关系等价关系传递性反对称性对称性自反性 知道等价关系图的特点和等价类定义,会求等价类.一个子集的极大(小)元可以有多个,而最大(小)元若有,则惟一.且极元、最元只在该子集内;而上界与下界可以在子集之外.由哈斯图便于确定任一子集的最大(小)元,极大(小)元.5.理解函数概念:函数(映射),函数相等,复合函数和反函数.理解单射、满射和双射等概念,掌握其判别方法.设f 是集合A 到B 的二元关系,∀a ∈A ,存在惟一b ∈B ,使得<a , b >∈f ,且Dom(f )=A ,f 是一个函数(映射).函数是一种特殊的关系.集合A ×B 的任何子集都是关系,但不一定是函数.函数要求对于定义域A 中每一个元素a ,B 中有且仅有一个元素与a 对应,而关系没有这个限制.二函数相等是指:定义域相同,对应关系相同,而且定义域内的每个元素的对应值都相同.函数有:单射——若)()(2121a f a f a a ≠⇒≠;满射——f (A )=B 或,,A x B y ∈∃∈∀使得y =f (x );双射——单射且满射.复合函数,:,:,:C A f g C B g B A f →→→ 则 即))(()(x f g x f g = .复合成立的条件是:)(Dom )(Ran g f ⊆.一般g f f g ≠,但f g h f g h )()(=.反函数——若f :A →B 是双射,则有反函数f -1:B →A ,},)(,,{1A a b a f B b a b f ∈=∈><=-,f f g f f g ==-----11111)(,)( 重点:关系概念与其性质,等价关系和偏序关系,函数.第3章 图的基本概念复习要点1.理解图的概念:结点、边、有向图,无向图、简单图、完全图、结点的度数、边的重数和平行边等.理解握手定理.图是一个有序对<V ,E >,V 是结点集,E 是联结结点的边的集合.掌握无向边与无向图,有向边与有向图,混合图,零图,平凡图、自回路(环),无向平行边,有向平行边等概念.简单图,不含平行边和环(自回路)的图、在无向图中,与结点v (∈V )关联的边数为结点度数deg (v );在有向图中,以v (∈V )为终点的边的条数为入度deg -(v ),以v (∈V )为起点的边的条数为出度deg +(v ),deg(v )=deg +(v )+deg -(v ). 无向完全图K n 以其边数)1(21-=n n E ;有向完全图以其边数)1(-=n n E . 了解子图、真子图、补图和生成子图的概念. 生成子图——设图G =<V , E >,若E '⊆E ,则图<V , E '>是<V , E >的生成子图. 知道图的同构概念,更应知道图同构的必要条件,用其判断图不同构.重要定理:(1) 握手定理 设G =<V ,E >,有∑∈=Vv E v 2)deg(; (2) 在有向图D =<V , E >中,∑∑∈+∈-=V v V v v v )(deg )(deg;(3) 奇数度结点的个数为偶数个.2.了解通路与回路概念:通路(简单通路、基本通路和复杂通路),回路(简单回路、基本回路和复杂回路).会求通路和回路的长度.基本通路(回路)必是简单通路(回路).了解无向图的连通性,会求无向图的连通分支.了解点割集、边割集、割点、割边等概念.了解有向图的强连通强性;会判别其类型.设图G =<V ,E >,结点与边的交替序列为通路.通路中边的数目就是通路的长度.起点和终点重合的通路为回路.边不重复的通路(回路)是简单通路(回路);结点不重复的通路(回路)是基本通路(回路).无向图G 中,结点u , v 存在通路,u , v 是连通的,G 中任意结点u , v 连通,G 是连通图.P (G )表示图G 连通分支的个数.在无向图中,结点集V '⊂V ,使得P (G -V ')>P (G ),而任意V "⊂V ',有P (G -V ")=P (G ),V '为点割集. 若V '是单元集,该结点v 叫割点;边集E '⊂E ,使得P (G -V ')>P (G ),而任意E "⊂E ',有P (G -E ")=P (G ),E '为边割集.若E '是单元集,该边e 叫割边(桥).要知道:强连通−−→−必是单侧连通−−→−必是弱连通,反之不成立. 3.了解邻接矩阵和可达矩阵的概念,掌握其构造方法及其应用.重点:图的概念,握手定理,通路、回路以及图的矩阵表示.第4章 几种特殊图复习要点1.理解欧拉通路(回路)、欧拉图的概念,掌握欧拉图的判别方法.通过连通图G 的每条边一次且仅一次的通路(回路)是欧拉通路(回路).存在欧拉回路的图是欧拉图.欧拉回路要求边不能重复,结点可以重复.笔不离开纸,不重复地走完所有的边,走过所有结点,就是所谓的一笔画.欧拉图或通路的判定定理(1) 无向连通图G 是欧拉图⇔G 不含奇数度结点(即G 的所有结点为偶数度);(2) 非平凡连通图G 含有欧拉通路⇔G 最多有两个奇数度的结点;(3) 连通有向图D 含有有向欧拉回路⇔D 中每个结点的入度=出度.连通有向图D 含有有向欧拉通路⇔D 中除两个结点外,其余每个结点的入度=出度,且此两点满足deg -(u )-deg +(v )=±1.2.理解汉密尔顿通路(回路)、汉密尔顿图的概念,会做简单判断.通过连通图G 的每个结点一次,且仅一次的通路(回路),是汉密尔顿通路(回路).存在汉密尔顿回路的图是汉密尔顿图.汉密尔顿图的充分条件和必要条件(1) 在无向简单图G =<V ,E >中,∣V ∣≥3,任意不同结点V v u G v u ≥+∈)deg()deg(,,,则G 是汉密尔顿图.(充分条件)(2) 有向完全图D =<V ,E >, 若3≥V ,则图D 是汉密尔顿图. (充分条件)(3) 设无向图G =<V ,E >,任意V 1⊂V ,则W (G -V 1)≤∣V 1∣(必要条件)若此条件不满足,即存在V 1⊂V ,使得P (G -V !)>∣V 1∣,则G 一定不是汉密尔顿图(非汉密尔顿图的充分条件).3.了解平面图概念,平面图、面、边界、面的次数和非平面图.掌握欧拉公式的应用. 平面图是指一个图能画在平面上,除结点之外,再没有边与边相交.面、边界和面的次数)deg(r 等概念.重要结论:(1)平面图e r e E v V E V G ri i2)deg(,,,,1===>=<∑=则. (2)欧拉公式:平面图,,,,e E v V E V G ==>=< 面数为r ,则2=+-r e v (结点数与面数之和=边数+2)(3)平面图633,,,,-≤≥==>=<v e v e E v V E V G ,则若.会用定义判定一个图是不是平面图.4.理解平面图与对偶图的关系、对偶图在图着色中的作用,掌握求对偶图的方法. 给定平面图G =〈V ,E 〉,它有面F 1,F 2,…,F n ,若有图G*=〈V*,E*〉满足下述条件:⑴对于图G 的任一个面F i ,内部有且仅有一个结点v i *∈V *;⑵对于图G 的面F i ,F j 的公共边e k ,存在且仅存在一条边e k *∈E *,使e k *=(v i *,v j *),且e k *和e k 相交;⑶当且仅当e k 只是一个面F i 的边界时,v i *存在一个环e k *和e k 相交;则图G *是图G 的对偶图.若G *是G 的对偶图,则G 也是G *的对偶图.一个连通平面图的对偶图也必是平面图.5.掌握图论中常用的证明方法.重点:欧拉图和哈密顿图、平面图的基本概念及判别.第5章树及其应用复习要点1.了解树、树叶、分支点、平凡树、生成树和最小生成树等概念,掌握求最小生成树的方法.连通无回路的无向图是树.树的判别可以用图T是树的充要条件(等价定义).注意:(1) 树T是连通图;(2)树T满足m=n-1(即边数=顶点数-1).图G的生成子图是树,该树就是生成树.每边指定一正数,称为权,每边带权的图称为带权图.G的生成树T的所有边的权之和是生成树T的权,记作W(T).最小生成树是带权最小的生成树.2.了解有向树、根树、有序树、二叉树、二叉完全树、正则二叉树和最优二叉树等概念.了解带权二叉树、最优二叉树的概念,掌握用哈夫曼算法求最优二叉树的方法.有向图删去边的方向为树,该图为有向树.对非平凡有向树,恰有一个结点的入度为0(该结点为树根),其余结点的入度为1,该树为根树.每个结点的出度小于或等于2的根树为二叉树;每个结点的出度等于0或2的根树为二叉完全树;每个结点的出度等于2的根树称为正则二叉树.有关树的求法:(1)生成树的破圈法和避圈法求法;(2)最小生成树的克鲁斯克尔求法;(3) 最优二叉树的哈夫曼求法重点:树与根树的基本概念,最小生成树与最优二叉树的求法.第6章命题逻辑复习要点1.理解命题概念,会判别语句是不是命题.理解五个联结词:否定⌝P、析取∨、合取∧、条件→、和双条件↔及其真值表,会将简单命题符号化.具有确定真假意义的陈述句称为命题.命题必须具备:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2.了解公式的概念(公式、赋值、成真指派和成假指派)和公式真值表的构造方法.能熟练地作公式真值表.理解永真式和永假式概念,掌握其判别方法.判定命题公式类型的方法:其一是真值表法,其二是等价演算法.3.了解公式等价概念,掌握公式的重要等价式和判断两个公式是否等价的有效方法:等价演算法、列真值表法和主范式方法.4.理解析取范式和合取范式、极大项和极小项、主析取范式和主合取范式的概念,熟练掌握它们的求法.命题公式的范式不惟一,但主范式是惟一的.命题公式A有n个命题变元,A的主析取范式有k个极小项,有m个极大项,则n+=k2m于是有(1) A是永真式⇔k=2n(m=0);(2) A是永假式⇔m=2n(k=0);求命题公式A的析取(合取)范式的步骤:见教材第174页.求命题公式A的主析取(合取)范式的步骤:见教材第177和178页.5.了解C是前提集合{A1,A2,…,A m}的有效结论或由A1, A2, …, A m逻辑地推出C的概念.要理解并掌握推理理论的规则、重言蕴含式和等价式,掌握命题公式的证明方法:真值表法、直接证法、间接证法.重点:命题与联结词,公式与解释,真值表,公式的类型及判定,主析取(合取)范式,命题演算的推理理论.第7章 谓词逻辑复习要点1.理解谓词、量词、个体词、个体域,会将简单命题符号化.原子命题分成个体词和谓词,个体词可以是具体事物或抽象的概念,分个体常项和个体变项.谓词用来刻划个体词的性质或之间的关系.量词分全称量词∀,存在量词∃.命题符号化注意:使用全称量词∀,特性谓词后用→;使用存在量词∃,特性谓词后用∧.2.了解原子公式、谓词公式、变元(约束变元和自由变元)与辖域等概念.掌握在有限个体域下消去公式的量词和求公式在给定解释下真值的方法.由原子公式、联结词和量词构成谓词公式.谓词公式具有真值时,才是命题.在谓词公式∀xA 或∃xA 中,x 是指导变元,A 是量词的辖域.会区分约束变元和自由变元.在非空集合D (个体域)上谓词公式A 的一个解释或赋值有3个条件.在任何解释下,谓词公式A 取真值1,A 为逻辑有效式(永真式);公式A 取真值0,A 为永假式;至少有一个解释使公式A 取真值1,A 称为可满足式.在有限个体域下,消除量词的规则为:设D ={a 1, a 2, …, a n },则)(...)()()(21n a A a A a A x xA ∧∧∧⇔∀)(...)()()(21n a A a A a A x xA ∨∨∨⇔∃会求谓词公式的真值,量词的辖域,自由变元、约束变元,以及换名规则、代入规则等. 掌握谓词演算的等价式和重言蕴含式.并进行谓词公式的等价演算.3.了解前束范式的概念,会求公式的前束范式的方法.若一个谓词公式F 等价地转化成 B x Q x Q x Q k k ...2211,那么B x Q x Q x Q k k ...2211就是F 的前束范式,其中Q 1,Q 2,…,Q k 只能是∀或∃,而x 1, x 2, …, x k 是个体变元,B 是不含量词的谓词公式.前束范式仍然是谓词公式.4.了解谓词逻辑推理的四个规则.会给出推理证明.谓词演算的推理是命题演算推理的推广和扩充,命题演算中基本等价式,重言蕴含式以及P ,T ,CP 规则在谓词演算中仍然使用.谓词逻辑的推理演算引入了US 规则(全称量词指定规则),UG 规则(全称量词推广规则),ES 规则(存在量词指定规则),EG 规则(存在量词推广规则)等.重点:谓词与量词,公式与解释,谓词演算.。

离散数学知识点整理

离散数学知识点整理

离散数学知识点整理离散数学是现代数学的一个重要分支,它在计算机科学、信息技术、数理逻辑等领域都有着广泛的应用。

下面为大家整理了一些离散数学的重要知识点。

一、集合论集合是离散数学的基础概念之一。

集合是由一些确定的、互不相同的对象组成的整体。

集合的表示方法包括列举法,如{1, 2, 3};描述法,如{x | x 是大于 0 的整数}。

集合的运算有并集、交集、差集和补集。

并集是将两个集合中的所有元素合并在一起;交集是两个集合中共同的元素;差集是从一个集合中去掉另一个集合中的元素;补集是在全集中去掉给定集合的元素。

集合之间的关系包括子集、真子集和相等。

如果集合 A 的所有元素都属于集合 B,则 A 是 B 的子集;如果 A 是 B 的子集且 A 不等于 B,则 A 是 B 的真子集;如果两个集合的元素完全相同,则它们相等。

二、关系关系是集合中元素之间的某种联系。

关系可以用矩阵和关系图来表示。

矩阵表示直观清晰,关系图则更形象。

关系的性质包括自反性、反自反性、对称性、反对称性和传递性。

自反性是指集合中的每个元素都与自身有关系;反自反性则是没有元素与自身有关系。

对称性是若 a 与 b 有关系,则 b 与 a 也有关系;反对称性是若 a 与b 有关系且 b 与 a 有关系,则 a = b。

传递性是若 a 与 b 有关系,b 与 c 有关系,则 a 与 c 有关系。

特殊的关系有等价关系和偏序关系。

等价关系满足自反性、对称性和传递性,它将集合划分为等价类。

偏序关系满足自反性、反对称性和传递性,常用于描述元素之间的排序。

三、函数函数是一种特殊的关系,对于定义域中的每个元素,在值域中都有唯一的元素与之对应。

函数有单射、满射和双射之分。

单射是不同的定义域元素对应不同的值域元素;满射是值域中的每个元素都有定义域元素与之对应;双射则既是单射又是满射。

复合函数是将一个函数的输出作为另一个函数的输入。

四、图论图由顶点和边组成。

图的分类有有向图和无向图。

理工类专业课复习资料-离散数学知识汇总

理工类专业课复习资料-离散数学知识汇总

离散数学笔记第一章命题逻辑合取析取定义 1. 1.3否定:当某个命题为真时,其否定为假,当某个命题为假时,其否定为真定义 1. 1.4条件联结词,表示“如果……那么……”形式的语句定义 1. 1.5双条件联结词,表示“当且仅当”形式的语句定义 1.2.1合式公式(1)单个命题变元、命题常元为合式公式,称为原子公式。

(2)若某个字符串A 是合式公式,则⌝A、(A)也是合式公式。

(3)若A、B 是合式公式,则A ∧B、A∨B、A→B、A↔B 是合式公式。

(4)有限次使用(2)~(3)形成的字符串均为合式公式。

1.3等值式1.4析取范式与合取范式将一个普通公式转换为范式的基本步骤定义1.44小项:在含有n个变兀的简单合取式中,每个命题变兀或其否定仅出现一次,且各变元技其字母顺序出现.则该简单合取式为小项或极小项.如:pAQAi*,p—lA^AT,pAQ-iAr,—ipA^Af是小项,而一ip AT、q/J*不是小项》定义1.4.5大所在含有n个变兀的简单析取式中,每个命题变兀或其否定仗出现一次.且务变元技其字母顺序出现.则该简单折取式为大项或极大项.如:pvqvr,p-ivqvr s pvq-ivr,-ipvqvr是大项.怛pvr-.—>qvr不是大项。

【帮你记忆】:因为p/vq的结果是这两值中最小者,即p Aq=miii(p,4)r所散将形如*p 脾”的会式称为小项.类似pvq结果是这两值中最大者,即pgFax(pR),所以将形如*pvq”的公式称为大项.定义1.4.6主合虱范式:一个合取范式中,如果所有简单析取式均为大项.则称为主合取范式.如(pvqvr)A(pv-iqvr)A(-ip-ivqvr)A(-ipvq->vr)是主合取范式-又如(p vt)a(-q vr)A(-ipvq-ivr)前2个简单折取式变兀不全.因而不是大顼,故不是主合取范式。

定义L4.7主折歇藕式:一个析取范式中,如果所有简单合取式均为小项.则称为主析取范式.如(-.p Ar)v(qAr)v(pH-.AQA-.r),因其前2个简单合取式中少变元不是小项,从而不是主析取范式又如:(-ipAqAr}v(-ipA-iqAr)V(pAQAt)V(P-i AQ-i AT)是主析取范式-现构造(p-中or,其主析取范式、其主合取范式的真值表.其中in^nV m lM V iH]11为(―p a―q a f^)v(―p方q a f a―q A—■r)v{p a Q a V)t M hm a□A M m(a M i m 为(p v q vr)A(p v-i q vr)A(—,p vq v—>r)A(—,p v-iq vr)«表117(pTq)if m<M)l V ITI dil V III iqo V Mooo a M-DID A M|qi AP q r原式(记为A)min主析取范式(记为B)Mm主合取范式(记为C)00000v0v0v0=00a I A1A1=000111vO v0v0=11A1A I Al=l01000v0v0v0=01A0A1A1=001110v1v t)v0=11A1A1A1=11001Ov Ov1v0=11A1A1A1=110100v0v0v0=01A I A0A1=011000v0v0v0=01A1A1A0=01111Ov0v0v1-11A1A1A1=1从表L17可发现(pTqQr、与其主析取范式、主合取范式的真值表完全一样,说明三 者互相等值,因此我们得到如下定理.定理L4.4(1)不是永假的命题公式.其主析取范式等值于原公式.不是永真的命题公式.其主合取范式等值于原公式.1.6推理定义 1.6.1 设 A 与 C 是两个命题公式, 若 A → C 为永真式、 重言式,则称 C 是 A 的有 效结论,或称 A 可以逻辑推出 C ,记为 A => C 。

离散数学期末考试复习资料

离散数学期末考试复习资料

《离散数学》课程综合复习资料一、判断题1.R1,R2是集合A上的二元关系,若R1和R2都是反自反的,则R1R2也是反自反的。

答案:√2.对任意集合A,A。

答案:×3.设<G,*>是一个群,B是G的非空子集,如果B是一个有限集,则<B,*>必定是<G,*>的子群。

答案:×4.A、B、C为任意集合,已知A⋂B=A⋂C,必须有B=C。

答案:×5.对于任意一个集合A,空集。

答案:√6.设E为全集,对任意集合A,A。

答案:×7.设A、B为任意两个集合,A答案:×8.R是集合A上的二元关系,若R是自反的,则R c也是自反的。

答案:√9.对于任意一个集合A,空集。

答案:×图是平面图。

10.K3,3答案:×11.“你去图书馆吗?”是一个命题。

答案:×12.如果有限集合A有n个元素,则其幂集p(A)有2n个元素。

答案:×13.群中可以有零元。

14.集合A的一个划分确定A的元素间的一个等价关系。

答案:√15.含有幺元的半群为独异点。

答案:√二、基本题1.将下列命题符号化:(1)只要不下雨,他就骑自行车上班。

(2)他或者骑自行车上班,或者乘公共汽车上班。

(3)有些大学生运动员是国家选手。

答案:(1)(⌝P→ Q)(2)(Q ∇ R 或 (Q∧⌝R)∨(⌝Q∧R))(3)((∃x)(P(x)∧Q(x)))2.求命题公式P∧(P→Q)的主析取范式。

答案:原式⇔P∧(⌝P∨Q)⇔(P∧⌝P) ∨ (P∧Q)⇔T∨ (P∧Q)⇔P∧Q3.求⌝(P→Q)的主合取范式。

答案:原式⇔⌝(⌝P∨Q)⇔⌝(⌝P∨Q)⇔P∧⌝Q⇔(P∨(⌝Q ∧Q))∧(⌝Q∨(⌝P∧P))⇔(P∨⌝Q)∧(P∨Q)∧(⌝P∨⌝Q)∧(P∨⌝Q)⇔(P∨⌝Q)∧(P∨Q)∧(⌝P∨⌝Q)4.设A={3,4},试构成集合P(A)⨯A。

离散数学 考试重点资料

离散数学 考试重点资料

一、填空题1. 设P 与S 的真值为F, Q 与R 的真值为T,则命题()()P Q R S 的真值是 F 2. 若连通平面图有11个结点,6个面,则它有 15 条边。

3.不是分配格的格至少含有 5元。

4. 2阶以上 的群中不含零元。

5.最小生成树是指 连通图中边权之和最小的生成树。

二、计算题1、求}10000,,2,1{ 中不被2、3、5整除的个数。

解: 设A 表示}10000,,2,1{ 中被2整除的数的集合,B 表示}10000,,2,1{ 中被3整除的数的集合,C 表示}10000,,2,1{ 中被5整除的数的集合,则5000,3333,2000A B C ===1666,666,1000A B B C C A ???,333A B C 乔=,进而有A B C A B C A BB C C A A B C 热=++-???乔 500033332000166666610003337334=++---+= 故有1000073342666A B C U A B C 热=-热=-=即}10000,,2,1{ 中不被2、3、5整除的个数为2666。

#2、求()R Q P 的主析取、主合取范式。

解:()R Q P 取真为:(1,0,1),(0,1,1),(0,0,1),(1,1,0),(1,1,1);故()R Q P 的主析取范式为()()()()()R Q P R Q P R Q P R Q P R Q P 儇仝刭仝刭刭谫儇谫 ;()R Q P 取假为:(1,0,0),(0,0,0),(0,1,0);故()R Q P 的主合取范式为:()()()R Q P R Q P R Q P 刳谫谮仝刳。

3、将式子“并非每个实数都是有理数”翻译成用谓词和量词表达的逻辑式子。

解:x :实数; )(x A :x 为有理数; 则上式表示为:()()x A x ?4、设{1,2,3,4}A =,定义A 上的一个二元关系R 如下:{1,2,2,1,2,3,3,4}R =<><><><>(1)写出R 的关系矩阵;(2)求2R ,3R ;(3)求)(R r ,)(R s ,)(R t 。

离散数学考前复习.ppt

离散数学考前复习.ppt
包含两层意思:
自然语言中的陈述句
(1)必须是陈述句。等式
不等式
(2)能够确定(分辨)其真值。
注意:能否分辨真假与是否知道真假是不同的。 如:张校长的头发有一万根。
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 2)2 6 9。 3)火星上有生命。 4)三角形的内角和等于180。 5)你喜欢数学吗? 6)我们要努力学习。 7)啊,我的天哪! 8)我正在说谎。
第一部分 数理逻辑
❖ 第一章 命题逻辑 ❖ 第二章 一阶谓词逻辑
第一章 命题逻辑
❖ 1.1 命题和命题联结词 ❖ 1.2 命题公式及其赋值 ❖ 1.3 等值演算与联结词完备集 ❖ 1.4 析取范式与合取范式 ❖ 1.5 推理的形式结构 ❖ 1.6 自然推理系统P
1.1 命题和命题联结词
1. 命题:能判断真假的陈述句。
F
F
T
T
T
父亲算失信呢?
1.1 命题和命题联结词
注意:①“只要p,就q‘,’因为p,所以q”,“p仅当q”, ‘只有q,才p“,”除非q才p“,”除非q,否则非p“都可 抽象为p→q。 ②p,q可以没有任何内在联系。
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。
1.1 命题和命题联结词
4).蕴涵词 由命题p、q和 组成的复合命题记作p q,读作“如果p,则q” 或“p条件q”。称为前件(前提),q称作后件(结论)。
是自然语言中的“如果,则”,“若,则”
的逻辑抽象。
有位父亲对儿子说:“如果我 p
q
p q
F
F
T
去书店,就一定给你买电脑 F
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学 练习题
一、填空题
1. 仅用∨和┐写出下列表达式的等价形式
a) R Q P ⌝∧∨⌝)(⇔ b)
)(E D A ⌝∨→⌝⇔
2. 仅用∧和┐写出下列表达式的等价形式
a) R Q P ⌝∧∨⌝)(⇔ b)
⇔∧→⌝)(Q P Q ;
3. 构造公式Q Q P P ↔∨∧)(的真值表。

4. 公式A 有三个命题变元P 、Q 、R 组成,其主合取范式为A ⇔710M M M ∧∧,则
其主析取范式为:
5. 公式A 有三个命题变元P 、Q 、R 组成,其主析取范式为A ⇔6520m m m m ∨∨∨,则其主合取范式为:
6. 设{}A d c b a A ,,,,=上的二元关系:
{}><><><><><=c c a c d b b a a a R ,,,,,,,,,,{}><><><><><=d d c c b c b b c a S ,,,,,,,,,
则=-R S 1 =S R =)(R r =)(R s
=)(S t
7. 给定如图所示的二元树:
按先根次序遍历访问结点的顺序为: 。

按中根次序遍历访问结点的顺序为: 。

按后根次序遍历访问结点的顺序为: 。

8.
2},,{},2,1{B A b a B A ⨯===
9. 设解释I 如下:
B
F
确定下列各式的真值:
)2,(x xP ∃ ___ __; ),1(y yP ∀ __ ___; ),(y x yP x ∀∀) __ ___。

∀∃x yP x y (,) ___;
10. 集合}}2{},2,{{Φ=A 的幂集=)(A ρ 。

11. 设全集U={1,2,3,4,5,6,7,8,9,10}, A={1,2,4,5,6}, B={2,4,6,8,10},
则:(A ∪B)-B = , B A -= , B ⊕A= , B ⊗A= 12. B A b a B A ⨯==},,{}},2,1{{= 。

13. 给定集合S={a,b,c,d},S 上的等价关系R 能产生划分{{a},{b},{c,d}},则R = 14. 指出下列映射是单射、满射、双射还是既非单射也非满射:
a) x x f R Z f ln )(,
:=→+; (Z+: 表示正整数集) 。

b) +→R R f :,1)(2+=x x f (+R 表示不小于0的实数) 。

c) +→R R f :,2)(x x f = (+R 表示不小于0的实数) 。

d) :,:,f A B g B C g f →→ 是双射,则 f 是 e)
R R f →:,2
1
32)(+=
x x f
(a): (b):
(c): (d):
16. 某单位装配了30辆汽车,其中15辆有录音机,8辆有空调,6辆有座位调节,三种
设备都有的有2辆,问这三种设备都不具备的汽车至少有 辆?
17. 设无向图中有6条边,有一个3度结点和一个5度结点,其余结点的度数为2,则该
图的结点数为: 。

二、命题符号化:
18. 李明和王平是大学同学。

19. 不是所有的哺乳动物都是胎生的。

20. 任何一个公式总存在一个与之等价的主析取范式。

21. 有些人对某些药品过敏。

22.
参加考试的人不一定取得好成绩。

23. 发光的不都是金子。

24. 有的兔子比所有的乌龟跑的快。

25. 所有猫都是动物,但有些动物不是猫。

三、作图:
26. 用二元有序树表示命题公式:(见课后习题P320 2) 27. 将普通的树转换为等价的二叉树。

28. 将二叉树T 转换为等价的普通树或树林。

29.
用克鲁斯克尔算法求出左图的最小生成树。

(见课后习题P309 11)
四、证明题:
30. G A G E D D C B A →⇒→∨∧→∨, 31. 证明下列论证:
如果甲参加球赛,则乙或丙也将参加球赛; 如果乙参加球赛,则甲不参加球赛; 如果丁参加球赛,则丙不参加球赛;
所以,如果甲参加球赛,则丁不参加球赛。

32. 设R 为二元关系,},,,|,{R b c R c a c b a S >∈<∧>∈<∃><=,
证明,若R 是等价关系,则S 也是等价关系。

33. 试证明:在任何一棵树T(n,m)中均有m=n-1。

五、计算题:
34. 设集合A ={2,3,4,5,6,8,12,18,36},R 是A 上的整除关系,
(1) 画出偏序集(A, R)的哈斯图;
(2) 写出集合A 的最大元,最小元,极大元,极小元。

(3) 写出A 的子集{2, 3, 6}的上界,下界,最小上界,最大下界; (4) 写出A 的子集{2, 4, 6}的上界,下界,最小上界,最大下界;
35. 用迪克斯特拉算法求从a 到z 最经济道路的长度以及该道路所经过的结点,并给出求
解过程。

(见课后习题P277 18)。

相关文档
最新文档