缩放圆和旋转圆
带电粒子在磁场中运动放缩圆和旋转圆
P
2r
2r
r
O
O
O
Q
rN
Q
Q 答案:MN ( 3 1)r
练、如图,真空室内存在方向垂直纸面向里,大小B=0.6T
的匀强磁场,内有与磁场方向平行的板ab,在距ab距离
为l=16cm处,有一点状的放射源S向各个方向发射α粒子,
α粒子的速度都是v=3.0×106 m/s,已知 α粒子的电荷与质
量之比q/m= 5.0×107 C/kg ,现只考虑在图纸平面中运动
带电粒子在磁场中运动
--------放缩圆和旋转圆
轨迹圆的缩放
• 当粒子的入射速度方向一 定而大小可变时,粒子做 圆周运动的圆心一定在粒 子在入射点所受洛伦兹力 的方向上,半径R不确定, 利用圆规作出一系列大小 不同的内切圆.从圆的动 态中发现临界点。
例1、如图所示,一足够长的矩形区域abcd内充满方 向垂直纸面向里的、磁感应强度为B的匀强磁场,在
PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。 现从点O以同一速率将相同的带负电粒子向纸面内各个不 同的方向射出,它们均做半径为r的匀速圆周运动,求带 电粒子打在边界PQ上的范围(粒子的重力不计)。
分析:从O点向各个方向发射的粒子在磁场中做匀速圆周
运动的半径r相P 同,O为这些轨迹P圆周的公共点。
场B=0.2T,一带正电粒子以速度v0=106m/s的从a点处射入 磁场,该粒子荷质比为q/m=108C/kg,不计重力。若要使 粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应
如何(以v0与oa的夹角表示)?最大偏转角多大?
解析: R =mv/Bq=5×10-2m > r
说明:半径确定时,通过的弧越
B v0
带电粒子在磁场中运动问题的解题思路.
s=2r=
例2.如图5所示,在半径为r的圆形区域内,有一 个匀强磁场。一带电粒子以速度v0从M点沿半径方 向射入磁场区,并由N点射出,O点为圆心。当 ∠MON=120°时,求:带电粒子在磁场区的偏转 半径R及在磁场区中的运动时间。
例2.如图5所示,在半径为r的圆形区域内,有一 个匀强磁场。一带电粒子以速度v0从M点沿半径方 向射入磁场区,并由N点射出,O点为圆心。当 ∠MON=120°时,求:带电粒子在磁场区的偏转 半径R及在磁场区中的运动时间。
如图所示,一个带负电的粒子以速度v由坐标原点射入磁感应强度 为B的匀强磁场中,速度方向与x轴、y轴均成45°。已知该粒子电 量为-q,质量为m,则该粒子通过x轴和y轴的坐标分别是多少?
45
45
O
(二)利用互余或互补和关系
如图所示,一束电子流以一定速率通过一个处于矩形空间的磁感应 强度为B匀强磁场,速度方向与磁感线垂直。且平行于矩形空间的其 中一边,矩形空间边长为 3 a和a电子刚好从矩形的相对的两个顶 点间通过,求电子入射速度V和在磁场中的飞行时Байду номын сангаас。
60
30
60
O
例1.如图3所示,直线MN上方有磁感应强度为B 的匀强磁场。正、负电子同时从同一点O以与MN成 30°角的同样速度v射入磁场(电子质量为m,电 荷为e),它们从磁场中射出时相距多远?
例1.如图3所示,直线MN上方有磁感应强度为B 的匀强磁场。正、负电子同时从同一点O以与MN成 30°角的同样速度v射入磁场(电子质量为m,电 荷为e),它们从磁场中射出时相距多远?
熟记 于心
mv r qB
互推
灵活 应用
直角三角形 三角函数 勾股定理
T t 2 T
磁场(旋转圆,缩放圆,移动圆)教程文件
磁场(旋转圆,缩放圆,移动圆)旋转圆问题1,宽h=2cm的有界且有垂直纸面向内的匀强磁场,纵向范围足够大,现有一群带正电的粒子从0点以相同的速率沿纸面不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为R=5cm,求匀强磁场右边界粒子射出的范围。
2在真空中,半径为r=3×10-2m的圆形区域内,有一匀强磁场,磁场的磁感应强度为B=0.2T,方向如图所示,一带正电粒子,以初速度v0=106m/s的速度从磁场边界上直径ab一端a点处射入磁场,已知该粒子荷质比为q/m=108C/kg,不计粒子重力,则(1)粒子在磁场中匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应如何(以v0与Oa的夹角θ表示)?最大偏转角多大?3 如图,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里.许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射人磁场区域.不计重力,不计粒子间的相互影响.下列图中阴影部分表示带电粒子能经过区域,其中R=mv/qB.哪个图是正确的?()A BC D4如图所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直于纸面向里。
P为屏上的一小孔,PC与MN垂直,一群质量为m的粒子(不计重力),一相同速率V,从P出沿垂直与磁场的方向射入磁场范围,粒子入射方向在于磁场B垂直的屏面内,且三开在于PC夹角为θ的范围内。
则在屏MN 上被粒子打中的区域的长度为A B C D .5:如图,电子源S能在图示纸面360°范围内发射速率相同的电子(质量为m,电量为e),M、N是足够大的竖直挡板,与S的水平距离OS=L,挡板左侧是垂直纸面向里,磁感应强度为B的匀强磁场。
(1)要使发射的电子能到达挡板,电子速度至少为多大?(2)若S发射的电子速率为eBL/m时,挡板被电子击中的范围有多大?6如图所示,A1、A2为两块面积很大、相互平行的金属板,两板间距离为d,以A1板的中点为坐标原点,水平向右和竖直向下分别建立x轴和y轴,在坐标为(0,d21)的P处有一粒子源,可在坐标平面内向各个方向不断发射同种带电粒子,这些带电粒子的速度大小均为v0,质量为m,带电量为+q,重力忽略不计,不考虑粒子打到板上的反弹,且忽略带电粒子对金属板上电荷分布的影响.(1)若只在A1、A2板间加上恒定电压U0,且A1板电势低于A2板,求粒子打到A1板上的速度大小;(2)若只在A1、A2板间加上一方向垂直于纸面向外的匀强磁场,磁感应强度为B,且B<dqmv2,求A1板上有粒子打到的区域范围(用x轴坐标值表示);(3)在第(2)小题前提下,若在A1、A2板间再加一电压,使初速度垂直指向OA1A2xyPA 1板的粒子打不到A 1板,试确定A 1、A 2板电势的高低以及电压的大小.7如图,圆形区域内有一垂直纸面的匀强磁场,P 为磁场边界上的一点。
带电粒子在复合场中的圆周运动
带电粒子在复合场中的圆周运动一、旋转圆例1.(2010·全国1)如图2,在0≤x ≤a 区域内存在与xOy 平面垂直的匀强磁场,磁感应强度的大小为B 。
在t =0时刻,一位于坐标原点的粒子源在xOy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向的夹角分布在0°~180°范围内。
已知沿y 轴正方向发射的粒子在t =t 0时刻刚好从磁场边界上P (a ,a )点离开磁场。
求:(1)粒子在磁场中做圆周运动的半径R 及粒子的比荷q /m ; (2)此时刻仍在磁场中的粒子的初速度方向与y 轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间例2.如图8所示,S 为电子源,它在纸面360°度范围内发射速度大小为v 0,质量为m ,电量为q 的电子(q <0),MN 是一块足够大的竖直挡板,与S 的水平距离为L ,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度大小为mv 0/qL ,求挡板被电子击中的范围为多大?二、缩放圆例1.如图13所示,匀强磁场中磁感应强度为B ,宽度为d ,一电子从左边界垂直匀强磁场射入,入射方向与边界的夹角为θ,已知电子的质量为m ,电量为e ,要使电子能从轨道的另一侧射出,求电子速度大小的范围。
例2.如图22,一足够长的矩形区域abcd 内充满磁感应强度为B ,方向垂直纸面向里的匀强磁场,现从矩形区域ad 边中点O 射出与Od 边夹角为30°,大小为v 0的带电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力忽略不计。
求: (1)试求粒子能从ab 边上射出磁场的v 0的大小范围; (2)粒子在磁场中运动的最长时间和在这种情况下粒子从磁场中射出所在边上位置的范围。
三、平移圆例1.如图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B=0.10T ,磁场区域半径R=233m ,左侧区圆心为O 1,磁场向里,右侧区圆心为O 2,磁场向外.两区域切点为C .今有质量m=3.2×10-26kg .带电荷量q=1.6×10-19C 的某种离子,从左侧区边缘的A 点以速度v =106m /s 正对O 1的方向垂直磁场射人,它将穿越C 点后再从右侧区穿出.求(1)该离子通过两磁场区域所用的时间.(2)离子离开右侧区域的出射点偏离最初入射方向的侧移距离多大?(侧移距离指垂直初速度方向上移动的距离)例2如图所示,x 轴上方和 x 轴下方分别有垂直于纸面的匀强磁场,但磁场强弱不同。
(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法
确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
缩放圆和旋转圆.doc
缩放圆和旋转圆一、知识清单1.缩放圆模型特征:带电粒子从某一点以速度方向不变而大小在改变(或磁感应强度变化)射入匀强磁场,在匀强磁场中做半径不断变化的匀速圆周运动。
把其轨迹连续起来观察,好比一个与入射点相切并在放大或缩小的“动态圆”,如图。
解题时借助圆规多画出几个半径不同的圆,可方便发现粒子轨迹特点,达到快速解题的目的。
2.环形磁场临界问题临界圆临界半径221RRr+=2-12RRr=勾股定理(R2-R1)2=R12+r2解得:)RR(Rr1222-=3.旋转圆模型特征:带电粒子从某一点以大小不变而方向不限定(如0—180°范围内)的速度射入匀强磁场中,这类问题都可以归结为旋转圆问题,把其轨迹连续起来观察可认为是一个半径不变的圆,根据速度方向的变化以出射点为旋转轴在旋转如图。
解题时使用圆规或硬币都可以快捷画出其轨迹,达到快速解答试题的目的。
同时还要注意,粒子在做圆周运动时的绕行方向不随旋转而改变(即同旋性)。
4.旋转圆五大特征①半径相等R=mv/qB②都过发射点③圆心分布在一圆周上④旋转方向相同(同旋性)⑤同时发射,同时刻在同一圆周上,最大范围π(2R)2ABC×××××××××××××××××××××××××v0A BO●●×××××××××××××××××××v0ABO●●θ(××××××××××××××××××××v0R1R2××××××××××××××××××××v0R1R2×××××××××××××××××v0R1R2最近点:A (OA =2Rsinθ)最远点:B (OB 为直径) 圆中最大的弦长是直径左边界:相切点A ; 右边界:OB 为直径边界点:相切点B 、C6. 圆形有界磁场中的旋转圆问题r<Rr>Rr=R在磁场中运动的最远距离为OA=2r 在磁场中运动的最长时间为t max =0v r α=qB m α (rR sin =2α)离开磁场速度方向垂直于入射点与磁场圆心的连线7. (多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强度为B ,板间距离也为l ,极板不带电,现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql 4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >Bql mD .使粒子的速度v 满足Bql 4m <v <5Bql4m8. (2014秋•清河区校级期末)如图所示,一束电子以大小不同的速率沿图示方向飞入横截面是一正方形的匀强磁场,下列判断正确的是( ) A .电子在磁场中运动时间越长,其轨迹线越长B .电子在磁场中运动时间越长.其轨迹线所对应的圆心角越大C .在磁场中运动时间相同的电子,其轨迹线一定重合D .电子的速率不同,它们在磁场中运动时间一定不相同9. (多选)(2016•青岛二模)如图所示,边长为l 的正六边形abcdef 中,存在垂直该平面向里的匀强磁场,磁感应强度大小为B .在a 点处的粒子源发出大量质量为m 、电荷量为+q 的同种粒子,粒子的速度大小不同,方向始终垂直ab 边且与磁场垂直.不计粒子间的相互作用力及重力,当粒子的速度为v 时,粒子恰好能经过b 点,下列说法正确的是( )A .速度小于v 的粒子在磁场中的运动时间为B .速度大于4v 的粒子将从cd 边离开磁场C .经过c 点的粒子在磁场中的运动时间为D .经过d 点的粒子在磁场中做圆周运动的半径为2lv 0● ●R r OA r ● × ×× × × ×× × × × × × ×v 0● ● 2R rα OAr × × × × × × × ×× × × × ×v 0● ●R 2r α OA× × × × × × × ×× × × × ×10.(2015•文昌校级模拟)如图所示,内圆半径为r 、外圆半径为3r 的圆环区域内有垂直纸面向里、磁感应强度为B 的匀强磁场.圆环左质量为m 、电量为q 的正离子,经过电场加速后从N 板小孔射出,并沿圆环直径方向射入磁场,不计离子的重力,忽略平行板外的电场.要使离子不进入小圆区域,电压U 的取值范围为( )A.U ≤qr 2B 2/mB.U ≤2qr 2B 2/mC.U ≤4qr 2B 2/mD.U ≤8qr 2B 2/m11.如图5所示,△ABC 为与匀强磁场垂直的边长为a 的等边三角形,比荷为em 的电子以速度v 0从A 点沿AB 边入射,欲使电子经过BC 边,磁感应强度B 的取值为( )A .B >2mv 0ae B .B <2mv 0aeC .B >3mv 0aeD .B <3mv 0ae12.(2016·全国卷Ⅲ) 平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图1-所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外.一带电粒子的质量为m ,电荷量为q (q >0).粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角.已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O 的距离为( ) A.mv 2qB B.3mv qB C.2mv qB D.4mv qB13.(05全国Ⅰ)如图,在一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里。
缩放圆法巧解磁场中粒子运动的临界问题
高中物理缩放圆法巧解磁场中粒子运动的临界问题编稿老师刘汝发一校杨雪二校黄楠审核王红仙知识点考纲要求题型说明缩放圆法巧解磁场中粒子运动的临界问题1. 进一步熟悉粒子在磁场中做圆周运动的圆心、半径,及轨迹的确定方法;2. 理解缩放圆法确定临界的技巧;3. 理解移动圆法确定临界的技巧。
选择题、计算题本知识点属于高考重点难点,缩放圆和旋转圆是确定临界非常有效的方法,在考查同学们想象能力的同时,也考查了数学运算能力,因此高考命题者对这种方法情有独钟。
二、重难点提示:重点:1.粒子在磁场中做圆周运动的圆心、半径及轨迹的确定方法;2. 缩放圆法和移动圆法确定临界的技巧。
难点:缩放圆法和移动圆法确定临界的技巧。
一、带电粒子在有界磁场中的运动这类问题综合性较强,解答时既要用到物理中的洛伦兹力、圆周运动的知识,又要用到数学中的平面几何中圆及解析几何知识。
1. 一个基本思路:定圆心、找半径、画轨迹、求时间(1)圆心的确定:因为洛伦兹力F指向圆心,根据F⊥v画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点)的F的方向,沿两个洛伦兹力F画其延长线,两延长线的交点即为圆心;或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置。
(2)半径的确定和计算:qvB=mRv2,R=Bqmv或是利用平面几何关系,求出该圆的可能半径(或圆心角)。
(3)粒子在磁场中运动时间的确定:由公式qBmTπ2=,Ttπα2=或vRtθ=。
可求出粒子在磁场中的运动时间。
2. 两个重要结论(1)如下图,带电粒子以速度v指向圆形磁场的圆心入射,出磁场时速度方向的反向延长线肯定经过圆形磁场的圆心。
(2)粒子从圆形磁场边界上某一点射入磁场区域,若粒子轨道半径和磁场半径相同,则粒子飞出磁场时速度方向相同;反之若从圆形磁场边界平行射出,则粒子的轨道半径和圆形磁场半径相同二、解决带电粒子在有界磁场中运动的临界问题的两种方法1. 轨迹圆的缩放当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R )不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”。
带电粒子在匀强磁场中的运动(知识小结)
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO , 延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
缩放圆和旋转圆
缩放圆和旋转圆缩放圆和旋转圆缩放圆和旋转圆是物理学中的基本概念。
缩放圆是指带电粒子在匀强磁场中做半径不断变化的匀速圆周运动,轨迹连续起来形成一个与入射点相切并在放大或缩小的“动态圆”。
解题时可以使用圆规画出几个半径不同的圆,方便发现粒子轨迹特点,达到快速解题的目的。
旋转圆是指带电粒子在匀强磁场中做半径不变的圆周运动,但速度方向不限定,可以在-180°范围内变化。
解题时可以使用圆规或硬币画出其轨迹,达到快速解答试题的目的。
同时,粒子在做圆周运动时的绕行方向不随旋转而改变,即同旋性。
缩放圆和旋转圆都有一些特征。
缩放圆的特征是带电粒子做半径不断变化的匀速圆周运动,轨迹连续起来形成一个动态圆。
旋转圆的特征是带电粒子在匀强磁场中做半径不变的圆周运动,但速度方向不限定,可以在-180°范围内变化。
旋转圆的五大特征包括半径相等、都过发射点、圆心分布在一圆周上、旋转方向相同(同旋性)、同时发射、同时刻在同一圆周上,最大范围是π(2R)2.在圆形有界磁场中的旋转圆问题中,左边界是相切点A,右边界是OB为直径,边界点是相切点B、C。
在磁场中运动的最远距离为OA=2r。
最近点是A(OA=2Rsinθ),最远点是B(OB为直径)。
圆中最大的弦长是直径。
在选择题中,磁场中运动的最长时间取决于离开磁场速度方向是否垂直于入射点与磁场圆心的连线,答案为m。
7.一块长为l的水平极板间有垂直纸面向里的匀强磁场,磁感应强度为B,板间距离也为l。
极板不带电。
现有质量为m、电荷量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是使粒子的速度v>Bq/m或者v<Bq/m。
8.一束电子以大小不同的速率沿图示方向飞入横截面是一正方形的匀强磁场。
正确的判断是:B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大。
9.边长为l的正六边形abcdef中,存在垂直该平面向里的匀强磁场,磁感应强度大小为B。
圆的应用原理
圆的应用原理圆是几何学中最基本的图形之一,具有广泛的应用。
本文将探讨圆在不同领域中的应用原理。
一、数学领域1. 圆的周长和面积公式圆的周长公式为:C=2πr,其中r为半径,π≈3.14。
圆的面积公式为:S=πr²。
以上两个公式是圆的基本公式,可以用来计算圆的周长和面积。
2. 圆的平移、旋转和缩放对于平面内的任意一个点,可以通过平移、旋转和缩放等变换将其移动到任何一个位置。
圆也可以通过这些变换来进行移动和变形。
例如,可以通过平移将一个圆移动到任何位置,通过旋转将圆旋转任意角度,通过缩放将圆变大或变小。
3. 圆的投影圆在三维空间中的投影是圆锥曲线的一种,也称为圆锥截面。
当一个圆在平面上被投影时,它的形状会发生变化,变成一个椭圆或一个圆弧。
二、物理领域1. 圆的运动学圆可以进行匀速圆周运动,即圆心不动,圆周上的点以恒定角速度旋转。
圆周上的点的线速度和角速度成正比,线速度等于角速度乘以半径。
2. 圆的光学性质圆可以用来制作透镜,透镜的曲率半径越小,透镜的焦距越短。
圆柱面透镜是用来矫正视力的一种透镜,它的曲率半径沿一个方向为无穷大,沿另一个方向为有限值。
3. 圆的电学性质圆的电学性质与物理学和电气工程有关。
例如,电容器的电极可以是圆形的,圆形电极的电容量比方形电极的电容量小。
三、工程领域1. 圆的机械加工圆可以用来制作机械零件,例如轴承和齿轮。
圆形轴承可以承受径向负荷和轴向负荷,而圆形齿轮可以传递扭矩和转速。
2. 圆的建筑设计圆可以用来设计建筑结构,例如圆形建筑的设计可以提供更好的空间利用率和流畅感。
圆形建筑也可以提供更好的自然采光和通风,使人们感到更加舒适。
3. 圆的地理测量圆可以用来测量地球的形状和大小。
地球在大多数情况下可以近似为一个球体,通过测量地球的圆周和半径可以计算出地球的周长和表面积。
圆在数学、物理和工程等领域都有广泛的应用。
圆的应用原理不仅有理论意义,也有实际意义,可以帮助我们更好地理解和应用圆形。
放缩圆 旋转圆 平移圆 等大圆教学课件
求ab上被α粒子打中的区域的长度。
解析:α 粒子带正电,沿逆时针方 a
向做匀速圆周运动,轨道半径R为
mv
R
10cm 即:2R > l > R
qB
NP1 R 2 ( l R )2 8cm
NP2 ( 2 R )2 l 2 12cm
故P1P2=20cm
P1
N
P2
l
S
B
b
有界磁场之临界问题: 入射点不确定引起的临界问题
入磁场,已知MA=d,∠PMN45º,离子的质量为m、带电
荷量为q、要使离子不从MP边射出,离子进入磁场的速度
最大不能超过多少?
+
=
45
=
P
=
B
2+1
v0
r
450
M
O
r A N
有界磁场之临界问题: 速度方向不确定引起的临界问题
例、如图,磁感应强度为B的匀强磁场垂直于 纸面向里,
总结:粒子以相同大小,不同方向的速度进入磁场之
后的运动轨迹如何?它们的圆心位置有什么特点?
①当同种粒子的射入速度大小
确定,而方向不确定时,所有
轨迹圆是一样的,半径都为R,
只是位置不同。
②所有轨迹圆绕入射点,向粒
子运动方向旋转。
③轨迹分布在一个半径为2R的
圆形区域内。
④所有轨迹圆的圆心在一个半
径为R的圆上。
例:如下图所示,两块长度均为5d的金属板相
距d,平行放置,下板接地,两极间有垂直只面向里
的匀强磁场,一束宽为d的电子束从两板左侧垂直磁
场方向射入两极间,设电子的质量为m,电量为e,入
带电粒子在磁场中运动放缩圆和旋转圆
磁场,该粒子荷质比为q/m=108C/kg,不计重力。若要使
粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应 如何(以v0与oa的夹角表示)?最大偏转角多大? 解析: R =mv/Bq=5×10-2m > r
说明:半径确定时,通过的弧越
0
解:R1+R1sin30º = L/2 得R1 = L/3 R2- R2cos60º = L/2 得:R2 = L。
qBL ≥v0≥ m
qBL 3m
a
b
R1
O
q v 0
R2 B c
d
轨迹圆的旋转
• 当粒子的入射速度大小 一定而方向不确定时, 从不同方向入射的粒子 的轨迹圆都一样大,只 是位置绕入射点发生了 旋转,从定圆的动旋转 中发现临界点
如图,水平放置的平板MN上方有方向垂直于纸面向里的 匀强磁场,磁感应强度为B,许多质量为m,带电量为 +q的粒子,以相同的速率 v 沿位于纸面内的各个方向, 由小孔O射入磁场区域,不计重力,不计粒子间的相互 影响。下列图中阴影部分表示带电粒子可能经过的区域, 其中R=mv/qB,哪个图是正确的?( A )
总结:带电粒子在磁场中运动旋转圆和放缩圆
• 1、定圆心:方法 • 2、算半径:
利用v⊥R 利用弦的中垂线
几何法求半径 向心力公式求半径
• 3、从圆的动态中发现临界点。
例、如图,环状匀强磁场围成的中空区域内有自由运动的带
电粒子,但由于环状磁场的束缚,只要速度不很大,都
不会穿出磁场的外边缘。设环状磁场的内半径为R1=0.5m ,外半径为 R2=1.0m,磁场的磁感应强度 B=1.0T,若被
(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法
确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反.先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心.当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O’的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
磁场(旋转圆,缩放圆,移动圆)
旋转圆问题1宽h=2cm 的有界且有垂直纸面向内的匀强磁场,纵向范围足够大,现有一群带正电的粒子从0点以相同的速率沿纸面不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为R=5cm,求匀强磁场右边界粒子射出的范围。
2在真空中,半径为r=3 x 10-2m 的圆形区域内,有一匀强磁场,磁场的磁感应强度为B=0.2T,方向如图所示,一带正电粒子,以初速度v0=106m/s 的速度从磁场边界上直径ab 一端a点处射入磁场,已知该粒子荷质比为q/m=108C/kg ,不计粒子重力,则(1)粒子在磁场中匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应如何(以v0与Oa的夹角B表示)?最大偏转角多大?3 如图,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里.许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔0射人磁场区域•不计重力,不计粒子间的相互影响•下列图中阴影部分表示带电粒子能经过区域,其中R=mv/qB •哪个图是正确的?( )4如图所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直于纸面向里。
P 为屏上的一小孔,PC 与MN 垂直,一群质量为 m 的粒子(不计 重力),一相同速率V ,从P 出沿垂直与磁场的方向射入磁场范围, 向在于磁场B 垂直的屏面内,且三开在于 PC 夹角为B 的范围内。
上被粒子打中的区域的长度为5:如图,电子源S 能在图示纸面360 °范围内发射速率相同的电子(质量为m , 电量为e ), M 、N 是足够大的竖直挡板,与S 的水平距离OS = L ,挡板左侧是 垂直纸面向里,磁感应强度为 B 的匀强磁场。
(1) 要使发射的电子能到达挡板, 电子速度至少为多大?(2) 若S 发射的电子速率为eBL/m 时,挡板被电子击中的范围有多大?.r尸N2m v2JWV (1 —Zmvcos^ABC西 D2加《1 —匚。
旋转变换和放缩变换
旋转变换和放缩变换旋转变换和放缩变换是计算机图形学中常用的几何变换方法,可以通过改变图形的位置、角度和尺寸来实现图形的变形效果。
本文将深入探讨旋转变换和放缩变换的原理和应用。
一、旋转变换旋转变换是指改变一个图形的角度或方向,使其相对于原始位置发生旋转。
在计算机图形学中,旋转变换通常使用矩阵变换的方式来实现。
具体来说,我们可以通过以下公式进行旋转变换:[x′ y′ 1] = [x y 1] ⨀[cosθ -sinθ 0sinθ cosθ 00 0 1]其中[x y 1]表示原始点的坐标,[x′ y′ 1]表示旋转后的点的坐标,θ表示旋转角度,⨀表示矩阵相乘。
二、放缩变换放缩变换也被称为缩放变换或伸缩变换,是指改变一个图形的尺寸,使其相对于原始大小发生放大或缩小。
放缩变换也可以使用矩阵变换的方式来实现。
具体来说,我们可以通过以下公式进行放缩变换:[x′ y′ 1] = [x y 1] ⨀ [Sx 0 00 Sy 00 0 1]其中[x y 1]表示原始点的坐标,[x′ y′ 1]表示放缩后的点的坐标,Sx和Sy分别表示在x轴和y轴方向上的放缩比例。
三、旋转变换和放缩变换的应用1. 图形变形旋转变换和放缩变换可以应用于各种图形的变形效果,例如将一个矩形图形旋转一定角度,或者将一个圆形图形缩放到指定尺寸。
通过调整旋转角度和放缩比例,我们可以实现各种各样的图形变形效果,从而满足不同的设计需求。
2. 图像处理旋转变换和放缩变换在图像处理领域也有广泛的应用。
例如,在图像拼接中,我们可以通过旋转和放缩变换将多个图像拼接成一个全景图像;在图像缩放中,我们可以通过放缩变换改变图像的尺寸,使其适应不同的显示设备。
3. 三维建模在三维建模中,旋转变换和放缩变换是非常重要的操作。
通过旋转变换,我们可以改变三维模型的角度和方向,使其呈现出不同的视角;通过放缩变换,我们可以改变三维模型的大小,使其适应不同的场景需求。
旋转变换和放缩变换在三维建模软件中扮演着重要的角色,帮助设计师实现复杂的模型效果。
新高考物理专题-巧用圆的旋转、缩放和平移解磁场临界极值问题
巧用圆的旋转、缩放和平移解磁场临界极值问题江苏省泰兴中学李淑玲带电粒子在匀强磁场中受洛伦兹力做匀速圆周运动,根据这一特点该问题的解决方法一般为:一定圆心,二画轨迹,三用几何关系求半径,四根据圆心角和周期关系确定运动时间。
其中圆心的确定最为关键,一般方法为:①已知入射方向和出射方向时,过入射点和出射点做垂直于速度方向的直线,两条直线的交点就是圆弧轨迹的圆心。
②已知入射点位置及入射时速度方向和出射点的位置时,可以通过入射点做入射方向的垂线,连接入射点和出射点,做其中垂线,这两条垂线的交点就是圆弧轨迹的圆心。
以上方法简单明了,但具体求解时,学生对其轨迹的变化想象不出来,从而导致错解习题。
如从以上方法出发,再借助圆规或硬币从“动态圆”角度分析,便可快而准的解决问题。
此类试题可分为旋转圆、缩放圆和平移圆三大类型。
一、旋转圆【模型特征】带电粒子从某一点以大小不变而方向不限定(如0—180°范围内)的速度射入匀强磁场中,这类问题都可以归结为旋转圆问题,把其轨迹连续起来观察可认为是一个半径不变的圆,根据速度方向的变化以出射点为旋转轴在旋转如图1。
解题时使用圆规或硬币都可以快捷画出其轨迹,达到快速解答试题的目的。
【典例1】如图2,在0≤x≤a区域内存在与xOy平面垂直的匀强磁场,磁感应强度的大小为B。
在t=0时刻,一位于坐标原点的粒子源在xOy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0°~180°范围内。
已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上P(a,a)点离开磁场。
求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷q/m;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间。
【动态分析】由题知沿y轴正方向发射的粒子从磁场边界上P(a,a)点离开磁场,利用圆规或硬币可作出其轨迹图像如图3,由于粒子速度方向在0°~180°范围内,其它方向的轨迹可以通过旋转第一个圆得到(O点为旋转点),如图4。
匀强磁场运动两类放缩圆问题探讨
匀强磁场运动两类放缩圆问题探讨概要:带电粒子在匀强磁场中的运动,一直都是高中物理的一个重点和难点问题,本文分析了常见的一种情况。
有不少资料上分析过放缩圆问题,但基本上都是讲粒子速度大小改变而导致的圆半径改变,很少有讲到磁场变化引起的放缩,这两种情况在计算粒子轨迹的时候方法类似,但涉及到粒子在磁场中运动时间的时候,就一定要非常小心了。
带电粒子在匀强磁场中做匀速圆周运动,磁场保持不变,粒子速度方向不变而速度大小改变,导致粒子轨迹圆弧半径随之而改变。
一、“放缩圆”问题的特点这类问题有着几个共同特点:①由于粒子初速度方向不变,所有放缩圆的圆心都在同一条直线上,这条直线与初速度垂直。
②粒子运动的圆轨迹半径R=,所以半径与粒子初速度大小成正比,也就是说初速度越大,轨迹半径越大。
③粒子运动的周期T=,与粒子速度无关,所以粒子在磁场中运动的时间t只取决于轨迹对应的圆周角。
二、求解“放缩圆”问题的基本步骤第一步,用左手定则画出粒子进磁场时所受洛伦兹力的方向,所有放缩圆的圆心都在该力的方向上,不至于搞错圆心位置,以及粒子偏转方向。
第二步,画出一系列半径不同的圆.第三步,找出符合题目条件的临界圆。
第四步,找几何关系,列出方程,求解。
例题2:如图,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad边中点,方向垂直磁场向里射入一速度方向跟ad边夹角θ= 30°、大小为v0的带正电粒子,已知粒子质量为m,电量为+q,ad边长为L,ab边足够长,粒子重力不计,求:粒子能从ab边上射出磁场的速度v0大小范围。
分析:先画出洛伦兹力方向,再画一系列圆,很容易确定出两个临界圆(左上图实线圆),分别与上边界和下边界相切.这些都是画在草稿纸上的,而只在试卷上留下两个临界圆(如由上图)。
由几何关系列方程:600,600得到,结合得到两个临界速度大小为,所以满足条件的粒子速度为。
三、放缩圆的时间粒子在磁场中运动的时间t= T,其中θ指的是粒子在磁场中运动的轨迹圆弧对应的圆心角,T是粒子做圆周运动的周期,由于放缩圆的周期都一样,所以粒子在磁场中运动的时间仅仅取决于圆心角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
缩放圆和旋转圆一、知识清单1. 缩放圆模型特征:带电粒子从某一点以速度方向不变而大小在改变(或磁感应强度变化)射入匀强磁场,在匀强磁场中做半径不断变化的匀速圆周运动。
把其轨迹连续起来观察,好比一个与入射点相切并在放大或缩小的“动态圆”,如图。
解题时借助圆规多画出几个半径不同的圆,可方便发现粒子轨迹特点,达到快速解题的目的。
2. 环形磁场临界问题 临界圆临界半径221R R r += 2-12RR r =勾股定理(R 2-R 1)2=R 12+r 2解得:)R R (R r 1222-=3. 旋转圆模型特征:带电粒子从某一点以大小不变而方向不限定(如0—180°范围内)的速度射入匀强磁场中,这类问题都可以归结为旋转圆问题,把其轨迹连续起来观察可认为是一个半径不变的圆,根据速度方向的变化以出射点为旋转轴在旋转如图。
解题时使用圆规或硬币都可以快捷画出其轨迹,达到快速解答试题的目的。
同时还要注意,粒子在做圆周运动时的绕行方向不随旋转而改变(即同旋性)。
4. 旋转圆五大特征 ①半径相等 R=mv/qB②都过发射点③圆心分布在一圆周上④旋转方向相同(同旋性)⑤同时发射,同时刻在同一圆周上,最大范围π(2R )25. 旋转圆中粒子运动的空间范围问题ABC× × × × ×× × × × × × × × × × × × × × × × × × × ×v 0 A B O ●●× × × × ×× × × × ×× × × ××× × ×× v 0 A B O ●● θ( × × × ×× × × ×× ×× × ×× × × ×× × ×v 0R 1 R 2 × × × × × × × ×× × × × ×× ×× ×× × ×v 0 R 1 R 2 × × × × × × × ××× × × × × × × ×v 0 R 1 R 2最近点:A (OA =2Rsinθ)最远点:B (OB 为直径) 圆中最大的弦长是直径左边界:相切点A ; 右边界:OB 为直径边界点:相切点B 、C6. 圆形有界磁场中的旋转圆问题r<Rr>Rr=R在磁场中运动的最远距离为OA=2r 在磁场中运动的最长时间为t max =0v r α=qB m α (rR sin =2α)离开磁场速度方向垂直于入射点与磁场圆心的连线二、选择题7. (多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强度为B ,板间距离也为l ,极板不带电,现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql 4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >Bql mD .使粒子的速度v 满足Bql 4m <v <5Bql4m8. (2014秋•清河区校级期末)如图所示,一束电子以大小不同的速率沿图示方向飞入横截面是一正方形的匀强磁场,下列判断正确的是( ) A .电子在磁场中运动时间越长,其轨迹线越长B .电子在磁场中运动时间越长.其轨迹线所对应的圆心角越大C .在磁场中运动时间相同的电子,其轨迹线一定重合D .电子的速率不同,它们在磁场中运动时间一定不相同9. (多选)(2016•青岛二模)如图所示,边长为l 的正六边形abcdef 中,存在垂直该平面向里的匀强磁场,磁感应强度大小为B .在a 点处的粒子源发出大量质量为m 、电荷量为+q 的同种粒子,粒子的速度大小不同,方向始终垂直ab 边且与磁场垂直.不计粒子间的相互作用力及重力,当粒子的速度为v 时,粒子恰好能经过b 点,下列说法正确的是( )A .速度小于v 的粒子在磁场中的运动时间为B .速度大于4v 的粒子将从cd 边离开磁场C .经过c 点的粒子在磁场中的运动时间为D .经过d 点的粒子在磁场中做圆周运动的半径为2lv 0● ●R r OA r ● × ×× × × ×× × × × × × ×v 0● ● 2R rα OAr × × × × × × × ×× × × × ×v 0● ●R 2r α OA× × × × × × × ×× × × × ×10.(2015•文昌校级模拟)如图所示,内圆半径为r 、外圆半径为3r 的圆环区域内有垂直纸面向里、磁感应强度为B 的匀强磁场.圆环左质量为m 、电量为q 的正离子,经过电场加速后从N 板小孔射出,并沿圆环直径方向射入磁场,不计离子的重力,忽略平行板外的电场.要使离子不进入小圆区域,电压U 的取值范围为( )A.U ≤qr 2B 2/mB.U ≤2qr 2B 2/mC.U ≤4qr 2B 2/mD.U ≤8qr 2B 2/m11.如图5所示,△ABC 为与匀强磁场垂直的边长为a 的等边三角形,比荷为em 的电子以速度v 0从A 点沿AB 边入射,欲使电子经过BC 边,磁感应强度B 的取值为( )A .B >2mv 0ae B .B <2mv 0aeC .B >3mv 0aeD .B <3mv 0ae12.(2016·全国卷Ⅲ) 平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图1-所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外.一带电粒子的质量为m ,电荷量为q (q >0).粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角.已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O 的距离为( ) A.mv 2qB B.3mv qB C.2mv qB D.4mv qB13.(05全国Ⅰ)如图,在一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里。
许多质量为m 带电量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射入磁场区域。
不计重力,不计粒子间的相互影响。
下列图中阴影部分表示带电粒子可能经过的区域,其中qBmv R = 。
哪个图是正确的?( )14.(多选)(2014秋•荆门期末)如图所示,在竖直放置的金属板M 上放一个放射源C ,可向纸面内各个方向射出速率均为v 的α粒子,P 是与金属板M 平行的足够大的荧光屏,到M 的距离为d .现在P 与金属板M 间加上垂直纸面的匀强磁场,调整磁感应强度的大小,恰使沿M 板向上射出的α粒子刚好垂直打在荧光屏上.若α粒子的质量为m ,电荷量为2e .则( )A .磁场方向垂直纸面向里,磁感应强度B 的大小为2mv/edB .磁场方向垂直纸面向外,磁感应强度B 的大小为mv/2edC .在荧光屏上能观察到的亮斑区的长度为2dD .在荧光屏上能观察到的亮斑区的长度为3d15.[2017·全国卷Ⅱ] 如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点.大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同方向射入磁场.若粒子射入速率为v 1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v 2,相应的出射点分布在三分之一圆周上.不计重力及带电粒子之间的相互作用.则v 2∶v 1为( ) A.3∶2 B.2∶1C.3∶1 D .3∶ 216.(2016•济宁模拟)如图所示,半径为R 的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度为B .M 为磁场边界上一粒子发射源,可在纸面内向各个方向发射带电量为q 、质量为m 、速率相同的带电粒子,不计粒子重力,粒子射出磁场时的位置均处于磁场边界的某一段圆弧上,这段圆弧的弧长是磁场边界圆周长的61.则粒子从M 点进人磁场时的速率为( ) A . B .C .D .三、计算题17.(2004广东)如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T ,磁场内有一块平面感光板ab ,板面与磁场方向平行,在距ab 的距离16l cm =处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是63.010/v m s =⨯,已知α粒子的电荷与质量之比75.010/qC kg m=⨯,现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度。
18.(2011·广东卷)如图(a)所示,在以O为圆心,内外半径分别为R1和R2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,R1=R0,R2=3R0.一电荷量为+q,质量为m的粒子从内圆上的A点进入该区域,不计重力.(1)已知粒子从外圆上以速度v1射出,求粒子在A点的初速度v0的大小.(2)若撤去电场,如图(b),已知粒子从OA延长线与外圆的交点C以速度v2射出,方向与OA延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间.(3)在图(b)中,若粒子从A点进入磁场,速度大小为v3,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?。