2017年山东省济南市数学中考试题(含答案)

合集下载

2017年济南市中考数学试卷(含答案解析版)

2017年济南市中考数学试卷(含答案解析版)

20XX年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√5D.32.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)20XX年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1034.(3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .6.(3分)化简a 2+ab a−b ÷ab a−b的结果是( )A .a 2B .a2a−bC .a−b bD .a+b b7.(3分)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( ) A .﹣6 B .﹣3 C .3D .68.(3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( ) A .{y −8x =3y −7x =4 B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =49.(3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A.12B.13C.16D.2310.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6√3cm D.12√3cm11.(3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>212.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3C.35D.413.(3分)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A.3√105B.2√2C.3√54D.3√2214.(3分)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a <b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.415.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,BD̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y 与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)分解因式:x2﹣4x+4=.17.(3分)计算:|﹣2﹣4|+(√3)0=.18.(3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.19.(3分)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为cm.20.(3分)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=−3kx(x<0)的图象交于点C,连接AC,则△ABC的面积为.21.(3分)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,﹣3),C (﹣1,﹣5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为 .三、解答题(本大题共8小题,共57分)22.(6分)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3. (2)解不等式组:{3x −5≥2(x −2)①x2>x −1②. 23.(4分)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .24.(4分)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.25.(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少? 26.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36714b880.16合计c1(1)统计表中的a=,b=,c=;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27.(9分)如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B 关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.28.(9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C 在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段EF交CB的延长线于点G.∵F是BD的中点,∴BF=DF.∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF().∵∠ACB=∠AED=90°,∴ED∥CG.∴EF=FG.∴CF=EF=12EG.请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.29.(9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.20XX年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017•济南)在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√5<3,实数0,﹣2,√5,3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017•济南)如图所示的几何体,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•济南)20XX年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=5.55×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC ⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.(3分)(2017•济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B是轴对称图形又是中心对称图形,故选:B.【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•济南)化简a2+aba−b÷aba−b的结果是()A.a2B.a2a−bC.a−bbD.a+bb【考点】6A:分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b•a−bab=a+bb,故选:D.【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017•济南)关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6B.﹣3C.3D.6【考点】AB:根与系数的关系.【分析】设方程的另一个根为n ,根据两根之和等于﹣b a,即可得出关于n 的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n ,则有﹣2+n=﹣5,解得:n=﹣3.故选C .【点评】本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a 是解题的关键.8.(3分)(2017•济南)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x 人,物价为y 钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x 人,物价为y 钱,根据题意,可列方程组:{8x −y =3y −7x =4, 故选:C .【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017•济南)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .23 【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A 进入景区并从C ,D 出口离开的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A 进入景区并从C ,D 出口离开的概率是P ,∵小红从入口A 进入景区并从C ,D 出口离开的有2种情况,∴P=13.故选:B .【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6√3cmD .12√3cm【考点】MC :切线的性质.【分析】设圆形螺母的圆心为O ,连接OD ,OE ,OA ,如图所示:根据切线的性质得到AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD 的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O ,与AB 切于E ,连接OD ,OE ,OA ,如图所示: ∵AD ,AB 分别为圆O 的切线,∴AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°, 在Rt △AOD 中,∠OAD=60°,AD=6cm ,∴tan ∠OAD=tan60°=OD AD ,即OD 6=√3, ∴OD=6√3cm ,则圆形螺母的直径为12√3cm.故选D.【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017•济南)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x 的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017•济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3C.35D.4【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】先过C作CF⊥AB于F,根据DE∥CF,可得ADAC=DECF,进而得出CF=3,根据勾股定理可得AF的长,根据CF和BF的长可得石坝的坡度.【解答】解:如图,过C作CF⊥AB于F,则DE∥CF,∴ADAC=DECF,即15=0.6CF,解得CF=3,∴Rt△ACF中,AF=√52−32=4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为CFBF =31=3,故选:B.【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017•济南)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF 的长是()A.3√105B.2√2C.3√54D.3√22【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3√2,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,{∠GAO=∠EBO AO=BO∠AOG=∠BOE,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE=√OB2+OE2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO,∴△BFG∽△BOE,∴BFOB=BGBE,即BF3=√10,解得,BF=3√10 5,故选:A.【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017•济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣b2a=−2+x12>﹣12,即ba<1,于是得到b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c>0,解不等式即可得到2a>b,所以②正确.③由②知2a﹣b<0,于是得到2a﹣b﹣1<0,故③正确;④把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,即2b=4a+c>0(因为b >0),等量代换得到2a+c<0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣=﹣b2a=−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017•济南)如图1,有一正方形广场ABCD,图形中的线段均表示直行̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A 道路,BD处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017•济南)分解因式:x2﹣4x+4=(x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.17.(3分)(2017•济南)计算:|﹣2﹣4|+(√3)0=7.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017•济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90.【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.19.(3分)(2017•济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为20cm.【考点】MO :扇形面积的计算.【分析】设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360,解方程即可. 【解答】解:设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360, 解得x=10,∴BD=2x=20cm .故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017•济南)如图,过点O 的直线AB 与反比例函数y=k x的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3k x(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为 8 .【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x ,y=−6x ,与AB 的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论.【解答】解:∵A (2,1)在反比例函数y=k x的图象上, ∴k=2×1=2,∴两个反比例函数分别为y=2x ,y=−6x, 设AB 的解析式为y=kx ,把A (2,1)代入得,k=12, ∴y=12x , 解方程组{y =12x y =2x 得:{x 1=2y 1=1,{x 2=−2y 2=−1, ∴B (﹣2,﹣1),∵BC ∥y 轴,∴C 点的横坐标为﹣2,∴C 点的纵坐标为−6−2=3, ∴BC=3﹣(﹣1)=4,∴△ABC 的面积为12×4×4=8, 故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017•济南)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A (3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案.【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5.故答案为:(1,﹣2).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017•济南)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3x −5≥2(x −2)①x 2>x −1②. 【考点】4J :整式的混合运算—化简求值;CB :解一元一次不等式组.【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)(a +3)2﹣(a +2)(a +3)=a 2+6a +9﹣a 2﹣5a ﹣6=a +3,当a=3时,原式=3+3=6;(2){3x −5≥2(x −2)①x 2>x −1② 由不等式①,得x ≥1,由不等式②,得x <2故原不等式组的解集是1≤x <2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017•济南)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中∵{∠AEB=∠DAE ∠AFD=∠B AD=AE∴△ABE≌△DFA,∴AB=DF.【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017•济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.【解答】解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017•济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,12000 x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,∴1.5x=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017•济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36714b880.16合计c1(1)统计表中的a=10,b=0.28,c=50;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a 组人数,画出直方图即可; (3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可; 【解答】解:(1)由题意c=18÷0.36=50,∴a=50×0.2=10,b=1450=0.28,故答案为10,0.28,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850=6.4(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×14+850=528(名).【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017•济南)如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B 关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B的坐标即可解决问题;(2)根据两直线垂直的条件,求出直线MN的解析式即可解决问题;(3)结论:BF=DE.如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=kn ,DM=km.由△EDM∽△EBN,推出EM EN =DMBN,即am+a−n=kmkn,可得a=m,由△KNO≌△DEM,推出DE=KN,再证明四边形NKFB是平行四边形,即可解决问题;【解答】解:(1)如图1中,。

2017年山东省济南市中考数学试卷(含标准答案解析版)

2017年山东省济南市中考数学试卷(含标准答案解析版)

2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√5D.32.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1034.(3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()第1页(共47页)第2页(共47页)A .40°B .45°C .50°D .60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .6.(3分)化简a 2+ab a−b ÷ab a−b的结果是( ) A .a 2 B .a2a−b C .a−b b D .a+b b7.(3分)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .68.(3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =49.(3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A.12B.13C.16D.2310.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6√3cm D.12√3cm11.(3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>212.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()第3页(共47页)第4页(共47页)A .34B .3C .35D .413.(3分)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB=3√2,E 为OC 上一点,OE=1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( )A .3√105B .2√2C .3√54D .3√2214.(3分)二次函数y=ax 2+bx +c (a ≠0)的图象经过点(﹣2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a <b ;③2a ﹣b ﹣1<0;④2a +c <0.其中正确结论的个数是( )A .1B .2C .3D .415.(3分)如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,BD̂表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m )时,相应影子的长度为y (m ),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A .A→B→E→GB .A→E→D→C C .A→E→B→FD .A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)分解因式:x2﹣4x+4=.17.(3分)计算:|﹣2﹣4|+(√3)0=.18.(3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.19.(3分)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为cm.20.(3分)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=−3kx(x<0)的图象交于点C,连接AC,则△ABC的面积为.第5页(共47页)第6页(共47页)21.(3分)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ=5或PT +TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,﹣3),C (﹣1,﹣5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为 .三、解答题(本大题共8小题,共57分)22.(6分)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3.(2)解不等式组:{3x −5≥2(x −2)①x 2>x −1②. 23.(4分)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .第7页(共47页)24.(4分)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.25.(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?26.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数)频率5a 0.2 618 0.36 714 b 88 0.16 合计 c 1 (1)统计表中的a= ,b= ,c= ;第8页(共47页)(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27.(9分)如图1,▱OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=k x (x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式; (2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y=kx(x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.28.(9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC 和△ADE 中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E ,A ,C 在同一条直线上,连接BD ,点F 是BD 的中点,连接EF ,CF ,试判断△CEF 的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段EF交CB的延长线于点G.∵F是BD的中点,∴BF=DF.∵∠ACB=∠AED=90°,∴ED∥CG.∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF().∴EF=FG.∴CF=EF=12EG.请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.第9页(共47页)29.(9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.第10页(共47页)2017年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017•济南)在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√5<3,实数0,﹣2,√5,3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017•济南)如图所示的几何体,它的左视图是()第11页(共47页)A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=5.55×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,第12页(共47页)其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC ⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.第13页(共47页)5.(3分)(2017•济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B是轴对称图形又是中心对称图形,故选:B.【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•济南)化简a2+aba−b÷aba−b的结果是()A.a2B.a2a−bC.a−bbD.a+bb【考点】6A:分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b•a−bab=a+bb,第14页(共47页)第15页(共47页)故选:D .【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017•济南)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .6【考点】AB :根与系数的关系.【分析】设方程的另一个根为n ,根据两根之和等于﹣b a,即可得出关于n 的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n ,则有﹣2+n=﹣5,解得:n=﹣3.故选C .【点评】本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键.8.(3分)(2017•济南)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4第16页(共47页)C .{8x −y =3y −7x =4D .{8x −y =37x −y =4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x 人,物价为y 钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x 人,物价为y 钱,根据题意,可列方程组:{8x −y =3y −7x =4, 故选:C .【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017•济南)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .23【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A 进入景区并从C ,D 出口离开的情况,再利用概率公式求解即可求得答案.第17页(共47页)【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A 进入景区并从C ,D 出口离开的概率是P ,∵小红从入口A 进入景区并从C ,D 出口离开的有2种情况,∴P=13. 故选:B .【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6√3cmD .12√3cm【考点】MC :切线的性质.第18页(共47页)【分析】设圆形螺母的圆心为O ,连接OD ,OE ,OA ,如图所示:根据切线的性质得到AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD 的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O ,与AB 切于E ,连接OD ,OE ,OA ,如图所示: ∵AD ,AB 分别为圆O 的切线,∴AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°, 在Rt △AOD 中,∠OAD=60°,AD=6cm ,∴tan ∠OAD=tan60°=OD AD ,即OD 6=√3, ∴OD=6√3cm ,则圆形螺母的直径为12√3cm .故选D .【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017•济南)将一次函数y=2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( )A.x>﹣1B.x>1C.x>﹣2D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x 的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017•济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3C.35D.4【考点】T9:解直角三角形的应用﹣坡度坡角问题.第19页(共47页)【分析】先过C作CF⊥AB于F,根据DE∥CF,可得ADAC=DECF,进而得出CF=3,根据勾股定理可得AF的长,根据CF和BF的长可得石坝的坡度.【解答】解:如图,过C作CF⊥AB于F,则DE∥CF,∴ADAC=DECF,即15=0.6CF,解得CF=3,∴Rt△ACF中,AF=√52−32=4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为CFBF =31=3,故选:B.【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017•济南)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF 的长是()第20页(共47页)A.3√105B.2√2C.3√54D.3√22【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3√2,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,{∠GAO=∠EBO AO=BO∠AOG=∠BOE,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE=√OB2+OE2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO,第21页(共47页)∴△BFG∽△BOE,∴BFOB=BGBE,即BF3=√10,解得,BF=3√10 5,故选:A.【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017•济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣b2a=−2+x12>﹣12,即ba<1,于是得到b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c>0,解不等式即可得到2a>b,所以②正确.③由②知2a﹣b<0,于是得到2a﹣b﹣1<0,故③正确;④把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,即2b=4a+c>0(因为b >0),等量代换得到2a+c<0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,第22页(共47页)则该抛物线的对称轴为x=﹣=﹣b2a=−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.第23页(共47页)第24页(共47页)【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017•济南)如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,BD̂表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m )时,相应影子的长度为y (m ),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A .A→B→E→GB .A→E→D→C C .A→E→B→FD .A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x 的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017•济南)分解因式:x2﹣4x+4=(x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.第25页(共47页)17.(3分)(2017•济南)计算:|﹣2﹣4|+(√3)0=7.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017•济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90.【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.第26页(共47页)第27页(共47页)19.(3分)(2017•济南)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC=120°,BD=2AD ,则BD 的长度为 20 cm .【考点】MO :扇形面积的计算.【分析】设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360,解方程即可. 【解答】解:设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360, 解得x=10,∴BD=2x=20cm .故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017•济南)如图,过点O 的直线AB 与反比例函数y=k x的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3k x(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为 8 .第28页(共47页)【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x ,y=−6x ,与AB 的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论.【解答】解:∵A (2,1)在反比例函数y=k x的图象上, ∴k=2×1=2,∴两个反比例函数分别为y=2x ,y=−6x, 设AB 的解析式为y=kx ,把A (2,1)代入得,k=12, ∴y=12x , 解方程组{y =12x y =2x 得:{x 1=2y 1=1,{x 2=−2y 2=−1, ∴B (﹣2,﹣1),∵BC ∥y 轴,∴C 点的横坐标为﹣2,∴C 点的纵坐标为−6−2=3, ∴BC=3﹣(﹣1)=4,∴△ABC的面积为12×4×4=8,故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017•济南)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A (3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案.【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5.故答案为:(1,﹣2).第29页(共47页)第30页(共47页)【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017•济南)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3.(2)解不等式组:{3x −5≥2(x −2)①x 2>x −1②. 【考点】4J :整式的混合运算—化简求值;CB :解一元一次不等式组.【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)(a +3)2﹣(a +2)(a +3)=a 2+6a +9﹣a 2﹣5a ﹣6=a +3,当a=3时,原式=3+3=6;(2){3x −5≥2(x −2)①x 2>x −1②由不等式①,得x≥1,由不等式②,得x<2故原不等式组的解集是1≤x<2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017•济南)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中第31页(共47页)第32页(共47页)∵{∠AEB =∠DAE ∠AFD =∠B AD =AE∴△ABE ≌△DFA , ∴AB=DF .【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017•济南)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD ,再根据同弧所对的圆周角相等,求得∠B 的度数,即可求得∠BAD 的度数. 【解答】解:∵AB 为⊙O 直径 ∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25° ∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017•济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,12000 x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,∴1.5x=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017•济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36第33页(共47页)714b880.16合计c1(1)统计表中的a=10,b=0.28,c=50;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)由题意c=18÷0.36=50,第34页(共47页)第35页(共47页)∴a=50×0.2=10,b=1450=0.28,故答案为10,0.28,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850=6.4(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×14+850=528(名).【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017•济南)如图1,▱OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=k x(x >0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B 关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B的坐标即可解决问题;(2)根据两直线垂直的条件,求出直线MN的解析式即可解决问题;(3)结论:BF=DE.如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=kn ,DM=km.由△EDM∽△EBN,推出EM EN =DMBN,即am+a−n=kmkn,可得a=m,由△KNO≌△DEM,推出DE=KN,再证明四边形NKFB是平行四边形,即可解决问题;【解答】解:(1)如图1中,第36页(共47页)。

2017年山东省济南市中考数学试题及解析

2017年山东省济南市中考数学试题及解析

2017年山东省济南市中考数学试卷一、选择题(共15小题,每小题3分,满分45分,每小题只有一个选项符合题意)2.(3分)(2017•济南)新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为3.(3分)(2017•济南)如图,OA⊥OB ,∠1=35°,则∠2的度数是( )5.(3分)(2017•济南)如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是( )B6.(3分)(2017•济南)若代数式4x ﹣5与的值相等,则x 的值是( )7.(3分)(2017•济南)下列图标既是轴对称图形又是中心对称图形的是( )B9.(3分)(2017•济南)如图,在平面直角坐标系中,△ABC 的顶点都在方格纸的格点上,如果将△ABC 先向右平移4个单位长度,在向下平移1个单位长度,得到△A 1B 1C 1,那么点A 的对应点A1的坐标为( )10.(3分)(2017•济南)化简﹣的结果是( )11.(3分)(2017•济南)如图,一次函数y 1=x+b 与一次函数y 2=kx+4的图象交于点P (1,3),则关于x 的不等式x+b >kx+4的解集是( )12.(3分)(2017•济南)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做313.(3分)(2017•济南)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、CD于M、N两点.若AM=2,则线段ON的长为()B14.(3分)(2017•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P201715.(3分)(2017•济南)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x 轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m 与C1、C2共有3个不同的交点,则m的取值范围是()<﹣二、填空题(共6小题,每小题3分,满分18分)16.(3分)(2017•济南)分解因式:xy+x=.17.(3分)(2017•济南)计算:+(﹣3)0=.18.(3分)(2017•济南)如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为(结果保留π).19.(3分)(2017•济南)小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.20.(3分)(2017•济南)如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k=.21.(3分)(2017•济南)如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是(把所有正确结论的序号都填在横线上).三、解答题(共7小题,满分57分)22.(7分)(2017•济南)(1)化简:(x+2)2+x(x+3)(2)解不等式组:.23.(7分)(2017•济南)(1)如图,在矩形ABCD中,BF=CE,求证:AE=DF;(2)如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,求∠BCD的度数.24.(8分)(2017•济南)济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.25.(8分)(2017•济南)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根(1)计算m=;(2)在扇形统计图中,“其他”类所占的百分比为;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.26.(9分)(2017•济南)如图1,点A(8,1)、B(n,8)都在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴于C,过点B作BD⊥y轴于D.(1)求m的值和直线AB的函数关系式;(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D时,点Q也停止运动,设运动的时间为t秒.①设△OPQ的面积为S,写出S与t的函数关系式;②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O′PQ,是否存在某时刻t,使得点Q′恰好落在反比例函数的图象上?若存在,求Q′的坐标和t的值;若不存在,请说明理由.27.(9分)(2017•济南)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M 为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.28.(9分)(2017•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y 轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2017年山东省济南市中考数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分,每小题只有一个选项符合题意)2.(3分)(2017•济南)新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为3.(3分)(2017•济南)如图,OA⊥OB,∠1=35°,则∠2的度数是()5.(3分)(2017•济南)如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是()B6.(3分)(2017•济南)若代数式4x﹣5与的值相等,则x的值是()5= x=B9.(3分)(2017•济南)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,在向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为()10.(3分)(2017•济南)化简﹣的结果是()=m+311.(3分)(2017•济南)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()12.(3分)(2017•济南)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做313.(3分)(2017•济南)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、CD于M、N两点.若AM=2,则线段ON的长为()BAM=,则,于是利用正方形的性质得到AB=2+2AC=AH=2+AM=×,,,AB=AC=+1+2=2+=,即=14.(3分)(2017•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2017=1==33515.(3分)(2017•济南)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x 轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m 与C1、C2共有3个不同的交点,则m的取值范围是()<﹣,<﹣时直线二、填空题(共6小题,每小题3分,满分18分)16.(3分)(2017•济南)分解因式:xy+x=x(y+1).17.(3分)(2017•济南)计算:+(﹣3)0=3.18.(3分)(2017•济南)如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为6π(结果保留π).19.(3分)(2017•济南)小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.块)的,则它最终停留在黑色方砖上的概率是故答案为:.20.(3分)(2017•济南)如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k=﹣4.OB=2×=2).21.(3分)(2017•济南)如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是①②③(把所有正确结论的序号都填在横线上).的面积为DCF=,,DM=DCF=三、解答题(共7小题,满分57分)22.(7分)(2017•济南)(1)化简:(x+2)2+x(x+3)(2)解不等式组:.,23.(7分)(2017•济南)(1)如图,在矩形ABCD中,BF=CE,求证:AE=DF;(2)如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,求∠BCD的度数.BAD=∠24.(8分)(2017•济南)济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.﹣25.(8分)(2017•济南)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根m=40;(2)在扇形统计图中,“其他”类所占的百分比为15%;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.类所占的百分比为=.26.(9分)(2017•济南)如图1,点A(8,1)、B(n,8)都在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴于C,过点B作BD⊥y轴于D.(1)求m的值和直线AB的函数关系式;(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D时,点Q也停止运动,设运动的时间为t秒.①设△OPQ的面积为S,写出S与t的函数关系式;②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O′PQ,是否存在某时刻t,使得点Q′恰好落在反比例函数的图象上?若存在,求Q′的坐标和t的值;若不存在,请说明理由.的图象上,根据反比例函数y=,,即.====a=b=t t±,t=t=27.(9分)(2017•济南)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M 为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.,++1CK= a=,,AM=28.(9分)(2017•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y 轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.NB=.m)﹣(BE==.MB=AE=2.。

2017年山东省济南市中考数学试题及答案ABC版

2017年山东省济南市中考数学试题及答案ABC版

文档目录:A.济南市2017年中考数学试题及答案B.北京市2017年中考数学试题及答案C.上海市2017年中考数学试题及答案A.济南市2017年中考数学试题及答案一、选择题(本大题共15小题,每小题3分,共45分)1.在实数0,-2,5,3中,最大的是( )A .0B .-2C . 5D .32.如图所示的几何体,它的左视图是( )3.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( )A .0.555×104B .5.55×104C .5.55×103D .55.5×1034.如图,直线a ∥b ,直线l 与a ,b 分别相交于A ,B 两点,AC ⊥AB 交b 于点C ,∠1=40°,则∠2的度数是( )A .40°B .45°C .50°D .60°5.中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )6.化简a 2+ab a -b ÷ab a -b的结果是( ) A .a 2B .a 2a -b C .a -b b D .a +b b7.关于x 的方程x 2+5x +m =0的一个根为-2,则另一个根是( )A.-6 B.-3 C.3 D.68.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )9.如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A入口进入、从C,D出口离开的概率是( )A.12B.13C.16D.2310.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是( )A.12cm B.24cm C.63cm D.123cm11.将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是( )A.x>-1 B.x>1 C.x>-2 D.x>212.如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为( )A.34B.3 C.35D.413.如图,正方形ABCD的对角线AC,BD相较于点O,AB=32,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是( )A.3105B.2 2 C.354D.32214.二次函数y=ax2+bx+c(a≠0)的图象经过点(-2,0),(x0,0),1<x<2,与y 轴的负半轴相交,且交点在(0,-2)的上方,下列结论:①b >0;②2a <b ;③2a -b -1<0;④2a +c <0.其中正确结论的个数是( )A .1B .2C .3D .415.如图,有一正方形广场ABCD ,图形中的线段均表示直行道路,⌒BD 表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A .A →B →E →GB .A →E →D →C C .A →E →B →FD .A →B →D →C二、填空题(本大题共6小题,每小题3分,共18分)16.分解因式:x 2-4x +4=__________.17.计算:│-2-4│+(3)0=________________.18.在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是_________________.19.如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC =120°,BD =2AD ,则BD 的长度为____________cm .20.如图,过点O 的直线AB 与反比例函数y =k x的图象交于A ,B 两点,A(2,1),直线BC ∥y 轴,与反比例函数y =-3k x(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为_________________.21.定义:在平面直角坐标系xOy 中,把从点P 出发沿综或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P(-1,1),Q(2,3),则P ,Q 的“实际距离”为5,即PS +SQ =5或PT +TQ =5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A(3,1),B(5,-3),C(-1,-5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______________.三、解答题(本大题共7小题,共57分)22.(1)先化简,再求值:(a +3)2-(a +2)(a +3),其中a =3.23.(1)如图,在矩形ABCD ,AD =AE ,DF ⊥AE 于点F .求证:AB =DF .(2)如图,AB 是⊙O 的直径,∠ACD =25°,求∠BAD 的度数.24.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?25.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a =________,b =___________,c =____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.26.如图1,□OABC 的边OC 在y 轴的正半轴上,OC =3,A(2,1),反比例函数y =k x(x >0)的图象经过的B . (1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y =k x(x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.27.某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC 和△ADE 中,∠ACB =∠AED =90°,∠CAB =∠EAD =60°,点E ,A ,C 在同一条直线上,连接BD ,点F 是BD 的中点,连接EF ,CF ,试判断△CEF 的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.28.如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交:y=ax2+bx(a≠0)过A,D两点.BC于点D,tan∠OAD=2,抛物线M1的表达式;(1)求点D的坐标和抛物线M1(2)点P是抛物线M对称轴上一动点,当∠CPA=90°时,求所有符合条件1的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M的图象向下平移m(m>0)1.个单位得到抛物线M2①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;与直线AE有两个交点,求m的取值范②当1≤x≤m(m>1)时,若抛物线M2围.26.【解】(1)过点A作AP⊥x轴于点P,则AP=1,OP=2.又∵AB =OC =3,∴B(2,4).∵反比例函数y =k x(x >0)的图象经过的B , ∴4=k 2.∴k =8.∴反比例函数的关系式为y =8x. (2)设MN 交OB 于点H ,过点B 作BG ⊥y 轴于点G ,则BG =2,OG =4.∴OB =22+42=2 5.∵点H 是OB 的中点,∴点H(1,2).∴OH =12+22= 5. ∵∠OHN =∠OGB =90°,∠HON =∠GOB ,∴△OHN ∽△OGB ,∴ON OB =OH OG .∴ON 25=54.∴ON =2.5. (3)ED =BF . 理由:由点A (2,1)可得直线OA 的解析式为y =12x . 解方程组⎩⎪⎨⎪⎧y =12x y =8x,得⎩⎨⎧x 1=4y 1=2,⎩⎨⎧x 2=-2y 2=-4. ∵点D 在第一象限,∴D(4,2).由B(2,4),点D(4,2)可得直线BD 的解析式为y =-x +6.把y =0代入上式,得0=-x +6.解得x =6.∴E(6,0).∵ED =(6-4)2+(0-2)2=22,BF =(0-2)2+(6-4)2=2 2.∴ED =BF .27.【解】(1)①证明中所叙述的辅助线如下图所示:②证明的括号中的理由是:AAS.(2)△CEF 是等边三角形.证明如下:设AE =a ,AC =b ,则AD =2a ,AB =2b ,DE =3a ,BC =3b ,CE =a +b. ∵△BGF ≌△DEF,∴BG =DE =3a.∴CG =BC +BG =3(a +b).∵CB CG =3b 3(a +b)=b a +b ,CA CE =b a +b ,∴CB CG =CA CE . 又∵∠ACB =∠ECG ,∴△ACE ∽△ECG.∴∠CEF =∠CAB =60°.又∵CF =EF(已证),∴△CEF 是等边三角形.(3)△CEF 是等边三角形.如答案图2,过点B 作BN ∥DE ,交EF 的延长线于点N ,连接CN ,则∠DEF =∠FNB.又∵DF =BF ,∠DFE =∠BFN ,∴△DEF ≌△BNF .∴BN =DE ,EF =FN .设AC =a,AE =b,则BC =3a,DE =3b .∵∠AEP =∠ACP =90°,∴∠P +∠EAC =180°.∵DP ∥BN ,∴∠P +∠CBN =180°.∴∠CBN =∠EAC .在△AEC 和△BNC 中, ∵AE BN =AE DE =AC BC =33,∠CBN =∠EAC, ∴△AEC ∽△BNC.∴∠ECA =∠NCB.∴∠ECN =90°.又∵EF =FN ,∴CF =12EN =EF. 又∵∠CEF =60°,∴△CEF 是等边三角形.28.【解】(1)过点D 作DF ⊥OA 于点F ,则DF =6.∵tan ∠OAD =DF AF =2,∴AF =3.∴OF =1.∴D(1,6). 把A(4,0),D(1,6)分别代入 y =ax 2+bx(a ≠0),得⎩⎪⎨⎪⎧0=16a +4b 6=a +b .解得⎩⎪⎨⎪⎧a =-2b =8. ∴抛物线M 1的表达式为:y =-2x 2+8x.(2)连接AC ,则AC =42+62=213.∵y =-2x 2+8x =-2(x -2)2+8,∴抛物线M 1的对称轴是直线x =2.设直线x =2交OA 于点N ,则N(2,0).以AC 为半径作⊙M ,交直线x =2于P 1、P 2两点,分别连接P 1C 、P 1A 、P 2C 、P 2A ,则点P 1、P 2两点就是符合题意的点,且这两点的横坐标都是2.∵点M 是AC 的中点,∴点M (2,3).∴MN =2.∵P 1M 是Rt △CP 1A 的斜边上的中线,∴P 1M =12AC =13. ∴P 1N =MN +P 1M =3+13.∴点P 1(2,3+13).同理可得点P 2(2,3-13).(3)由A(4,0),点E (0,4)可得直线AE 的解析式为y =-x +4.①点D(1,6)平移后的对应点为点D′(1,6-m),∵点D′恰好在直线AE上∴6-m=-1+4.解得m=3.∴D′(1,3),m=3.②如答案图4,作直线x=1,它与直线AE的交点就是点D′(1,3).作直线x=m 交直线AE于点Q(m,-m+4).设抛物线M2的解析式为y=-2x2+8x-m.若要直线AE与抛物线M2有两个交点N1、N2,则关于x的一元二次方程-2x2+8x-m=-x+4有两个不相等的实数根,将该方程整理,得2x2+9x+m+4=0.由△=92-4×2(m+4)>0,解得m<498.又∵m>1,∴1<m<498.…………………………①∵1≤x≤m(m>1),∴抛物线M2与直线AE有两个交点N1、N2要在直线x=1与直线x=m所夹的区域内(含左、右边界).当点N1与点D′(1,3)重合时,把D′(1,3)的坐标代入y=-2x2+8x-m,可得m=3.∴m≥3…………………………………………………………………………②当点N2与点Q(m,-m+4)重合时,把点Q(m,-m+4)的坐标代入y=-2x2+8x -m,可得-m+4=-2m2+8m-m.解得m1=2+2,m2=2-2(不合题意,舍去).∴m ≥2+2………………………③由①、②、③可得符合题意的m 的取值范围为:2+2≤m <498.. B.北京市2017年中考数学试题及答案一、选择题(本题共30分,每小题3分)1.如图所示,点到直线的距离是( )A.线段的长度 B . 线段的长度C .线段的长度D .线段的长度2.若代数式有意义,则实数的取值范围是( ) A . B . C . D .3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱4. 实数在数轴上的对应点的位置如图所示,则正确的结论是( )A .B . C. D .5.下列图形中,是轴对称图形但不是中心对称图形的是( )6.若正多边形的一个内角是1500,则该正多边形的边数是( )PA PB PC PD 4x x -0x =4x =0x ≠4x ≠,,,a b c d 4a >-0bd >a b >0b c +>A . 6B . 12 C. 16 D .187. 如果,那么代数式的值是( ) A . -3 B . -1 C. 1 D .38.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《一带一路贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是( )A .与2015年相比,2016年我国与东欧地区的贸易额有所增长B .2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D .2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m )与跑步时间(单位:s )的对应关系如下图所示.下列叙述正确的是( )A .两人从起跑线同时出发,同时到达终点2210a a +-=242a a a a ⎛⎫- ⎪-⎝⎭B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果. 下面有三个推断:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.① B.② C. ①② D.①③______________.12. 某活动小组购买了4个篮球和5个足二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为____________.13.如图,在中,分别为的中点.若,则 .14.如图,为的直径,为上的点,.若,则 .15.如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由得到的过程: .16.下图是“作已知直角三角形的外接圆”的尺规作图过程已知:,求作的外接圆.作法:如图.(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点;(2)作直线,交于点;(3)以为圆心,为半径作.即为所求作的圆. 请回答:该尺规作图的依据是 .三、解答题 (本题共72分,第17题-26题,每小题5分,第27题ABC ∆M N 、,AC BC 1CMN S ∆=ABNM S =四边形AB O C D 、O AD CD =040CAB ∠=CAD ∠=xOy AOB ∆OCD ∆OCD ∆AOB ∆0,90Rt ABC C ∆∠=Rt ABC ∆A B 12AB ,P Q PQ AB O O OA O O7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17. 计算: 18. 解不等式组: 19.如图,在中,,平分交于点. 求证:.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:,(____________+____________).易知,,_____________=______________,______________=_____________.可得.(04cos3012+--()21571023x x x x ⎧+>-⎪⎨+>⎪⎩ABC ∆0,36AB AC A =∠=BD ABC ∠AC D AD BC =()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形ABC EBMF S S ∆=-矩形ADC ABC S S ∆∆=NFGD EBMF S S =矩形矩形21.关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.22. 如图,在四边形中,为一条对角线,,为的中点,连接.(1)求证:四边形为菱形;(2)连接,若平分,求的长.23. 如图,在平面直角坐标系中,函数的图象与直线交于点. (1)求k 、m 的值;(2)已知点,过点作平行于轴的直线,交直线于点,过点作平行于轴的直线,交函数的图象于点. ①当时,判断线段与的数量关系,并说明理由; ②若,结合函数的图象,直接写出的取值范围.24.如图,是的一条弦,是的中点,过点作于点,过点作的切线交的延长线于点.x ()23220x k x k -+++=ABCD BD 0//,2,90AD BC AD BC ABD =∠=E AD BE AC AC ,1BAD BC ∠=AC xOy ()0k y x x=>2y x =-()3,A m ()(),0P n n n >P x 2y x =-M P y ()0k y x x=>N 1n =PM PN PN PM ≥n AB O E AB E EC OA ⊥C B O CE D25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格) 分析数据两组样本数据的平均数、中位数、众数如下表所示: 得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)26.如图,是所对弦上一动点,过点作交于点,连接,过点作于点.已知,设两点间的距离为,两点间的距离为.(当点与点或点重合时,的值为0)小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.P AB AB P PM AB ⊥AB M MB P PN MB ⊥N 6AB cm =A P 、xcm P N 、ycm P A B y下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与的几组值,如下表: (说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当为等腰三角形时,的长度约为____________.27.在平面直角坐标系中,抛物线与轴交于点(点在点的左侧),与轴交于点.(1)求直线的表达式;(2)垂直于轴的直线与抛物线交于点,与直线交于点,若,结合函数的图象,求的取值范围.28.在等腰直角中,,是线段上一动点(与点不重合),连接,延长至点,使得,过点作于点,交于点.(1)若,求的大小(用含的式子表示).(2)用等式表示线段与之间的数量关系,并证明.xOy 243y x x =-+x A B 、A B y C BC y l ()()1122,,,P x y Q x y BC()33,N x y 123x x x <<123x x x ++ABC ∆090ACB ∠=P BC B C、AP BC Q CQ CP =Q QH AP ⊥H AB M PAC α∠=AMQ ∠αMB PQ29.在平面直角坐标系中的点和图形,给出如下的定义:若在图形上存在一点,使得两点间的距离小于或等于1,则称为图形的关联点.(1)当的半径为2时,①在点中,的关联点是_______________. ②点在直线上,若为的关联点,求点的横坐标的取值范围.(2)的圆心在轴上,半径为2,直线与轴、轴交于点.若线段上的所有点都是的关联点,直接写出圆心的横坐标的取值范围.C.上海市2017年中考数学试题及答案一、选择题(本大题共6题,每题4分,满分24分。

2017济南中考数学试卷及答案解析

2017济南中考数学试卷及答案解析

2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1、在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√D.32、如图所示的几何体,它的左视图是()A.B.C.D.3、2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1034、如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB 交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°5、中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.6、化简a 2+aba−b ÷aba−b的结果是()A.a2B.a2a−bC.a−bbD.a+bb7、关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6B.﹣3C.3D.68、《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y钱,以下列出的方程组正确的是()A.{y−8x=3 y−7x=4B.{y−8x=3 7x−y=4C.{8x−y=3 y−7x=4D.{8x−y=3 7x−y=49、如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A.12B.13C.16D.2310、把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cmB.24cmC.6√3cmD.12√3cm11、将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>212、如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3C.35D.413、如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A.3√105B.2√C.3√54D.3√2214、二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.415、如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该BD广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→GB.A→E→D→CC.A→E→B→FD.D.A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16、分解因式:x2﹣4x+4= .17、计算:|﹣2﹣4|+(√3)0= .18、在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.19、如图,扇形纸叠扇完全打开后,扇形ABC的面积为300π的图象交于A,B两点,20、如图,过点O的直线AB与反比例函数y=kx(x<0)的图象交于A(2,1),直线BC∥y轴,与反比例函数y=−3kx点C,连接AC,则△ABC的面积为.21、定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为.三、解答题(本大题共8小题,共57分)22、1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3x−5≥2(x−2)①x2>x−1②.23、如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.24、如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.25、某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?26、中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5 a 0.26 18 0.367 14 b8 8 0.16合计 c 1(1)统计表中的a= ,b= ,c= ;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27、如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx (x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长;(x>0)的图象于点D,过B,D (3)如图3,将线段OA延长交y=kx的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.28、某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E ,A ,C 在同一条直线上,连接BD ,点F 是BD 的中点,连接EF ,CF ,试判断△CEF 的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF 的两条边是否相等,如EF=CF ,以下是她的证明过程证明:延长线段EF 交CB 的延长线于点G .∵F 是BD 的中点,∴BF=DF .∵∠ACB=∠AED=90°,∴ED ∥CG .∴∠BGF=∠DEF . 又∵∠BFG=∠DFE , ∴△BGF ≌△DEF ( ). ∴EF=FG . ∴CF=EF=12EG . 请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS ,ASA ,AAS ,SSS 中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.29、如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m (m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m 的取值范围.答案解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017•济南)在实数0,﹣2,√,3中,最大的是()A.0 B.﹣2 C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√3,实数0,﹣2,√3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017•济南)如图所示的几何体,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=5.55×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40° B.45° C.50° D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.(3分)(2017•济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B 是轴对称图形又是中心对称图形,故选:B .【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•济南)化简a 2+ab a−b ÷ab a−b 的结果是( ) A .a 2 B .a2a−b C .a−b b D .a+b b【考点】6A :分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b •a−b ab =a+b b , 故选:D .【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017•济南)关于x 的方程x 2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6 B.﹣3 C.3 D.6【考点】AB:根与系数的关系.【分析】设方程的另一个根为n,根据两根之和等于﹣ba,即可得出关于n的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n,则有﹣2+n=﹣5,解得:n=﹣3.故选C.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣ba、两根之积等于ca是解题的关键.8.(3分)(2017•济南)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A.{y−8x=3y−7x=4B.{y−8x=37x−y=4C.{8x−y=3y−7x=4D.{8x−y=37x−y=4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x人,物价为y钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x人,物价为y钱,根据题意,可列方程组:{8x−y=3 y−7x=4,故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017•济南)如图,五一旅游黄金周期间,某景区规定A 和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A.12B.13C.16D.23【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A进入景区并从C,D出口离开的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A进入景区并从C,D出口离开的概率是P,∵小红从入口A进入景区并从C,D出口离开的有2种情况,∴P=1.3故选:B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6√3cm D.12√3cm【考点】MC:切线的性质.【分析】设圆形螺母的圆心为O,连接OD,OE,OA,如图所示:根据切线的性质得到AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如图所示:∵AD,AB分别为圆O的切线,∴AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°,在Rt△AOD中,∠OAD=60°,AD=6cm,∴tan∠OAD=tan60°=ODAD ,即OD6=√3,∴OD=6√3cm,则圆形螺母的直径为12√3cm.故选D.【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017•济南)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017•济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3 C.35D.4【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】先过C 作CF ⊥AB 于F ,根据DE ∥CF ,可得AD AC =DE CF,进而得出CF=3,根据勾股定理可得AF 的长,根据CF 和BF 的长可得石坝的坡度.【解答】解:如图,过C 作CF ⊥AB 于F ,则DE ∥CF ,∴AD AC =DE CF,即15=0.6CF,解得CF=3,∴Rt △ACF 中,AF=√52−32=4, 又∵AB=3, ∴BF=4﹣3=1,∴石坝的坡度为CF BF =31=3,故选:B .【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017•济南)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB=3√E 为OC 上一点,OE=1,连接BE ,过点A 作AF ⊥BE 于点F,与BD交于点G,则BF的长是()A.3√105B.2√2C.3√54D.3√22【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3√,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,{∠GAO=∠EBO AO=BO∠AOG=∠BOE,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE=√OB2+OE2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO , ∴△BFG ∽△BOE , ∴BF OB =BG BE,即BF3=√10,解得,BF=3√105,故选:A .【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017•济南)二次函数y=ax 2+bx+c (a ≠0)的图象经过点(﹣2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a <b ;③2a ﹣b ﹣1<0;④2a+c <0.其中正确结论的个数是( ) A .1 B .2 C .3 D .4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a >0,由y=ax 2+bx+c 与x 轴的另一个交点坐标为(x 1,0 ),且1<x 1<2,则该抛物线的对称轴为x=﹣b2a=−2+x 12>﹣12,即 b a <1,于是得到b >0;故①正确;②由x=﹣2时,4a ﹣2b+c=0得2a ﹣b=﹣c2,而﹣2<c >0,解不等式即可得到2a >b ,所以②正确.③由②知2a ﹣b <0,于是得到2a ﹣b ﹣1<0,故③正确;④把(﹣2,0)代入y=ax 2+bx+c 得:4a ﹣2b+c=0,即2b=4a+c >0(因为b >0),等量代换得到2a+c <0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣=﹣b2a =−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017•济南)如图1,有一正方形广场ABCD,图形中的线̂表示一条以A为圆心,以AB为半径的圆弧形段均表示直行道路,BD道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017•济南)分解因式:x2﹣4x+4= (x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.17.(3分)(2017•济南)计算:|﹣2﹣4|+(√3)0= 7 .【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017•济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90 .【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.19.(3分)(2017•济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为20 cm.【考点】MO:扇形面积的计算.【分析】设AD=x,则AB=3x.由题意300π=120⋅π⋅(3x)2360,解方程即可.【解答】解:设AD=x,则AB=3x.由题意300π=120⋅π⋅(3x)2360,解得x=10,∴BD=2x=20cm.故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017•济南)如图,过点O的直线AB与反比例函数y=kx的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3k x(x<0)的图象交于点C ,连接AC ,则△ABC 的面积为 8 .【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x,y=−6x,与AB的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论. 【解答】解:∵A (2,1)在反比例函数y=kx的图象上, ∴k=2×1=2,∴两个反比例函数分别为y=2x,y=−6x,设AB 的解析式为y=kx ,把A (2,1)代入得,k=12, ∴y=12x ,解方程组{y =12x y =2x得:{x 1=2y 1=1,{x 2=−2y 2=−1, ∴B (﹣2,﹣1), ∵BC ∥y 轴,∴C 点的横坐标为﹣2, ∴C 点的纵坐标为−6−2=3,∴BC=3﹣(﹣1)=4,∴△ABC的面积为1×4×4=8,2故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017•济南)定义:在平面直角坐标系xOy中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案.【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5.故答案为:(1,﹣2).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017•济南)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3x−5≥2(x−2)①x2>x−1②.【考点】4J:整式的混合运算—化简求值;CB:解一元一次不等式组.【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)(a+3)2﹣(a+2)(a+3)=a2+6a+9﹣a2﹣5a﹣6=a+3,当a=3时,原式=3+3=6;(2){3x−5≥2(x−2)①x2>x−1②由不等式①,得x≥1,由不等式②,得x<2故原不等式组的解集是1≤x<2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017•济南)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°, 在△ABE 和△DFA 中∵{∠AEB =∠DAE∠AFD =∠BAD =AE∴△ABE ≌△DFA , ∴AB=DF .【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017•济南)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD ,再根据同弧所对的圆周角相等,求得∠B 的度数,即可求得∠BAD 的度数. 【解答】解:∵AB 为⊙O 直径 ∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25° ∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017•济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,12000x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,∴1.5x=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017•济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5 a 0.26 18 0.367 14 b8 8 0.16合计 c 1(1)统计表中的a= 10 ,b= 0.28 ,c= 50 ;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)由题意c=18÷0.36=50,=0.28,∴a=50×0.2=10,b=1450故答案为10,0.28,50.(2)频数分布表直方图如图所示.=6.4(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及=528(名).以上的人数有1200×14+850【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017•济南)如图1,▱OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=kx (x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y=kx (x >0)的图象于点D ,过B ,D的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.【考点】GB :反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B 的坐标即可解决问题; (2)根据两直线垂直的条件,求出直线MN 的解析式即可解决问题; (3)结论:BF=DE .如图3中,延长BA 交x 轴于N ,作DM ⊥x 轴于M ,作NK ∥EF 交y 轴于K .设ON=n ,OM=m ,ME=a .则BN=kn,DM=km.由△EDM ∽△EBN ,推出EM EN =DM BN,即am+a−n=km k n,可得a=m ,由△KNO ≌△DEM ,推出DE=KN ,再证明四边形NKFB 是平行四边形,即可解决问题; 【解答】解:(1)如图1中,∵四边形OABC 是平行四边形, ∴AB=OC=3, ∵A (2,1), ∴B (2,4),把B (2,4)代入y=kx 中,得到k=8,∴反比例函数的解析式为y=8x.(2)如图2中,设K 是OB 的中点,则K (1,2).∵直线OB 的解析式为y=2x , ∴直线MN 的解析式为y=﹣12x+52,∴N (0,52), ∴ON=52.(3)结论:BF=DE .理由如下:如图3中,延长BA 交x 轴于N ,作DM ⊥x 轴于M ,作NK ∥EF 交y 轴。

2017年济南数学中考真题(解析版)

2017年济南数学中考真题(解析版)

济南市2017中考数学试卷答案一、选择题(每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一元二次方程的根是A.B.C.D.2.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则大多边形的周长为A.48 cm B.54 cm C.56cm D.64 cm3.端午节吃粽子是中华民族的传统习俗,小颖的妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其他均相同,若小颖随意吃一个,则吃到红豆粽的概率是A.B.C.D.4.中央电视台有一个非常受欢迎的娱乐节目《墙来了》,选手需按墙上的空洞造型摆成相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体能恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞(如图),则该几何体为A B C D5.如图,是的直径,弦,,.则阴影部分的面积是A.32πB.16πC.16 D.326.二次函数的图象可由的图象A.向左平移1个单位,再向下平移2个单位得到B.向左平移1个单位,再向上平移2个单位得到C.向右平移1个单位,再向下平移2个单位得到D.向右平移1个单位,再向上平移2个单位得到7.如图,在直角三角形中,,点是斜边的中点,经过、、三点,是弧上的一个点,且,则A.B.C.D.8.如图,直线与曲线交于点A,将直线向右平移6个单位后,与曲线交于点B,与轴交于点C,若,则的值为A.12 B.14 C.18 D.24第II卷二、填空题(每小题3分,共21分)9.在实数范围内定义一种运算“”,其规则为,则方程的所有解的和为____________.10.如图,,分别是正五边形的边,上的点,,连接,.将绕正五边形的中心按逆时针方向旋转到,旋转角为(),则____________.11.若,是一元二次方程的实根,且满足,,则实数的取值范围是____________.12.设二次函数的图象经过点(3,0),(7,–8),当时,y随x的增大而减小,则实数a的取值范围是____________.13.中,,cm,cm,以为圆心,为半径作圆,若圆与直线相切,则____________cm.14.如图,将边长为6 cm的正方形折叠,使点落在边的中点处,折痕为,点落在处,与交于点,则的周长是____________cm.第14题图第15题图15.如图,一段抛物线:,记为,它与x轴交于点,;将绕点旋转得,交x轴于点;将绕点旋转得,交x轴于点;…如此进行下去,直至得.若在第13段抛物线上,则____________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本题8分)如图,一次函数与反比例函数的图象相交于,两点,已知.(1)求及的值;(2)不解关于x,y的方程组,直接写出点的坐标;(3)根据图象,直接写出当时,自变量x的取值范围.17.(本题9分)某单位计划于“十一”期间组织职工到清明上河园观光旅游.下面是领队与旅行社导游关于收费标准的一段对话:领队:组团去清明上河园旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元.领队:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团游览清明上河园结束后,共支付给旅行社2700元.请你根据上述信息,求该单位这次到清明上河园观光旅游的共有多少人?18.(本题9分)某景区为了对一棵倾斜的古杉树进行保护,需测量其高度.如图,在地面上选取一点,测得,m,,求这棵古杉树的高度.(结果取整数)参考数据:,,,.19.(本题9分)在同一平面内,和如图①放置,其中.小明做了如下操作:将绕着边的中点旋转得到,将绕着边的中点旋转得到,如图②所示,请完成下列问题:(1)试猜想四边形是什么特殊四边形,并说明理由;(2)如图③,连接,,求证:四边形是平行四边形.20.(本题9分)某校九年级举行毕业典礼,需要从九年级(1)班的2名男生、1名女生(男生用A,B表示,女生用a表示)和九年级(2)班的1名男生、1名女生(男生用C表示,女生用b表示)共5人中随机选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率;(3)求2名主持人恰好1男1女的概率.21.(本题10分)如图1,在中,,,点,分别是边,的中点,连接.将绕点按顺时针方向旋转,记旋转角为.图1 图2 备用图(1)问题发现①当时,_____________;②当时,_____________.(2)拓展探究试判断:当时,的值有无变化?请仅就图2的情况给出证明.(3)问题解决当旋转至,,三点共线时,直接写出线段的长.22.(本题10分)如图,内接于,为直径,点是弧的中点,连接,设,交于点,于点,交于点.备用图(1)求证:;(2)判断与是否相等,并说明理由;(3)当点为半圆弧的中点,小李通过操作发现,请问小李的发现是否正确?若正确,请说明理由;若不正确,请写出与正确的关系式.23.(本题11分)如图,在平面直角坐标系中,抛物线经过,两点,且与y轴交于点,.动点从点出发,沿线段以每秒1个单位长度的速度向点移动,同时动点从点出发,沿线段以某一速度向点移动.(1)求该抛物线的解析式;(2)若经过秒的移动,线段被垂直平分,求此时的值;(3)在第一象限的抛物线上取一点,使得,再在抛物线上找点(不与点,,重合),使得,求点的坐标.1 2 3 4 5 6 7 8D A B A A D D A9.1 10.11.12.或13.14.12 15.216.(本题8分)【解析】(1)将点的坐标分别代入一次函数与反比例函数,可得,,解得,.(3分)(2)∵,两点关于直线对称,∴点的坐标为.(6分)(3)当时,自变量x的取值范围为或.(8分)17.(本题9分)【解析】设该单位这次参加旅游的共有人,因为,所以.(2分)依题意得,即,解得,.(4分)①当时,,符合题意;(5分)②当时,,不符合题意,应舍去.(6分)由①②可得.(7分)答:该单位这次参加旅游的共有人.(9分)18.(本题9分)【解析】如图,过点作于.(2分)∵,,∴在中,,(4分)在中,,∵m,∴,解得m,(6分)∴m.(8分)故这棵古杉树的高度大约为m.(9分)19.(本题9分)【解析】(1)四边形是菱形.(1分)理由如下:∵将绕着边的中点旋转得到,∴,,(2分)∵,∴,∴四边形是菱形.(4分)(2)∵四边形是菱形,∴,且,∵将绕着边的中点旋转得到,∴,,(6分)∴四边形为平行四边形,∴,且,∴,,∴四边形是平行四边形.(9分)20.(本题9分)【解析】(1)列表可得:A B C a bA AB AC Aa AbB BA BC Ba BbC CA CB Ca Cba aA aB[aC abb bA bB bC ba共有20种等可能的结果.(3分)(2)∵2名主持人来自不同班级的情况有12种,∴2名主持人来自不同班级的概率为.(6分)(3)∵2名主持人恰好1男1女的情况有12种,∴2名主持人恰好1男1女的概率为.(9分)21.(本题10分)【解析】(1)①当时,在中,,,点,分别是边,的中点,,,.②当时,可得,,.(3分)(2)无变化.如题图2中,在旋转过程中形状、大小不变,.又,,,在中,,,,的值不变.(6分)(3)或.(10分)注:如图①,当在上方,且,,三点共线时,四边形为矩形,;如图②,当在下方,且,,三点共线时,为直角三角形,由勾股定理可得,∴,根据,可得.图①图②22.(本题10分)【解析】(1)如图1,连接,∵是的直径,∴,∵于,∴,∴,∴,∵点是弧的中点,∴,∴,∴.(3分)(2).理由如下:由(1)知,,∴,∴.(5分)(3)小李的发现是正确的.理由如下:如图2,延长,交于点,∵为半圆弧的中点,是弧的中点,∴,,,在和中,,∴,∴.(7分)∵为直径,∴,∵为弧的中点,∴.在和中,,∴,(9分)∴,∴.(10分)23.(本题11分)【解析】(1)将,代入,得,解得,故抛物线的解析式为.(3分)(2)如图,连接,由和,可得,∵,∴,∴,则,∴,∴,∴,∴,即,∴,=.(6分)(3)如图,过点作于点,过点作于点,连接,∵,∴只有时,点才符合题意,∵,∴,解得,,∴,(7分)∵,∴,∴,∴(注:为等腰直角三角形,斜边),(9分)设,则,解得,(舍去),故.(11分)新杏坛家教一点通的资源,微信扫描二维码获取更多资源!。

2017济南中考数学真题及答案

2017济南中考数学真题及答案

2017济南中考数学真题及答案
语文真题数学真题英语真题物理真题化学真题历史真题政治真题语文答案数学答案英语答案物理答案化学答案历史答案政治答案谁笑到最后,谁笑得最好。

出国留学网中考频道第一时间为您公布2017济南中考数学真题及答案,希望对您有所帮助,欢迎您访问出国留学网查看以下是济南2017年全部科目的试题发布入口:
地区中考试题中考答案济南语文数学英语化学物理历史政治语文数学英语化学物理历史政治点击下面图片即可查看2017中考真题及答案汇总:
2017年中考结束后您可能还会关注:
2017济南中考成绩查询
2017济南中考分数线
2017济南中考志愿填报
2017济南中考录取查询
2017济南中考作文题目
2017济南中考满分作文
2017济南中考状元及经验
2017年全国各省市中考真题及答案汇总。

(完整版)2017年山东省济南市中考数学试卷(含答案解析版)

(完整版)2017年山东省济南市中考数学试卷(含答案解析版)

2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,√5,3中,最大的是()A.0 B.﹣2 C.√5D.32.(3分)如图所示的几何体,它的左视图是()A.B. C. D.3.(3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1034.(3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A .B .C .D .6.(3分)化简a 2+ab a−b ÷ab a−b 的结果是( ) A .a 2 B .a2a−b C .a−b b D .a+b b7.(3分)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .68.(3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =49.(3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .23 10.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A.12cm B.24cm C.6√3cm D.12√3cm11.(3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>212.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3 C.35D.413.(3分)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A.3√105B.2√2 C.3√54D.3√2214.(3分)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a <b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.415.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,BD̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y 与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)分解因式:x2﹣4x+4=.17.(3分)计算:|﹣2﹣4|+(√3)0=.18.(3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.19.(3分)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为cm.20.(3分)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BC ∥y 轴,与反比例函数y=−3k x (x <0)的图象交于点C ,连接AC ,则△ABC 的面积为 .21.(3分)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ=5或PT +TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,﹣3),C (﹣1,﹣5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为 .三、解答题(本大题共8小题,共57分)22.(6分)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3.(2)解不等式组:{3x −5≥2(x −2)①x 2>x −1②. 23.(4分)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .24.(4分)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.25.(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?26.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数)频率5a 0.2 618 0.36 714 b 88 0.16 合计 c 1 (1)统计表中的a= ,b= ,c= ;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27.(9分)如图1,▱OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=kx(x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B 关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.28.(9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C 在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段EF交CB的延长线于点G.∵F是BD的中点,∴BF=DF.∵∠ACB=∠AED=90°,∴ED∥CG.∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF().∴EF=FG.∴CF=EF=12EG.请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.29.(9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.2017年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017•济南)在实数0,﹣2,√5,3中,最大的是()A.0 B.﹣2 C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√5<3,实数0,﹣2,√5,3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017•济南)如图所示的几何体,它的左视图是()A.B. C. D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=5.55×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC ⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.(3分)(2017•济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B是轴对称图形又是中心对称图形,故选:B.【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•济南)化简a2+aba−b÷aba−b的结果是()A.a2B.a2a−bC.a−bbD.a+bb【考点】6A:分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b•a−bab=a+bb,故选:D.【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017•济南)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .6【考点】AB :根与系数的关系.【分析】设方程的另一个根为n ,根据两根之和等于﹣b a,即可得出关于n 的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n ,则有﹣2+n=﹣5,解得:n=﹣3.故选C .【点评】本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a 是解题的关键.8.(3分)(2017•济南)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x 人,物价为y 钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x 人,物价为y 钱,根据题意,可列方程组:{8x −y =3y −7x =4, 故选:C .【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017•济南)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .23 【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A 进入景区并从C ,D 出口离开的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A 进入景区并从C ,D 出口离开的概率是P ,∵小红从入口A 进入景区并从C ,D 出口离开的有2种情况,∴P=13. 故选:B .【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6√3cmD .12√3cm【考点】MC :切线的性质.【分析】设圆形螺母的圆心为O ,连接OD ,OE ,OA ,如图所示:根据切线的性质得到AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD 的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O ,与AB 切于E ,连接OD ,OE ,OA ,如图所示: ∵AD ,AB 分别为圆O 的切线,∴AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°, 在Rt △AOD 中,∠OAD=60°,AD=6cm ,∴tan ∠OAD=tan60°=OD AD ,即OD 6=√3, ∴OD=6√3cm ,则圆形螺母的直径为12√3cm .故选D .【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017•济南)将一次函数y=2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( )A.x>﹣1 B.x>1 C.x>﹣2 D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x 的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017•济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3 C.35D.4【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】先过C作CF⊥AB于F,根据DE∥CF,可得ADAC=DECF,进而得出CF=3,根据勾股定理可得AF的长,根据CF和BF的长可得石坝的坡度.【解答】解:如图,过C作CF⊥AB于F,则DE∥CF,∴ADAC=DECF,即15=0.6CF,解得CF=3,∴Rt△ACF中,AF=√52−32=4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为CFBF =31=3,故选:B.【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017•济南)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF 的长是()A.3√105B.2√2 C.3√54D.3√22【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3√2,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,{∠GAO=∠EBO AO=BO∠AOG=∠BOE,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE=√OB2+OE2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO,∴△BFG∽△BOE,∴BFOB=BGBE,即BF3=√10,解得,BF=3√10 5,故选:A.【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017•济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣b2a=−2+x12>﹣12,即ba<1,于是得到b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c>0,解不等式即可得到2a>b,所以②正确.③由②知2a﹣b<0,于是得到2a﹣b﹣1<0,故③正确;④把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,即2b=4a+c>0(因为b >0),等量代换得到2a+c<0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣=﹣b2a=−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017•济南)如图1,有一正方形广场ABCD,图形中的线段均表示直行̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A 道路,BD处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017•济南)分解因式:x2﹣4x+4=(x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.17.(3分)(2017•济南)计算:|﹣2﹣4|+(√3)0=7.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017•济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90.【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.19.(3分)(2017•济南)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC=120°,BD=2AD ,则BD 的长度为 20 cm .【考点】MO :扇形面积的计算.【分析】设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360,解方程即可.【解答】解:设AD=x ,则AB=3x . 由题意300π=120⋅π⋅(3x)2360,解得x=10,∴BD=2x=20cm . 故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017•济南)如图,过点O 的直线AB 与反比例函数y=kx的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3kx(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为 8 .【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x ,y=−6x ,与AB 的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论.【解答】解:∵A (2,1)在反比例函数y=kx 的图象上,∴k=2×1=2,∴两个反比例函数分别为y=2x ,y=−6x,设AB 的解析式为y=kx ,把A (2,1)代入得,k=12,∴y=12x ,解方程组{y =12x y =2x 得:{x 1=2y 1=1,{x 2=−2y 2=−1,∴B (﹣2,﹣1), ∵BC ∥y 轴,∴C 点的横坐标为﹣2, ∴C 点的纵坐标为−6−2=3, ∴BC=3﹣(﹣1)=4,∴△ABC 的面积为12×4×4=8,故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017•济南)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ=5或PT +TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,﹣3),C (﹣1,﹣5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为 (1,﹣2) .【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A ,B ,C 点的坐标,进而得出答案. 【解答】解:由题意可得:M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为(1,﹣2),此时M 到A ,B ,C 的实际距离都为5. 故答案为:(1,﹣2).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017•济南)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3. (2)解不等式组:{3x −5≥2(x −2)①x2>x −1②. 【考点】4J :整式的混合运算—化简求值;CB :解一元一次不等式组. 【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题; (2)根据解不等式组的方法可以解答本题. 【解答】解:(1)(a +3)2﹣(a +2)(a +3) =a 2+6a +9﹣a 2﹣5a ﹣6 =a +3,当a=3时,原式=3+3=6; (2){3x −5≥2(x −2)①x2>x −1② 由不等式①,得 x ≥1,由不等式②,得 x <2故原不等式组的解集是1≤x <2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017•济南)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .【考点】LB :矩形的性质;KD :全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD 、∠AFD=∠B ,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD 是矩形, ∴AD ∥BC ,∠B=90°, ∴∠AEB=∠DAE , ∵DF ⊥AE , ∴∠AFD=∠B=90°, 在△ABE 和△DFA 中 ∵{∠AEB =∠DAE ∠AFD =∠B AD =AE∴△ABE ≌△DFA , ∴AB=DF .【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017•济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.【解答】解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017•济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,12000 x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,∴1.5x=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017•济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36714b880.16合计c1(1)统计表中的a=10,b=0.28,c=50;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)由题意c=18÷0.36=50,∴a=50×0.2=10,b=1450=0.28,故答案为10,0.28,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850=6.4(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×14+850=528(名).【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017•济南)如图1,▱OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=k x(x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B的坐标即可解决问题;(2)根据两直线垂直的条件,求出直线MN的解析式即可解决问题;(3)结论:BF=DE.如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=kn ,DM=km.由△EDM∽△EBN,推出EM EN =DMBN,即am+a−n=kmkn,可得a=m,由△KNO≌△DEM,推出DE=KN,再证明四边形NKFB是平行四边形,即可解决问题;【解答】解:(1)如图1中,∵四边形OABC是平行四边形,∴AB=OC=3,∵A(2,1),∴B(2,4),把B(2,4)代入y=kx中,得到k=8,∴反比例函数的解析式为y=8 x .(2)如图2中,设K是OB的中点,则K(1,2).。

山东省济南市2017年中考数学试题(含解析)

山东省济南市2017年中考数学试题(含解析)

2017年山东省济南市中考数学试卷一、选择题(共15小题,每小题3分,满分45分,每小题只有一个选项符合题意)1.(3分)(2017•济南)﹣6的绝对值是()A. 6B.﹣6C.±6 D.考点:绝对值.分析:根据绝对值的概念可得﹣6的绝对值是数轴表示﹣6的点与原点的距离.解答:解:﹣6的绝对值是6,故选:A.点评:此题主要考查了绝对值,关键是掌握绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值.2.(3分)(2017•济南)新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A. 0.109×105 B. 1.09×104 C. 1.09×103 D. 109×102考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将10900用科学记数法表示为:1.09×104.故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•济南)如图,OA⊥OB,∠1=35°,则∠2的度数是()A. 35°B. 45°C. 55°D. 70°考点:余角和补角;垂线.分析:根据两个角的和为90°,可得两角互余,可得答案.解答:解:∵OA⊥OB,∴∠AOB=90°,即∠2+∠1=90°,∴∠2=55°,故选:C.点评:此题考查了余角的知识,掌握互余两角之和等于90°是解答本题的关键.4.(3分)(2017•济南)下列运算不正确的是()A.a2•a=a3B.(a3)2=a6C.(2a2)2=4a4D.a2÷a2=a考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方,先把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减;对各选项分析判断即可得解.解答:解:A、a2•a=a2+1=a3,故本选项错误;B、(a3)2=a3×2=a6,故本选项错误;C、(2a2)2=22•(a2)2=4a4,故本选项错误;D、应为a2÷a2=a2﹣2=a0=1,故本选项正确.故选D.点评:本题考查了同底数幂的乘法,积的乘方的性质,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.(3分)(2017•济南)如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是()A. B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看第一层两个小正方形,第二层右边一个三角形,故选:B.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意圆锥的主视图是三角形.6.(3分)(2017•济南)若代数式4x﹣5与的值相等,则x的值是()A. 1 B.C.D. 2考点:解一元一次方程.专题:计算题.分析:根据题意列出方程,求出方程的解即可得到x的值.解答:解:根据题意得:4x﹣5= ,去分母得:8x﹣10=2x﹣1,解得:x= ,故选B.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.7.(3分)(2017•济南)下列图标既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称的概念对各选项分析判断即可得解.解答:解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、既是轴对称图形又是中心对称图形,故本选项正确;D、既不是轴对称图形,也不是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.(3分)(2017•济南)济南某中学足球队的18名队员的年龄如表所示:这18名队员年龄的众数和中位数分别是()A. 13岁,14岁B. 14岁,14岁C. 14岁,13岁D. 14岁,15岁考点:众数;中位数.分析:首先找出这组数据中出现次数最多的数,则它就是这18名队员年龄的众数;然后根据这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,判断出这18名队员年龄的中位数是多少即可.解答:解:∵济南某中学足球队的18名队员中,14岁的最多,有6人,∴这18名队员年龄的众数是14岁;∵18÷2=9,第9名和第10名的成绩是中间两个数,∵这组数据的中间两个数分别是14岁、14岁,∴这18名队员年龄的中位数是:(14+14)÷2=28÷2=14(岁)综上,可得这18名队员年龄的众数是14岁,中位数是14岁.故选:B.点评:(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.(3分)(2017•济南)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,在向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为()A.(4,3)B.(2,4)C.(3,1)D.(2,5)考点:坐标与图形变化-平移.分析:根据平移规律横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算即可.解答:解:由坐标系可得A(﹣2,6),将△ABC先向右平移4个单位长度,在向下平移1个单位长度,点A的对应点A1的坐标为(﹣2+4,6﹣1),即(2,5),故选:D.点评:此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.10.(3分)(2017•济南)化简﹣的结果是()考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式= = =m+3.故选A.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.11.(3分)(2017•济南)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<1考点:一次函数与一元一次不等式.分析:观察函数图象得到当x>1时,函数y=x+b的图象都在y=kx+4的图象上方,所以关于x的不等式x+b>kx+4的解集为x>1.解答:解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选:C.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12.(3分)(2017•济南)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A. 10cm B.13cm C. 14cm D.16cm考点:一元二次方程的应用.专题:几何图形问题.分析:设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.解答:解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.点评:此题主要考查长方体的体积计算公式:长方体的体积=长×宽×高,以及平面图形折成立体图形后各部分之间的关系.13.(3分)(2017•济南)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、CD于M、N两点.若AM=2,则线段ON的长为()A.B.C. 1 D.考点:相似三角形的判定与性质;角平分线的性质;正方形的性质.专题:计算题.分析:===2+=+1=2+AM×,==2+=(+2AC=+2=2+,∴=,即点评:本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.14.(3分)(2017•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2017的坐标是()A.(0,0)B.(0,2)C.(2,﹣4)D.(﹣4,2)考点:规律型:点的坐标.分析:设P1(x,y),再根据中点的坐标特点求出x、y的值,找出规律即可得出结论.解答:解:设P1(x,y),∵点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,∴=1,=﹣1,解得x=2,y=﹣4,∴P1(2,﹣4).同理可得,P1(2,﹣4),P2(﹣4,2),P3(4,0),P4(﹣2,﹣2),P5(0,0),P6(0,2),P7(2,﹣4),…,…,∴每6个数循环一次.∵=335…5,∴点P2017的坐标是(0,0).故选A.点评:本题考查的是点的坐标,根据题意找出规律是解答此题的关键.15.(3分)(2017•济南)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x 轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2 D.﹣3<m<﹣考点:抛物线与x轴的交点;二次函数图象与几何变换.分析:首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案.解答:解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故选D.点评:本题主要考查抛物线与x轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.二、填空题(共6小题,每小题3分,满分18分)16.(3分)(2017•济南)分解因式:xy+x=x(y+1).考点:因式分解-提公因式法.分析:直接提取公因式x,进而分解因式得出即可.解答:解:xy+x=x(y+1).故答案为:x(y+1).点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.(3分)(2017•济南)计算:+(﹣3)0=3.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用算术平方根定义计算,第二项利用零指数幂法则计算即可得到结果.解答:解:原式=2+1=3.故答案为:3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(3分)(2017•济南)如图,P A是⊙O的切线,A是切点,P A=4,OP=5,则⊙O的周长为6π(结果保留π).考点:切线的性质;勾股定理.分析:连接OA,根据切线的性质求出∠OAP=90°,根据勾股定理求出OA即可.解答:解:连接OA,∵P A是⊙O的切线,A是切点,∴∠OAP=90°,在Rt△OAP中,∠OAP=90°,P A=4,OP=5,由勾股定理得:OA=3,则⊙O的周长为2π×3=6π,故答案为:6π.点评:本题考查了切线的性质,勾股定理的应用,解此题的关键是能正确作出辅助线,并求出∠OAP=90°,注意:圆的切线垂直于过切点的半径.19.(3分)(2017•济南)小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.考点:几何概率.分析:根据几何概率的求法:最终停留在黑色的方砖上的概率就是黑色区域的面积与总面积的比值.解答:解:观察这个图可知:黑色区域(4块)的面积占总面积(9块)的,则它最终停留在黑色方砖上的概率是;故答案为:.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.20.(3分)(2017•济南)如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y= (x<0)的图象上,则k=﹣4 .考点:反比例函数图象上点的坐标特征;等边三角形的性质.分析:过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(﹣4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式;解答:解:过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD= OB=2,BD=OB•sin60°=4×=2 ,∴B(﹣2,2 ),∴k=﹣2×2 =﹣4 ;故答案为﹣4 .点评:本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.21.(3分)(2017•济南)如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD 于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是①②③(把所有正确结论的序号都填在横线上).考点:四边形综合题.分析:利用SAS证明△ABF与△CBF全等,得出①正确,根据含30°角的直角三角形的性质得出点E到AB的距离是2,得出②正确,同时得出;△ABF的面积为得出④错误,得出tan∠DCF= ,得出③正确.解答:解:∵菱形ABCD,∴AB=BC=6,∵∠DAB=60°,∴AB=AD=DB,∠ABD=∠DBC=60°,在△ABF与△CBF中,∴△ABF≌△CBF(SAS),∴①正确;过点E作EG⊥AB,过点F作MH⊥CD,MH⊥AB,如图:∵CE=2,BC=6,∠ABC=120°,∴BE=6﹣2=4,∵EG⊥AB,∴EG= 2,∴点E到AB的距离是2,故②正确;∵BE=4,EC=2,∴S△BFE:S△FEC=4:2=2:1,∴S△ABF:S△FBE=3:2,∴△ABF的面积为= ,故④错误;∵∵,∴=,∵,∴FM=,∴DM=,∴CM=DC﹣DM=6﹣,∴tan∠DCF=,故③正确;故答案为:①②③点评:此题考查了四边形综合题,关键是根据菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质分析.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题(共7小题,满分57分)22.(7分)(2017•济南)(1)化简:(x+2)2+x(x+3)(2)解不等式组:.考点:整式的混合运算;解一元一次不等式组.分析:(1)利用完全平方公式以及单项式乘以多项式运算法则化简求出即可;(2)分别解不等式,进而得出其解集即可.解答:解:(1)(x+2)2+x(x+3)=x2+4x+4+x2+3x=2x2+7x+4;(2)解①得:x≥2,解②得:x≥﹣1,故不等式组的解为:x≥2.点评:此题主要考查了整式的混合运算以及解一元一次不等式组,正确掌握运算法则得出不等式组的解集是解题关键.23.(7分)(2017•济南)(1)如图,在矩形ABCD中,BF=CE,求证:AE=DF;(2)如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,求∠BCD的度数.考点:矩形的性质;全等三角形的判定与性质;圆周角定理;圆内接四边形的性质.分析:(1)根据矩形的性质得出AB=CD,∠B=∠C=90°,求出BE=CF,根据SAS推出△ABE≌△DCF即可;(2)根据圆周角定理求出∠BAD,根据圆内接四边形性质得出∠BCD+∠BAD=180°,即可求出答案.解答:(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵BF=CE,∴BE=CF,在△ABE和△DCF中∴△ABE≌△DCF,∴AE=DF;(2)解:∵∠BOD=160°,∴∠BAD= ∠BOD=80°,∵A、B、C、D四点共圆,∴∠BCD+∠BAD=180°,∴∠BCD=100°.点评:本题考查了全等三角形的性质和判定,矩形的性质,圆周角定理,圆内接四边形性质的应用,解(1)小题的关键是求出△ABE≌△DCF,解(2)小题的关键是求出∠BAD的度数和得出∠BCD+∠BAD=180°.24.(8分)(2017•济南)济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.考点:分式方程的应用.分析:首先设普通快车的速度为xkm/时,则高铁列车的平均行驶速度是3xkm/时,根据题意可得等量关系:乘坐普通快车所用时间﹣乘坐高铁列车所用时间=4h,根据等量关系列出方程,再解即可.解答:解:设普通快车的速度为xkm/时,由题意得:﹣=4,解得:x=80,经检验:x=80是原分式方程的解,3x=3×80=240,答:高铁列车的平均行驶速度是240km/时.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程不能忘记检验.25.(8分)(2017•济南)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算m=40;(2)在扇形统计图中,“其他”类所占的百分比为15%;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.考点:列表法与树状图法;频数(率)分布表;扇形统计图.分析:(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.解答:解:(1)∵喜欢散文的有10人,频率为0.25,∴m=10÷0.25=40;(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.(9分)(2017•济南)如图1,点A(8,1)、B(n,8)都在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴于C,过点B作BD⊥y轴于D.(1)求m的值和直线AB的函数关系式;(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D时,点Q也停止运动,设运动的时间为t秒.①设△OPQ的面积为S,写出S与t的函数关系式;②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O′PQ,是否存在某时刻t,使得点Q′恰好落在反比例函数的图象上?若存在,求Q′的坐标和t的值;若不存在,请说明理由.考点:反比例函数综合题.分析:(1)由于点A(8,1)、B(n,8)都在反比例函数y=的图象上,根据反比例函数的意义求出m,n,再由待定系数法求出直线AB的解析式;(2)①由题意知:OP=2t,OQ=t,由三角形的面积公式可求出解析式;②通过三角形相似,用t的代数式表示出O′的坐标,根据反比例函数的意义可求出t值.解答:解:(1)∵点A(8,1)、B(n,8)都在反比例函数y=的图象上,∴m=8×1=8,∴y= ,∴8=,即n=1,设AB的解析式为y=kx+b,=的图象上,,即解得:.=t∴=,∴,=t=±,==27.(9分)(2017•济南)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M 为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.考点:=,=a =,=.28.(9分)(2017•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y 轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.,当的坐标代入抛物线的解析式得:.m×﹣=,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017山东济南中考试题一、选择题(本大题共15小题,每小题3分,共45分)1.(2017济南,1,3分)在实数0,-2,5,3中,最大的是( ) A .0B .-2C .5D .32.(2017济南,2,3分)如图所示的几何体,它的左视图是( )A .B .C .D .3.(2017济南,3,3分)2017年5月5日国产大型客机C 919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( ) A .0.555×104B .5.55×104C .5.55×103D .55.5×1034.(2017济南,4,3分)如图,直线a ∥b ,直线l 与a ,b 分别相交于A ,B 两点,AC ⊥AB 交b 于点C ,∠1=40°,则∠2的度数是( ) A .40°B .45°C .50°D .60°5.(2017济南,5,3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案a b中既是轴对称图形又是中心对称图形是( )A .B .C .D .6.(2017济南,6,3分)化简a 2+ab a -b ÷aba -b 的结果是( )A .a 2B .a 2a -bC .a -b bD .a +b b7.(2017济南,7,3分)关于x 的方程x 2+5x +m =0的一个根为-2,则另一个根是( ) A .-6B .-3C .3D .68.(2017济南,8,3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .⎩⎨⎧y -8x =3y -7x =4B .⎩⎨⎧y -8x =37x -y =4C .⎩⎨⎧8x -y =3y -7x =4D .⎩⎨⎧8x -y =37x -y =49.(2017济南,9,3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A 入口进入、从C ,D 出口离开的概率是( ) A .12B .13C .16D .23出口出口10.(2017济南,10,3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB =60°,若量出AD =6cm ,则圆形螺母的外直径是( ) A .12cmB .24cmC .63cmD .123cm11.(2017济南,11,3分)将一次函数y =2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( ) A .x >-1B .x >1C .x >-2D .x >212.(2017济南,12,3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度DE =0.6m ,又量的杆底与坝脚的距离AB =3m ,则石坝的坡度为( ) A .34B .3C .35D .413.(2017济南,13,3分)如图,正方形ABCD 的对角线AC ,BD 相较于点O ,AB =32,E 为OC 上一点, OE =1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( ) A .3105B .22C .354D .322EA14.(2017济南,14,3分)二次函数y =ax 2+bx +c (a ≠0)的图象经过点(-2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,-2)的上方,下列结论:①b >0;②2a <b ;③2a -b -1<0;④2a +c <0.其中正确结论的个数是( ) A .1B .2C .3D .415.(2017济南,15,3分)如图,有一正方形广场ABCD ,图形中的线段均表示直行道路,⌒BD 表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( ) A .A →B →E →G B .A →E →D →CC .A →E →B →FD .A →B →D →C二、填空题(本大题共6小题,每小题3分,共18分)16.(2017济南,16,3分)分解因式:x 2-4x +4=__________.17.(2017济南,17,3分)计算:│-2-4│+(3)0=________________.18.(2017济南,18,3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10AB第15题图1第15题图2第15题图3名选手成绩的众数是_________________.19.(2017济南,19,3分)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC =120°,BD =2AD ,则BD 的长度为____________cm .20.(2017济南,20,3分)如图,过点O 的直线AB 与反比例函数y =kx 的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y =-3kx (x <0)的图象交于点C ,连接AC ,则△ABC 的面积为_________________.21.(2017济南,21,3分)定义:在平面直角坐标系xOy 中,把从点P出发沿综或横方向到C达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(-1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,-3),C(-1,-5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为______________.DACCB DBCBC ABACD【答案】(x-2)2790208(1,-2)三、解答题(本大题共7小题,共57分)22.(2017济南,22,7分)(1)先化简,再求值:(a+3)2-(a+2)(a+3),其中a=3.【解】原式=a2+6a+9-(a2+2a+3a+6)=a2+6a+9-a2-2a-3a-6)=a+3.当a =3时, 原式=3+3=6.(2)解不等式组:⎩⎪⎨⎪⎧3x -5≥2(x -2) ①x 2>x -1 ②【解】由①,得x ≥1. 由②,得x <2.∴不等式组的解集为:1≤x <2. 23.(2017济南,23,7分)(1)如图,在矩形ABCD ,AD =AE ,DF ⊥AE 于点F .求证:AB =DF .证明:∵四边形ABCD 是矩形,∴∠B =90°,AD ∥B C. ∴∠DAF =∠BE A . ∵DF ⊥AE , ∴∠AFD =90°. ∴∠B =∠AFD =90°. 又∵AD =AE , ∴△ADF ≌△EB A. ∴AB =DF .ECA B(2)如图,AB 是⊙O 的直径,∠ACD =25°,求∠BAD 的度数.【解】∵AB 是⊙O 的直径,∴∠ADB =90°. ∵∠B =∠C =25°, ∴∠BAD =90°-25°=65°.24.(2017济南,24,8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少? 【解】设银杏树的单价是x 元,玉兰树的单价是1.5x 元,则12000x +90001.5x=150. 解得x =120.经检验x =120是方程的解. ∴1.5x =180.答:银杏树的单价是120元,玉兰树的单价是180元, 25.(2017济南,25,8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:CD(1)统计表中的a =________,b =___________,c =____________; (2)请将频数分布表直方图补充完整; (3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【解】(1)a =10,b =0.28,c =50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本). (4)该校八年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).26.(2017济南,26,9分)8141887652015105人数0本如图1,□OABC 的边OC 在y 轴的正半轴上,OC =3,A (2,1),反比例函数y =kx (x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y =kx (x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.【解】(1)过点A 作AP ⊥x 轴于点P ,则AP =1,OP =2.又∵AB =OC =3, ∴B (2,4).∵反比例函数y =kx (x >0)的图象经过的B ,∴4=k2.∴k =8.∴反比例函数的关系式为y =8x.(2)设MN 交OB 于点H ,过点B 作BG ⊥y 轴于点G ,则BG =2,OG =4.∴OB =22+42=2 5.∵点H 是OB 的中点,∴点H (1,2).∴OH =12+22= 5. ∵∠OHN =∠OGB =90°,∠HON =∠GOB ,∴△OHN ∽△OGB ,∴ON OB =OH OG .∴ON 25=54.∴ON =2.5. (3)ED =BF .理由:由点A (2,1)可得直线OA 的解析式为y =12x .解方程组⎩⎨⎧y =12x y =8x,得⎩⎨⎧x 1=4y 1=2,⎩⎨⎧x 2=-2y 2=-4.∵点D 在第一象限,∴D (4,2).由B (2,4),点D (4,2)可得直线BD 的解析式为y =-x +6. 把y =0代入上式,得0=-x +6.解得x =6. ∴E (6,0).∵ED =(6-4)2+(0-2)2=22,BF =(0-2)2+(6-4)2=2 2.∴ED=BF.27.(2017济南,27,9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.【解】(1)①证明中所叙述的辅助线如下图所示:②证明的括号中的理由是:AAS.(2)△CEF 是等边三角形.证明如下:设AE =a ,AC =b ,则AD =2a ,AB =2b ,DE =3a ,BC =3b ,CE =a +b . ∵△BGF ≌△DEF ,∴BG =DE =3a .∴CG =BC +BG =3(a +b ). ∵CB CG =3b 3(a +b )=b a +b ,CA CE =b a +b ,∴CB CG =CA CE .又∵∠ACB =∠ECG ,∴△ACE ∽△ECG . ∴∠CEF =∠CAB =60°. 又∵CF =EF (已证),第27题图2第27题图1B CC第27题答案图1BC A∴△CEF 是等边三角形. (3)△CEF 是等边三角形.证明方法一:如答案图2,过点B 作BN ∥DE ,交EF 的延长线于点N ,连接CN ,则∠DEF =∠FN B.又∵DF =BF ,∠DFE =∠BFN ,∴△DEF ≌△BNF .∴BN =DE ,EF =FN . 设AC =a ,AE =b ,则BC =3a ,DE =3b . ∵∠AEP =∠ACP =90°,∴∠P +∠EAC =180°. ∵DP ∥BN ,∴∠P +∠CBN =180°.∴∠CBN =∠EA C . 在△AEC 和△BNC 中,∵AE BN =AE DE =AC BC =33,∠CBN =∠EAC , ∴△AEC ∽△BN C .∴∠ECA =∠NC B .∴∠ECN =90°. 又∵EF =FN , ∴CF =12EN =EF .又∵∠CEF =60°, ∴△CEF 是等边三角形.证明方法二:第27题答案图2N第27题答案图3如答案图3,取AB 的中点M ,并连接CM ,FM ,则CM =12AB =A C.又∵∠CAM =60°,∴△ACM 是等边三角形. ∴∠ACM =∠AMC =60°.∵AM =BM ,DF =BF ,∴MF 是△ABD 的中位线.∴MF =12AD =AE 且MF ∥A D .∴∠DAB +∠AMF =180°.∴∠DAB +∠AMF +∠AMC =180°+60°=240°. 即∠DAB +∠CMF =180°+60°=240°.又∵∠CAE +∠DAB =360°-∠DAE -∠BAC =360°-60°-60=240°, ∴∠DAB +∠CMF =∠CAE +∠DAB ∴∠CMF =∠CAE . 又∵CM =AC ,MF =AE ,∴△CAE ≌△CMF .∴CE =CF ,∠ECA =∠FCM . 又∵∠ACM =∠ACF +∠FCM =60°, ∴∠ACF +∠ECA =60°.即∠ECF =60°. 又∵CE =CF ,∴△CEF 是等边三角形. 28.(2017济南,28,9分)如图1,矩形OABC 的顶点A ,C 的坐标分别为(4,0),(0,6),直线AD 交B C 于点D ,tan ∠OAD =2,抛物线M 1:y =ax 2+bx (a ≠0)过A ,D 两点.(1)求点D 的坐标和抛物线M 1的表达式;(2)点P 是抛物线M 1对称轴上一动点,当∠CP A =90°时,求所有符合条件的点P 的坐标;(3)如图2,点E (0,4),连接AE ,将抛物线M 1的图象向下平移m (m >0)个单位得到抛物线M 2.①设点D 平移后的对应点为点D ′,当点D ′ 恰好在直线AE 上时,求m 的值; ②当1≤x ≤m (m >1)时,若抛物线M 2与直线AE 有两个交点,求m 的取值范围.【解】(1)过点D 作DF ⊥OA 于点F ,则DF =6.∵tan ∠OAD =DFAF =2,∴AF =3.∴OF =1.∴D (1,6).把A (4,0),D (1,6)分别代入 y =ax 2+bx (a ≠0),得⎩⎨⎧0=16a +4b 6=a +b .解得⎩⎨⎧a =-2b =8. ∴抛物线M 1的表达式为:y =-2x 2+8x .(2)连接AC ,则AC =42+62=213. ∵y =-2x 2+8x =-2(x -2)2+8, ∴抛物线M 1的对称轴是直线x =2. 设直线x =2交OA 于点N ,则N (2,0).以AC 为半径作⊙M ,交直线x =2于P 1、P 2两点,分别连接P 1C 、P 1A 、P 2C 、P 2A ,则点P 1、P 2两点就是符合题意的点,且这两点的横坐标都是2. ∵点M 是AC 的中点,∴点M (2,3).∴MN =2.∵P 1M 是Rt △CP 1A 的斜边上的中线,∴P 1M =12AC =13.∴P 1N =MN + P 1M =3+13. ∴点P 1(2,3+13). 同理可得点P 2(2,3-13).(3)由A (4,0),点E (0,4)可得直线AE 的解析式为y =-x +4. ①点D (1,6)平移后的对应点为点D ′(1,6-m ),∵点D ′ 恰好在直线AE 上∴6-m =-1+4. 解得m =3. ∴D ′(1,3),m =3.②如答案图4,作直线x =1,它与直线AE 的交点就是点D ′(1,3).作直线x =m 交直线AE 于点Q (m ,-m +4).设抛物线M 2的解析式为y =-2x 2+8x -m .若要直线AE 与抛物线M 2有两个交点N 1、N 2,则关于x 的一元二次方程-2x 2+8x -m =-x +4有两个不相等的实数根,将该方程整理,得2x 2+9x +m +4=0. 由△=92-4×2(m +4)>0, 解得m <498.又∵m >1,∴1<m <498.…………………………………………………………………………①答案图3x =m∵1≤x ≤m (m >1),∴抛物线M 2与直线AE 有两个交点N 1、N 2要在直线x =1与直线x =m 所夹的区域内(含左、右边界).当点N 1与点D ′(1,3)重合时,把D ′(1,3)的坐标代入y =-2x 2+8x -m ,可得m =3. ∴m ≥3…………………………………………………………………………②当点N 2与点Q (m ,-m +4)重合时,把点Q (m ,-m +4)的坐标代入y =-2x 2+8x -m ,可得-m +4=-2m 2+8m -m .解得m 1=2+2,m 2=2-2(不合题意,舍去). ∴m ≥2+2…………………………………………………………………………③ 由①、②、③可得符合题意的m 的取值范围为:2+2≤m <498..。

相关文档
最新文档