重庆大学数理统计试题2
重庆大学学年(秋)数理统计试题及答案
重庆大学全日制学术型硕士研究生 《数理统计》(A )课程试卷2013-2014学年第一学期(秋)请保留四位小数,部分下侧分位数为:0.95 1.65u =,0.99 2.33u =,20.95(1) 3.841χ=,0.95(3,6)9.78f =一、(18分)设1X ,2X ,…,64X 是来自总体N (0,2σ)的样本,X ,2S 分别是样本均值和样本方差:(1)求参数c 满足{}0.1P X S c >⋅=;(2)求概率22122234{1}X X P X X +>+;(3)求322321(2)i i i D X X X +=⎡⎤+-⎢⎥⎣⎦∑。
(请写出计算过程)解:(1)~(1)t n-{}}0.1P X S c P c ∴>⋅=>=得0.95(63)c t = 故 1.650.20638c ==(2)2~(0,)X N σ22212(/)(/)~(2)X X σσχ∴+ 同理22234(/)(/)~(2)X X σσχ+2222223412122234(/)(/)(/)(/)/~(2,2)22X X X X X X F X X σσσσ+++∴=+ 22122234{1}{(2,2)1}X X P P F X X +>=>+ 且0.50.50.51(2,2)(2,2)1(2,2)F F F =⇒= 得2222121222223434{1}1{1}0.5X X X X P P X X X X ++>=-≤=++ (3)令2~(2,2)i i n i Y X X N μσ+=+,112n i i Y Y X n ===∑ 221()(1)ni Y i T Y Y n S =∴=-=-∑3232223211(2)[()]i i i i i D X X X DT D Y Y +==⎡⎤+-==-⎢⎥⎣⎦∑∑2~(0,2(11/))i Y YN n σ-+~(0,1)YN=3222422421[2(11/)4(11/)((32))256(11/32)i Y D n n D σσχσ=+=+=+∑二、(26分)设1X ,2X ,…,n X 是来自总体2~(2,)(0)X N σσ>的样本,{}0.95P X A <=。
重庆大学研究生数理统计习题答案
()(){}{}()22222111221121221164~,~(8),89111,01(1)11~(0,1)1.28 1.280.281(2)0.261 1.8360.2619818ni i n X N S S X S n X X X X E X X n n n n n D X X DX DX DX X X N n n n P X X P U X P X S P μχσμ=-=--=--=---⎛⎫-=+==⇒- ⎪⎝⎭->=>=⎛ -⎧⎫ <-+<=<⎨⎬ ⎩⎭⎝∑解:由题可知(,)且与相互独立(){}22222222241164. 1.836896464 = 2.08814.688=~(9)991188= 2.08814.688=0.90.01=0.89423948i i i S X X P S S P X X χχχμ=⎧⎫⎫⎪⎪⎪⎪⎪⎪+<⎨⎬⎪⎪⎪⎪⎪⎪⎭⎩⎭⎧⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪--⎪⎪⎪ ⎪<+<+⎨⎬ ⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎩⎭<<-⎛⎫- ⎪⎝⎭=⋅∑,其中原式()()()()(){}24882255448822554821584~(0,1)=~4998244~(4)8944 2.132= 2.132=0.1i ii i i i i i i i i ii i N X X X t t X XP X XP t μμχμμμμμμ======⎛⎫ ⎪⎛⎫⎛⎫ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭⎛⎫⎛⎫⎛⎫-- ⎪⎪⎪⎝⎭⎝⎭==--⎧⎫⎛⎫⎪⎪-≤-≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭∑∑∑∑∑∑∑∑∑()则,()()()(){}222222222891(4)=8~1~(1,8)6498911=(1,8)58.82(8,1)10.90.158.8258.82XXX F FSSXP P F P FSμμμχμ-⎛⎫⎪--==⎧⎫-⎪⎪⎧⎫<<=<=-=⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭(),则也可以用T分布与F分布的关系.0020001111()()1ln(1)11,,ˆˆˆ1ln(1),,ln(1)ln(1)2(;,...,)(;)ln (;,...,)=01ˆ=()()似然方程:得到参数的极大似然估计,再由i A nnx n n xn i i i n P X A F A e p p A EX DX A EX p EX X A EX p X p L x x f x e e d L x x nnx d Xλλλλλλλλλλλλλλλ---==<==-=-=-===--=∴=--=--====-∏∏ 0000010000ln(1)ˆln(1)ˆln(1)ˆ(3)=ln(1)=ln(1)==ˆln (;,...,)ln(1){[ln(1)][]}ln(1)ˆ()ln(1)ˆˆ极大似然估计的不变性,推出的极大似然估计为是的无偏估计且是的无偏估计是有效n A p A X p p EA E X p p EX A AA d L x x p n n nx X p d p n AA p AA A λλλλλλ-=-=----⎡⎤----⎣⎦∴-=-=-----=--∴ ()202ˆlim ln(1)ˆlim lim 0ˆ估计又是相合估计量n n n EA A p DA n Aλ→∞→∞→∞⎧=⎪⎨-⎪==⎩∴221212121222122222222221222121.422,2~222(1)(1)~01~(2) (1)(1)(1)(1)2=222X YX Y X YX X X X Nn mX X n S m SU N n mn S m S n S m S X X Sn mX Xtωσσμμμμμμχχσσσσ+++++-+--==++----+-+++-+-+==的无偏估计为且(,+)(,)又且与独立,记则()()()()()()()121212212121211221212122222=22=22222=12122t n mP t t n mX XP t n m t n mP X X t n m S X X t n m SX X t n m Sαααααωαμμμμαμμα-----+-⎧⎫≤+-⎨⎬⎩⎭⎧⎫⎪⎪+-+⎪⎪+-≤≤+-⎨⎬⎪⎪⎪⎪⎩⎭⎧⎪+-+-≤+≤+++-⎨⎪⎩-+-+±+-因此构造的置信区间为{}{}121201212120121212121212.222=022,22=02=02=0=的无偏估计为,在:成立的条件下,大于某个常数应该是小概率事件,因此构造拒绝域:以下确定常数由X X H X X c K X X c cP X X c P P t t μμμμμμμμμμα+++++>+>+⎧⎫⎪⎪⎪=>+⎬⎪⎪⎭⎧⎫⎪⎪⎪⎪=>+=⎨⎬⎪⎪⎪⎪⎩⎭()()122n m c t n m S ααω--+-⇒=+-拒绝域为:3133011331122333333111~(1,).~(3)220.220.230.20.20.80.20.104220.4因为所以,类错误(弃真):为真类错误(纳伪):为真i i i i i i i i i i i i i i X B p X B p P X H P X p P X p P X p C C P X H P X p αβ=======I ⎧⎫⎧⎫=≥=≥=⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫===+==⎨⎬⎨⎬⎩⎭⎩⎭=+=II ⎧⎫⎧=<=<=⎨⎬⎨⎩⎭⎩∑∑∑∑∑∑∑313311223333120.4120.430.410.40.60.40.648i i i i i i P X p P X p P X p C C ===⎫⎬⎭⎧⎫=-≥=⎨⎬⎩⎭⎧⎫⎧⎫=-==-==⎨⎬⎨⎬⎩⎭⎩⎭=--=∑∑∑()()221221111211=200ˆnE i i i n n nEi i i i i i i i i ni ii nii S y x dS y x x y x x d x yxββββββ======-=--=⇒-==∑∑∑∑∑∑解:()利用最小二乘估计使残差平方和最小参数的最小二乘估计量为2211222111111221111ˆ2=~(,)ˆˆˆ~(,)111ˆ===11ˆ(),由正态分布的性质推知服从正态分布ni ii i i i ni ii nnni i iiiinnni i i i i ii i i ni i nn i i i i i x YY x N x xN E D E E x Y x EY x x x x xD D x Y x x ββεβσβββββββ============+⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎛⎫⎛ ⎪ ⎪ == ⎪ ⎪⎝⎭⎝∑∑∑∑∑∑∑∑∑∑∑()()()()()222211221222111112211ˆ~(,)ˆˆˆ3=ˆˆˆ2(,)ˆ(,)(,)因此,()nii ni ii n i i nnE i iiiiii i nni i i i i ii i ni ii ii i i i nniii i xDY xN x ES E Y x D Y x E Y x D Y x DY D x Cov Y x x Yx Cov Y x Cov Y x C xxσσβββββββββ==========⎫⎪⎪=⎪ ⎪⎭⎡⎤-=-+-⎣⎦⎡⎤=-=+-⎣⎦==∑∑∑∑∑∑∑∑∑∑()222221112222222222221111(,)(,)221则ni i i i i i i nni iii i nni i Enni i iii i x x ov Y x Y Cov Y Y xxx x ESn n n xxσσσσσσσσ==========+-=+-=-∑∑∑∑∑∑∑因素:车型水平:3种不同的车型A,B,C方差分析前提假设:正态性,方差齐次性,独立性对比分位数:0.95(2,9) 4.26F F >=,拒绝原假设0123:H μμμ==,认为这三种车型耗油量有显著差异。
概率统计II15-16(2)A卷
重庆大学《概率论与数理统计Ⅱ》课程试卷2015 —2016 学年第二学期开课学院:数统学院课程号:10029930考试日期:2016.5.29考试方式:考试时间:120分钟分位数:0.975 1.96u =,0.9(9) 1.383t =,0.975(9) 2.262t =.一、填空题(每空3分,共42分)1. 已知()0.3,()0.5,()0.5,P A P B P AB ===则()P A B ⋃=;(|)P B A =.2. 某饮品连锁销售店有一款饮品销量很好,据统计调查有60%的人喜欢喝这款饮品。
某次在该销售店里随机抽查购买饮品的12人,问其中有4人购买了这款饮品的概率:;至少有2人购买这款饮品的 概率。
3. 某木质板材用于装修房子,假设一次该板材运往三个销售点,这三个销售点所占份额分别为30%,50%,20%,半年清点统计销售情况,发现这三个销售点销售该板材量各不相同,其概率分别为0.35,0.45,0.3,问销售该板材总销售量的概率:。
4. 设连续型随机变量的分布函数为20,02(),0131,1x F x Ax x x <⎧⎪⎪=+≤<⎨⎪≥⎪⎩,则A =,X 的密度函数()f x =,{||0.5}P X <=。
5. 设12,X X 独立同分布于泊松分布(1)P ,写出概率12{5}P X X +=的表达式: ,且212()E X X +=.6. 设随机变量~[0,2]X U ,~(0,3)Y N ,且,0.5X Y ρ=,则c o v (,)X Y Y-=;2(23)E X Y -=; 7. 设1210,,,X X X 是来自总体(0,1)N 的简单随机样本,则 ~,1021()i i E X =∑=。
二、(12分)假设随机变量(,)X Y 的联合分布律为命题人:组题人:审题人:命题时间:教务处制学院:专业:班年级:学号:姓名:考试教室:公平竞争、诚实守信、严肃考纪、拒绝作弊封线密且X Y 与独立。
数理统计习题答案-2
数理统计习题答案习题5.1解答1. 设总体服从()λP 分布,试写出样本的联合分布律. n X X X ,,,12 解:()的分布律为:即X P X ~,λ ()!k e P X k k λλ-==, 0,1,2,,,n k =n X X X ,,,12 的联合分布律为:()n n P X x X x X x ===,,,1122 = ()()()n n P X x P X x P X x === 1122=nx x x x e x e x e nλλλλλλ---⋅2121=λλn n x x xe x x x n-+++!!!1212, n i n x i 0,1,2,,,1,2,, ==2. 设总体X 服从()0,1N 分布,试写出样本的联合分布密度. n X X X ,,,12 解:,即()~0,1X N X 分布密度为:()2221x p x e -=π,+∞<<-∞xn X X X ,,,12 的联合分布密度为:()∏==ni i n x x x p x p112*(),,...=22222221212121n x x x eee --⋅-πππ=()}212exp{122∑=--n i i x n π x i n i ,1,2,, =+∞<<∞-. 3. 设总体X 服从()2,μσN 分布,试写出样本的联合分布密度. n X X X ,,,12 解:()2~,μσX N ,即X 分布密度为:()p x =()}2exp{2122σμπσ--x ,∞<<∞-xn X X X ,,,12 的联合分布密度为:()∏==ni i n x xx p x p 112*,,...)(=)()}21exp{121222∑-⋅⋅-=-ni i n n x μσπσ, x i n i ,1,2,, =+∞<<∞-.4. 根据样本观测值的频率分布直方图可以对总体作什么估计与推断? 解:频率分布直方图反映了样本观测值落在各个区间长度相同的区间的频率大小,可以估计X 取值的位置与集中程度,由于每个小区间的面积就是频率,所以可以估计或推断X 的分布密度. 5. 略. 6. 略.习题5.2解答1. 观测5头基础母羊的体重(单位:kg)分别为53.2,51.3,54.5,47.8,50.9,试计算这个样本观测值的数字特征:(1)样本总和,(2)样本均值,(3)离均差平方和,(4)样本方差,(5)样本标准差,(6)样本修正方差,(7)样本修正标准差,(8)样本变异系数,(9)众数,(10)中位数,(11)极差,(12)75%分位数.解:设53.2,51.3,54.5,47.8,50.954321=====x x x x x()257.7151=∑=i ix,()51.54251==∑=i ix x(3) ss =()2512512xx xnx i ii i-=-∑∑===13307.84-5×51.542=25.982(4)=2s ()∑=-51251i i x x =51ss =5.1964, (5)s =2.28; (6) =s s *ss n 11-=6.4955(7)=2.5486; (8)*s cv =100⨯*xs =4.945;(9)每个数都是一个,故没有众数.(10)中位数为=51.3; (11)极差为54.5-47.8=6.7;(12)0.75分位数为53.2. 3x2. 观测100支金冠苹果枝条的生长量(单位:cm)得到频数表如下:组下限 19.5 24.5 29.5 34.5 39.5 44.5 49.5 54.5 59.5 组上限 24.5 29.5 34.5 39.5 44.5 49.5 54.5 59.5 64.5 组中值 22 27 32 37 42 47 52 57 62频数 8 11 13 18 18 15 10 4 3试计算这个样本观测值的数字特征:(1)样本总和,(2)样本均值,(3)离均差平方和,(4)样本方差,(5)样本标准差,(6)样本修正方差,(7)样本修正标准差,(8)样本变异系数,(9)众数,(10)中位数,(11)极差,(12)75%分位数.解:设组中值依次为,频数依次为,129,,,x x x 129,,,n n n +=++=912n n n n 100,()=∑=911i i in x 3950;()=+=∑=911912i i in xn n x 39.5;()()-=-==∑∑==29129123ss n x x n xnx i i ii i i 210039.5166300-⨯=10275;()==s ss 100142102.75; ()=s 510.137;()=-=*ss n s 1162103.788 ()=*s 710.188;()=⨯=*1008xs cv 25.79;()93742或众数是()50,210=n ;中位数为39.523742=+;()11极差为:62-22=40;()4783,0.7568,12612512分位数为+++=+++=∴n n n n n n .3.略.4. 设是一组实数,a 和是任意非零实数,n x x x ,,,12 b bx ay i i -=(i n 1,, =),x 、y 分别为、的均值, =i x i y 2xs ∑-iixn(x 2)1,=2ys 1n(y y i i-)∑2,试证明:① b x a y -=;② 222b s s x y =. 解①:∑∑==-==ni i ni i b x a ny ny 1111= ()∑=-ni i x a bn11= ⎪⎪⎭⎫ ⎝⎛-∑=n i i x na nb 11= b x a -;②=2y s 1n∑-ii y y 2()=∑=⎪⎪⎭⎫⎝⎛---ni i b x a b x a n121=∑=⎪⎪⎭⎫⎝⎛-ni i b x x n 121=221x s b .1.求分位数(1),(2)()820.05x ()1220.95x 。
重庆大学研究生数理统计总复习
* 故任意样本(X1,…,Xn)的概率分布统一为:
n
f (x1, x2,, xn ) f (xi )
i 1
7、统计量
1)定义:设X1,…,Xn为总体X 的一个样本,
f (x1,, xn ) 为关于n维变量 x1,, xn 的连续函 数,且该函数中不含任何未知参数 ( x1,, xn 取定值时),则称 f (X1,, X n ) 为统 计量,很明显,统计量是一个随机变量。
3 . X ~ P ()E XD X
4 . X ~ U ( a ,b )E X a bD X 1 ( b a ) 2
2
1 2
1
1
5 . X ~ () E X D X 2
6 . X ~ N ( a , 2 )E X a D X 2
4、二维随机变量的数学期望:(EX,EY)
2)Poisson分布X~P(λ): P X k k e , k 0,1,2,( 0)
k!
4)均匀分布X~U[a,b]:
f
( x;
a,
b)
b
1
a
,
a xb
F(x)
x
f(t)dt
10bxaa,abxxxab
0
,其它
5)指数分布X~Γ(λ):
f
(
x;
)
e
x
,
x0
0 , x 0
分 布 函 数 F (x ) x f( t) d t 1 0 , e x ,0 x 0 0
D(aX bY ) a2DX b2DY 2ab cov(X ,Y )
4)若X与Y独立,则:
E( XY ) EXEY
D(aX bY ) a 2 DX b2 DY
重庆大学概率与数理统计课后答案第二章
3 0.1 4 0.3 5
4 6 ; 10 10
P
2)
0.6
x3 0, 0.1, 3 x 4 F ( x) P{ X x} 0.4, 4 x 5 x5 1,
3. 设一学生用同一台机床接连独立地制造 3 个同种零件,第 i 个为不合格品的概率为
1 ,以 X 表示汽车停下时通过的交通岗个数,求 X 的分布律。 2
X 的可能取值:0,1,2,3,4 1 P( X 0) 2 1 1 P( X 1) ( ) 2 2 4 1 1 P( X 2) ( )3 2 8 1 1 P( X 3) ( ) 4 2 16 1 1 2 1 3 1 4 1 P( X 4) 1 ( ) ( ) ( ) 2 2 2 2 16
1
所以 A (2)
f x dx Ae|x|dx 2 Ae x dx 2 A
0
1 ; 2 P 0 X 1 f x dx
0 1 11 1 | x| e dx e x dx 0.316 0 2 0 2 1
解:设 X 为同一时刻使用的设备数,可能取值为:0,1,2,3,4,5, 则 X ~ B(5, 0.2) , (1) P{ X 2}
P{ X k} C
k 0 k 0
2
2
k 5
0.2 k 0.85 k 0.9421 ;
(2) P{X 2} 1 P{X 0,1} 1 0.85 5 0.2 0.84 0.2627 6.一电话总机每分钟收到呼唤次数 X 服从参数为 4 的泊松分布。求(1)某一分钟恰有 8 次 呼唤的概率; (2)某一分钟的呼唤次数大于 3 的概率。 解: (1) X ~ P(4)
第二学期概率论与数理统计试卷 参考答案
重庆大学概率论与数理统计课程试卷A卷B卷2012 ~2013 学年 第 二 学期开课学院: 数统学院 课程号:10029830 考试日期:考试方式:开卷闭卷 其他 考试时间: 120分钟分位数:220.0050.975(39)20,(39)58.12χχ==,0.975 1.96u =,(2.68)0.9963,(1.79)0.9633Φ=Φ=,0.025(35) 2.0301t =一、填空题(每空3分,共42分)1.已知()0.3P A =,()0.4P B =,()0.5P AB =,则()P B A B ⋃= 0.25 。
2.从一副扑克牌(52张)中任取3张(不重复),则取出的3张牌中至少有2张花色相同的概率为 0.602 。
3.从1到9的9个整数中有放回地随机取3次,每次取一个数,则取出的3个数之积能被10整除的概率为 0.214 。
4.一个有5个选项的考题,其中只有一个选择是正确的。
假定应 考人知道正确答案的概率为p 。
如果他最后选对了,则他确实知道答案的概率为541pp +。
5.重复抛一颗骰子5次得到点数为6 的次数记为X ,则(3)P X >= 13/3888 。
6.设X 服从泊松分布,且(1)(2)P X P X ===,则(4)P X ==0.0902 。
7.设圆的直径X 服从区间(0,1)上的均匀分布,则圆的面积Y 的密度函数为1//4()0 ,Y y f y elseπ⎧<<⎪=⎨⎪⎩。
8.已知(,)(1,9;0,16;0.5) ,32X YX Y N Z -=+且,则Z 的密度函数21()36z Z f --(z )。
9.设总体2(,)X N μσ,其中2σ已知,从该总体中抽取容量为40n =的样本1,240,,X X X ,则()222110.5 1.453nii P X X n σσ=⎧⎫≤-≤⎨⎬⎩⎭∑= 0.97。
10.设1,210,,X X X 是来自总体2(0,)XN σ的样本,则Y =服从 t(8) 。
(专硕)数理统计201305-试卷-
校训:耐劳苦、尚俭朴、勤学业、爱国家
重庆大学研究生试卷(2011 版)
第 3 页 共 3 页
五(14 分)近年来,国内灾害频发。每次大的自然灾害来临,都牵动着亿万 人民的心,人们通过各种方式送出援助,给受灾者带去温暖、带去希望。社 会的富裕程度与人们的慈善是否直接相关呢?2008 年“5.12”汶川地震后, 中国联通公司开通了短信捐赠平台,从 5 月 15 日 20 点开始,短短 4 个小时 内接受捐赠达二百多万元。 如果用随机变量 X 表示 2008 年全国 31 个省市的 GDP(单位:亿元) ,Y 表示全国 31 个省市在该时间段内的捐赠金额(单位: 元) ,根据联通公司网上公布的该时间段内 31 个省市的捐款数据和 2009 年 《中国统计年鉴》 , 计算得到: lxx 2380973569 , x 10551.57 ,y 86281.16 ,
一 ( 10 分 ) 设 某 地 区 初 三 年 级 学 生 的 体 重 为 X ( 单 位 : kg ) , 已 知 。现从中随机抽取学生 21 名学生,构成样本 X1 , X 2 , X ~ N ( 4 2, 3 6 )
封
值;3)讨论估计量 T2 ( X1 , X 2 ,
, X n ) 的有效性和相合性。
为了对该问题进行方差分析: 1) 指出该问题中的指标、因素、水平,进行方差分析应满足的前提条件; 2) 给出方差分析中的统计假设; 3) 完 成 方 差 分 析 表 , 检 验 不 同 化 肥 下 农 产 品 产 量 有 无 显 著 性 差 异 ( 0.05 )?
方差来源 DF (自由度) S2(平方和) S 2 (均方差) 因素 A 随机误差 总和 337.167 84.678 F值
lxy 15691922961, l yy 142047135134.19 。分析:1)假设 X 与 Y 有线性相
最新重庆大学数理统计试题2
一、假设129,,X X X …,是来自总体2~,X N的简单随机样本,X 是样本均值,2S 是样本方差,求下列常数a 的值。
(1)0.78P Xa ;(2)922113.49()15.51ii P X X a ;(3)0.05X P aS。
解:(1)22~(,),~(0,1)xx N N Nn220.78{}xp ann即2{ 2.34},(2.34),0.99xp a a a n。
(2)222(1)~(1)n sn 992222119221221:()(1)()11{3.49()15.51}(1){3.4915.51}(15.51)(3.49)10.950.10.85ii i i ii s x x n s x x n p x x an sp aaaa(3)2222(1)~(0,1),~(1)Xn sN n n222()/~(1),(1)/(1)X n t n n sn即()~(1)3(){}0.053()1{}0.053(){}0.951.86n X t n s Xp a s Xp a s Xp a s a 二、设总体X 的密度函数2,0()00,0xxex f x x 其一个样本为12,,nX X X …,(1)求1g的最大似然估计量T ;(2)验证T是否为1g的有效估计量,若是,写出信息量I;(3)验证T 是否为1g的相合估计量。
解:(1)122111()(,)()()niii nnnx x ni i i I I i L f x x ex e1111ln ()2lnln 2ln ()01112212nniii i nii nii L n x x dn L x d x xn T X(2)由(1)121220211ln (,,,)2()21,()221111()()222nn ii xdnL X X X X n Xd TX c nE T E X EX x edxT 是1得无偏估计量因而T 是1的有偏估计量。
第二学期概率论与数理统计试卷 参考答案
重庆大学概率论与数理统计课程试卷A卷B卷2012 ~2013 学年 第 二 学期开课学院: 数统学院 课程号:10029830 考试日期:考试方式:开卷闭卷 其他 考试时间: 120分钟分位数:220.0050.975(39)20,(39)58.12χχ==,0.975 1.96u =,(2.68)0.9963,(1.79)0.9633Φ=Φ=,0.025(35) 2.0301t =一、填空题(每空3分,共42分)1.已知()0.3P A =,()0.4P B =,()0.5P AB =,则()P B A B ⋃= 0.25 。
从一副扑克牌(52张)中任取3张(不重复),则取出的3张牌中至少有2张花色相同的概率为 0.602 。
从1到9的9个整数中有放回地随机取3次,每次取一个数,则取出的3个数之积能被10整除的概率为 0.214 。
4.一个有5个选项的考题,其中只有一个选择是正确的。
假定应 考人知道正确答案的概率为p 。
如果他最后选对了,则他确实知道答案的概率为541pp +。
5.重复抛一颗骰子5次得到点数为 6 的次数记为X ,则(3)P X > = 13/3888 。
6.设X 服从泊松分布,且(1)(2)P X P X ===,则(4)P X ==0.0902 。
7.设圆的直径X 服从区间(0,1)上的均匀分布,则圆的面积Y的密度函数为1//4()0 ,Y y f y elseπ⎧<<⎪=⎨⎪⎩。
8.已知(,)(1,9;0,16;0.5) ,32X YX Y N Z -=+且,则Z 的密度函数21()36z Zf --(z )。
9.设总体2(,)X N μσ,其中2σ已知,从该总体中抽取容量为40n =的样本1,240,,X X X ,则()222110.5 1.453n i i P X X n σσ=⎧⎫≤-≤⎨⎬⎩⎭∑= 0.97。
10.设1,210,,X X X 是来自总体2(0,)XN σ的样本,则Y =服从 t(8) 。
重庆大学数理统计试题答案版
涉及到的有关分位数:()()()()()()()()()()()()20.950.950.950.9750.9750.9752222220.9750.0250.0250.9750.950.97520.95 1.645,16 1.746,15 1.753,16 2.12,15 2.131,1628.851527.49,16 6.91,15 6.26,1 5.02,1 3.84,27.382 5.99u t t t t χχχχχχχχ=============一、设123,,X X X 是来自总体~(0,3)X N 的样本。
记()2332i 1111,32i i i X X S X X====-∑∑,试确定下列统计量的分布:(1)3113i i X =∑;(2)23119i i X =⎛⎫⎪⎝⎭∑;(3)()23113i i X X=-∑;(4X解:(1)由抽样分布定理,311~(0,1)3i i X X N ==∑(2)因311~(0,1)3i i X N =∑,故223321111~(1)39i i i i X X χ==⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∑∑(3)由抽样分布定理,()()()2223321131211~(2)3323i i i i S X X X X χ==-=⋅-=-∑∑(4)因()222~(0,1),~23X N S χ,X 与2S独立,故()~2X t 。
二、在某个电视节目的收视率调查中,随机调查了1000人,有633人收看了该节目,试根据调查结果,解答下列问题:(1)用矩估计法给出该节目收视率的估计量;(2)求出该节目收视率的最大似然估计量,并求出估计值;(3)判断该节目收视率的最大似然估计是否是无偏估计;(4)判断该节目收视率的最大似然估计是否是有效估计。
解:总体X 为调查任一人时是否收看,记为~(1,)X B p ,其中p 为收视率(1)因EX p =,而^E X X =,故收视率的矩估计量为^Xp =(2)总体X 的概率分布为()1()1,0,1xxf x p p x -=-=1111()(1)(1)(1)ln ()ln (1)ln(1)ln ()(1)01nniii ii i nx n x x x n X n n Xi L p p p pp p p L p nX p n X p d L p nX n X dp p p==---=∑∑=-=-=-=+---=-=-∏解得收视率p 的最大似然估计量为^Xp =现有一参量为1000的样本121000,,X X X ……,,且10001633ii X==∑则6330.6331000X ==,故收视率的极大似然估计值为0.633.(3)因E X p =,故^X p =是无偏估计(4)因()ln ()(1)1(1)d L p nX n X nX p dp p p p p -=-=---,又E X p=故收视率的最大似然估计X 是p 的有效估计。
数理统计考试题及答案
数理统计考试题及答案一、选择题1. 下列哪个选项是中心极限定理的主要内容?A. 样本均值的分布趋近于正态分布B. 样本方差的分布趋近于正态分布C. 样本中位数的分布趋近于正态分布D. 样本最大值的分布趋近于正态分布答案:A2. 假设检验中的两类错误是什么?A. 第一类错误和第二类错误B. 系统误差和随机误差C. 测量误差和估计误差D. 抽样误差和非抽样误差答案:A二、填空题1. 总体均值的估计量是_________。
答案:样本均值2. 在进行假设检验时,如果原假设被拒绝,则我们犯的是_________错误。
答案:第一类三、简答题1. 简述什么是置信区间,并说明其在统计分析中的作用。
答案:置信区间是指在一定置信水平下,用于估计总体参数的一个区间范围。
它的作用是在统计分析中提供对总体参数估计的不确定性度量,帮助我们了解估计值的可信度。
2. 解释什么是点估计和区间估计,并给出它们的区别。
答案:点估计是用样本统计量来估计总体参数的单个值。
区间估计是在一定置信水平下,给出总体参数可能落在的区间范围。
它们的区别在于点估计提供了一个具体的数值,而区间估计提供了一个包含该数值的区间,反映了估计的不确定性。
四、计算题1. 某工厂生产的零件长度服从正态分布,样本均值为50mm,样本标准差为1mm,样本容量为100。
求95%置信水平下的总体均值的置信区间。
答案:首先计算标准误差:\( SE = \frac{\sigma}{\sqrt{n}} =\frac{1}{\sqrt{100}} = 0.1 \)。
然后根据正态分布的性质,95%置信水平下的置信区间为:\( \bar{x} \pm 1.96 \times SE \)。
计算得到:\( 50 \pm 1.96 \times 0.1 = (49.84, 50.16) \)。
2. 假设某公司员工的日均工作时长服从正态分布,样本均值为8小时,样本标准差为0.5小时,样本容量为36。
重庆大学数理统计试题(四套)
X (4)分析随机变量 S
24 的分布。
2
二 ( . 20 分) 设总体分布 X 的密度函数为 f x; c x 未知,求 (1)参数 的矩估计量 ˆ1 ; 1 ˆ ; (2)参数 g 的极大似然估计 g ˆ 无偏性,有效性和相合性。 (3)试分析 g
4
四、某公司的考勤员试图证实星期一的缺勤是其他四个工作日缺勤的两倍,已有三 月的缺勤记录如下表所示: 星期 缺勤数 给定显著水平 一 二 304 176 ,请用检验证实。 三 139 四 141 五 130
五、(20 分)合成纤维抽丝工段第一导丝盘的速度 y 对丝的质量是很重要的因素。如 由生产记录得相关数据 ( xi , yi ) ,i 1,2,...,10 , 今发现它与电流的周波 x 有密切的关系, 计算得到 x 49.61 , y 16.86 , l xx 1.989 , l xy 0.674 l yy 0.244 。 (1)求第一导丝盘的速度 y 与电流的周波 x 的经验回归直线方程; (2)在显著水平 0.05 下,检验 y 与 x 是否有显著的线性关系; (3)求 ,并求回归系数 1 的置信度为 95% 的置信区间。
六、设组观测数据(xi , yi )(i =1,2,…, n) 满足 yi =β0+β1(x- x ) +εi , 1 n εi ~ N (0,σ 2) (i =1,2,…, n)(其中 x= X i )且 ε1,ε2,…,εn 相互独立。 n 1 ˆ , ˆ; (1) 求系数 β0,β1 的最小二乘估计量
2 2 2 (1)当 n=17 时,求常数 k 使得 P( X Y 1 2 k S X SY 2S X ,Y ) 0.95
重庆大学2015概率论与数理统计试题及解答
《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________.2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________.4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________.5. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________.解:1.3.0)(=+B A B A P即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P9.0)(1)()(=-==AB P AB P B A P . 2.λλλλλ---==+==+==≤e X P e e X P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22即 0122=--λλ 解得 1=λ,故161)3(-==e X P . 3.设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故04,()()0,.Y Y X y f y F y f <<'===⎩其它另解 在(0,2)上函数2y x =严格单调,反函数为()h y =所以04,()0,.Y X y f y f <<==⎩其它4.2(1)1(1)P X P X e e λ-->=-≤==,故 2λ={min(,)1}1{min(,)1}P X Y P X Y ≤=->1(1)(1)P X P Y =->>41e -=-. 5.似然函数为 111(,,;)(1)(1)(,,)nn n i n i L x x x x x θθθθθ==+=+∏1ln ln(1)ln nii L n xθθ==++∑1ln ln 01ni i d L nx d θθ==++∑解似然方程得θ的极大似然估计为 1111ln ni i x n θ==-∑.二、单项选择题(每小题3分,共15分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则AC 与B 也独立.(C )若()0P C =,则A C 与B 也独立.(D )若C B ⊂,则A 与C 也独立. ( ) 2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为 (A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ. ( ) 3.设随机变量X 和Y 不相关,则下列结论中正确的是(A )X 与Y 独立. (B )()D X Y DX DY -=+.(C )()D X Y DX DY -=-. (D )()D XY DXDY =. ( ) 4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==. ( ) 5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. ( )解:1.因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ). 3.由不相关的等价条件知应选(B ). 4.若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+ ∴29α=, 19β= 故应选(A ).5.1EX μ=,所以1X 是μ的无偏估计,应选(A ).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率. 解:设A =‘任取一产品,经检验认为是合格品’ B =‘任取一产品确是合格品’则(1) ()()(|)()(|)P A P B P A B P B P A B =+ 0.90.950.10.020.857.=⨯+⨯= (2) ()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数,求X 的分布列、分布函数、数学期望和方差. 解:X 的概率分布为 3323()()()0,1,2,3.55kkkP X k C k -=== 即01232754368125125125125XPX 的分布函数为0,0,27,01,12581(),12,125117,23,1251,3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩ 263,55EX =⨯=231835525DX =⨯⨯=.五、(10分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关于X 的边缘概率密度;(2)Z X Y =+的分布函数与概率密度.(1)(,)X Y 的概率密度为 2,(,)(,)0,.x y Df x y ∈⎧=⎨⎩其它22,01()(,)0,X x x f x f x y dy +∞-∞-≤≤⎧==⎨⎩⎰其它(2)利用公式()(,)Z f z f x z x dx +∞-∞=-⎰其中2,01,01(,)0,x z x x f x z x ≤≤≤-≤-⎧-=⎨⎩其它2,01, 1.0,x x z ≤≤≤≤⎧=⎨⎩其它.当 0z <或1z >时()0Z f z = 01z ≤≤时 00()222z zZ f z dx x z ===⎰故Z 的概率密度为2,01,()0,Z z z f z ⎧≤≤⎪=⎨⎪⎩其它.Z 的分布函数为200,00,0,()()2,01,01,1, 1.1,1z z Z Z z z f z f y dy ydy z z z z z -∞<⎧<⎧⎪⎪⎪==≤≤=≤≤⎨⎨⎪⎪>⎩>⎪⎩⎰⎰或利用分布函数法10,0,()()()2,01,1, 1.Z D z F z P Z z P X Y z dxdy z z ⎧<⎪⎪=≤=+≤=≤≤⎨⎪⎪>⎩⎰⎰20,0,,01,1, 1.z z z z <⎧⎪=≤≤⎨⎪>⎩2,01,()()0,Z Z z z f z F z ≤≤⎧'==⎨⎩其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标Y 相互独立,且均服从2(0,2)N 分布. 求(1)命中环形区域22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离Z =的数学期望.1){,)}(,)DP X Y D f x y dxdy ∈=⎰⎰2222288111248x y r De dxdy erdrd πθππ+--==⋅⎰⎰⎰⎰2221122888211()8r r red ee e ------=-=-⎰;(2)22818x y EZ E e dxdy π+-+∞-∞-∞==⎰⎰2222881184r r rerdrd e r dr πθπ--+∞+∞==⎰⎰⎰2228882r r r reedr dr +∞---+∞+∞-∞=-+==⎰⎰七、(11分)设某机器生产的零件长度(单位:cm )2~(,)X N μσ,今抽取容量为16的样本,测得样本均值10x =,样本方差20.16s =. (1)求μ的置信度为0.95的置信区间;(2)检验假设20:0.1H σ≤(显著性水平为0.05).(附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t ===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===解:(1)μ的置信度为1α-下的置信区间为 /2/2(((X t n X t n αα--+-0.02510,0.4,16,0.05,(15) 2.132X s n t α===== 所以μ的置信度为0.95的置信区间为(9.7868,10.2132)(2)20:0.1H σ≤的拒绝域为22(1)n αχχ≥-.221515 1.6240.1S χ==⨯=,20.05(15)24.996χ= 因为 220.052424.996(15)χχ=<=,所以接受0H .《概率论与数理统计》期末试题(3)与解答一、填空题(每小题3分,共15分)(1) 设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且()()0.5P A P B ==,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________.(2) 甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________. (3) 设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其它, 现对X 进行四次独立重复观察,用Y 表示观察值不大于的次数,则2EY =___________. (4) 设二维离散型随机变量(,)X Y 的分布列为(,)(1,0)(1,1)(2,0)(2,1)0.40.2X Y Pa b若0.8EXY =,则Cov(,)X Y =____________.(5) 设1217,,,X X X 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=,则a =____________.(注:20.01(17)33.4χ=, 20.005(17)35.7χ=, 20.01(16)32.0χ=, 20.005(16)34.2χ=)解:(1)()()()P ABC ABC P ABC P ABC +=+因为 A 与C 不相容,B 与C 不相容,所以,A C B C ⊃⊃,故ABC C = 同理 ABC AB =.()()()0.20.50.50.45P ABC ABC P C P AB +=+=+⨯=. (2)设A =‘四个球是同一颜色的’,1B =‘四个球都是白球’,2B =‘四个球都是黑球’ 则 12A B B =+. 所求概率为 22212()()(|)()()()P AB P B P B A P A P B P B ==+ 22223322122222555533(),()100100C C C C P B P B C C C C =⋅==⋅=所以 21(|)2P B A =.(3)~(4,),Y B p其中 10.52201(0.5)24p P X xdx x=≤===⎰, 113341,44444EY DY =⨯==⨯⨯=, 2215()144EY DY EY =+=+=.(4)(,)X Y 的分布为这是因为 0.4a b +=,由0.8EXY = 得 0.220.8b += 0.1,0.3a b ∴==0.620.4 1.4EX =+⨯=,0.5EY =故 cov(,)0.80.70.1X Y EXY EXEY =-=-=.(5)2216(){4}0.014S P S a P a >=>= 即 20.01(16)4a χ=,亦即 432a = 8a ∴=.二、单项选择题(每小题3分,共15分)(1)设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有 (A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤(C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥ ( )(2)设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞且~(0,1)Y aX b N =+,则在下列各组数中应取(A )1/2, 1.a b == (B )2,a b ==(C )1/2,1a b ==-. (D )2,a b == ( )(3)设随机变量X 与Y 相互独立,其概率分布分别为010.40.6XP010.40.6Y P则有(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == ( ) (4)对任意随机变量X ,若EX 存在,则[()]E E EX 等于(A )0. (B ).X (C ).EX (D )3().EX ( ) (5)设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为(A)/2/2(x u x u αα-+ (B)1/2/2(x u x u αα--+ (C)(x u x u αα-+ (D)/2/2(x u x u αα-+ ( ) 解 (1)由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+-应选C. (2)22(2)4()x f x +-==即~(2,)X N -故当a b ===时 ~(0,1)Y aX b N =+ 应选B.(3)()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.(4)[()]E E EX EX = 应选C.(5)因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D.三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都 是一等品,求丢失的也是一等品的概率。
最新重庆大学数理统计试题2
一、假设129,,X X X …,是来自总体()2~,X N μσ的简单随机样本,X 是样本均值,2S 是样本方差,求下列常数a 的值。
(1)()0.78P X a σμ<+=;(2)922113.49()15.51i i P X X a σ=⎛⎫<-≤= ⎪⎝⎭∑;(3)0.05X P a S μ⎛⎫->= ⎪⎝⎭。
解:(1)2~(,~(0,1)x x N N N σμx p a <=即2.34},(2.34),0.99x p a a a <=Φ==。
(2)222(1)~(1)n s n χσ--992222119221221:()(1)()11{3.49()15.51}(1){3.4915.51}(15.51)(3.49)10.950.10.85i i i i ii s x x n s x x n p x x an s p aa a a σσ===-⇒-=--<-≤=-<≤=Φ-Φ+=-==∑∑∑(3222(1)~(0,1),~(1)X n s N n χσ--~(1),t n -即()~(1)3(){}0.053()1{}0.053(){}0.951.86X t n sX p a sX p a s X p a s a μμμμ--->=--≤=-≤==二、设总体X 的密度函数()2,0()00,0x xe x f x x λλλ-⎧>=>⎨≤⎩其一个样本为12,,n X X X …,(1)求()1g λλ=的最大似然估计量T ;(2)验证T 是否为()1g λλ=的有效估计量,若是,写出信息量()I λ; (3)验证T 是否为()1g λλ=的相合估计量。
解:(1)122111()(,)()()niii nnnx x nii i I I i L f x x ex eλλλλλλ=--===∑===∏∏∏1111ln ()2ln ln 2ln ()01112212n ni ii i ni i n i i L n x x d n L x d x x n T Xλλλλλλλ=====+-=-===∴=∑∑∑∑(2)由(1)121220211ln (,,,)2()21,()221111()()222n n i i x d n L X X X X n X d T X c nE T E X EX x e dx λλλλλλλλ=+∞-=-=--==-====∑⎰ T 是1λ得无偏估计量因而T 是1λ的有偏估计量。
重庆大学数理统计试题答案版
涉及到的有关分位数:()()()()()()()()()()()()20.950.950.950.9750.9750.9752222220.9750.0250.0250.9750.950.97520.95 1.645,16 1.746,15 1.753,16 2.12,15 2.131,1628.851527.49,16 6.91,15 6.26,1 5.02,1 3.84,27.382 5.99u t t t t χχχχχχχχ=============一、设123,,X X X 是来自总体~(0,3)X N 的样本。
记()2332i 1111,32i i i X X S X X====-∑∑,试确定下列统计量的分布:(1)3113i i X =∑;(2)23119i i X =⎛⎫⎪⎝⎭∑;(3)()23113i i X X=-∑;(4X解:(1)由抽样分布定理,311~(0,1)3i i X X N ==∑(2)因311~(0,1)3i i X N =∑,故223321111~(1)39i i i i X X χ==⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∑∑(3)由抽样分布定理,()()()2223321131211~(2)3323i i i i S X X X X χ==-=⋅-=-∑∑(4)因()222~(0,1),~23X N S χ,X 与2S独立,故()~2X t 。
二、在某个电视节目的收视率调查中,随机调查了1000人,有633人收看了该节目,试根据调查结果,解答下列问题:(1)用矩估计法给出该节目收视率的估计量;(2)求出该节目收视率的最大似然估计量,并求出估计值;(3)判断该节目收视率的最大似然估计是否是无偏估计;(4)判断该节目收视率的最大似然估计是否是有效估计。
解:总体X 为调查任一人时是否收看,记为~(1,)X B p ,其中p 为收视率(1)因EX p =,而^E X X =,故收视率的矩估计量为^Xp =(2)总体X 的概率分布为()1()1,0,1xxf x p p x -=-=1111()(1)(1)(1)ln ()ln (1)ln(1)ln ()(1)01nniii ii i nx n x x x n X n n Xi L p p p pp p p L p nX p n X p d L p nX n X dp p p==---=∑∑=-=-=-=+---=-=-∏解得收视率p 的最大似然估计量为^Xp =现有一参量为1000的样本121000,,X X X ……,,且10001633ii X==∑则6330.6331000X ==,故收视率的极大似然估计值为0.633.(3)因E X p =,故^X p =是无偏估计(4)因()ln ()(1)1(1)d L p nX n X nX p dp p p p p -=-=---,又E X p=故收视率的最大似然估计X 是p 的有效估计。
重庆大学2015概率论与数理统计试题及解答
《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________. 4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________.5. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________.解:1.3.0)(=+B A B A P即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P9.0)(1)()(=-==AB P AB P B A P . 2.λλλλλ---==+==+==≤e X P e e X P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22即 0122=--λλ 解得 1=λ,故161)3(-==e X P . 3.设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故04,()()0,.Y Y X y f y F y f <<'===⎩其它另解 在(0,2)上函数2y x =严格单调,反函数为()h y =所以04,()0,.Y X y f y f <<==⎩其它4.2(1)1(1)P X P X e e λ-->=-≤==,故 2λ={min(,)1}1{min(,)1}P X Y P X Y ≤=->1(1)(1)P X P Y =->>41e -=-.5.似然函数为 111(,,;)(1)(1)(,,)nn n i n i L x x x x x θθθθθ==+=+∏1ln ln(1)ln nii L n xθθ==++∑1ln ln 01ni i d L nx d θθ==++∑解似然方程得θ的极大似然估计为1111ln ni i x n θ==-∑.二、单项选择题(每小题3分,共15分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则AC 与B 也独立.(C )若()0P C =,则A C 与B 也独立.(D )若C B ⊂,则A 与C 也独立. ( ) 2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为 (A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ. ( ) 3.设随机变量X 和Y 不相关,则下列结论中正确的是(A )X 与Y 独立. (B )()D X Y DX DY -=+.(C )()D X Y DX DY -=-. (D )()D XY DXDY =. ( ) 4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为(A )21,99αβ==. (A)12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==. ( )5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. ( )解:1.因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ). 事实上由图 可见A 与C 不独立.2.~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ). 3.由不相关的等价条件知应选(B ). 4.若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+ ∴29α=, 19β= 故应选(A ).5.1EX μ=,所以1X 是μ的无偏估计,应选(A ).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设A =‘任取一产品,经检验认为是合格品’ B =‘任取一产品确是合格品’则(1) ()()(|)()(|)P A P B P A B P B P A B =+ 0.90.950.10.020.857.=⨯+⨯= (2) ()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数,求X 的分布列、分布函数、数学期望和方差. 解:X 的概率分布为 3323()()()0,1,2,3.55kkkP X k C k -=== 即01232754368125125125125XPX 的分布函数为0,0,27,01,12581(),12,125117,23,1251, 3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩263,55EX =⨯=231835525DX =⨯⨯=.五、(10分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关)Z X Y =+的分布函数与概率密度.(1)(,)X Y 的概率密度为2,(,)(,)0,.x y Df x y ∈⎧=⎨⎩其它22,01()(,)0,X x x f x f x y dy +∞-∞-≤≤⎧==⎨⎩⎰其它(2)利用公式()(,)Z f z f x z x dx +∞-∞=-⎰其中2,01,01(,)0,x z x x f x z x ≤≤≤-≤-⎧-=⎨⎩其它2,01, 1.0,x x z ≤≤≤≤⎧=⎨⎩其它.当 0z <或1z >时()0Z f z =01z≤≤时()222z zZf z dx x z===⎰故Z的概率密度为2,01,()0,Zz zf z⎧≤≤⎪=⎨⎪⎩其它.Z的分布函数为20,00,0,()()2,01,01,1, 1.1,1z zZ Zz zf z f y dy ydy z z zzz-∞<⎧<⎧⎪⎪⎪==≤≤=≤≤⎨⎨⎪⎪>⎩>⎪⎩⎰⎰或利用分布函数法10,0,()()()2,01,1, 1.ZDzF z P Z z P X Y z dxdy zz⎧<⎪⎪=≤=+≤=≤≤⎨⎪⎪>⎩⎰⎰20,0,,01,1, 1.zz zz<⎧⎪=≤≤⎨⎪>⎩2,01,()()0,Z Zz zf z F z≤≤⎧'==⎨⎩其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从2(0,2)N分布. 求(1)命中环形区域22{(,)|12}D x y x y=≤+≤的概率;(2)命中点到目标中心距离Z=的数学期望.1){,)}(,)DP X Y D f x y dxdy∈=⎰⎰22222880111248x y rDe dxdy e rdrdπθππ+--==⋅⎰⎰⎰⎰2221122888211()8r rre d e e e------=-=-⎰;(2)22818x yEZ E e dxdyπ+-+∞+∞-∞-∞==⎰⎰2222880001184r rre rdrd e r drπθπ--+∞+∞==⎰⎰⎰222888r r rre e dr dr+∞---+∞+∞-∞=-+==⎰七、(11分)设某机器生产的零件长度(单位:cm)2~(,)X Nμσ,今抽取容量为16的样本,测得样本均值10x=,样本方差20.16s=. (1)求μ的置信度为0.95的置信区间;(2)检验假设2:0.1Hσ≤(显著性水平为0.05).(附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===解:(1)μ的置信度为1α-下的置信区间为/2/2(((X t n X t n αα--+- 0.02510,0.4,16,0.05,(15) 2.132X s n t α===== 所以μ的置信度为0.95的置信区间为(9.7868,10.2132)(2)20:0.1H σ≤的拒绝域为22(1)n αχχ≥-.221515 1.6240.1S χ==⨯=,20.05(15)24.996χ= 因为 220.052424.996(15)χχ=<=,所以接受0H .《概率论与数理统计》期末试题(3)与解答一、填空题(每小题3分,共15分)(1) 设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且()()0.5P A P B ==,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________.(2) 甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________. (3) 设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其它,现对X 进行四次独立重复观察,用Y 表示观察值不大于0.5的次数,则2EY =___________. (4) 设二维离散型随机变量(,)X Y 的分布列为(,)(1,0)(1,1)(2,0)(2,1)0.40.2X Y Pa b若0.8EXY =,则Cov(,)X Y =____________.(5) 设1217,,,X X X 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=,则a =____________.(注:20.01(17)33.4χ=, 20.005(17)35.7χ=, 20.01(16)32.0χ=, 20.005(16)34.2χ=)解:(1)()()()P ABC ABC P ABC P ABC +=+因为 A 与C 不相容,B 与C 不相容,所以,A C B C ⊃⊃,故ABC C = 同理 ABC AB =.()()()0.20.50.50.45P ABC ABC P C P AB +=+=+⨯=. (2)设A =‘四个球是同一颜色的’,1B =‘四个球都是白球’,2B =‘四个球都是黑球’ 则 12A B B =+. 所求概率为 22212()()(|)()()()P AB P B P B A P A P B P B ==+ 22223322122222555533(),()100100C C C C P B P B C C C C =⋅==⋅=所以 21(|)2P B A =.(3)~(4,),Y B p其中 10.52201(0.5)24p P X xdx x=≤===⎰, 113341,44444EY DY =⨯==⨯⨯=, 2215()144EY DY EY =+=+=.(4)(,)X Y 的分布为这是因为 0.4a b +=,由0.8EXY = 得 0.220.8b += 0.1,0.3a b ∴==0.620.4 1.4EX =+⨯=,0.5EY =故 cov(,)0.80.70.1X Y EXY EXEY =-=-=.(5)2216(){4}0.014S P S a P a >=>= 即 20.01(16)4a χ=,亦即 432a = 8a ∴=.二、单项选择题(每小题3分,共15分)(1)设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有 (A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤(C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥ ( )(2)设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞且~(0,1)Y aX b N =+,则在下列各组数中应取(A )1/2, 1.a b == (B )2,a b ==(C )1/2,1a b ==-. (D )2,a b == ( )(3)设随机变量X 与Y 相互独立,其概率分布分别为 010.40.6X P010.40.6Y P则有(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == ( ) (4)对任意随机变量X ,若EX 存在,则[()]E E EX 等于(A )0. (B ).X (C ).EX (D )3().EX ( ) (5)设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为(A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+(C)(x u x u αα-+ (D)/2/2(x u x u αα-+ ( ) 解 (1)由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+-应选C. (2)22(2)4()x f x +-==即~(2,)X N -故当a b ===时 ~(0,1)Y aX b N =+ 应选B.(3)()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.(4)[()]E E EX EX = 应选C.(5)因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D.三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、假设129,,X X X …,是来自总体()2~,X N μσ的简单随机样本,X 是样本均值,2S 是样本方差,求下列常数a 的值。
(1)()
0.78P X a σμ<+=;(2)922113.49()15.51i i P X X a σ=⎛⎫
<-≤= ⎪⎝⎭
∑;(3)
0.05X P a S μ⎛⎫
->= ⎪⎝⎭。
解:(1
)2~(,
~(0,1)x x N N N σμ
x p a <
=
即
2.34},(2.34),0.99x p a a a <=Φ==。
(2)
2
22
(1)~(1)n s n χσ
--
99
2
22
211
9
2
2
12
2
1:()(1)()11
{3.49()
15.51}(1){3.4915.51}(15.51)(3.49)10.950.10.85
i i i i i
i s x x n s x x n p x x a
n s p a
a a a σ
σ
===-⇒-=--<-≤=-<
≤=Φ-Φ+=-==∑∑∑
(3
2
22
(1)~(0,1),
~(1)X n s N n χσ
--
~(1),t n -
即
()
~(1)3(){}0.05
3()1{}0.053(){}0.95
1.86
X t n s
X p a s
X p a s X p a s a μμμμ--->=--≤=-≤==
二、设总体X 的密度函数()2,0
()00,0
x xe x f x x λλλ-⎧>=>⎨≤⎩其一个样本为12,,n X X X …,
(1)求()1
g λλ
=
的最大似然估计量T ;
(2)验证T 是否为()1
g λλ
=的有效估计量,若是,写出信息量()I λ; (3)验证T 是否为()1
g λλ
=
的相合估计量。
解:(1)1
2
21
1
1
()(,)()()n
i
i
i n
n
n
x x n
i
i i I I i L f x x e
x e
λ
λλλλ
λ=--===∑=
==∏∏∏
1
1
11ln ()2ln ln 2ln ()01112212
n
n
i i
i i n
i i n i i L n x x d n L x d x x n T X
λλλλλλλ=====+-=-===∴=∑∑∑∑
(2)由(1)
121220211ln (,,,)2()21
,()22
1111
()()222n n i i x d n L X X X X n X d T X c n
E T E X EX x e dx λλλλλ
λλλ=+∞-=-=--==-====
∑⎰ T 是
1λ得无偏估计量因而T 是1
λ
的有偏估计量。
信息量2()()2
()c g I n λλλλ
'==
(3.)2
()10()()2g DT n c n λλλ'=
=→→∞故T 是1
λ
得相合估计。
三、为了检验一种杂交物的两种新处理方案,在同一地区随机地选择8块地段,在各实验地段,按两种方案处理作物,这8块地段的单位面积产品是(单位:公斤)
假设这两种产量都服从正态分布,分别为()()2
2
1
2
,,,N N μσμσ,2
σ
未知,求12μμ-的
置信度为95%的置信区间。
解:由给定的两组样本值,有:
2211222
8,81.625,145.696,8,75.875,102.1257145.6967102.125123.910
14
n X S n Y S S ω
=
=====⨯
+⨯==
置信度为95%,则0.05α=
()120.97512
1212
(2)14 2.145
81.62575.875 5.75(2) 2.14511.94t
n n t X Y t
n n S αα-
-
+-==-=-=∆=+-==
所以,12μμ-的95%的置信区间为
()()(), 5.7511.94,5.7511.94 6.19,17.69X Y X Y --∆-+∆=-+=-。
四、设总体()~,1X N a ,其一个样本为12,,n X X X …,;对于假设01:1,:2H a H a == (1
)取检验水平为α,写出检验0H 的统计量和拒绝域;
(2)若拒绝域为{}
X c >且犯两类错误的概率均不大于0.05。
求样本容量n 和常数
c 。
解:(1)
()~0,1X a N -拒绝域
0:1K x >+ (2){}}
1(
1)1)10.05P X c a P
X c a
α=>==->
-==
{}}
0.950.051) 1.645
2(2)2)20.05
2) 1.645
10.824
c u P X c a P
X c a c u n β-===≤==->-==-==-=
故11, 1.5n c ==。
设()
201,~0,,1,2,i i i i y x N i ββεεσ=++=…,5,125εεε,,…,相互独立,求:
(1)01ββ,的最小二乘估计01
ˆˆββ,; (2)残差平方和1e SS 估计的标准差ˆσ
,样本相关系数r 。
解:5,2, 2.5,11.85,10.173xx yy n X l Y l =====
1
12.5255211.85n
xy i i i l x y nX Y ==-=-⨯⨯∑
(1) 1
5.025
ˆ 2.012.5
xy xx
l l β==
= 01
ˆˆ11.85 2.0127.83Y X ββ=-=-⨯= 所以,回归方程为01
ˆˆˆ7.83
2.01y x x ββ
=+=+ (2
)11ˆ10.173
2.01 5.0250.07275e yy xy SS l l β=-=-⨯= ˆ0.1557
0.9964
l r σ
==
====
试问吸烟量与肺炎是否有关系()?
解:0:H 吸烟量与肺炎独立,1:H 吸烟量与肺炎不独立
2
32
220.9511
()14.67(2) 5.99i j ij j i i j
n n n n
n n n χχ==-
==>=∑∑
故属于拒绝域认为吸烟量与肺炎不独立,是又关的。
2222179913.55,227249.98E T A R S S S S ==+=
F 值为0.951.93(3,22) 3.05F <=所以接受0H 认为这四种灯丝的寿命没有差别。