动物营养模型中营养代谢调控的研究进展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动物营养代谢调控的数学模型化研究进展

易渺杨琴熊本海*

(中国农业科学院北京畜牧兽医研究所,动物营养学国家重点实验室,北京100193)

摘要:模型是现实情景的再现。在营养、代谢和生物医学等领域,很早就开始利用数学模型来辅助进行相关研究了。动物数学模型化技术作为一种行之有效的研究手段,不仅能总结动物营养学过去的科研成果、整合现有的理论知识,更能指明动物营养学未来研究的方向或具体的领域。本文立足数学模型的内涵,详细介绍了动物数学模型的分类和动物系统的层次结构,通过阐释动物营养代谢模型中的调控理论和调控形式,总结了近30年来主要的动物营养代谢调控模型,尤其与激素有关的代谢调控模型的新进展,最后分析了营养模型化研究所面临的挑战和发展趋势。数学模型在动物营养代谢调控中的应用,对于预测动物营养需要、绘制动物体内营养物质代谢调控通路具有重要意义。

关键字:数学模型;模型化;营养;代谢调控;激素

模型是现实情景的再现。早在二战之前,营养、代谢和生物医学等领域就已经开始利用模型来辅助进行相关研究了[1]。作为一类描述现实情景的工具,很多模型将现有理论知识与生产实践相结合,从而预测动物的营养需要量、改善动物生长性能、减少养分排泄并最终降低生产成本[2]。毫不夸张的说,自20世纪初开始,几乎所有动物营养学的研究成果都被直接或间接地用于营养需要量模型的构建、评估和改进[3]。随着营养模型研究的发展,动物生理、生化、遗传及环境方面的知识渐成体系,面对海量的试验数据,能否通过模型化技术来量化并描绘出动物体内代谢反应中的细节,能否恰当地描述动物的代谢反应及其对营养需要量产生的影响,对经济动物的高效饲养至关重要。

1 动物数学模型分类和动物系统的层次结构

1.1 动物数学模型分类

数学模型依据不同的评价标准可划分为确定型(Deterministic)或随机型(Stochastic),静态型(Static)或动态型(Dynamic),以及经验型(Empirical)或机理型(Mechanistic)[4]。

收稿日期:

基金项目:973计划课题(2011CB100805),863计划课题(2012AA101905)

作者简介:易渺(1987-),男,湖南常德人,硕士研究生,主要从事动物营养与饲料科学研究。E-mail: ym_caas@

通讯作者:熊本海(1963-),湖北红安人,研究员,博士生导师,E-mail: Bhxiong@

确定型和随机型模型的定义:按自变量和因变量之间是否有确定性关系,模型可以分为确定性模型或随机性模型。对于确定性模型,它不包含任何随机元素,只要设定了自变量和各个自变量之间的关系,其因变量也是确定的;而随机性模型含有随机性成分,基于给定的自变量,只能得到因变量的概率分布。

静态型和动态型模型的定义:按是否含有时间变量,模型可以分为静态模型和动态模型。动态模型将时间因素作为一个自变量整合进来,使用状态变量和速率变量来描述动物体内营养物质代谢的动态变化;而静态模型则没有时间变量,不能随时间的变化进行预测。

经验型和机理型模型的定义:按是否有生物机理性描述,模型又可分为经验模型和机理模型。经验模型是通过对大量动物试验数据进行拟合而建立起来的回归模型。最典型的回归模型是正交多项式回归模型,它具有普适性。作为数理统计的产物,它不说明任何动物营养机理,不包含任何科学原理,模型中的参数没有生物学含义。而包括动物营养学在内的机理模型在建模过程中对某些生物现象进行了一定程度的理解和阐释,整合了基本的生理生化和营养学理论,能从机理的角度对某些营养代谢过程进行描述而给出特定的模式模型,比经验模型更具有生物学意义。机理模型中的参数(a、b或c等)或者这些参数的组合均揭示出研究对象的一些生理、营养或生产特性。最典型的机理模型代表有Φrskov和McDonald[5]提出的饲料在瘤胃的降解模型,其中的参数A、B及K d均具有生物学含义。此外,熊本海等[6]也总结了3种典型的描述奶牛泌乳曲线的wood模型、Gompertz模型及Dijkstra模型中参数的含义,尤其基于这些参数派生出的奶牛泌乳特性参数,如起始泌乳产量y0、泌乳高峰日产量y m、出现高峰时的天数t m等,都可以通过上述3种模型中的参数去描述。因此,在获得研究事物或研究对象的机理模型后,往往通过比较模型中的参数就可以获得一些规律性的结果。

基于上述对3组模型的定义,不难发现还存在1种比较典型的复合模型,这就是机理-动态型模型,即机理模型中的自变量为时间变量的模型。上述的瘤胃饲料降解模型中的自变量一般为饲料在瘤胃的滞留时间(t,h),3种泌乳曲线模型的自变量为泌乳天数(DIM,d)。因此,它们均为机理–动态型模型。实际上,在目前已经给出的动物营养与生理的调控模型中,最主要的模型形式是机理–动态型模型。

1.2 动物系统的层次结构

要真正认识到数学模型在动物营养学研究中所扮演的角色,不仅要了解动物数学模型的类型,还需要了解动物系统的层次结构(表1)[7]。表1中任何一个层次都可以认为是一个系统,该系统以下的层次可以看做是它的子系统。

这种层次结构具有如下特征:第一,每一个层次都是由它下一个层次组成的系统性集合。比如,比如i层次就是由i-1层次组成的集合体;第二,每一个层次都有自己独特的概念和描述方法。比如在i+3和i+2

层次,即动物群体和动物个体层次可以用营养水平或日增重来描述该层次的状态或变化,但是对i-1层次,即细胞层次,这两个指标对其状态和变化的描述毫无意义;第三,想要调控某一层次的状态和变化,就必须了解和优化它以下层次的功能才有可能。比如,要想对奶牛(i+2层次)的乳品质形成进行解释、模拟和调控,就必须首先要对其瘤胃、小肠、肝脏和乳腺等器官(i+1层次)甚至脂肪组织、蛋白组织(i层次)的营养代谢过程进行较为细致地研究。

表1 动物系统的层次结构

Table 1 Organizational hierarchy of biological system

层次Level 层次结构说明Description of Level

………

i+3 动物群体Herd of animals

i+2 动物个体Animal

i+1 器官Organs

i组织Tissues

i-1 细胞Cells

i-2 细胞器Organelles

i-3 生物大分子Macromolecules

………

当研究集中在某个层次时,尽可能多地涉及相对低层次的一些过程,便会更多的接近机理。从另一个角度上来说,描述“黑箱”的经验模型与描述“灰箱”的机理模型的界线并不明显,所谓的“机理”都是相对的。随着理论研究的不断深入,知识的不断积累,现在的机理模型也有可能变成未来科研工作者眼中的经验模型。

这种将动物系统划分为不同结构层次的“模块化”思维方法,避免了研究过程中对动物各个结构层次的过度延伸与拓展,能有效减少知识归纳的范围和难度;同时还可以保证较低结构层次的最新研究数据和理论不断地被整合补充进来,以优化较高结构层次的生理代谢过程,增加了整个知识体系的可塑性。可以说,这是联系模型化研究与实验性研究的关键环节[8]。

2 营养代谢调控及其模型

2.1 生理学的营养代谢调控理论

营养代谢是机体生命活动的基本特征,机体通过营养代谢不断与外界环境进行物质交换,提供日常活动所需的能量,并将各种营养素吸收后完成各种功能活动[9]。动物的的营养代谢主要包括碳水化合物代谢、蛋白质代谢及脂肪代谢,高等动物依靠神经–内分泌系统对营养物质的消化、吸收、分解、合成等过程进行干预,从而实现对营养物质代谢的调控。

从运行机制上看,动物机体营养调控功能是通过细胞水平调节、激素水平调节和整体水平调节3种调节

相关文档
最新文档