辽宁省沈阳市(六校联考)2021届新高考模拟化学试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省沈阳市(六校联考)2021届新高考模拟化学试题
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.双曲线1C :22
221x y a b
-=(0a >,0b >)的一个焦点为(c,0)F (0c >),且双曲线1C 的两条渐近
线与圆2C :2
2
2
()4
c x c y -+=均相切,则双曲线1C 的渐近线方程为( )
A .0x ±=
B .0y ±=
C 0y ±=
D .0x =
【答案】A 【解析】 【分析】 根据题意得到
2
c
d ==
,化简得到223a b =,得到答案. 【详解】
根据题意知:焦点(c,0)F 到渐近线b y x
a =
的距离为2
c d =
=,
故223a b =,故渐近线为0x ±=. 故选:A . 【点睛】
本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力. 2.设函数
'()f x 是奇函数()()f x x R ∈的导函数,当0x >时,1
'()ln ()<-
f x x f x x
,则使得2(1)()0x f x ->成立的x 的取值范围是( )
A .(1,0)(0,1)-U
B .(,1)(1,)-∞-+∞U
C .(1,0)(1,)-??
D .(,1)(0,1)-∞-U
【答案】D 【解析】
构造函数,令()()()ln 0g x x f x x =⋅>,则()()()'ln 'f x g x xf x x
=+,
由()()1
'f x lnx f x x
<-
可得()'0g x <, 则()g x 是区间()0,∞+上的单调递减函数, 且()()1ln110g f =⨯=,
当x ∈(0,1)时,g(x)>0,∵lnx<0,f(x)<0,(x 2-1)f(x)>0; 当x ∈(1,+∞)时,g(x)<0,∵lnx>0,∴f(x)<0,(x 2-1)f(x)<0 ∵f(x)是奇函数,当x ∈(-1,0)时,f(x)>0,(x 2-1)f(x)<0 ∴当x ∈(-∞,-1)时,f(x)>0,(x 2-1)f(x)>0.
综上所述,使得(x 2-1)f(x)>0成立的x 的取值范围是()(),10,1-∞-⋃. 本题选择D 选项.
点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效. 3.某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为n 的样本.若样本中高中生恰有30人,则n 的值为( ) A .20 B .50
C .40
D .60
【答案】B 【解析】 【分析】
利用某一层样本数等于某一层的总体个数乘以抽样比计算即可. 【详解】
由题意,30=150015001000
n
⨯+,解得50n =.
故选:B. 【点睛】
本题考查简单随机抽样中的分层抽样,某一层样本数等于某一层的总体个数乘以抽样比,本题是一道基础题.
4.设0.50.82a =,sin1b =,lg 3c =,则a ,b ,c 三数的大小关系是 A .a c b << B .a b c << C .c b a << D .b c a <<
【答案】C 【解析】 【分析】
利用对数函数,指数函数以及正弦函数的性质和计算公式,将a ,b ,c 1
2
比较即可. 【详解】
由0.50.540.820.8=
5
a =>, 13
34
sin1sin 2345
b π<=<==<
, 11lg3lg 10lg1022
c =<==,
所以有c b a <<.选C. 【点睛】
本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.
5.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为e ,设地球半径为R ,该卫星近地点离地面的距离为r ,则该卫星远地点离地面的距离为( ) A .
1211e e
r R e e ++-- B .
111e e
r R e e ++-- C .1211e e
r R e e
-+++ D .
111e e
r R e e
-+++ 【答案】A 【解析】 【分析】
由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离. 【详解】
椭圆的离心率:=(0,1)c
e a
∈,( c 为半焦距; a 为长半轴),
设卫星近地点,远地点离地面距离分别为r ,n ,如图:
则,n a c R r a c R =+-=--
所以1r R a e +=
-,()1r R e
c e
+=-, ()121111r R e r R e e
n a c R R r R e e e e
+++=+-=+-=+----