易错专题 等腰三角形及勾股定理中的分类讨论易错专题 等腰三角形及勾股定理中的分类讨论

合集下载

勾股定理易错题整理(可交作业)

勾股定理易错题整理(可交作业)

勾股定理易错题整理(可交作业)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.直角三角形的两边长分别是6,8,则第三边的长为()A.10 B.2 C.10或2D.无法确定【答案】C【解析】第三边不一定是最长边,需要分类讨论,不能按照惯性思维。

2.已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()A.2n﹣2B.2n﹣1C.2n D.2n+1【分析】根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积,找出规律即可.【解答】解:∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC==,AD==2…,∴S △ACD=××=1=22﹣2;S△ADE=×2×2=1=23﹣2…∴第n个等腰直角三角形的面积是2n﹣2.故选A.3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A2的边长为6cm,正方形B的边长为5cm,正方形C的边长为5cm,则正方形D的面积是cm2.【分析】根据勾股定理的几何意义可直接解答.【解答】解:根据正方形的面积公式结合勾股定理,得正方形A2,B,C,D的面积和等于最大的正方形的面积,所以正方形D的面积=100﹣36﹣25﹣25=14cm2.4.如图,要将楼梯铺上地毯,则需要米的地毯.【分析】地毯的长显然是两条直角边的和;根据勾股定理,得另一条直角边的长.【解答】解:根据勾股定理,另一直角边==3,∴3+4=7,故应填7.5.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15C.6 D.以上答案都不对【分析】高线AD可能在三角形的内部也可能在三角形的外部,本题应分两种情况进行讨论.分别依据勾股定理即可求解.【解答】解:在直角三角形ABD中,根据勾股定理,得BD=15;在直角三角形ACD中,根据勾股定理,得CD=6.当AD在三角形的内部时,BC=15+6=21;当AD在三角形的外部时,BC=15﹣6=9.则BC的长是21或9.故选D.6.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()A.12 B.13 C.16 D.18【分析】首先根据勾股定理和等腰三角形的性质,确定出底边的长,进而求出其周长.【解答】解:如图,作高AD,△ABC中,AB=AC=5,AD⊥BC,AD=4;Rt△ABD中,AB=5,AD=4;根据勾股定理,得:BD==3;∴BC=2BD=6;所以△ABC的周长=5+5+6=16;故选C.7.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=()A.1::2 B.:1:2 C.1:1:2 D.1:2:3【解答】解:若∠A:∠B:∠C=1:2:3,则根据三角形的内角和定理,得∠A=30°,∠B=60°,∠C=90°.设a=x,根据30°所对的直角边是斜边的一半,得c=2x,再根据勾股定理,得b=x,则a:b:c=1::2.故选A.8.在△ABC中,AB边上的中线CD=3,AB=6,BC+AC=8,则△ABC的面积为7.【分析】本题考查三角形的中线定义,根据条件先确定△ABC为直角三角形,再求得△ABC的面积.【解答】解:如图,在△ABC中,CD是AB边上的中线,∵CD=3,AB=6,∴AD=DB=3,∴CD=AD=DB,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠1+∠3=90°,∴△ABC是直角三角形,∴AC2+BC2=AB2=36,又∵AC+BC=8,∴AC2+2AC?BC+BC2=64,∴2AC?BC=64﹣(AC2+BC2)=64﹣36=28,又∵S△ABC=AC?BC,∴S△ABC==7.9.如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”中最多可以作出以格点为端点、长度为的线段8条..【分析】如图,由于每个小正方形的边长为1,那么根据勾股定理容易得到长度为的线段,然后可以找出所有这样的线段.【解答】解:如图,所有长度为的线段全部画出,共有8条.。

等腰三角形中的分类讨论

等腰三角形中的分类讨论

等腰三角形中的分类讨论一、等腰三角形的定义等腰三角形是指具有两条边相等的三角形,也就是说,等腰三角形的两条边边长相等,而另一条边则较短。

等腰三角形可以有不同的形状和性质,下面将对等腰三角形进行分类讨论。

二、等腰三角形的分类1. 等腰直角三角形等腰直角三角形是一种特殊的等腰三角形,其中的一个内角为直角(即90度)。

在等腰直角三角形中,另外两个内角相等,均为45度。

根据勾股定理,等腰直角三角形的斜边与两条直角边之间的关系为:斜边的长度等于直角边长度的平方根乘以2。

2. 等腰锐角三角形等腰锐角三角形是指两个等腰三角形的顶点角小于90度的三角形。

在等腰锐角三角形中,两个等腰边的边长相等,而顶点角则小于90度。

等腰锐角三角形的两个等腰边的长度与顶点角之间的关系为:等腰边的长度等于另一条边的长度乘以正弦顶点角的一半。

3. 等腰钝角三角形等腰钝角三角形是指两个等腰三角形的顶点角大于90度的三角形。

在等腰钝角三角形中,两个等腰边的边长相等,而顶点角则大于90度。

等腰钝角三角形的两个等腰边的长度与顶点角之间的关系为:等腰边的长度等于另一条边的长度乘以正弦顶点角的一半。

4. 等腰等边三角形等腰等边三角形是一种特殊的等腰三角形,其中的三个边全都相等。

等腰等边三角形的三个内角均为60度。

等腰等边三角形具有许多特殊性质,例如:它的三条高线、中线、角平分线和垂直平分线都重合于同一个点;它的外接圆和内切圆都与三个顶点相切。

三、等腰三角形是指具有两条边相等的三角形,根据顶点角的大小和不同属性,可以进一步分类为等腰直角三角形、等腰锐角三角形、等腰钝角三角形和等腰等边三角形。

每种分类的等腰三角形都有其特殊的性质和关系,值得我们深入学习和研究。

注意:此文档仅为示例文档,实际写作时请根据需求进行修改和扩展,结合数学知识以及示例文档提供的内容,形成一篇丰富详尽的文档。

专题11 等腰三角形中的分类讨论 (原卷版)

专题11 等腰三角形中的分类讨论 (原卷版)

专题11 等腰三角形中的分类讨论【知识点睛】❖ 在等腰三角形中,没有明确指明边是腰还是底时,要进行分类讨论,且求出未知边的长后,一定要看这三边能否组成三角形;❖ 没有明确指明角是顶角或底角时,也要进行分类讨论 设等腰三角形中有一个角为α时 对应结论 当α为顶角时底角=α2190-︒ 当α为直角或钝角时不需要分类讨论,该角必为顶角 当α为锐角时α可以为顶角;也可以为底角 当等腰三角形的一个外角为α时对应结论 若α为锐角、直角α必为顶角的外角 若α为钝角α可以是顶角的外角,也可以是底角的外角❖ 动态环境下的等腰三角形存在性问题【类题训练】1.已知△ABC 是等腰三角形,它的周长为20cm ,一条边长6cm ,那么腰长是 cm .2.(1)等腰三角形中有一个角是70°,则它的顶角是 .(2)等腰三角形中有一个角是100°,则它的另两个角是 .(3)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为 .3.如果等腰三角形的周长是35cm ,一腰上中线把三角形分成两个三角形,其周长之差是4cm ,则这个等腰三角形的底边长是 .4.等腰三角形一腰上的高与另一腰所成的夹角为45°,则这个等腰三角形的顶角的度数为 .5.如图,已知直角三角形ABC中,∠ACB=90°,∠CAB=60°,在直线BC或AC上取一点P,使得△ABP为等腰三角形,则符合条件的点有()A.4个B.5个C.6个D.7个6.用一根长为21厘米的铁丝围成一个三条边长均为整数厘米的等腰三角形,则方案的种数为()A.5B.6C.7D.87.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.8.如图,M,N是∠AOB的边OA上的两个点(OM<ON),∠AOB=30°,OM=a,MN =4.若边OB上有且只有1个点P,满足△PMN是等腰三角形,则a的取值范围是.9.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.10.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条11.如图,△ABC中,∠B=60°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为.12.如图,等边△ABC的边长为6,点P沿△ABC的边从A→B→C运动,以AP为边作等边△APQ,且点Q在直线AB下方,当点P、Q运动到使△BPQ是等腰三角形时,点Q 运动路线的长为.13.如图,在△ABC中,∠ACB=2∠A,过点C的直线能将△ABC分成两个等腰三角形,则∠A的度数为.14.已知等边△ABC的边长为3,点E在直线AB上,点D在直线CB上,且ED=EC,若AE=6,则CD的长为.15.△ABC的高AD、BE所在的直线交于点M,若BM=AC,求∠ABC的度数.16.已知△ABC中,∠ACB=90°,AC=BC,过点C作直线l,BE⊥l于E,AD⊥l于D.若BE=2,AD=6,求DE的长.17.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.18.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)图①是顶角为36°的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)图③是顶角为45°的等腰三角形,请你在图③中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,则x所有可能的值为.19.如图,在四边形ABCD中,AB∥CD,AE交BC于点P,交DC的延长线于点E,点P 为AE的中点.(1)求证:点P也是BC的中点;(2)若CB⊥AB,且DP=,CD=,AB=4,求AP的长;(3)在(2)的条件下,若线段AE上有一点Q,使得△ABQ是等腰三角形,求AQ的长.。

八年级等腰三角形的分类讨论专题

八年级等腰三角形的分类讨论专题

专题一:等腰三角形中的分类讨论(一)角分类:顶角和底角+ 三角形内角和;外角1.已知一个等腰三角形两内角的度数之比为1:4,求顶角的度数。

2.一个等腰三角形的一个内角比另一个内角的2倍少30o,求这个三角形的三个内角的度数。

3.如果一个等腰三角形的一个外角等于100°,则该等腰三角形的底角的度数是.(二)边分类:底边和腰+ 三角形三边关系4.等腰三角形的两边分别是8,6,这个等腰三角形的周长为5.等腰三角形的两边分别是8,3,这个等腰三角形的周长为6.在等腰三角形ABC中,AB的长是AC的2倍,三角形的周长是40,则AB的长等于_______________.(三)中线分类7.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,求腰长和底长。

8.等腰三角形的底边长为6cm,一腰上的中线把这个三角形的周长分为两部分,这两部分之差是3cm,求这个等腰三角形的腰长(四)高、垂直平分线分类9.已知等腰三角形一腰上的高与另一腰的夹角为25°,求底角的度数10.在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____________11.(2018·哈尔滨中考)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数12.(2019·白银中考)定义:等腰三角形的顶角与其一个底角的度数的比值b 称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=13.(2018·绍兴中考)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题。

等腰三角形中的分类讨论问题归类

等腰三角形中的分类讨论问题归类

初中数学等腰三角形的分类讨论等腰三角形是一种特殊而又十分重要的三角形,就是因为这种特殊性,在具体处理问题时往往又会出现错误,因此,同学们在求解有关等腰三角形的问题时一定要注意分类讨论。

那么在什么情况下应该分类讨论呢?本文分以下几种情形讲述。

一、遇角需讨论例1. 已知等腰三角形的一个内角为75°则其顶角为( )A. 30°B. 75°C. 105°D. 30°或75°简析:75°角可能是顶角,也可能是底角。

当75°是底角时,则顶角的度数为180°-75°×2=30°;当75°角是顶角时,则顶角的度数就等于75°。

所以这个等腰三角形的顶角为30°或75°。

故应选D 。

说明:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解。

二、遇边需讨论例2. 已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。

简析:已知条件中并没有指明5和6谁是腰长谁是底边的长,因此应由三角形的三边关系进行分类讨论。

当5是等腰三角形的腰长时,这个等腰三角形的底边长就是6,则此时等腰三角形的周长等于16;当6是腰长时,这个三角形的底边长就是5,则此时周长等于17。

故这个等腰三角形的周长等于16或17。

说明:对于底和腰不等的等腰三角形,若条件中没有明确哪是底哪是腰时,应在符合三角形三边关系的前提下分类讨论。

三、遇中线需讨论例3. 若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。

简析:已知条件并没有指明哪一部分是9cm ,哪一部分是12cm ,因此,应有两种情形。

若设这个等腰三角形的腰长是x cm ,底边长为y cm ,可得⎪⎪⎩⎪⎪⎨⎧=+=+,1221,921y x x x 或⎪⎪⎩⎪⎪⎨⎧=+=+.921,1221y x x x 解得⎩⎨⎧==,9,6y x 或⎩⎨⎧==.5,8y x 即当腰长是6cm 时,底边长是9cm ;当腰长是8cm 时,底边长是5cm 。

等腰三角形易错题精粹

等腰三角形易错题精粹

等腰三角形一、选择题 1.(2010浙江宁波) 如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是△ABC 、△BCD 的角平分线,则图中的等腰三角形有(A)5个 (B)4个 (C)3个 (D)2个【答案】A 2.(2010 浙江义乌)如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段P A =5,则线段PB 的长度为( ▲ )A .6B .5C .4D .3 【答案】B3.(2010江苏无锡)下列性质中,等腰三角形具有而直角三角形不一定具有的是 ( )A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180° 【答案】B4.(2010 黄冈)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定第15题图 【答案】B .ABC DPE D CBA(第10题)5.(2010山东烟台)如图,等腰△ ABC 中,AB=AC ,∠A=20°。

线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于 A 、80° B 、 70° C 、60° D 、50°【答案】C6.(2010江西)已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是( )A .8B .7C . 4D .3【答案】B 7.(2010湖北武汉)如图,△ABC 内有一点D ,且DA=DB=DC ,若∠DAB=20°,∠DAC=30°,则∠BDC 的大小是( )A.100°B.80°C.70°D.50° 【答案】A 8.(2010山东威海)如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点, 连接BD .若BD 平分∠ABC ,则下列结论错误的是A .BC =2BEB .∠A =∠EDAC .BC =2AD D .BD ⊥ACADBEC【答案】C9.(2010 湖南株洲)如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是A .6B .7C .8D .9【答案】C 10.(2010云南楚雄)已知等腰三角形的一个内角为70°,则另外两个内角的度数是( )A .55°,55°B .70°,40°C .55°,55°或70°,40°D .以上都不对 【答案】C 11.(2010湖北随州)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定第15题图【答案】B12.(2010湖北襄樊)已知:一等腰三角形的两边长x 、y 满足方程组2-3,328,x y x y =⎧⎨+=⎩则此等腰三角形的周长为( )A .5B .4C .3D .5或4 【答案】A 13.(2010 山东东营)如图,点C 是线段AB 上的一个动点,△ACD 和△BCE 是在AB 同侧的两个等边三角形,DM ,EN 分别是△ACD 和△BCE 的高,点C 在线段AB 上沿着从点A 向点B 的方向移动(不与点A ,B 重合),连接DE ,得到四边形DMNE .这个四边形的面积变化情况为( )(A )逐渐增大 (B) 逐渐减小 (C) 始终不变 (D) 先增大后变小【答案】C 14.(2010 广东汕头)如图,把等腰直角△ABC 沿BD 折叠,使点A 落在边BC 上的点E 处.下面结论错误的是( ) A .AB =BE B .AD =DC C .AD =DE D .AD =EC【答案】B15.(2010 重庆江津)已知:△ABC 中,AB=AC=x ,BC=6,则腰长x 的 取值范围是( )A .03x <<B .3x >C .36x <<D .6x >【答案】B16.(2010 重庆江津)如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF .下列结论中正确的个数有( )①45EAF ∠=︒ ②△ABE ∽△ACD ③EA 平分CEF ∠ ④222BE DC DE +=A .1个B .2个C .3个D .4个【答案】C17.(2010广东茂名)如图,吴伯伯家有一块等边三角形的空地ABC,已知点E、F分别是边AB、AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需用篱笆的长是A、15米B、20米C、25米D、30米【答案】C18.(2010广东深圳)如图1,△ABC中,AC=AD=BD,∠DAC=80°。

勾股定理常见错例剖

勾股定理常见错例剖

勾股定理常见错例剖勾股定理是数学中非常重要的一个定理,不仅在初中数学中经常被使用,同时在高中和大学中也是非常常见的数学工具之一。

然而,由于勾股定理的使用过程比较复杂,因此在实际解题中也很容易出现一些错误。

下面将就勾股定理常见错例剖做以介绍。

首先,勾股定理最常见的错误是计算公式出错。

勾股定理的表示方法为:a²+b²=c²,其中a、b分别为直角边,c为斜边。

然而,很多学生在计算时会出现计算公式的错误,导致最终得到的结果不正确。

例如,一道常见的题目为:已知一个等腰直角三角形的直角边为3cm,求它的斜边长。

根据勾股定理,可以得到:3²+3²=c²,简化后可得:c=3√2,即斜边长为3√2cm。

然而,如果计算公式出错,可能会得到不正确的答案。

其次,勾股定理的使用条件也是一个比较容易出问题的地方。

勾股定理只能用于直角三角形,如果使用在非直角三角形中,就会导致错误的结果。

有些学生在解题时不加思考地使用勾股定理,导致得出的结果不符合实际。

因此,在使用勾股定理时,一定要首先确定这个三角形是否为直角三角形,否则勾股定理就不能生效。

第三,勾股定理的使用方法也是一个容易出错的地方。

很多学生在使用勾股定理时,并没有对a、b两条直角边进行正确的辨别,导致最终结果的错误。

此外,还可能会出现勾股定理与勾三股四五倍角、三弦定理等其他定理的混淆,导致最终结果的错误。

因此,在使用勾股定理时,一定要先仔细观察题目,分析其解题思路,尽可能准确地使用勾股定理。

最后,勾股定理的实际应用也是一个容易出错的地方。

在实际使用中,勾股定理经常用于计算斜杠长度和斜坡长度等问题。

然而,在实际问题中,所涉及的条件比较复杂,可能存在多种解决方法。

因此,在应用勾股定理时,一定要充分了解问题的背景和条件,避免出现不恰当的使用。

综上所述,勾股定理是数学学习中非常重要的一个定理,但在实际解题中也容易出现一些错误。

专题08 等腰三角形中的分类讨论模型(解析版)

专题08 等腰三角形中的分类讨论模型(解析版)

专题08等腰三角形中的分类讨论模型模型1、等腰三角形中的分类讨论:【知识储备】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。

1)无图需分类讨论①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论;③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。

2)“两定一动”等腰三角形存在性问题:即:如图:已知A ,B 两点是定点,找一点C 构成等腰ABC △方法:两圆一线具体图解:①当AC AB =时,以点A 为圆心,AB 长为半径作⊙A ,点C 在⊙A 上(B ,C 除外)②当BC AB =时,以点B 为圆心,AB 长为半径作⊙B ,点C 在⊙B 上(A ,E 除外)③当BC AC =时,作AB 的中垂线,点C 在该中垂线上(D 除外)例1.(2023秋·河北张家口·八年级统考期末)ABC 是等腰三角形,5,7AB AC ==,则ABC 的周长为()A .12B .12或17C .14或19D .17或19【答案】D【分析】根据等腰三角形的定义分两种情况:当腰为5与腰为7时,即可得到答案.【详解】解:当ABC 的腰为5时,ABC 的周长55717++=;当ABC 的腰为7时,ABC 的周长57719++=.故选:D .【点睛】本题主要考查等腰三角形的定义,掌握等腰三角形的定义是解题的关键.例2.(2023春·四川巴中·七年级统考期末)等腰三角形的周长为32cm ,一边长为8cm ,则其它两边长是()∴150∠=︒,即顶角为150︒;故答案为:30︒或150︒.BAC【点睛】本题考查等腰三角形的性质,注意掌握分类讨论思想和数形结合思想的应用是解题的关键.例5.(2023秋·江苏·八年级专题练习)在如图所示的网格中,在格点上找一点P,使ABP为等腰三角形,则点P有()A.6个B.7个C.8个D.9个【答案】C【分析】分三种情况讨论:以AB为腰,点A为顶角顶点;以AB为腰,点B为顶角顶点;以AB为底.【详解】解:如图:如图,以AB为腰,点A为顶角顶点的等腰三角形有5个;以AB为腰,点B为顶角顶点的等腰三角形有3个;不存在以AB为底的等腰ABP,所以合计8个.故选:C.【点睛】本题考查等腰三角形的定义,网格图中确定线段长度;在等腰三角形腰、底边待定的情况下,分类讨论是解题的关键.例6.(2023·重庆市八年级期中)如图1,一副直角三角板△ABC和△DEF,∠BAC=∠EDF=90°,∠B=45°,∠F=30°,点B、D、C、F在同一直线上,点A在DE上.如图2,△ABC固定不动,将△EDF绕点D逆时针旋转α(0°<α<135°)得△E′DF',当直线E′F′与直线AC、BC所围成的三角形为等腰三角形时,α的大小为___.【答案】7.5°或75°或97.5°或120°【分析】设直线E′F′与直线AC、BC分别交于点P、Q,根据△CPQ为等腰三角形,分三种情况:①当∠PCQ 为顶角时,∠CPQ=∠CQP,如图1,可求得α=7.5°;如图2,△CPQ为等腰三角形中,∠PCQ为顶角,可求得α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,可得∠CPQ=90°,如图3,进而求得α=90°-15°=75°;③如图4,当∠CQP为顶角时,∠CPQ=∠PCQ=45°,可得∠CQP=90°,进而求得α=∠EDE′=∠EDQ+∠QDE′=90°+30°=120°.【详解】解:设直线E′F′与直线AC、BC分别交于点P、Q,∵△CPQ为等腰三角形,∴∠PCQ为顶角或∠CPQ为顶角或∠CQP为顶角,①当∠PCQ为顶角时,∠CPQ=∠CQP,如图1,∵∠BAC=∠EDF=90°,∠B=45°,∠F=30°,∴∠E′DF′=90°,∠ACB=45°,∠E′F′D=30°,∵∠CPQ+∠CQP=∠ACB=45°,∴∠CQP=22.5°,∵∠E′F′D=∠CQP+∠F′DQ,∴∠F′DQ=∠E′F′D-∠CQP=30°-22.5°=7.5°,∴α=7.5°;如图2,∵△CPQ为等腰三角形中,∠PCQ为顶角,∴∠CPQ=∠CQP=67.5°,∵∠E′DF′=90°,∠F′=30°,∴∠E′=60°,∴∠E′DQ=∠CQP-∠E′=67.5°-60°=7.5°,∴α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,∴∠CPQ=90°,如图3,∵∠DE ′F ′=∠CQP +∠QDE ′,∴∠QDE ′=∠DE ′F ′-∠CQP =60°-45°=15°,∴α=90°-15°=75°;③如图4,当∠CQP 为顶角时,∠CPQ =∠PCQ =45°,∴∠CQP =90°,∴∠QDF ′=90°-∠DF ′E ′=60°,∴∠QDE ′=∠E ′DF ′-∠QDF ′=30°,∴α=∠EDE ′=∠EDQ +∠QDE ′=90°+30°=120°;综上所述,α的大小为7.5°或75°或97.5°或120°.故答案为:7.5°或75°或97.5°或120°.【点睛】本题考查了等腰三角形性质,直角三角形性质,旋转的性质,三角形内角和定理等,解题关键是运用数形结合思想和分类讨论思想思考解决问题.例7.(2022秋·江苏徐州·八年级校考期中)如图,70AOB ∠=︒,点C 是边OB 上的一个定点,点P 在角的另一边OA 上运动,当COP 是等腰三角形,OCP ∠=°.【答案】40或70或55【分析】分三种情况讨论:①当OC PC =,②当PO PC =,③当OP OC =,根据等腰三角形的性质以及三角形内角和定理即可得到结论.【详解】解:如图,(1)若点P在BC上,且满足PA PB=,求此时(3)在运动过程中,当t为何值时,ACP△【答案】(1)6516(2)316或52(3)54或32或90ACB∠=︒,5cmAB=在Rt ACP中,由勾股定理得()22234x x∴+-=,解得BP 平分ABC ∠,C ∠在BCP 与BDP △中,∵A B ∠∠=︒+90,90ACP BCP ∠+∠=︒,B BCP ∴∠=∠,CP BP AP ∴==,P ∴是AB 的中点,即15cm 22AP AB ==,524AP t ∴=.②如图,当P 在AB 上且3cm AP CA ==时,∴322AP t ==.③如图,当P 在AB 上且(1)求直线AB 的表达式和点D 的坐标;(2)横坐标为m 的点P 在线段AB 上(不与点A x 轴的平行线交AD 于点E ,设PE 的长为()0y y ≠,求y 与m 之间的函数关系式并直接写出相应的范围;(3)在(2)的条件下,在x 轴上是否存在点F ,使PEF !为等腰直角三角形?若存在求出点若不存在,请说明理由.【答案】(1)()450y x D =-+-,,(2)()33242y m m =+-<<,的运用,解答本题时求出函数的解析式是关键.课后专项训练A.120︒B.75︒【答案】C【答案】D【分析】分为AB AC =、BC BA =,CB CA =三种情况画图判断即可.【详解】解:如图所示:当AB AC =时,符合条件的点有2个;当BC BA =时,符合条件的点有1个;当CB CA =,即当点C 在AB 的垂直平分线上时,符合条件的点有一个.故符合条件的点C 共有4个.故选:D .【点睛】本题考查了等腰三角形的定义,线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.4.(2023·江苏八年级期中)如图,在正方形网格中,每个小正方形的边长都为1,点A 、B 都是格点(小正方形的顶点叫做格点),若△ABC 为等腰三角形,且△ABC 的面积为1,则满足条件的格点C 有()A .0个B .2个C .4个D .8个【答案】C 【分析】根据等腰三角形的性质和三角形的面积解答即可.【详解】解:如图所示:∵△ABC 为等腰三角形,且△ABC 的面积为1,∴满足条件的格点C 有4个,故选C .【点睛】本题考查了等腰三角形的判定;熟练掌握等腰三角形的性质和三角形的面积是解决问题的关键A.3【答案】D故选:满足条件的点M 的个数为2.故选A .【点睛】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7.(2022·安徽淮北·九年级阶段练习)如图,在ABC 中,90C ∠=︒,8BC =,6AC =.若点P 为直线BC 上一点,且ABP △为等腰三角形,则符合条件的点P 有().A .1个B .2个C .3个D .4个【点睛】本题考查了等腰三角形的判定和勾股定理的应用,关键要用分类讨论的思想.8.(2022·黑龙江·哈尔滨八年级阶段练习)如图,在平面直角坐标系中,点A 的坐标为()1,1,在x 轴上确定点P ,使AOP 为等腰三角形,则符合条件的点P 有()A.2个B.3个C.4个D.5个【答案】C【分析】先计算OA的长,再以OA为腰或底分别讨论,进而得出答案.【详解】解:如图,22112OA=+=,当AO=OP1,AO=OP3时,P1(﹣2,0),P3(2,0),当AP2=OP2时,P2(1,0),当AO=AP4时,P4(2,0),故符合条件的点有4个.故选:C.【点睛】本题以平面直角坐标系为载体,主要考查了勾股定理和等腰三角形的定义,属于常考题型,全面分类、掌握解答的方法是关键.9.(2022·四川广元·八年级期末)如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,C所在直线为y轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使△MAB为等腰三角形,符合条件的M点有()A.6个B.7个C.8个D.9个∵BD AC ⊥,∴90ADB ∠=︒,∵∵BD AC ⊥,∴90ADB ∠=︒,∵ABD ∠11【分析】根据等腰三角形一腰上的中线将其周长分别为12和9两部分得到底和要的差是1293-=,再根据周长列式求解即可得到答案;【详解】解:∵等腰三角形一腰上的中线将其周长分别为12和9两部分,∴腰与底的差为:1293-=,①当底边比腰长时,设腰为x ,则底为3x +,由题意可得,32129x x ++=+,解得:6x =,3639x +=+=,②当腰比底边长时,设腰为x ,则底为3x -,由题意可得,32129x x -+=+,解得:8x =,3835x -=-=,故答案为:6,9或8,5.【点睛】本题主要考查三角形中线有关计算,解题的关键是得到腰长与底边之差再分类讨论.14.(2022·黑龙江哈尔滨·八年级期末)在平面直角坐标系xOy 中,已知A (1,2),在y 轴确定点P ,使△AOP 为等腰三角形,则符合条件的点P 有____个.【答案】4.【分析】根据等腰三角形的判定得出可能OA 为底,可能OA 为腰两种情况,依此即可得出答案.【详解】①以A 为圆心,以OA 为半径作圆,此时交y 轴于1个点(O 除外);②以O 为圆心,以OA 为半径作圆,此时交y 轴于2个点;③作线段AO 的垂直平分线,此时交y 轴于1个点;共1+2+1=4.故答案为:4.【点睛】本题考查了等腰三角形的判定的应用,有两边相等的三角形是等腰三角形,注意要进行分类讨论.15.(2022秋·江苏盐城·八年级校考阶段练习)如图,ABC 中,90ACB ∠=︒,10cm AB =,8cm AC =,若点P 从点A 出发,以每秒1cm 的速度沿折线A C B A ---运动,设运动时间为t 秒()0t >,当点P 在边AB 上,【答案】19或20或21.2【分析】利用等腰三角形的性质,依次画图,分类讨论即可.【详解】∵90ACB ∠=当P 在BA 上时,①②当6cm BC CP ==时,过CD PB ⊥于点D ,如图,∴12BD DP BP ==,∵12ABC S AC BC CD ==V g g ,∴ 4.8AC BC CD AB == ,在Rt CBD △中,由勾股定理得:()2226 4.8 3.6cm BD BC CD =--=,∴)22 3.6cm BP BD ==⨯=,∴(()867.221.2s t =++,【答案】5或8【分析】ABP 是以AB 为腰的等腰三角形时,分两种情况:出BP 的长度,继而可求得t 值.【详解】解:在Rt ABC △中,∠②当AB AP =时,28cm 8BP BC t ===,故答案为:5或8.【点睛】本题考查了勾股定理以及等腰三角形的知识,解答本题的关键是掌握等腰三角形的性质,以及分情况讨论,注意不要漏解.15.(2022·河南平顶山·八年级期末)如图,ABC 中,90C ∠=︒,6BC =,ABC ∠的平分线与线段AC 交于点D ,且有AD BD =,点E 是线段AB 上的动点(与A 、B 不重合),连接DE ,当BDE 是等腰三角形时,则BE 的长为___________.【答案】4或4【分析】现根据已知条件得出30CBD ABD BAD ∠=∠=∠=︒,再根据BC =6,分别求出AB 、AC 、BD 、AD 、(2)当BE =DE ,如图:∵BE =DE ∠EDB =∠ABD =30°,∴∠AED =∠EDB ∴∠ADE =180°-∠AED -∠A =180°-60°-30°=90°,∴ ADE 为直角三角形,又∵30A ∠=︒且AD =43,∴DE ,∴BE =4;(3)当BD =DE ,时,点E 与A 重合,不符合题意;综上所述,BE 为4或43.故答案为:4或43.【点睛】本题考查了等腰三角形的性质,直角三角形的性质和判定,勾股定理的应用,16.(2023·上虞市初二月考)在如图所示的三角形中,∠A =30°,点P 和点Q 分别是边AC 和BC 上的两个动点,分别连接BP 和PQ ,把△ABC 分割成三个三角形△ABP ,△BPQ ,△PQC ,若分割成的这三个三角形都是等腰三角形,则∠C 有可能的值有________个.【答案】7【分析】①当AB=AP ,BQ=PQ ,CP=CQ 时;②当AB=AP ,BP=BQ ,PQ=QC 时;③当APB ,PB=BQ ,PQ=CQ 时;④AP=PB,PB=PQ,PQ=QC时;根据等腰三角形的性质和三角形的内角和即可得到结论.【解析】解:如图所示,共有9种情况,∠C的度数有7个,分别为80°,40°,35°,20°,25°,100°,50°.①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时,③当AP=AB,PQ=CQ,PB=PQ时.④当AP=AB,PQ=PC,BQ=PQ时,⑤当AP=BP,CP=CQ,QB=PQ时,⑥当AP=PB,PB=BQ,PQ=CQ时;⑦AP=PB,PB=PQ,PQ=QC时.⑧AP=PB,QB=PQ,PQ=CC时.⑨BP=AB,PQ=BQ,PQ=PC时.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.17.(2022·浙江·八年级专题练习)已知:如图,线段AC和射线AB有公共端点A.求作:点P,使点P在射线AB上,且ACP为等腰三角形.(利用无刻度的直尺和圆规作出所有符合条件的点P,不写作法,保留作图痕迹)【答案】见解析.【分析】分别作出①AP=CP;②AP=AC;③AC=CP即可.【详解】如图所示,点1P、2P、3P即为所求.△是等腰三角形的三种情况,避免漏答案.【点睛】本题考查尺规作图-作等腰三角形.特别注意ACP18.(2022·山东·周村二中八年级期中)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).(2)如图,在△ABC中,∠A=80°,AB=AC,若点P是△ABC的巧妙点,则符合条件的点P一共有几个?请直接写出每种情况下∠BPC的度数.(3)等边三角形的巧妙点的个数有()A.2个B.6个C.10个D.12个【答案】(1)见解析;(2)6个;∠BPC的度数为40°或160°或140°或80°;(3)C.综上所述:∠BPC的度数40°或80°或140°或160°.(3)如图所示,分别以等边三角形的三条边作其对应边的垂直平分线,再分别以等边三角形的三个顶点为圆心,等边三角形的边长为半径画圆,分别与三条边的垂直平分线的交点和三条垂直平分线的交点即为等边三角形的巧妙点,共有10个,故选:C.【点睛】本题主要考查垂直平分线的性质、等腰三角形的性质,构建等腰三角形的作法:定顶点,定圆心;定腰,定半径;以及等边三角形的性质等.熟练掌握相关性质是解题关键.19.(2022·黑龙江密山·八年级期末)如图,直线MN与x轴、y轴分别相交于B、A两点,()2-+-=.(1)求A,B两点的坐标;(2)若点O到AB的距离为24OA OB6805,求线段AB的长;(3)在(2)的条件下,x轴上是否存在点P,使△ABP是以AB为腰的等腰三角形,若存在请直接写出满足条件的点P的坐标.【答案】(1)A (0,6),B (8,0);(2)AB =10;(3)存在,(-8,0)、(-2,0)、(18,0).【分析】(1)由非负数的性质知OA =6,OB =8,据此可得点A 和点B 的坐标;(2)根据1122OAB S AB d OA OB == △求解可得;(3)先设点P (a ,0),根据A (0,6),B (8,0)得()22222226810100PA a PB a AB =+=-==,,,再分PA =AB 和AB =PB 两种情况分别求解可得.(1)()2680OA OB -+-= ∴O −6=0O −8=068OA OB ∴==则A 点的坐标为A (0,6),B 点的坐标为(8,0)(2)1122OAB S AB d OA OB == △,245d =6810245OA OB AB d ⨯∴=== (3)存在点P ,使△ABP 是以AB 为腰的等腰三角形设点P (a ,0),根据A (0,6),B (8,0)得()22222226810100PA a PB a AB =+=-==,,①若PA =AB ,则22PA AB =,即226100a +=,解得a =8(舍)或a =−8,此时点P (−8,0);②若AB =PB ,即22AB PB =,即()21008a =-解得a =18或a =−2,此时点P (18,0)或(−2,0);综上,存在点P ,使△ABP 使以AB 为腰的等腰三角形,其坐标为(−8,0)或(18,0)或(−2,0).【点睛】本题考察了非负数的性质、直角三角形的面积求法、勾股定理及等腰三角形的性质,分类讨论思想的运用是解决第3问的关键20.(2022秋·四川成都·八年级校考期中)如图,四边形OABC 是一张长方形纸片,将其放在平面直角坐标系中,使得点O 与坐标原点重合,点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为()3,4,D 的坐标为()2,4,现将纸片沿过D 点的直线折叠,使顶点C 落在线段AB 上的点F 处,折痕与y 轴的交点记为E .。

专题19 等腰三角形(归纳与讲解)(解析版)

专题19 等腰三角形(归纳与讲解)(解析版)

专题19 等腰三角形【专题目录】技巧1:等腰三角形中四种常用作辅助线的方法技巧2:巧用特殊角构造含30°角的直角三角形技巧3:分类讨论思想在等腰三角形中的应用【题型】一、等腰三角形的定义【题型】二、根据等边对等角求角度【题型】三、根据三线合一求解【题型】四、根据等角对等边证明等腰三角形【题型】五、根据等角对等边求边长【题型】六、等腰三角形性质与判定的综合【题型】七、等边三角形的性质【题型】八、含30°角的直角三角形【考纲要求】1.了解等腰三角形的有关概念,掌握其性质及判定.2.了解等边三角形的有关概念,掌握其性质及判定.3.掌握线段中垂线的性质及判定.【考点总结】一、等腰三角形【考点总结】二、等边三角形【考点总结】三、直角三角形【技巧归纳】技巧1:等腰三角形中四种常用作辅助线的方法【类型】一、作“三线”中的“一线”1.如图,在△ABC中,AB=AC,D是BC的中点,过点A作EF∥BC,且AE=AF.求证:DE=DF.【类型】二、作平行线法2.如图,在△ABC中,AB=AC,点P从点B出发沿线段BA移动,同时,点Q从点C出发沿线段AC的延长线移动,点P,Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求证:PD=QD.(2)如图②,过点P作直线BC的垂线,垂足为E,当P,Q在移动的过程中,线段BE,ED,CD中是否存在长度保持不变的线段?请说明理由.【类型】三、截长补短法3.如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60°.求证:BD+DC=AB.【类型】四、加倍折半法4.如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,求∠C的度数.5.如图,CE,CB分别是△ABC,△ADC的中线,且AB=AC.求证:CD=2CE.参考答案1.证明:如图,连接AD.∵AB=AC,BD=CD,∴AD⊥BC.∵EF∥BC,∴AD⊥EF.∵AE=AF,∴AD垂直平分EF.∴DE=DF.2.(1)证明:如图①,过点P作PF∥AC交BC于F.①点P和点Q同时出发,且速度相同,①BP=CQ.①PF①AQ,①①PFB=①ACB,①DPF=①DQC.又①AB=AC,①①B=①ACB,①①B=①PFB,①BP=FP,①FP=CQ.在①PFD和①QCD中,①DPF=①DQC,①PDF=①QDC,FP=CQ,①①PFD①①QCD(AAS),①PD=QD.(2)解:线段ED的长度保持不变.理由如下:如图②,过点P作PF∥AC交BC于F.由(1)知PB=PF.∵PE⊥BF,∴BE=E F.由(1)知△PFD≌△QCD,∴FD=CD,∴ED=EF+FD=BE+CD=12BC,∴线段ED的长度保持不变.3.证明:如图,延长BD至E,使BE=AB,连接CE,AE.∵∠A BE=60°,BE=AB,∴△ABE为等边三角形.∴∠AEB=60°,AB=AE.又∵∠ACD=60°,∴∠ACD=∠AEB.∵AB=AC,AB=AE,∴AC=AE.∴∠ACE=∠AEC.∴∠DCE=∠DEC.∴DC=DE.∴AB=BE=BD+DE=BD+DC,即BD+DC=AB.4.解:在DC上截取DE=BD,连接AE,∵AD⊥BC,BD=DE,∴AD是线段BE的垂直平分线,∴AB=AE,∴∠B=∠AEB.∵AB+BD=DC,DE=BD,∴AB+DE=CD.而CD=DE+EC,∴AB=EC,∴AE=EC.∴∠EAC=∠C,可设∠EAC=∠C=x,∵∠AEB 为△AEC 的外角,∴∠AEB =∠EAC +∠C =2x ,∴∠B =2x ,∴∠BAE =180°-2x -2x =180°-4x.∵∠BAC =120°,∴∠BAE +∠EAC =120°,即180°-4x +x =120°,解得x =20°,则∠C =20°.5.证明:如图,延长CE 到点F ,使EF =CE ,连接FB ,则CF =2CE.∵CE 是△ABC 的中线,∴AE =BE.在△BEF 和△AEC 中,⎩⎨⎧BE =AE ,∠BEF =∠AEC ,EF =EC ,∴△BEF ≌△AEC(SAS). ∴∠EBF =∠A ,BF =AC.又∵AB =AC ,∴∠ABC =∠ACB.∴∠CBD =∠A +∠ACB =∠EBF +∠ABC =∠CBF.∵CB 是△ADC 的中线,∴AB =BD.又∵AB =AC ,AC =BF ,∴BF =BD.在△CBF 与△CBD 中,⎩⎨⎧CB =CB ,∠CBF =∠CBD ,BF =BD ,∴△CBF ≌△CBD(SAS).∴CF =CD.∴CD =2CE.技巧2:巧用特殊角构造含30°角的直角三角形【类型】一、直接运用含30°角的直角三角形的性质1.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DE =1,则BC =( )A . 3B .2C .3D .3+22.如图,已知△ABC 中,AB =AC ,∠C =30°,AB ⊥AD ,AD =4 cm .求BC 的长.【类型】二、连线段构造含30°角的直角三角形3.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AC于E,AE =8,求CE的长.4.如图,已知在△ABC中,AB=AC,∠A=120°,DE垂直平分AB于点D,交BC 于点E.求证:CE=2BE.【类型】三、延长两边构造含30°角的直角三角形5.如图,四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.【类型】四、作垂线构造含30°角的直角三角形6.如图,四边形ABCD中,∠B=90°,DC∥AB,AC平分∠DAB,∠DAB=30°.求证:AD=2BC.参考答案1.C2.解:∵AB=AC,∠C=30°,∴∠B=∠C=30°.又∵AB⊥AD,∴∠ADB=60°.又∵∠ADB=∠C+∠CAD,∴∠CAD=30°=∠C.∴CD=AD=4 cm.∵AB⊥AD,∠B=30°,∴BD=2AD=8 cm.∴BC=BD+CD=12 cm.3.解:连接AD,∵AB=AC,D为BC的中点,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°.在Rt△ADE中,∠EAD=60°,∴∠ADE=30°,∴AD=2AE=16.在△ABC中,AB =AC,∠BAC=120°.∴∠B=∠C=30°,∴AC=2AD=2×16=32.∴CE=AC-AE=32-8=24.4.证明:如图,连接AE.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∵DE垂直平分AB,∴BE=AE.∴∠BAE=∠B=30°.∴∠EAC=120°-30°=90°.又∵∠C=30°,∴CE=2AE.又∵BE=AE,∴CE=2BE.5.解:延长AD,BC交于点E.∵∠A=30°,∠B=90°,∴∠E=60°.又∵∠ADC=120°,∴∠EDC=180°-120°=60°.∴△DCE是等边三角形.设CD=CE=DE=a,则有2(1+a)=4+a,解得a=2.∴CD的长为2.6.证明:过点C作CE⊥AD交AD的延长线于E.∵DC∥AB,∠DAB=30°,∴∠CDE=30°.在Rt△CDE中,∠CDE=30°,∴CD=2CE.又∵AC平分∠DAB,∴∠DAC=∠BAC,又∵DC∥AB,∴∠BAC=∠DCA,∴∠DAC=∠DCA,∴AD=CD.又∵CE⊥AE,CB⊥AB,AC平分∠DAB,∴BC=CE,∴AD=2BC.7.证明:过点B作BE⊥AD交AD的延长线于点E,则∠DEB=90 °.∵∠BAD=30°,∴BE=12AB.∵AD⊥AC,∴∠DAC=90°,∴∠DEB=∠DAC.又∵BD=CD,∠BDE=∠CDA,∴△BED≌△CAD,∴BE=AC,∴AC=12AB.点拨:由结论AC=12AB和条件∠BAD=30°,就想到能否找到或构造直角三角形,而显然图中没有含30°角的直角三角形,所以过点B作BE⊥AD交AD的延长线于点E,这样就得到了直角三角形ABE,这是解决本题的关键.技巧3:分类讨论思想在等腰三角形中的应用【类型】一、当顶角或底角不确定时,分类讨论1.若等腰三角形中有一个角等于40°,则这个等腰三角形的顶角度数为()A.40°B.100°C.40°或70°D.40°或100°2.已知等腰三角形ABC中,AD⊥BC于D,且AD=12BC,则等腰三角形ABC的底角的度数为()A.45°B.75°C.45°或75°D.65°3.若等腰三角形的一个外角为64°,则底角的度数为________.【类型】二、当底和腰不确定时,分类讨论4.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为() A.8或10B.8C.10D.6或125.等腰三角形的两边长分别为7和9,则其周长为________.6.若实数x,y满足|x-4|+(y-8)2=0,则以x,y的值为边长的等腰三角形的周长为________.【类型】三、当高的位置关系不确定时,分类讨论7.等腰三角形一腰上的高与另一边的夹角为25°,求这个三角形的各个内角的度数.【类型】四、由腰的垂直平分线引起的分类讨论8.在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,求底角∠B的度数.【类型】五、由腰上的中线引起的分类讨论9.等腰三角形ABC的底边BC长为5 cm,一腰上的中线BD把其分为周长差为3 cm的两部分.求腰长.【类型】六、点的位置不确定引起的分类讨论10.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()A.7个B.6个C.5个D.4个11.如图,在△ABC中,BC>AB>AC,∠ACB=40°,如果D,E是直线AB上的两点,且AD=AC,BE=BC,求∠DCE的度数.参考答案1.D 2.C 3.32° 4.C 5.23或25 6.207.解:设AB=AC,BD⊥AC;(1)高与底边的夹角为25°时,高一定在△ABC的内部,如图①,∵∠DBC=25°,∴∠C=90°-∠DBC=90°-25°=65°,∴∠ABC=∠C=65°,∠A=180°-2×65°=50°.(2)当高与另一腰的夹角为25°时,如图②,高在△ABC的内部时,∵∠ABD=25°,∴∠A=90°-∠ABD=65°,∴∠C=∠ABC=(180°-∠A)÷2=57.5°;如图③,高在△ABC的外部时,∵∠ABD=25°,∴∠BAD=90°-∠ABD=90°-25°=65°,∴∠BAC=180°-65°=115°,∴∠ABC=∠C=(180°-115°)÷2=32.5°,故三角形各个内角的度数为:65°,65°,50°或65°,57.5°,57.5°或115°,32.5°,32.5°.点拨:由于题目中的“另一边”没有指明是“腰”还是“底边”,因此必须进行分类讨论,另外,还要结合图形,分高在三角形内还是在三角形外.8.解:此题分两种情况:(1)如图①,AB边的垂直平分线与AC边交于点D,∠ADE=40°,则∠A=50°,∵AB=AC,∴∠B=(180°-50°)÷2=65°.(2)如图②,AB边的垂直平分线与CA的延长线交于点D,∠ADE=40°,则∠DAE=50°,∴∠BAC =130°.∵AB=AC,∴∠B=(180°-130°)÷2=25°.故∠B的大小为65°或25°.9.分析:由于题目中没有指明是“(AB+AD)-(BC+CD)”为3 cm,还是“(BC+CD)-(AB+AD)”为3 cm,因此必须分两种情况讨论.解:∵BD为AC边上的中线,∴AD=CD,(1)当(AB+AD)-(BC+CD)=3 cm时,有AB-BC =3 cm,∵BC=5 cm,∴AB=5+3=8(cm);(2)当(BC+CD)-(AB+AD)=3 cm时,有BC-AB=3 cm,∵BC=5 cm,∴AB=5-3=2(cm),但是当AB=2 cm时,三边长分别为2 cm,2 cm,5 cm.而2+2<5,不能构成三角形,舍去.故腰长为8 cm.[来源:学*科*网Z*X*X*K]10.B11.解:(1)当点D、E在点A的同侧,且都在BA的延长线上时,如图①,∵BE=BC,∴∠BEC=(180°-∠ABC)÷2,∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,∵∠DCE=∠BEC-∠ADC,∴∠DCE=(180°-∠ABC)÷2-∠BAC÷2=(180°-∠ABC-∠BAC)÷2=∠ACB÷2=40°÷2=20°.(2)当点D、E在点A的同侧,且点D在D′的位置,E在E′的位置时,如图②,与(1)类似地也可以求得∠D′CE′=∠ACB÷2=20°.(3)当点D、E在点A的两侧,且E点在E′的位置时,如图③,∵BE′=BC,∴∠BE′C=(180°-∠CBE′)÷2=∠ABC÷2,∵AD=AC,∴∠ADC =(180°-∠DAC)÷2=∠BAC÷2, 又∵∠DCE′=180°-(∠BE′C +∠ADC),∴∠DCE′=180°-(∠ABC +∠BAC)÷2=180°-(180°-∠ACB)÷2=90°+∠ACB÷2=90°+40°÷2=110°.(4)当点D 、E 在点A 的两侧,且点D 在D′的位置时,如图④, ∵AD′=AC ,∴∠AD′C =(180°-∠BAC)÷2, ∵BE =BC ,∴∠BEC =(180°-∠ABC)÷2,∴∠D′CE =180°-(∠D′EC +∠ED′C)=180°-(∠BEC +∠AD′C) =180°-[(180°-∠ABC)÷2+(180°-∠BAC)÷2] =(∠BAC +∠ABC)÷2=(180°-∠ACB)÷2=(180°-40°)÷2=70°.综上所述,∠DCE 的度数为20°或110°或70°.【题型讲解】【题型】一、等腰三角形的定义例1、已知等腰三角形的一边长等于4,一边长等于9,则它的周长为( ) A .9 B .17或22C .17D .22【答案】D【提示】分类讨论腰为4和腰为9,再应用三角形的三边关系进行取舍即可. 【详解】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994,994+>-<,所以能构成三角形,周长是:99422++=. 故选:D .【题型】二、根据等边对等角求角度例2、如图,在①ABC 中,①A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作□BCDE ,则①E 的度数为( )A .40°B .50°C .60°D .70°【答案】D【提示】先根据等腰三角形的性质和三角形的内角和定理求出①C的度数,再根据平行四边形的性质解答即可.【详解】解:①①A=40°,AB=AC,①①ABC=①C=70°,①四边形ABCD是平行四边形,①①E=①C=70°.故选:D.【题型】三、根据三线合一求解例3、如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=()A.2B.3C.4D.5【答案】B【提示】根据尺规作图的方法步骤判断即可.【详解】由作图痕迹可知AD为①BAC的角平分线,而AB=AC,由等腰三角形的三线合一知D为BC重点,BD=3,故选B【题型】四、根据等角对等边证明等腰三角形例4、下列能断定①ABC为等腰三角形的是()A.①A=40°,①B=50°B.①A=2①B=70°C.①A=40°,①B=70°D.AB=3,BC=6,周长为14【答案】C【提示】根据三角形内角和计算角的度数,判断三角形中是否有相等的角;根据三角形的周长计算是否有相等的边即可判断.【详解】A.①C=180°−40°−50°=90°,没有相等的角,则不是等腰三角形,本选项错误;B、①①A=2①B=70°,①①B=35°,①①C=75°,没有相等的角,则不是等腰三角形,本选项错误;C 、①C=180°−40°−70°=70°,有相等的角,则是等腰三角形,本选项正确;D 、①AB=3,BC=6,周长为14,①AC=14−6−3=5,没有相等的边,则不是等腰三角形,本选项错误; 故选C .【题型】五、根据等角对等边求边长例5、如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点.O 若5AE =,3BF =,则AO 的长为( )A B C .D .【答案】C【提示】先证明,AE AF =再求解,,AB AC 利用轴对称可得答案. 【详解】解:由对折可得:,,AFO CFO AF CF ∠=∠= 矩形ABCD ,//,90,AD BC B ∴∠=︒ ,CFO AEO ∴∠=∠ ,AFO AEO ∴∠=∠ 5,AE AF CF ∴=== 3,BF =4,AB ∴==BC=8AC ∴===由对折得:12OA OC AC === 故选C .【题型】六、等腰三角形性质与判定的综合例6、如图,三条笔直公路两两相交,交点分别为A 、B 、C ,测得30CAB ∠=︒,45ABC ∠=︒,8AC =千米,求A 、B 两点间的距离. 1.4≈ 1.7≈,结果精确到1千米).【答案】A 、B 两点间的距离约为11千米. 【提示】如图(见解析),先根据直角三角形的性质、勾股定理可求出CD 、AD 的长,再根据等腰直角三角形的判定与性质可得BD 的长,然后根据线段的和差即可得. 【详解】如图,过点C 作CD AB ⊥于点D在Rt ACD △中,30CAD ∠=︒,8AC =千米118422CD AC ∴==⨯=(千米),AD == 在Rt BCD 中,45DBC ∠=︒Rt BCD ∴是等腰直角三角形4BD CD ∴==千米44 1.7410.811AB AD BD ∴=+=≈⨯+=≈(千米)答:A 、B 两点间的距离约为11千米.【题型】七、等边三角形的性质例7、如图,面积为1的等边三角形ABC 中,,,D E F 分别是AB ,BC ,CA 的中点,则DEF ∆的面积是( )A .1B .12C .13D .14【答案】D【提示】根据题意可以判断四个小三角形是全等三角形,即可判断一个的面积是14. 【详解】①,,D E F 分别是AB ,BC ,CA 的中点,且①ABC 是等边三角形, ①①ADF①①DBE①①FEC①①DFE, ①①DEF 的面积是14. 故选D .【题型】八、含30°角的直角三角形例8、如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .【答案】B【提示】由旋转的性质可知,'=60∠∠=CAB BAB ,进而得出'∆BAB 为等边三角形,进而求出'==2BB AB .【详解】解:① 90,30,1,C ABC AC cm ∠=︒∠=︒= 由直角三角形中,30°角所对的直角边等于斜边的一半可知, ①=2=2AB AC cm ,又①CAB =90°-①ABC =90°-30°=60°,由旋转的性质可知:'=60∠∠=CAB BAB ,且'=AB AB , ①'∆BAB 为等边三角形, ①'==2BB AB . 故选:B .等腰三角形(达标训练)一、单选题1.如图,在①ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,连接AE ,若AE =4,EC =2,则BC 的长是( )A .2B .4C .6D .8【答案】C【分析】根据线段的垂直平分线的性质得到EB =EA =4,结合图形计算,得到答案. 【详解】解:①DE 是AB 的垂直平分线,AE =4, ①EB =EA =4,①BC =EB +EC =4+2=6, 故选:C .【点睛】本题考查的是线段的垂直平分线的性质,解题的关键是掌握线段的垂直平分线上的点到线段的两个端点的距离相等.2.如图,在ABC 中,5AC =,7BC =,9AB =,用图示尺规作图的方法在边AB 上确定一点D .则ACD 的周长为( ).A .12B .14C .16D .21【答案】B【分析】根据题意得:尺规作图的方法所作的直线是BC 的垂直平分线,可得CD BD = ,从而得到ACD 的周长为AC CD AD ++ ,即可求解.【详解】解:根据题意得:尺规作图的方法所作的直线是BC 的垂直平分线, ①CD BD = , ①9AB =,①9CD AD AD BD AB +=+== , ①5AC =,①ACD 的周长为5914AC CD AD AC AB ++=+=+= . 故选:B .【点睛】本题主要考查了尺规作图——作已知线段的垂直平分线,线段垂直平分线的性质,熟练掌握线段垂直平分线上的点到线段两端的距离相等是解题的关键. 3.下列命题,错误的是( )A .有一个锐角和斜边对应相等的两个直角三角形全等B .如果①A 和①B 是对顶角,那么①A =①BC .等腰三角形两腰上的高相等D .三角形三边垂直平分线的交点到三角形三边的距离相等 【答案】D【分析】利用全等三角形的判定、对顶角的性质、等腰三角形的性质及垂直平分线的性质分别判断后即可确定正确的选项.【详解】解:A 、有一个锐角和斜边对应相等的两个直角三角形全等,正确,不符合题意; B 、如果①A 和①B 是对顶角,那么①A =①B ,正确,不符合题意; C 、等腰三角形两腰上的高相等,正确,不符合题意;D 、三角形三边垂直平分线的交点到三角形三顶点的距离相等,故原命题错误,符合题意. 故选:D .【点睛】考查了命题与定理的知识,解题的关键是了解全等三角形的判定、对顶角的性质、等腰三角形的性质及垂直平分线的性质,属于基础性知识,比较简单.4.如图,点F ,E 在AC 上,AD CB =,D B ∠=∠.添加一个条件,不一定能证明ADE CBF ≌的是( )A .AD BC ∥B .DE FB ∥C .DE BF =D .AE CF =【答案】D【分析】根据全等三角形的判定定理判断即可. 【详解】A :①AD BC ∥, ①A C ∠=∠,①在ADE 和CBF 中, A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①()ADE CBF ASA ≌,正确,故本选项错误; B :①DE FB ∥, ①AED CFB ∠=∠, ①在ADE 和CBF 中,AED CFB D BAD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①()ADE CBF AAS ≌,正确,故本选项错误; C :①在ADE 和CBF 中, DE BF D B AD CB =⎧⎪∠=∠⎨⎪=⎩, ①()ADE CBF SAS ≌,正确,故本选项错误;D :根据AD CB =,D B ∠=∠,AE CF =不能推出ADE CBF ≌,错误,故本选项正确. 故选D .【点睛】本题考查全等三角形的判定的应用,平行线的性质.熟练掌握全等三角形的判定定理是解本题的关键.5.如图,矩形ABCD 的对角线AC 的垂直平分线分别交AD 、AC 、BC 于点E 、O 、F ,若1216AB BC ==,,则EF 的长为( )A .8B .15C .16D .24【答案】B【分析】根据矩形的性质得到AO =CO ,①AOE =①COF ,根据平行线的性质得出①EAO =①FCO ,根据ASA 推出①AEO ①①CFO ,由全等得到OE =OF ,推出四边形是平行四边形,再根据EF ①AC 即可推出四边形是菱形,根据垂直平分线的性质得出AF =CF ,根据勾股定理即可得出结论. 【详解】连接AF ,CE ,①EF 是AC 的垂直平分线, ①AO =CO ,①AOE =①COF =90°, ①四边形ABCD 是矩形, ①AD ①BC , ①①EAO =①FCO , 在①AEO 和①CFO 中,EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=⎩, ①①AEO ①①CFO (ASA ), ①OE =OF , 又①OA =OC ,①四边形AECF 是平行四边形, ①EF ①AC ,①平行四边形AECF 是菱形, ①AE =CE , 设AE =CE =x ,①EF 是AC 的垂直平分线, ①AE =CE =x ,DE =16-x ,在Rt ①CDE 中,222CD DE AE +=,()2221216x x +-=,解得252x =, ①AE =252,①20AC =, ①12AO AC ==10,①152OE =, ①EF =2OE =15, 故选:B .【点睛】本题考查了矩形的性质,菱形的判定和性质,勾股定理,全等三角形的判定和性质,证得四边形AECF 是菱形是解题的关键.二、填空题6.如图,在ABC 中,90C ∠=︒,AD 平分CAB ∠,2BD CD =,点D 到AB 的距离为5.6,则BC =___cm .【答案】16.8【分析】过D 作DE ①AB 于E ,根据角平分线性质得出CD =DE ,再求出BD 长,即可得出BC 的长. 【详解】解:如图,过D 作DE ①AB 于E ,①①C =90°, ①CD ①AC , ①AD 平分①BAC , ①CD =DE ,①D 到AB 的距离等于5.6cm , ①CD =DE =5.6cm , 又①BD =2CD , ①BD =11.2cm ,①BC =5.6+11.2=16.8cm , 故答案为:16.8.【点睛】本题主要考查了角平分线性质的应用,解题时注意:角平分线上的点到角两边的距离相等. 7.如图,在ABC 中,90ACB ∠=︒,BE CE ⊥于点E ,AD CE ⊥于点D ,请你添加一个条件__________,使BEC CDA ≌(填一个即可).【答案】AC BC =(答案不唯一)【分析】两个三角形全等已具备的条件是:90ADC CEB ∠=∠=︒,ACD CBE ∠=∠,根据三角形全等的判定方法即可确定添加的条件. 【详解】解:添加的条件是AC BC =, BE CE ⊥,AD CE ⊥,90BEC ADC ∴∠=∠=︒,90BCE CBE ∴∠+∠=︒ ,90ACB ACD ECB ∠=∠+∠=︒,ACD CBE ∴∠=∠,在BEC ∆和CDA ∆中, 90BEC ADC ACD CBEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()BEC CDA AAS ∴∆≅∆.故答案为:AC BC =(答案不唯一).【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是解决问题的关键.三、解答题8.如图,E 、F 分别是矩形ABCD 对角线上的两点,且BE DF =.求证:AE CF =.【答案】见解析;【分析】根据矩形ABCD 的性质得出AB CD =,ABE CDF ∠=∠ ,再根据BE DF = ,用SAS 可直接证明出ABE CDF ≅,即可证明出AE CF = . 【详解】证明:ABCD 是矩形, ∴ AB CD = ,ABE CDF ∠=∠,在ABE △和CDF 中AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩ ∴ABE CDF ≅()SAS ,AE CF ∴= .【点睛】本题主要考查了矩形的性质,全等三角形性质和判定,熟练掌握矩形的性质和全等三角形的判定是解决问题的关键.等腰三角形(提升测评)一、单选题1.如图,点D 、E 分别为①ABC 的边AB 、AC 的中点,点F 在DE 的延长线上,CF ∥BA ,若①ADE 的面积为2,则四边形BCFD 的面积为( )A .10B .8C .6D .4【答案】B【分析】根据三角形中位线定理得到DE ∥BC ,DE =12BC ,证明ADEABC ;根据相似三角形的性质计算(相似三角形的面积比等于相似比的平方),可求得S ABC 的面积;根据三角形全等的判定和性质定理,证明ADE ≌CFE ,可得S ADE =S CFE ,从而可得S 四边形BCFD = S ABC 即可. 【详解】解:①D ,E 分别是ABC 的边AB ,AC 的中点 ①DE 是ABC 的中位线 ①AE =CE ,DE ∥BC ,DE =12BC ①ADEABC①S ADE =21()2ABCS①S ADE =2 ①S ABC =8 又①CF ∥BA ①∠A=∠FCE在ADE 和CFE 中,A FCE AE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩①ADE ≌CFE (ASA ) ①S ADE =S CFE①S ADE + S 四边形BCED =S CFE +S 四边形BCED ①S 四边形BCFD = S ABC =8故选:B.【点睛】本题考查的是三角形中位线定理、相以三角形的判定和性质,全等三角形的判定与性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.2.如图,Rt①ABC中,①C=90°,BD平分①ABC交AC于点D,点E为AB的中点,若AB=12,CD =3,则①DBE的面积为()A.10B.12C.9D.6【答案】C【分析】如图:过D作DF①AB于F,然后根据角平分线的性质可得DF=CD=3,然后再根据中点的定义求得BE的长,最后根据三角形的面积公式求解即可.【详解】解:如图:过D作DF①AB于F,①①C=90°,BD平分①ABC交AC于点D,①DF=CD=3①点E为AB的中点,AB=12①BE=12AB=6①①DBE的面积为1163922BE DF=⨯⨯=.故选:C.【点睛】本题主要考查了角平分线定理、中点的定义、三角形的高等知识点,作出①DBE的高并运用角平分线定理求出成为解答本题的关键.3.如图,Rt①ABC中,①C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD=5,P为AB上一动点,则PD的最小值为()A .2B .3C .4D .5【答案】D【分析】当DP ①AB 时,根据垂线段最短可知,此时DP 的值最小.再根据角平分线的性质定理可得DP =CD 解决问题;【详解】解:当DP ①AB 时,根据垂线段最短可知,此时DP 的值最小. 由作图可知:AE 平分①BAC , ①①C =90°, ①DC ①AC , ①DP ①AB , ①DP =CD =5, ①PD 的最小值为5, 故选:D .【点睛】本题考查角平分线的性质定理,垂线段最短,基本作图等知识,解题的关键是学会利用垂线段最短解决最短问题.4.如图,在正方形ABCD 中,E ,F 分别为BC ,CD 的中点,点G 在CD 边上,GAE BAE ∠=∠,AG交BF 于点H ,连接,,EH EG CH .下列结论:①AHE BCF △≌△;①GE BF ∥;①sin ABF ∠=①14GCH ABH S S =△△,其中正确的结论有( )A .4个B .3个C .2个D .1个.【答案】B【分析】先证明①AHE ①①BCF (AAS ),即可判断①,由三角形的中位线定理可证GE BF ,即可判断①,由勾股定理可求BF 的长,即可求sin①ABF =sin①BFC ,即可判断①,由相似三角形的性质可求FH ,CH ,AO 的长,即可求出16GCHABHSS,即可判断①.【详解】解:如图,设BF 与AE 的交点为O ,设AB =4a ,①四边形ABCD 是正方形,①AB =BC =CD =AD =4a ,①ABC =①BCD =90°, ①E ,F 分别为BC ,CD 的中点, ①CF =DF =2a =CE =BE , ①①ABE ①①BCF (SAS ),①①BAE =①CBF ,BF =AE ,①AEB =①BFC , ①①ABF +①CBF =90°=①ABF +①BAE , ①①AOB =90°=①AOH , 又①①BAE =①GAE ,AO =AO , ①①AOH ①①AOB (ASA ), ①AH =AB ,①AOB =①AOH =90°, ①AE 垂直平分BH ,①BE =EH ,①ABE =①AHE =90°,①①AHE =①BCF =90°,AH =AB =BC ,①GAE =①BAE =①BCF , ①①AHE ①①BCF (AAS ),故①正确; ①AH =AB , ①①AHB =①ABH , ①AB CD , ①①ABF =①CFB ,①①CFB =①AHB =①CHF , ①FG =GH , ①HE =BE =CE ,①①CHE =①ECH ,①EHB =①EBH ,①①CHE +①ECH +①EHB +①EBH =2①CHE +2①EHB =180°, ①①BHC =①CHE +①EHB = 90°, ①①GHC =①GCH , ①CG =GH , ①FG =GC =GH =a , 又①CE =BE , ①GE BF ,故①正确;①BF ==,①sin①ABF =sin ①BFC =BC BF ==, 故①正确;①①CHF =①BCF =90°,①CFH =①CFB , ①①CFH ①①BFC , ①CF CH FHBF BC CF == ,42CH FHa a ==,①CH =,FH =,①BH =,①sin ①ABF =AO AB ,①AO =, ①FG =GC ,①211122225GCHFCHS S a ==⨯=,①21132225ABHSAO BH a =⨯⨯==, ①16GCHABHSS=,故①错误,故选:B .【点睛】本题是四边形综合题,考查了相似三角形的判定和性质,正方形的性质,全等三角形的判定和性质,锐角三角函数,勾股定理,三角形中位线定理等知识,灵活运用这些性质解决问题是解题的关键.二、填空题5.如图,在边长为4的正方形ABCD 中,点E 、F 分别是边BC 、CD 上的动点.且BE CF =,连接BF 、DE ,则BF DE +的最小值为______.【答案】【分析】连接AE ,利用ABE BCF △△≌转化线段BF 得到BF DE AE DE +=+,则通过作点A 关于BC 的对称点H ,连接DH 交BC 于点E ,利用勾股定理求出DH 的长即可. 【详解】解:连接AE ,如图1, 四边形ABCD 是正方形,AB BC ∴=,90ABE BCF ∠∠==︒,又BE CF =,ABE ∴①(BCF SAS ). AE BF ∴=.所以BF DE +最小值等于AE DE +最小值. 作点A 关于BC 的对称点H 点,如图2, 连接BH ,则A 、B 、H 三点共线,连接DH ,DH 与BC 的交点即为所求的E 点. 根据对称性可知AE HE =, 所以AE DE DH +=.在Rt ADH中,DH=∴+最小值为BF DE故答案为:.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、最短距离问题,一般求两条线段最短距离问题,都转化为一条线段.6.正方形ABCD的边长为4,E为AD的中点,连接CE,过点B作BF CE⊥交CD于点F,垂足为G,则EG=______.【分析】先证明①BFC①①CED,得到DE=CF=2,CE=BF,利用勾股定理可求BF的长,由面积法可求EG.【详解】解:正方形ABCD的边长为4,E为AD的中点,∠=∠=︒,DE=2,BCD ADC∴==,90AD CD BC∴∠+∠=︒,90DCE DEC⊥,BF CE①①CGF=90°,DCE CFB∴∠+∠=︒,90∴∠=∠,BFC DEC∴△①CEDBFC△(AAS),2DE CF ∴==,CE BF =,BF ∴=CE ∴=1122BFCSBC CF BF CG =⨯⨯=⨯⨯,42∴⨯=,CG ∴,①EG =CE -CG【点睛】此题考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造全等三角形是解题的关键.三、解答题7.如图,在矩形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,点G 为EF 的中点,连接BD 、DG .(1)试判断ECF △的形状,并说明理由; (2)求BDG ∠的度数.【答案】(1)ECF △是等腰直角三角形,理由见解析 (2)45°【分析】(1)根据矩形的性质和角平分线的定义及平行线的性质证得45CEF F ∠=∠=︒,90ECF BCD ∠=∠=︒,再根据等角对等边得到EC FC =即可得到结论;(2)根据矩形性质和等腰直角三角形的性质证得BE CD =,DCG BEG ∠=∠,CG EG ,再根据全等三角形的判定与性质证明DCG BEG ≌△△得到DG BG =,DGC BGE ∠=∠,则有90BGD EGC ∠=∠=︒,进而求解即可.(1)解:ECF △是等腰直角三角形;理由如下:①四边形ABCD 是矩形,①AD BC ∥,AB CD ∥,90DAB ABC BCD ∠=∠=∠=︒,①DAE CEF ∠=∠,BAE F ∠=∠.①AE 平分BAD ∠,①45DAE BAE ∠=∠=︒,①45CEF F ∠=∠=︒,①EC FC =.又①90ECF BCD ∠=∠=︒,①ECF △是等腰直角三角形;(2)解:①四边形ABCD 是矩形,①AB CD =,AD BC ∥,①45BEA BAE ∠=∠=︒①AB BE =,即BE CD =.①EC FC =,90ECF ∠=︒,点G 为EF 的中点, ①12CG EF EG ==,1452ECG ECF ∠=∠=︒,90EGC ∠=︒, ①9045135DCG ∠=︒+︒=︒.①18045135BEG ∠=︒-︒=︒,①DCG BEG ∠=∠.在DCG △和BEG 中,DC BE DCG BEG CG EG =⎧⎪∠=∠⎨⎪=⎩,①()DCG BEG SAS △≌△,①DG BG =,DGC BGE ∠=∠,①90BGD EGC ∠=∠=︒.又①DG BG =,①BGD △是等腰直角三角形①45BDG ∠=︒.【点睛】本题考查矩形的性质、等腰直角三角形的判定与性质、直角三角形的斜边中线性质、全等三角形的判定与性质、平行线的性质、角平分线的定义等知识,熟练掌握矩形的性质和等腰直角三角形的判定与性质,证明DCG BEG ≌△△是解答的关键. 8.如图,在四边形ABCD 中,点E 在边AB 上,=AD DE ,CE AD DE BC ∥,∥,作BF CD ∥交线段DE 于点F ,连接AF ,求证:ΔΔDAF EDC ≅.【答案】证明见解析【分析】根据题意得到四边形BCDF 是平行四边形,根据平行四边形的性质得到DF BC =,根据平行线的性质及等腰三角形的性质推出=DF CE ,即可利用SAS 证明ΔΔDAF EDC ≅.【详解】∥DE BC ,BF CD ∥,∴四边形BCDF 是平行四边形,=DF BC ∴,①CE AD ∥,=DAE CEB ∴∠∠,ADF DEC ∠=∠,①∥DE BC ,=DEA CBE ∴∠∠,AD DE =,=DAE DEA ∴∠∠,=CEB CBE ∴∠∠,=CE BC ∴,=DF CE ∴,在ΔDAF 和EDC ∆中,===AD DE ADF DECDF CE ∠∠⎧⎪⎨⎪⎩,ΔΔ()DAF EDC SAS ∴≅.【点睛】此题考查了平行四边形的判定与性质、全等三角形的判定,熟记平行四边形的判定与性质是解题的关键.。

【中考数学】易错易错压轴勾股定理选择题训练经典题目(含答案)(1)

【中考数学】易错易错压轴勾股定理选择题训练经典题目(含答案)(1)

【中考数学】易错易错压轴选择题精选:勾股定理选择题训练经典题目(含答案)(1)一、易错易错压轴选择题精选:勾股定理选择题1.下列四组数据不能作为直角三角形的三边长的是 ( )A .6,8,10B .5,12,13C .3,5,6D .2,3,52.如图,在△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 、BE 与相交于点G ,以下结论中正确的结论有( )(1)△ABC 是等腰三角形;(2)BF =AC ;(3)BH :BD :BC =1:2:3;(4)GE 2+CE 2=BG 2.A .1个B .2个C .3个D .4个3.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2),其中结论正确的个数是( )A .1B .2C .3D .4 4.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( )A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形5.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm6.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm ,在容器内壁离容器底部4 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm ,则该圆柱底面周长为( )cm .A .9B .10C .18D .207.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ;③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④8.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( )A .49B .25C .12D .109.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,BD 平分∠ABC ,E 是AB 中点,连接DE ,则DE 的长为( )A .102B .2C 51+D .3210.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()A .22B .32C .62D .8211.如图,在△ABC ,∠C =90°,AD 平分∠BAC 交CB 于点D ,过点D 作DE ⊥AB ,垂足恰好是边AB 的中点E ,若AD =3cm ,则BE 的长为( )A .332cmB .4cmC .32cmD .6cm12.在ABC ∆中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( )A .4或14B .10或14C .14D .10 13.下列条件中,不能..判定ABC 为直角三角形的是( ) A .::5:12:13a b c =B .A BC ∠+∠=∠ C .::2:3:5A B C ∠∠∠=D .6a =,12b =,10c =14.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .1015.如图, 在ABC 中,CE 平分ACB ∠,CF 平分ABC 的外角ACD ∠,且EF //BC 交AC 于M ,若CM 4=,则22CE CF +的值为( )A .8B .16C .32D .6416.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD 的长为( )A .10B .5C .4D .3 17.以下列各组数为边长,不能构成直角三角形的是( )A .3,4,5B .1,1,2C .8,12,13D .2、3、5 18.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( ) A .4 B .16 C .34 D .4或3419.如图,分别以直角ABC ∆三边为边向外作三个正方形,其面积分别用123,,S S S 表示,若27S =,32S =,那么1S =( )A .9B .5C .53D .4520.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )A .3B .5C .4.2D .421.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .6 22.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直 23.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2()a b + 的值为( ).A .49B .25C .13D .124.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2a b +值为( )A .25B .9C .13D .16925.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个26.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2016的值为( )A .(22)2013B .(22)2014C .(12)2013D .(12)2014 27.如图,ABC 中,有一点P 在AC 上移动.若56AB AC BC ===,,则AP BP CP ++的最小值为( )A .8B .8.8C .9.8D .1028.如图,在23⨯的正方形网格中,AMB ∠的度数是( )A .22.5°B .30°C .45°D .60°29.三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .830.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S ;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S ,其中116S =,245S =,511S =,614S =,则43S S +=( ).A.86 B.61 C.54 D.48【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.C解析:C【分析】求出两小边的平方和长边的平方,再看看是否相等即可.【详解】A、62+82=102,此时三角形是直角三角形,故本选项不符合题意;B、52+122=132,此时三角形是直角三角形,故本选项不符合题意;C、32+52≠62,此时三角形不是直角三角形,故本选项符合题意;D、222235+=,此时三角形是直角三角形,故本选项不符合题意;故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形,必须满足较小两边平方的和等于最大边的平方才能做出判断.2.C解析:C【分析】(1)根据角平分线的定义可得∠ABE=∠CBE,根据等角的余角相等求出∠A=∠BCA,再根据等角对等边可得AB=BC,从而得证;(2)根据三角形的内角和定理求出∠A=∠DFB,推出BD=DC,根据AAS证出△BDF≌△CDA即可;(3)根据等腰直角三角形斜边上的中线等于斜边的一半进行解答;(4)由(2)得出BF =AC ,再由BF 平分∠DBC 和BE ⊥AC 通过ASA 证得△ABE ≌△CBE ,即得CE =AE =12AC ,连接CG ,由H 是BC 边的中点和等腰直角三角形△DBC 得出BG =CG ,再由直角△CEG 得出CG 2=CE 2+GE 2,从而得出CE ,GE ,BG 的关系.【详解】 解:(1)∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∵CD ⊥AB ,∴∠ABE +∠A =90°,∠CBE +∠ACB =90°,∴∠A =∠BCA ,∴AB =BC ,∴△ABC 是等腰三角形;故(1)正确;(2)∵CD ⊥AB ,BE ⊥AC ,∴∠BDC =∠ADC =∠AEB =90°,∴∠A +∠ABE =90°,∠ABE +∠DFB =90°,∴∠A =∠DFB ,∵∠ABC =45°,∠BDC =90°,∴∠DCB =90°﹣45°=45°=∠DBC ,∴BD =DC ,在△BDF 和△CDA 中==BDF CDA A DFB BD CD ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△BDF ≌△CDA (AAS ),∴BF =AC ;故(2)正确;(3)∵在△BCD 中,∠CDB =90°,∠DBC =45°,∴∠DCB =45°,∴BD =CD ,BCBD .由点H 是BC 的中点,∴DH =BH =CH =12BC , ∴BD,∴BH :BD :BC =BH:2BH =1:2.故(3)错误;(4)由(2)知:BF =AC ,∵BF 平分∠DBC ,∴∠ABE =∠CBE ,又∵BE ⊥AC ,∴∠AEB =∠CEB ,在△ABE 与△CBE 中,==ABE CBE AEB CEB BE BE ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△ABE ≌△CBE (AAS ),∴CE =AE =12AC , ∴CE =12AC =12BF ; 连接CG .∵BD =CD ,H 是BC 边的中点,∴DH 是BC 的中垂线,∴BG =CG ,在Rt △CGE 中有:CG 2=CE 2+GE 2,∴CE 2+GE 2=BG 2.故(4)正确.综上所述,正确的结论由3个.故选C .【点睛】本题考查全等三角形的判定与性质,等腰直角三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,平行线的性质,勾股定理,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.3.C解析:C【解析】试题分析:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD ,即∠BAD=∠CAE . ∵在△BAD 和△CAE 中,AB=AC ,∠BAD=∠CAE ,AD=AE ,∴△BAD ≌△CAE (SAS ).∴BD=CE .本结论正确.②∵△BAD ≌△CAE ,∴∠ABD=∠ACE .∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°.∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°. ∴BD ⊥CE .本结论正确.③∵△ABC 为等腰直角三角形,∴∠ABC=∠ACB=45°.∴∠ABD+∠DBC=45°.∵∠ABD=∠ACE ,∴∠ACE+∠DBC=45°.本结论正确.④∵BD ⊥CE ,∴在Rt △BDE 中,利用勾股定理得:BE 2=BD 2+DE 2.∵△ADE 为等腰直角三角形,∴AD ,即DE 2=2AD 2.∴BE 2=BD 2+DE 2=BD 2+2AD 2.而BD 2≠2AB 2,本结论错误.综上所述,正确的个数为3个.故选C .4.B解析:B【解析】【分析】根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状.【详解】∵a+b=10,ab=18,∴22a b +=(a+b )2-2ab=100-36=64,∵,c=8,∴2c =64,∴22a b +=2c ,∴该三角形是直角三角形,故选:B.【点睛】此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22a b +是解题的关键.5.C解析:C【分析】当C ′落在AB 上,点B 与E 重合时,AC'长度的值最小,根据勾股定理得到AB=5cm ,由折叠的性质知,BC ′=BC=3cm ,于是得到结论.【详解】解:当C ′落在AB 上,点B 与E 重合时,AC'长度的值最小,∵∠C=90°,AC=4cm ,BC=3cm ,∴AB=5cm ,由折叠的性质知,BC ′=BC=3cm ,∴AC ′=AB-BC ′=2cm .故选:C .【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.6.C解析:C【分析】将容器侧面展开,建立A 关于上边沿的对称点A’,根据两点之间线段最短可知A’B 的长度为最短路径15,构造直角三角形,依据勾股定理可以求出底面周长的一半,乘以2即为所求.【详解】解:如图,将容器侧面展开,作A 关于EF 的对称点'A ,连接'A B ,则'A B 即为最短距离, 根据题意:'15A B cm =,12412BD AE cm =-+=,2222'15129A D A B BD ∴--'==.所以底面圆的周长为9×2=18cm.故选:C .【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.7.A解析:A【分析】先判断△DBE 是等腰直角三角形,根据勾股定理可推导得出2BE ,故①正确;根据∠BHE 和∠C 都是∠HBE 的余角,可得∠BHE=∠C ,再由∠A=∠C ,可得②正确;证明△BEH ≌△DEC ,从而可得BH=CD ,再由AB=CD ,可得③正确;利用已知条件不能得到④,据此即可得到选项.解:∵∠DBC=45°,DE ⊥BC 于E ,∴在Rt △DBE 中,BE 2+DE 2=BD 2,BE=DE ,∴BD=2BE ,故①正确;∵DE ⊥BC ,BF ⊥DC ,∴∠BHE 和∠C 都是∠HBE 的余角,∴∠BHE=∠C ,又∵在▱ABCD 中,∠A=∠C ,∴∠A=∠BHE ,故②正确;在△BEH 和△DEC 中,BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,故③正确;利用已知条件不能得到△BCF ≌△DCE ,故④错误,故选A.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.8.C解析:C【解析】试题解析:如图,∵大正方形的面积是25,∴c 2=25,∴a 2+b 2=c 2=25,∵直角三角形的面积是(25-1)÷4=6,又∵直角三角形的面积是12ab=6, ∴ab=12.故选C. 9.A解析:A试题解析:如图,过D 作AB 垂线交于K ,∵BD 平分∠ABC ,∴∠CBD=∠ABD∵∠C=∠DKB=90°,∴CD=KD ,在△BCD 和△BKD 中,CD KD BD BD ⎧⎨⎩== ∴△BCD ≌△BKD ,∴BC=BK=3∵E 为AB 中点∴BE=AE=2.5,EK=0.5,∴AK=AE-EK=2,设DK=DC=x ,AD=4-x ,∴AD 2=AK 2+DK 2即(4-x )2=22+x 2解得:x=32∴在Rt △DEK 中,2222310=+0.5=2DK KE +()(). 故选A .10.B解析:B【解析】由题可知(a-b )2+a 2=(a+b )2,解得a=4b ,所以直角三角形三边分别为3b ,4b ,5b ,当b=8时,4b=32,故选B .11.A解析:A【分析】先根据角平分线的性质可证CD=DE ,从而根据“HL”证明Rt △ACD ≌Rt △AED ,由DE 为AB 中线且DE ⊥AB ,可求AD=BD=3cm ,然后在Rt △BDE 中,根据直角三角形的性质即可求出BE 的长.∵AD 平分∠BAC 且∠C=90°,DE ⊥AB ,∴CD=DE ,由AD =AD ,所以,Rt △ACD ≌Rt △AED ,所以,AC=AE.∵E 为AB 中点,∴AC=AE=12AB , 所以,∠B=30° .∵DE 为AB 中线且DE ⊥AB ,∴AD=BD=3cm ,∴DE=12BD=32, ∴BE=22332⎛⎫-= ⎪⎝⎭332cm. 故选A.【点睛】本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.12.A解析:A【分析】根据AC =13,AD =12,CD =5,可判断出△ADC 是直角三角形,在Rt △ADB 中求出BD ,继而可得出BC 的长度.【详解】∵AC =13,AD =12,CD =5,∴222AD CD AC +=,∴△ABD 是直角三角形,AD ⊥BC ,由于点D 在直线BC 上,分两种情况讨论:当点D 在线段BC 上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则14BC BD CD =+=;②当点D 在BC 延长线上时,如图所示,在Rt △ADB 中,229BD AB AD =-=, 则4BC BD CD =-=.故答案为:A.【点睛】 本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.13.D解析:D【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90︒即可.【详解】解:A 、22251213+=,ABC ∆∴是直角三角形,故能判定ABC ∆是直角三角形;B 、A BC ∠+∠=∠,90C ∴∠=︒,故能判定ABC ∆是直角三角形; C 、::2:3:5A B C ∠∠∠=,518090235C ∴∠=⨯︒=︒++,故能判定ABC ∆是直角三角形;D 、22261012+≠,ABC ∆∴不是直角三角形,故不能判定ABC ∆是直角三角形; 故选:D .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.14.A解析:A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出=AF FC .再根据ASA 证明FOA BOC ∆≅∆,那么==3AF BC ,等量代换得到==3FC AF ,利用线段的和差关系求出==1FD AD AF -.然后在直角FDC ∆中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,则=AF FC .AD BC ∵∥,FAO BCO ∴∠=∠.在FOA ∆与BOC ∆中,FAO BCO OA OCAOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FOA BOC ASA ∴∆≅∆,3AF BC ∴==,3FC AF ∴==,431FD AD AF =-=-=.在FDC ∆中,90D ︒∠=,222CD DF FC ∴+=,22213CD ∴+=,22CD ∴=.故选A .【点睛】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.15.D解析:D【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理求得CE 2+CF 2=EF 2.【详解】∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ACE=12∠ACB ,∠ACF=12∠ACD ,即∠ECF=12(∠ACB+∠ACD )=90°, 又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF ,∴CM=EM=MF=4,EF=8,由勾股定理可知CE 2+CF 2=EF 2=64.【点睛】此题考查角平分线的定义,直角三角形的判定,勾股定理的运用,解题关键在于掌握各性质定义.16.B解析:B【分析】根据“在Rt△ABC中”和“沿BD进行翻折”可知,本题考察勾股定理和翻折问题,根据勾股定理和翻折的性质,运用方程的方法进行求解.【详解】∵∠A=90°,AB=6,AC=8,∴,根据翻折的性质可得A′B=AB=6,A′D=AD,∴A′C=10-6=4.设CD=x,则A′D=8-x,根据勾股定理可得x2-(8-x)2=42,解得x=5,故CD=5.故答案为:B.【点睛】本题考察勾股定理和翻折问题,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.17.C解析:C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.)2+2=2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.18.D解析:D试题解析:当3和5都是直角边时,第三边长为:2235+=34;当5是斜边长时,第三边长为:2253-=4.故选D .19.A解析:A【分析】根据勾股定理与正方形的性质解答.【详解】解:在Rt △ABC 中,AB 2=BC 2+AC 2,∵S 1=AB 2,S 2=BC 2,S 3=AC 2,∴S 1=S 2+S 3.∵S 2=7,S 3=2,∴S 1=7+2=9.故选:A .【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.20.C解析:C【分析】根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA 是x 尺,根据题意可得:x 2+42=(10-x )2,解得:x=4.2,答:折断处离地面的高度OA 是4.2尺.故选C .【点睛】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.21.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.22.C解析:C【分析】矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.【详解】A 、菱形、矩形的内角和都为360°,故本选项错误;B 、对角互相平分,菱形、矩形都具有,故本选项错误;C 、对角线相等菱形不具有,而矩形具有,故本选项正确D 、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,故选C .【点睛】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.23.A解析:A【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12,据此即可得结果.【详解】根据题意,结合勾股定理a 2+b 2=25,四个三角形的面积=4×12ab=25-1=24, ∴2ab=24,联立解得:(a+b )2=25+24=49.故选A. 24.A解析:A【分析】根据勾股定理可以求得22a b +等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据()2222a b a ab b +=++即可求解.【详解】根据勾股定理可得2213a b +=, 四个直角三角形的面积是:14131122ab ⨯=-=,即212ab =, 则()2222131225a b a ab b +=++=+=.故选:A .【点睛】本题考查了勾股定理以及完全平方式,正确根据图形的关系求得22a b +和ab 的值是关键.25.D解析:D【解析】分析:由四边形ABCD 与四边形EFGC 都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE 与三角形DCG 全等,利用全等三角形对应边相等即可得到BE=DG ,利用全等三角形对应角相等得到∠CBM=∠MDO ,利用等角的余角相等及直角的定义得到∠BOD 为直角,利用勾股定理求出所求式子的值即可.详解:①∵四边形ABCD 和EFGC 都为正方形,∴CB=CD ,CE=CG ,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE ,即∠BCE=∠DCG.在△BCE 和△DCG 中,CB =CD ,∠BCE =∠DCG ,CE =CG ,∴△BCE ≌△DCG ,∴BE=DG ,故结论①正确.②如图所示,设BE交DC于点M,交DG于点O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②结论正确.③如图所示,连接BD、EG,由②知,BE⊥DG,则在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③结论正确.故选:D.点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.26.C解析:C【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=(12)n−3”,依此规律即可得出结论.【详解】解:在图中标上字母E,如图所示.∵正方形ABCD 的边长为2,△CDE 为等腰直角三角形,∴DE 2+CE 2=CD 2,DE=CE ,∴S 2+S 2=S 1.观察,发现规律:S 1=22=4,S 2=12S 1=2,S 3=12S 2=1,S 4=12S 3=12,…, ∴S n =(12)n−3. 当n=2016时,S 2016=(12)2016−3=(12)2013. 故选:C .【点睛】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n =(12)n−3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n 的值,根据数值的变化找出变化规律是关键. 27.C解析:C【分析】由AP+CP=AC 得到AP BP CP ++=BP+AC ,即计算当BP 最小时即可,此时BP ⊥AC ,根据三角形面积公式求出BP 即可得到答案.【详解】∵AP+CP=AC ,∴AP BP CP ++=BP+AC ,∴BP ⊥AC 时,AP BP CP ++有最小值,设AH ⊥BC ,∵56AB AC BC ===,∴BH=3, ∴224AH AB BH =-=, ∵1122ABC SBC AH AC BP =⋅=⋅, ∴1164522BP ⨯⨯=⨯, ∴BP=4.8,∴AP BP CP ++=AC+BP=5+4.8=9.8,【点睛】此题考查等腰三角形的三线合一的性质,勾股定理,最短路径问题,正确理解AP BP CP ++时点P 的位置是解题的关键.28.C解析:C【分析】连接AB ,求出AB 、BM 、AM 的长,根据勾股定理逆定理即可求证AMB ∆为直角三角形,而AM=BM ,即AMB ∆为等腰直角三角形,据此即可求解.【详解】连接AB∵22125AM =+=22125AB =+=221310BM =+=∴22210AM AB BM +==∴AMB ∆为等腰直角三角形∴45AMB ∠=︒故选C .【点睛】本题考查了勾股定理的逆定理,重点是求出三条边的长,然后证明AMB ∆为直角三角形.29.B解析:B【分析】根据直角三角形的勾股定理,得:两条直角边的平方等于斜边的平方.再根据正方形的面积公式,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【详解】解:A 的面积等于100-64=36;【点睛】本题主要考查勾股定理的证明:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.30.C解析:C【分析】设1S ,2S ,3S 对应的边长为1L ,2L ,3L ,根据题意,通过等边三角形和勾股定理的性质,得23L ,从而计算得到3S ;设4S ,5S ,6S 对应的边长为4L ,5L ,6L ,通过圆形面积和勾股定理性质,得24L ,从而计算得到4S ,即可得到答案.【详解】分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S则1S ,2S ,3S 对应的边长设为1L ,2L ,3L根据题意得:21111116224S L L L =⨯==22245S L == ∴21L =,22L =∵222132L L L += ∴22232129L L L =-=∴233292944S L === 以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S 则4S ,5S ,6S 对应的边长设为4L ,5L ,6L 根据题意得:2255511228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭ 2266614228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭ ∴25811L π=⨯,26814L π=⨯ ∵222564L L L += ∴()22245688111425L L L ππ=+=⨯+=⨯∴2448S 252588L πππ==⨯⨯=∴43292554S S +=+=故选:C .【点睛】本题考查了勾股定理、等边三角形、圆形面积的知识;解题的关键是熟练掌握勾股定理、等边三角形面积计算的性质,从而完成求解.。

专题2 勾股定理与分类讨论(老师版)

专题2 勾股定理与分类讨论(老师版)

专题1.2勾股定理与分类讨论类型一等腰三角形的腰和底不明确时需分类讨论【例1】(2021春•南昌期末)如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接PA,当△ABP为等腰三角形时,t的值为.【答案】16或10或【解答】解:在△ABC中,∠ACB=90°,由勾股定理得:BC=cm,∵△ABP为等腰三角形,当AB=AP时,则BP=2BC=16cm,即t=16;当BA=BP=10cm时,则t=10;当PA=PB时,如图:设BP=PA=x,则PC=8﹣x,在Rt△ACP中,由勾股定理得:PC2+AC2=AP2,∴(8﹣x)2+62=x2,解得x=,∴t=.综上所述:t的值为16或10或.故答案为:16或10或.【变式1】(2020秋•张店区期末)如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒,当△ABP为等腰三角形时,t的取值为.【答案】5或t=8或t=【解答】解:在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4(cm);①当AB=BP时,如图1,t=5;②当AB=AP时,如图2,BP=2BC=8cm,t=8;③当BP=AP时,如图3,AP=BP=tcm,CP=(4﹣t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(4﹣t)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.故答案为:5或t=8或t=.【变式2】(2021秋•永春县期末)如图△ABC中,∠ACB=90°,AC=12,BC=5.(1)求AB的长;(2)若动点P从点C开始以每秒1个单位的速度,按C→A→B的路径运动,设运动的时间为t秒,当t为何值时,△BCP为等腰三角形?【答案】(1)13(2)t=5s或20s或s或s时,△BCP为等腰三角形【解答】解:(1)∵∠ACB=90°,∴△ABC是直角三角形,在Rt△ABC中,由勾股定理得:AB===13,∴AB的长为13;(2)当点P在AC上时,CP=CB=5,t=5(s);当点P在AB上时,分三种情况:①当BP=BC=5,如图1所示:则AP=13﹣5=8,t=12+8=20(s);②当CP=CB=5时,过点C作CM⊥AB于M,如图2所示:则BM=PM=BP,∵AC•BC=AB•CM,∴CM===,在Rt△BCM中,由勾股定理得:BM===,∴BP=2BM=,∴AP=13﹣=,∴t=12+=(s);③当PC=PB时,如图3所示:则∠B=∠BCP,∵∠B+∠A=90°,∠BCP+∠ACP=90°,∴∠A=∠ACP,∴AP=PC,∴AP=PB=AB=,∴t=12+=(s);综上所述,当t=5s或20s或s或s时,△BCP为等腰三角形类型二直角三角形的直角边和斜边不明确时需分类讨论【例2】(2021•齐齐哈尔)直角三角形的两条边长分别为3和4,则这个直角三角形斜边上的高为.【答案】或【解答】解:设直角三角形斜边上的高为h,当4是直角边时,斜边长==5,则×3×4=×5×h,解得:h=,当4是斜边时,另一条直角边长==,则×3×=×4×h,解得:h=,综上所述:直角三角形斜边上的高为或,故答案为:或.【变式1】(2021秋•槐荫区期中)若Rt△ABC 的两边a,b 满足+(b﹣4)2=0,则它的第三边c 为()A.5B.C.D.5或【答案】D【解答】解:∵Rt△ABC 的两边a,b 满足+(b﹣4)2=0,∴a﹣3=0且b﹣4=0.∴a=3,b=4.当b 为直角边时,由勾股定理知:c===5,即c=5;当b 为斜边时,由勾股定理知:c===,即c=;综上所述,c 为5或.故选:D.【变式2】(2020春•南昌期末)如图,在Rt△ABC 中,∠ACB=90°,AC=4,BC=2,以AB 为边向外作等腰直角三角形ABD,则CD 的长可以是.【答案】2或2或3【解答】解:(1)如图1所示,当∠ABD=90°,AB=BD 时,作DE⊥BC,与CB 的延长线交于点E,∵∠CAB+∠ABC=90°,∠ABC+∠DBE=90°,∴∠CAB=∠DBE,在△BED 和△ACB 中,,∴△BED≌△ACB(AAS),∴BE=AC=4,DE=BC=2,∴CE=2+4=6,∴CD=;(2)如图2所示,当∠BAD=90°,AB=AD 时,过点D 作DE⊥CA,与CA 的延长线交于点E,∵∠CAB+∠ABC=90°,∠BAC+∠DAE=90°,∴∠ABC=∠DAE,在△DEA 和△ACB 中,,∴△DEA≌△ACB(AAS),∴DE=AC=4,AE=BC=2,∴CD=;(3)如图3所示,连接CD.当AD=BD时,过点D作DE⊥AC于E,DF⊥CB,与CB的延长线交于F,∵∠C=∠DFC=∠DEC=90°,∴∠EDF=90°,∵∠ADE+∠BDE=90°,∠BDF+∠BDE=90°,∴∠ADE=∠BDF,在△ADE和△BDF中,,∴△ADE≌△BDF(AAS),∴AE=BF,DE=DF,∵DE⊥AC,DF⊥CF,∴∠DCE=∠DCF=45°,∴△DEC是等腰直角三角形,∴AC+BC=AE+CE+CF﹣BF=2CE.∴CE=3,∴CD=3.综上所述,CD的长是2或3或2;故答案为:2或3或2.【变式3】(2021秋•兰考县期末)已知:如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为ts.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.【答案】(1)4cm(2)4s或s【解答】解:(1)在Rt△ABC中,由勾股定理得:BC===4(cm);(2)由题意得:BP=tcm,分两种情况:①当∠APB=90°时,如图1所示:点P与点C重合,∴BP=BC=4cm,∴t=4;②当∠BAP=90°时,如图2所示:则CP=(t﹣4)cm,∠ACP=90°,在Rt△ACP中,由勾股定理得:AP2=AC2+CP2,在Rt△ABP中,由勾股定理得:AP2=BP2﹣AB2,∴AC2+CP2=BP2﹣AB2,即32+(t﹣4)2=t2﹣52,解得:t=;综上所述,当△ABP为直角三角形时,t的值为4s或s.【例3】(2021秋•宽城区期末)定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=2,MN=4,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.【答案】(1)M、N是线段AB的勾股分割点(2)或.【解答】解:(1)是.理由:∵AM2+BN2=22+(2)2=16,MN2=42=16,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形.故点M、N是线段AB的勾股分割点.(2)设BN=x,则MN=12﹣AM﹣BN=7﹣x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(7﹣x)2=x2+25,解得x=;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=25+(7﹣x)2,解得x=.综上所述BN的长为或.【变式1】(2021秋•郑州期中)定义:如图,点M,N把线段AB分割成AM,MN,NB,若以AM,MN,NB为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知M,N把线段AB分割成AM,MN,NB,若AM=2.5,MN=6.5,BN=6,则点M,N是线段AB的勾股分割点吗?请说明理由.(2)已知点M,N是线段AB的勾股分割点,且AM为直角边,若AB=14,AM=4,求BN的长.【答案】(1)是(2)① 4.2;.②BN=4.2或5.8【解答】解:(1)点M、N是线段AB的勾股分割点.理由如下:∵AM2+BN2=2.52+62=42.25,MN2=6.52=42.25,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形,∴点M、N是线段AB的勾股分割点;(2)设BN=x,则MN=14﹣AM﹣BN=10﹣x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(10﹣x)2=x2+16,解得x=4.2;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=16+(10﹣x)2,解得x=5.8.综上所述,BN=4.2或5.8.1.(2021秋•象山县期中)在Rt△ABC中,∠A=90°,BC=5,AB=3.如果点P在AC边上,且点P到Rt△ABC 的两个顶点的距离相等,那么AP的长为.【答案】2或【解答】解:在Rt△ABC中,∵∠A=90°,BC=5,AB=3,∴AC==4.若PB=PC,连接PB,设PA=x,则PB=PC=4﹣x,在Rt△PAB中,∵PB2=AP2+AB2,∴(4﹣x)2=x2+32,∴x=,即PA=;若PA=PC,则PA=2;若PA=PB,由图知,在Rt△PAB中,不可能.综上所述,PA的长为:2或.故答案是:2或.2.(2021秋•平顶山期中)如图,在Rt△ABC中,∠ABC=90°,AB=20,BC=15,点D为AC边上的动点,点D 从点C出发,沿CA往A运动,当运动到点A时停止,设点D运动的时间为t秒,点D运动的速度为每秒2个单位长度.(1)当t=2秒时,求AD的长;(2)在D运动过程中,△CBD能否为直角三角形?若不能,说明理由,若能,请求出t的值.【答案】(1)21(2)t的值是4.5或12.5【解答】解:(1)由勾股定理得:AC===25,当t=2秒时,CD=2×2=4,所以AD=AC﹣CD=25﹣4=21;(2)△CBD能为直角三角形,理由是:分为两种情况:①∠BDC=90°时,∵S=,△ABC∴BD===12,由勾股定理得:CD===9,所以t==4.5,②当∠CBD=90°时,此时点D和A重合,t==12.5,∴t的值是4.5或12.53.(2021秋•东海县期中)如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)当△ABP为直角三角时,求t的值;(2)当△ABP为等腰三角形时,求t的值.【答案】(1)t=8或(2)16或10或【解答】解:(1)当△ABC为直角三角时,(cm),①当∠APB=90°时,点P与点C重合,BP=BC=8,∴t=8,②当∠BAP=90°,BP=t,CP=t﹣8,AC=6,在Rt△ACP中,AP2=62+(t﹣8)2,在Rt△BAP中,AB2+AP2=BP2,∴102+[62+(t﹣8)2]=t2,解得:t=,综上所述,t=8或;(2)在△ABC中,∠ACB=90°,由勾股定理得:BC==8(cm),∵△ABP为等腰三角形,当AB=AP时,则BP=2BC=16cm,即t=16;当BA=BP=10cm时,则t=10;当PA=PB时,如图:设BP=PA=x,则PC=8﹣x,在Rt△ACP中,由勾股定理得:PC2+AC2=AP2,∴(8﹣x)2+62=x2,解得x=,∴t=.综上所述:t的值为16或10或.4.(2021春•饶平县校级期中)定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.【答案】(1)是(2)BN=8或10【解答】解:(1)是.理由:∵AM2+BN2=1.52+22=6.25,MN2=2.52=6.25,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形,∴点M、N是线段AB的勾股分割点.(2)设BN=x,则MN=24﹣AM﹣BN=18﹣x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(18﹣x)2=x2+36,解得x=8;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=36+(18﹣x)2,解得x=10,综上所述,BN=8或10.5.(2020秋•梁园区期末)如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts.(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化.①当t为何值时,△AMN是等边三角形;②当t为何值时,△AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值.【答案】(1)6秒(2)①2秒②或s(3)8秒【解答】解:(1)设点M、N运动x秒后,M、N两点重合,11x×1+6=2x,解得:x=6,即当M、N 运动6秒时,点N 追上点M;(2)①设点M、N 运动t 秒后,可得到等边三角形△AMN,如图1,AM=t,AN=6﹣2t,∵∠A=60°,当AM=AN 时,△AMN 是等边三角形∴t=6﹣2t,解得t=2,∴点M、N 运动2秒后,可得到等边三角形△AMN.②当点N 在AB 上运动时,如图2,若∠AMN=90°,∵BN=2t,AM=t,∴AN=6﹣2t,∵∠A=60°,∴2AM=AN,即2t=6﹣2t,解得t=;如图3,若∠ANM=90°,由2AN=AM 得2(6﹣2t)=t,解得t=.综上所述,当t为或s 时,△AMN 是直角三角形;(3)当点M、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知6秒时M、N 两点重合,恰好在C 处,如图4,假设△AMN 是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB 是等边三角形,∴∠C=∠B,在△ACM 和△ABN 中,∵∠AMC=∠ANB,∠C=∠B,AC=AB,∴△ACM≌△ABN(AAS),∴CM=BN,∴t﹣6=18﹣2t,解得t=8,符合题意.所以假设成立,当M、N 运动8秒时,能得到以MN为底的等腰三角形.。

易错05 等腰三角形中分类讨论漏解从而产生易错(解析版)-2021学年八上期末提优训练

易错05 等腰三角形中分类讨论漏解从而产生易错(解析版)-2021学年八上期末提优训练

12020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)易错05 等腰三角形中分类讨论漏解从而产生易错【典型例题】1.(2020·信阳市商城思源实验学校八年级月考)(1)发现:如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E ,由∠1+∠2=∠2+∠D =90°,得∠1=∠D ,∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE ,进而得到AC =______,BC =_______.我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(2)拓展:如图3,在平面直角坐标系xOy 中,点A 的坐标为(-1,-4),点B 为平面内一点.若△AOB 是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标【答案】(1)AC =DE ,BC =AE ;(2)35,22⎛⎫ ⎪⎝⎭或53,22⎛⎫-- ⎪⎝⎭ (1)∵△ABC ≌△DAE ,∴AC =DE ,BC =AE ;(2)分两种情况:①过点A 作AC ⊥y 轴于点D ,过点B 作BE ⊥x 轴于E ,DA 与EB 相交于C ,如图3所示:则∠C =90°∵点A 坐标为(﹣1,﹣4)∴AD =1,OD =CE =4,∵∠OBA=90°∴∠OBE+∠ABC=90°∵∠ABC+∠BAC=90°∴∠BAC=∠OBE在△ABC和△BOE中,90C BEOBAC OBE AB BO⎧⎪⎨⎪∠=⎩∠=︒∠∠==∴△ABC≌△BOE(AAS)∴AC=BE,BC=OE,设OE=x,则BC=OE=CD=x∴AC=BE=x+1,∴CE=BE+BC=x+1+x=OD=4,∴35,122 x x=+=∴点B坐标35,22⎛⎫ ⎪⎝⎭,②过点A作AC⊥y轴于点D,过点B作BE⊥x轴于E,DA与EB相交于C,如下图所示:则∠C=90°2同理可得:点B坐标53,22⎛⎫--⎪⎝⎭综上所述,点B坐标35,22⎛⎫⎪⎝⎭或53,22⎛⎫--⎪⎝⎭【点睛】本题主要考查全等三角形的判定和性质、等腰直角三角形的性质、等腰直角三角形的性质,解题的关键是综合运用所学知识,题(2)要分情况讨论.【专题训练】一、填空题1.(2020·长沙市北雅中学八年级月考)若等腰三角形的一个角为80°,则顶角为_________.【答案】80°或20°①当80°的角为等腰三角形的顶角时,其顶角为80°,②当80°的角为等腰三角形的底角时,顶角的度数=180280︒-⨯︒=20°;故它的底角的度数是80°或20°.故答案为:80°或20°.【点睛】34此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,正确解题的关键是分80°的角是等腰三角形的底角和顶角两种情况讨论.2.(2020·莆田砺志学校八年级月考)如果一个等腰三角形的周长为17,一边长为5,那么腰长为_____.【答案】5或6解:当5是等腰三角形的底边时,则其腰长是(17-5)÷2=6,能够组成三角形;当5是等腰三角形的腰时,则其底边是17-5×2=7,能够组成三角形.所以,该等腰三角形的腰长为:5或6.故答案为:5或6.【点睛】此题考查了等腰三角形的两腰相等的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键.3.(2020·河南漯河市·八年级月考)在ABC 中,50B ∠=︒,当C ∠=______度时,ABC 是等腰三角形.【答案】65、80、50当∠B 是顶角时,∠C =12(180-∠B )=65, 当∠C 是顶角时,∠C =180-2∠B =80,当∠B 与∠C 都是底角时,∠C =50B ∠=︒,故答案为:65、80、50.【点睛】此题考查等腰三角形的性质:等腰三角形的两个底角相等,三角形的内角和定理.4.(2020·兴化市乐吾实验学校八年级月考)等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角的度数为_________.【答案】50°或130°5(1)当三角形是锐角三角形时,如下图.根据题意可知=40CBD ∠︒,∵三角形内角和是180︒,∴在BCD △中,=1809040=50BCD ∠︒-︒-︒︒(2)当三角形是锐角三角形时,如下图.根据题意可知=40CBD ∠︒,同理,在BCD △中,=1809040=50BCD ∠︒-︒-︒︒∵BCD ∠是ABC 的外角,∴=180********ACB BCD ∠︒-∠=︒-︒=︒故答案为50︒或130︒【点睛】本题考察了等腰三角形性质和三角形外角的性质以及三角形内角和定理的运用,分类讨论该等腰三角形是等腰锐角三角形或等腰钝角三角形是本题的关键.5.(2020·江苏扬州市·八年级月考)在平面直角坐标系中,等腰三角形AOB的顶点A的坐标为(2,2),底为OA,且B在坐标轴上,则B的坐标为___.【答案】(2,0),(0,2)如图,作AO的垂直平分线,分别交x轴、y轴于点B、B′,则点B、B′就是符合条件的点,连接AB、AB′,∵A的坐标为(2,2),∵OA平分∵BOB′,∵∵BOE=∵B′OE=45°,∵BB′垂直平分OA,∴OB=AB,∠OEB=∠AEB=90°,OE=AE,∵∵OBE=90°-∵BOE=45°,∵∵OEB≌∵AEB,∵∵ABE=∵OBE=45°,∴∠OBA=90°,∵∵AOB是等腰直角三角形,∵OB=AB=2,∵B(2,0),同理,B'(0,2),67故答案为:(2,0),(0,2).【点睛】本题考查了的等腰三角形的判定及坐标与图形的性质;熟练掌握等腰三角形的顶角顶点一定在底边的垂直平分线上是比较关键的.6.(2020·哈尔滨市虹桥初级中学校八年级月考)已知在ABC 中,AB AC =,BD 为AC 边上的高,50ABD ∠=︒,则ACB =∠________. 【答案】20︒或70︒解:①当AC 边上的高BD 在ABC 外部时,如图:∵BD 为AC 边上的高∴90ADB ∠=︒∵50ABD ∠=︒8∴9040BAD ABD ∠=︒-∠=︒∴40ABC ACB BAD ∠+∠=∠=︒∵AB AC = ∴()1202ACBABC ABC ACB ∠=∠==∠+∠=︒; ②当AC 边上的高BD 在ABC 内部时,如图:∵BD 为AC 边上的高∴90ADB ∠=︒∵50ABD ∠=︒∴9040BAD ABD ∠=︒-∠=︒∴180140ABC ACB BAD ∠+∠=︒-∠=︒∵AB AC = ∴()1702ACBABC ABC ACB ∠=∠==∠+∠=︒. 故答案是:20︒或70︒【点睛】9本题考查了三角形高的定义、直角三角形的性质、等腰三角形的性质、三角形内角和定理以及三角形外角定理,能根据高的位置进行分类讨论是解决问题的关键.7.(2020·厦门五缘第二实验学校八年级期中)若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形底角的度数为_____°.【答案】15或75(1)当等腰三角形是锐角三角形时,腰上的高在三角形内部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD =12AB , 根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角为30°,此时底角为75°;(2)当等腰三角形是钝角三角形时,腰上的高在三角形外部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD =12AB , 根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角的邻补角为30°,此时顶角是150°,底角为15°. 故答案为:15°或75°.【点睛】10此题主要考查等腰三角形的性质;正确的分类讨论是解答本题的关键.8.(2020·阳泉市第三中学校八年级期中)在∵ABC 中,AH 是BC 边上的高,若CH -BH =AB ,∵ABH =78°,则∵BAC =____【答案】63°或39°.解:如图1,当∠ABC 为锐角时,过点A 作AD =AB ,交BC 于点D ,∴∠ADB =∠ABH =78°,BH =DH .∵AB +BH =CH ,CH =CD +DH ,∴CD =AB =AD ,∴∠C =12∠ADB =39°, ∴∠BAC =180°-∠ABH -∠C =63°.如图2:当∠ABC 为钝角时,作AH ⊥BC 于H∵CH -BH =AB ,∴AB +BH =CH ,∴AB =BC ,∴∠BAC =∠ACB =12∠ABH =39°. 故答案为:63°或39°.【点睛】本题主要考查等腰三角形的判定与性质、三角形内角和定理等知识点,由于题干没图,分∠ABC为锐角及∠ABC为钝角两种情况成为解答本题的关键.9.(2020·湖北黄冈市·思源实验学校八年级月考)在等腰△ABC中,AB=AC,一腰上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为__________【答案】7或11①当15是腰长与腰长一半时,1152AC AC+=,解得10AC=,∴底边长1121072=-⨯=;三边长为:10,10,7;②当12是腰长与腰长一半时,1122AC AC+=,解得8AC=,∴底边长1158112=-⨯=,三边长为:8,8,11;经验证,这两种情况都是成立的.∴这个三角形的底边长等于7或11.故答案为:7或11.1112【点睛】本题主要考查了等腰三角形的性质及三角形三边关系;注意:求出的结果一定要检验是否符合三角形三边性质.分类讨论是正确解答本题的关键.10.(2020·成都金苹果锦城第一中学八年级期中)如图,A 、B 两点的坐标分别为()2,4,()6,0,点P 是x 轴上一点,且ABP △为等腰三角形,则点P 的坐标为_________.【答案】(2,0)或(2,0)-或(6+或(6-∵ABP △为等腰三角形,∵当AB BP =时,如图∵,∵AB ==∵BP =∵(6,0)B ,∵(6P +或(6P -;∵当AB AP =时,如图∵13作AC BP ⊥于C 点,则(2,0)C ,∵AB AP =,∵BC CP =, ∵624BC =-=,∵4CP =,∵(2,0)P -.∵当AP BP =时,如图∵,作AP BP ⊥,∵4AP BP ==,∵(2,0)P .综上所述:点P 的坐标为(2,0)或(2,0)-或(6+或(6-,故答案为:(2,0)或(2,0)-或(6+或(6-.【点睛】本题考查了等腰三角形的判定与性质、勾股定理、坐标与图形,熟练掌握等腰三角形的判定与性质,灵活运用分类讨论的思想解决问题是解答的关键.。

等腰三角形中的分类讨论(含答案)

等腰三角形中的分类讨论(含答案)

等腰三角形中的分类讨论
类型1对顶角和底角的分类讨论
对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.
1.等腰三角形中有一个角为52°,它的一条腰上的高与底边的夹角为多少度?
解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°;
②若已知的这个角为底角,则一腰上的高与底边的夹角为38°.
故所求的一腰上的高与底边的夹角为26°或38°.
类型2对腰长和底长的分类讨论
在解答已知等腰三角形边长的问题时,当题目条件中没有明确说明哪条边是“腰”、哪条边是“底”时,往往要进行分类讨论.判定的依据是:三角形的任意两边之和大于第三边;两边之差小于第三边.
2.(1)已知等腰三角形的一边长等于6 cm,一边长等于7 cm,求它的周长;
(2)等腰三角形的一边长等于8 cm,周长等于30 cm,求其他两边的长.
解:(1)周长为19 cm或20 cm.
(2)其他两边的长为8 cm,14 cm或11 cm,11 cm.
1。

八年级数学下册- :等腰(直角)三角形中易漏解或多解的问题之五大易错(5类热点题型讲练)(解析版)

八年级数学下册- :等腰(直角)三角形中易漏解或多解的问题之五大易错(5类热点题型讲练)(解析版)

第05讲易错易混淆集训:等腰(直角)三角形中易漏解或多解的问题之五大易错(5类热点题型讲练)目录【考点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】 (1)【考点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】 (5)【考点三求有关等腰三角形中的多解题没有分类讨论产生易错】 (8)【考点四求有关直角三角形中的多解题没有分类讨论产生易错】 (14)【考点五三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】 (19)【考点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】例题:(2023春·陕西汉中·七年级校考阶段练习)已知一个等腰三角形的三边长分别为21x -,1x +,32x -,且21x -为腰长.求这个等腰三角形的周长.【答案】这个等腰三角形的周长为10.【分析】因为没有明确指出哪条边是底边哪个是腰,所以要分情况讨论.【详解】解:①当211x x -=+时,解得2x =,则这个等腰三角形三条边长分别为3、3、4,能构成三角形,此时这个等腰三角形的周长为33410++=;②当2132x x -=-时,解1x =,则这个等腰三角形三条边长分别为1、2、1,不能构成三角形(舍去).综上所述,这个等腰三角形的周长为10.【点睛】本题考查了等腰三角形的性质;在没有明确给出腰和底边时,要注意和已知条件联系起来分情况讨论进而求解.【变式训练】+<,∵7721∴不能围成腰长为7cm的等腰三角形;综上:能围成有一边长为7cm的等腰三角形.【点睛】本题主要考查了三角形三边之间的关系,等腰三角形的性质,解题的关键是掌握等腰三角形两腰相等,三角形两边之和大于第三边,两边之差小于第三边.【考点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】综上所述,这个等腰三角形的顶角度数是44︒或80︒或140︒.故答案为:44︒或80︒或140︒.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.5.(2022春·江西赣州·八年级统考期中)如图,在ABC 中,20B ∠=︒,105A ∠=︒,点P 在ABC 的三边上运动,当PAC △为等腰三角形时,顶角的度数是________.【答案】105︒或55︒或70︒【分析】作出图形,然后分点P 在AB 上与BC 上两种情况讨论求解.【详解】解:①如图1,点P 在AB 上时,AP AC =,顶角为105A ∠=︒,②∵20B ∠=︒,105A ∠=︒,∴1802010555C ︒︒︒︒∠=--=,如图2,点P 在BC 上时,若AC PC =,顶角为55C ∠=︒,如图3,若AC AP =,则顶角为180218025570CAP C ︒︒︒︒∠=-∠=-⨯=,综上所述,顶角为105︒或55︒或70︒.故答案为:105︒或55︒或70︒.【点睛】本题考查了等腰三角形的判定,注意要分情况讨论求解.【考点三求有关等腰三角形中的多解题没有分类讨论产生易错】题的关键,用了分类讨论思想.【变式训练】∵30PCB ∠=︒,∴∠BPC =90°,即PC ∴cos AP AC BAC =⋅∠当点P 在AB 的延长线上时,∵30PCB ∠=︒,∠PBC ∴∠CPB =30°,∴12AC AB ==∵30PCB ∠=︒∴∠APC =60°,∴∠ACP =60°,∴∠APC =∠PAC 【答案】2516或52或4,,,②当AE AD m ==时:如图,则:4CE BC BE m =-=-,在Rt ACE 中,22AE AC =+解得:258m =;此时AE AB =,∵90ACB ∠=︒,∴4BC CE ==,【考点四求有关直角三角形中的多解题没有分类讨论产生易错】【答案】125或247或325【分析】先利用直角三角形的性质可得的取值范围为06t <≤,然后分BQP ∠得出答案.【详解】解: 在Rt ABC △中,C ∠212AB BC ∴==,=60B ∠︒,∴点P 从点A 运动到点B 所需时间为点Q 从点B 运动到点C 所需时间为BC 当一个动点到达终点时,另一个动点也随之停止运动,06t ∴<≤,由题意,分以下两种情况:(1)如图,当90BQP ∠=︒时,BPQ V①当04t <≤时,3AP t =,BP AB =在Rt BPQ 中,2BQ BP =,即2t =解得2447t =<,符合题设;②当46t <≤时,312BP t =-,在Rt BPQ 中,2BQ BP =,即2t =解得245t =,符合题设;综上,t 的值是165或327或245,故答案为:125或247或325.【点睛】本题考查了含30︒角的直角三角形的性质、直角三角形的两个锐角互余等知识点,正确判断出取值范围,并分情况讨论是解题关键.【变式训练】点D 在直线BC 边上,ABD △为直角三角形,且当90BAD ∠=︒时,4090130ADC B BAD ∴∠=∠+∠=︒+︒=︒;如图2,在ABC 中,AB AC =,若=40B C ∠∠=︒,点D 在直线BC 边上,ABD △为直角三角形,且当90ADB ∠=︒时,90ADC ∴∠=︒;如图3,在ABC 中,AB AC =,若40BAC ∠︒=,点D 在直线BC 边上,ABD △为直角三角形,且当90ADB ∠=︒时,90ADC ∴∠=︒;如图4,在ABC 中,AB AC =,若40BAC ∠︒=,点D 在直线BC 边上,ABD △为直角三角形,且当90BAD ∠=︒时,70B ACB ∴∠=∠=︒,9020ADC B ∴∠=︒-∠=︒;故答案为:130︒、90︒或20︒【答案】60︒或18︒【分析】分情况讨论:①当求解即可.【详解】解:如图所示,当∵AD 是ABC 的角平分线,∴30BAD ∠=︒,∴Rt ADF 中,60ADF ∠=如图,当90BDF ∠=︒时,同理可得30BAD DAC ∠=∠=∵78ACB ∠=︒,∴ADB DAC ACB ∠=∠+∠=∴ADF ADB BDF ∠=∠-∠=综上所述:ADF ∠的度数为故答案为:60︒或18︒.【答案】50或25/25或50【分析】根据三角形内角和定理得ABC ∠形时,存在两种情况:分别根据三角形外角的性质即可得出结论.【详解】解:∵9040BAC C ∠=︒∠=︒,∴904050ABC ∠=︒-︒=︒∵BD 平分ABC∠∴1252DBC ABC ∠=∠=︒当BDE △为直角三角形时,有以下两种情况:①当90BED ∠=︒时,如图1,∵40C ∠=︒,∴904050CDE ∠=︒-︒=︒;②当90BDE ∠=︒时,如图2,【考点五三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】例题:(2023秋·山东泰安·七年级东平县实验中学校考期末)等腰三角形一腰上的中线把三角形周长分为15根据等腰三角形的定义和三角形中线的性质得:可设AD DC x ==∴2AB x =.1.(2023春·辽宁沈阳·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为45︒,那么这个三角形的顶角为()A .45︒B .90︒C .135︒D .135︒或45︒∵45ACD ∠=︒,∴顶角90A ∠=︒-如图2,三角形是钝角时,∵45ACD ∠=︒,∴顶角4590135BAC ∠=︒+︒=综上所述,顶角等于45︒或135当30AB AD +=时,即230AD AD +=,10AD ∴=,24BC CD += ,24241014BC CD ∴=-=-=;综上,底边的长为22或14;故答案为:22或14.【点睛】本题考查了等腰三角形的性质,中线的含义,涉及分类讨论.5.(2022·陕西·交大附中分校七年级期末)已知ABC 中,20B ∠=︒,在AB 边上有一点D ,若CD 将ABC 分为两个等腰三角形,则A ∠=________.【答案】100°,70°,40°或者10°【分析】分BD =CD 、BC =CD 、BD =BC 三种情况讨论即可求解.【详解】第一种请况:BD =CD 时,如图,∵BD =CD ,∠B =20°,∴∠B =∠DCB =20°,∴∠ADC =∠B +∠DCB =40°,(1)当DA =DC 时,∠A =∠ACD ,∵∠A +∠ACD +∠ADC =180°,∠ADC =40°,∴∠A =∠ACD =70°;(2)当DA =AC 时,即有∠ADC =∠ACD =40°,∴∠A =180°-∠ADC -∠ACD =100°;(3)当CD =CA 时,∠A =∠ADC =40°;第二种请况:BC =CD 时,如图,∵∠B =20°,BC =CD ,∴∠B =∠BDC =20°,∴∠ADC=180°-∠BDC=160°,∵△ADC是等腰三角形,∴有∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∴∠A=10°;第三种情况:BC=BD时,如图,∵BC=BD,∴∠BDC=∠BCD,∵∠B=20°,∠B+∠BCD+∠BDC=180°,∴∠BCD=∠BDC=80°,∴∠ADC=180°-∠BDC=100°,∵△ADC是等腰三角形,∴有∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∴∠A=40°;综上所述:∠A的度数为:70°,100°,40°,10°,故答案为:70°,100°,40°,10°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理等知识,掌握三角形的性质是解答本题的关键.。

第18讲 等腰三角形与直角三角形-2023年中考数学一轮复习备考(考点清单+强化演练+答案)

第18讲 等腰三角形与直角三角形-2023年中考数学一轮复习备考(考点清单+强化演练+答案)

2023年中考数学一轮复习备考第18讲等腰三角形与直角三角形考点清单考点1 等腰三角形的性质与判定性质(1)两底角相等,即∠B=∠C(等边对等角);(2)两腰相等,即AB=AC;(3)是轴对称图形,有一条对称轴,即AD所在的直线;(4)“三线合一”(即顶角的①、底边上的中线和底边上的高互相重合)判定(1)两边相等的三角形是等腰三角形;(2)②相等的三角形是等腰三角形(等角对等边)周长、面积周长:C=a+2b;面积:S=③(其中a是底边长,b是腰长,h是底边上的高)【易错警示】等腰三角形中的分类讨论:(1)当顶角和底角不确定时,需要分类讨论,且需要用三角形内角和定理检验;(2)当腰长和底边长不确定时,需要分类讨论,且需要用三角形三边关系检验.考点2 等边三角形的性质与判定性质(1)等边三角形的三条边相等,即AB=BC=AC;(2)等边三角形的三个内角相等且每一个角都等于④,即∠B=∠C=∠BAC=60°;(3)等边三角形是轴对称图形,有⑤条对称轴;(4)等边三角形“三线合一”;(5)等边三角形的内心、外心重合判定(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是⑥的等腰三角形是等边三角形周长、面积周长:C=3a;面积:S=12ah=34a2(h=32a)(其中a是边长,h是任一边上的高)考点3 直角三角形的性质与判定性质(1)两锐角之和等于90°,即∠A+∠B=90°;(2)斜边上的中线等于斜边的⑦;(3)30°角所对的直角边等于斜边的⑧;(4)勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么⑨;【拓展】在直角三角形中,如果一条直角边长等于斜边长的一半,那么这条直角边所对的锐角等于⑩;外接圆半径R=c2,内切圆半径r=12(a+b-c)判定(1)有一个角为⑪的三角形是直角三角形;(2)有两个角互余的三角形是直角三角形;(3)勾股定理的逆定理:如果三角形的三边长a,b,c满足⑫,那么这个三角形是直角三角形;【拓展】一条边上的中线等于这条边的一半的三角形是直角三角形周长、面积周长:C=a+b+c;面积:S△ABC=12ab=12ch(其中a,b分别为两个直角边长,c为斜边长,h为斜边上的高)考点4 等腰直角三角形的性质与判定性质(1)两直角边相等,即AC=BC;(2)两锐角相等且都等于45°;(3)是轴对称图形,有一条对称轴,即CD所在的直线;(4)“三线合一”判定(1)顶角为⑬的等腰三角形是等腰直角三角形;(2)有两个角为⑭的三角形是等腰直角三角形;(3)有一个角为⑮的直角三角形是等腰直角三角形;(4)两直角边相等的直角三角形是等腰直角三角形周长、面积 周长:C =2a +c ;面积:S =12a 2=12ch =22ah (其中a 为直角边长,c 为斜边长,h 为斜边上的高)强 化 演 练基础练1.如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,过点C 作 CD ⊥AB ,垂足为D ,E 为BC 的中点,AE 与CD 交于点F .若DF 的长为23,则AE 的长为( )A .2B .2C .5D .2 52.已知a ,b 是等腰三角形的两边长,且a ,b 满足2a -3b +5+(2a +3b -13)2=0,则此等腰三角形的周长为( )A .8B .6或8C .7D .7或83.如图,在等腰三角形ABC 中,AB =AC =5,BC =8,AD ⊥AC 交BC 于点D ,则AD 的值为( )A .125B .154C .5D .2034.如图,AD 是等边三角形ABC 的中线,AE =AD ,则∠EDC 的度数为( )A .30°B .20°C .25°D .15°5.如图是“人字形”钢架,其中斜梁AB =AC ,顶角∠BAC =120°,跨度BC =10 m ,AD 为支柱(即底边BC 上的中线),两根支撑架DE ⊥AB ,DF ⊥AC ,则DE +DF 等于( )A .10 mB .5 mC .2.5 mD .9.5 m6.如图,在△ABC 中,AB =BC ,由图中的尺规作图痕迹得到的射线BD 与AC 交于点E ,点F 为BC 的中点,连接EF .若BE =AC =2,则△CEF 的周长为( )A .3+1B .5+3C .5+1D .47.如图,在4×4的正方形网格中有两个格点A ,B ,连接AB ,在网格中再找一个格点C , 使得△ABC 是等腰直角三角形,满足条件的格点C 的个数是( )A .2B .3C .4D .58.如图,在△ABC 中AC =BC ,点D 和E 分别在AB 和AC 上,且AD =AE .连接DE ,过点A 作AH ⊥BC 于点H ,交DE 于点F .若∠C =40°,则∠AFE 的度数为( )A .60°B .65°C .75°D .80°9.如图,在△ABC 中,点O 是角平分线AD ,BE 的交点.若AB =AC =10,BC =12,则tan ∠OBD 的值是( )A .12B .2C .63D .6410.如图,在Rt △ABC 中,CD 为斜边AB 上的中线.若CD =2,则AB = .11.如图,在△ABC 中,AB =AC =2,P 是BC 上任意一点,PE ⊥AB 于点E ,PF ⊥AC 于点F .若S △ABC =1,则PE +PF = .12.如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B=.13.如图,EA=EB=EC,∠AEB=70°,则∠ACB=°.14.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于点D,E为垂足,连接CD.若BD=1,则AC的长是 .15.如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC=60°,∠C =45°.(1)求证:AB=BD;(2)若AE=3,求△ABC的面积.16.如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至点E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.强化练17.如图,在等边三角形ABC中,AB=10,E为AC的中点,点F,G为AB边上的动点,且FG=5,则EF+CG的最小值是()A.57 B.5 6 C.53+5 D.1518.如图,在△ABC中,AD和BE是高,∠ABE=45°,F是AB的中点,AD与FE,BE分别交于点G,H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC·AD=2AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2个C.3个D.4个提升练19.七巧板是大家熟悉的一种益智类玩具,用七巧板能拼出许多有趣的图案.小聪同学将一个直角边长为20 cm的等腰直角三角形纸板,切割七块,正好制成一副七巧板,则图中阴影部分的面积为cm2.20.如图,在△ABC中,AB=AC=6,∠BAC=120°,P是BC上的动点,Q是AC上的动点(Q不与A,C重合).(1)线段P A的最小值为;(2)当△ABP 为直角三角形,△PCQ 也为直角三角形时,CQ 的长度为 .参 考 答 案考点清单①两角 ②两角 ③12ah ④60° ⑤三 ⑥60° ⑦一半 ⑧一半 ⑨a 2+b 2=c 2 ⑩30° ⑪90° ⑫a 2+b 2=c 2 ⑬90° ⑭45° ⑮45°强化演练1. C2. D3. B4. D5. B6. C7. B8. C9. A 10. 4 11. 1 12. 54° 13. 35 14. 2 3 15. (1)证明:∵BD 平分∠ABC ,∠ABC =60°,∴∠DBC =12∠ABC =30°. ∵∠C =45°,∴∠ADB =∠DBC +∠C =75°,∠BAC =180°-∠ABC -∠C =75°,∴∠BAC =∠ADB ,∴AB =BD .(2)解:在Rt △ABE 中,∵∠ABC =60°,AE =3,∴BE =AE tan ∠ABC = 3. 在Rt △AEC 中,∵∠C =45°,AE =3,∴EC =AE tan C =3,∴BC =3+3,∴S △ABC =12BC ·AE =9+332.16. (1)证明:在△ADB 和△ADC 中,⎩⎪⎨⎪⎧AD =AD ,∠ADB =∠ADC ,BD =CD ,∴△ADB ≌△ADC (SAS),∴∠B =∠ACB .(2)解:在Rt △ADB 中,∵AB =5,AD =4,∴BD =AB 2-AD 2=52-42=3,∴BD =CD =3,AC =AB =CE =5,∴BE =2BD +CE =2×3+5=11,DE =CD +CE =8. 在Rt △ADE 中,由勾股定理,得AE =AD 2+DE 2=42+82=45,∴C △ABE =AB +BE +AE =5+11+45=16+45,S △ABE =12BE ·AD =12×11×4=22.17. A 18. D 19.25420. (1)3 (2)4.5或4或3。

等腰三角形中的分类讨论问题

等腰三角形中的分类讨论问题

关于等腰三角形中分类讨论问题的探讨所谓分类讨论思想,就是在解答数学题时有时无法用同一种形式去解决,而需要选定一个标准,根据这个标准将问题划分成几个能用不同形式去解决的小问题,将这些小问题一一解决,从而使问题得到解决,这就是分类讨论的思想。

对于分类讨论问题,初中教学阶段虽然没有对此方面的教学要求,但是需要用分类讨论的思想去解决的问题却经常遇见,华东师大版七年级下册教材中典型的分类讨论问题是在“等腰三角形〞一节中,主要有由于几何图形性质不明确而需分类讨论的问题和几何图形之间的位置关系不明确而需分类讨论的问题。

下面举例简要论述这两类问题:一、当腰长或底边长不能确定时,必须进行分类讨论例1、〔1〕已知等腰三角形的两边长分别为8cm和10cm,求周长。

〔2〕等腰三角形的两边长分别为3cm和7cm,求周长。

分析:由等腰三角形的性质可知我们在解此题前,必须明确所给的边的定义,在这里哪条边是“腰〞,哪条边是“底〞不明确,而且还要考虑到三条线段能够构成三角形的前提,因此必须进行分类讨论。

解〔1〕因为8+8>10,10+10>8,则在这两种情况下都能构成三角形;当腰长为8时,周长为8+8+10=26;当腰长为10时,周长为10+10+8=28;故这个三角形的周长为26cm或28cm。

解〔2〕当腰长为3时,因为3+3<7,所以此时不能构成三角形;当腰长为7时,因为7+7>3,所以此时能构成三角形,因此三角形的周长为:7+7+3=17;故这个三角形的周长为17cm。

注意:对于此类题目在进行分类讨论时,必须运用三角形的三边关系来验证是否能构成三角形。

二、当顶角或底角不能确定时,必须进行分类讨论例2、等腰三角形的一个角是另一个角的4倍,求它的各个内角的度数;分析:题目没有指明“顶角是底角的4倍〞,还是“底角是顶角的4倍〞因此必须进行分类讨论。

解:〔1〕当底角是顶角的4倍时,设顶角为x ,则底角为4x ,∴ 4x+4x+x=1800, ∴ x=200, ∴ 4x=800,于是三角形的各个内角的度数为:200,800,800。

中考数学总复习知识点专题讲解9---勾股定理典型易错题分析

中考数学总复习知识点专题讲解9---勾股定理典型易错题分析
①等腰△ABC 为锐角三角形时,如图 4-1 所示:
A D
B
C
图 4-1
4 / 12
CD=AC-AD=2,
∴在 Rt△BCD 中,由勾股定理得:
BC=

=2 ;
②等腰△ABC 为钝角三角形时,如图 4-2 所示:
D A
B
C
图 4-2
CD=AC+AD=8,
∴在 Rt△BCD 中,由勾股定 理得:
BC=
图 11-2 ∵∠A=∠C=45°,∠ADB=∠ABC=105°, ∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC =360°﹣45°﹣45°﹣105° =165°. ∴∠BDF=∠ADC﹣∠ADB =165°﹣105° =60°. 即△ADE 与△BCF 为等腰直角三角形, ∵AD=2,
2 ∴AE=DE= AD = 2 ,
2 ④等腰直角三角形腰长是底边长的 倍,底边长是腰长的 2 倍;
2 ⑤含 30 度角的直角三 角形,长直角边是短直角边的 3 倍. 下面我们就一些典型例题加以说明. 题 1. 若直角三角形的三边长分别为 x,6,8,则 x2=_______. 【答案】100 或 28 【解析】没有区分所给的两边是直角边还是斜边,因为题目中没有给出明确的条件, 对此类问题应该分类讨论. (1)长为 6 和 8 的边都是直角边时,x2=100; (2)长为 6 的边是直角边,长为 8 的边是斜边时,x2=28.
A. 1 B. 2 C. 3 D. 4 【答案】D. 【解析】解:分别求出点 A 与 C 到 BD 的距离,然后与 1 比较即可. 过点 A 作 AE⊥BD 于 E,过点 C 作 CF⊥BD 于 F,如图 7-2 所示.
图 7-2 ∵∠BAD=∠ADC=90°,AB=AD= 6 ,CD= 3 , ∴∠ABD=∠ADB=45°, ∴∠CDF=90°﹣∠ADB=45°, ∴△ABE 和△CDF 是等腰直角三角形,

专题01 三角形的证明【易错题型专项训练】解析版

专题01 三角形的证明【易错题型专项训练】解析版

专题01 三角形的证明【易错题型专项训练】易错点一:等腰三角形性质与判定1.已知三角形三个内角度数如图所示,试画一条直线MN ,将这个三角形分割成两个等腰三角形. 【难度】★★ 【解析】【总结】本题考查了等腰三角形的分割,注意从多个角度考虑.2.如图,在下列三角形中,若AB =AC ,则不能被一条直线分成两个小等腰三角形的是( ).【难度】★★ 【答案】B .【解析】A 选项,作B ∠的角平分线即可;C 选项,作A ∠的角平分线即可;D 选项, 作72BAD ∠=︒交BC 于点D .【总结】本题考查了等腰三角形的分割,注意从多个角度考虑.3.(1)如果等腰三角形中有一个角为120°,另外两个角的度数为________; (2)如果等腰三角形中有一个角为30°,另外两个角的度数为____________. 【难度】★★【答案】(1)30︒、30︒;(2)30︒、120︒或75︒、75︒.【解析】(1)120︒只能为等腰三角形的顶角,所以另外两个角的度数为30︒、30︒; (2)当30︒为等腰三角形的底角时,另外两个角的度数为30︒、120︒;当30︒为等腰三角形的顶角时,另外两个角的度数为75︒、75︒. 【总结】本题考查了等腰三角形的性质,注意要分类讨论.4.(1)等腰三角形的两边长分别为6厘米和12厘米,它的周长为________; (2)等腰三角形的两边长分别为8厘米和12厘米,它的周长为___________. 【难度】★★【答案】(1)30厘米;(2)28厘米或32厘米.【解析】(1)由三角形的存在性可知6厘米为底,12厘米为腰,所以周长为30厘米;(2)当8厘米为腰时,周长为28厘米;当12厘米为腰时,周长为32厘米.【总结】本题考查了三边关系的运用,注意考虑三角形的存在性问题.5.已知等腰三角形的周长为24 cm,其中一边长为7 cm ,则与它相邻的另一边长()A.7 cm或10 cm B.8.5 cm或7 cmC.7 cm或10 cm或8.5 cm D.10 cm或8.5 cm.【难度】★【答案】C.【解析】当7 cm为腰时,底边为10 cm;当7 cm为底时,腰为8.5 cm,所以另一边长为7 cm或10 cm或8.5 cm.【总结】本题考查了等腰三角形的性质,注意分类讨论和考虑三角形的存在性问题.6.等腰三角形中,AB的长是BC长2倍,三角形的周长是40,求AB的长.【难度】★★【答案】16.【解析】设BC xx x xAB=;x=,∴16++=,解得:8=,当AB为腰时,2240=,则2AB x当AB为底时,2+=,∴三角形不存在.x x x【总结】本题考查了等腰三角形的周长的确定,注意分类讨论.7.已知下列语句:①有一个角为300,腰长相等的两个等腰三角形全等.②有一个角为1100的腰长相等的两个等腰三角形全等.③腰长相等,顶角相等的两个等腰三角形全等.④底角和底边对应相等的两个等腰三角形全等.⑤一腰和底边对应相等的两个等腰三角形全等.⑥顶角和底边对应相等的两个等腰三角形全等.⑦底和一腰上的高对应相等的两个等腰三角形全等.其中不能判断两个等腰三角形全等的方法有()A.0个B.1个C.2个D.3个【难度】★★【答案】B.【解析】①30︒可以作为底角也可以作为顶角,所以不全等,其余正确.【总结】本题考查了等腰三角形的性质及三角形全等的判定,当给出的角是锐角时,注意分类讨论.8.如图,已知D是等边三角形ABC的边AB边延长线上一点,BD的垂直平分线HE交AC延长线于点E,那么CE与AD相等吗?试说明理由.【难度】★★【解析】//H HG BC AE G 过点作,交于点.60//6060,903018030,22ABC A ABC AB AC HG BC AHG ABC AHG A AHG HG AG AHHE BD AHE BH DHGHE AHE AHG GEH AHE A GHE GEH EG HG AG AHCE AE AC AG AC AH ∆∴∠=∠==∴∠=∠=︒∴∠=∠=︒∴∆∴==∴∠=︒=∴∠=∠-∠=︒∠=︒-∠-∠=︒∴∠=∠∴===∴=-=-=-是等边三角形,,,,为等边三角形,为的垂直平分线,,,,222.AC AB BH ACAB BH AB BH DH AD =+-=+=++=【总结】本题主要考查了等边三角形的判定和性质,注意辅助线的添加.9.如图,已知:在等边三角形ABC 中,D 、E 分别是AB 、AC 边上的点,且BD =AE ,EB 与CD 相交于点O .EF 与CD 垂直于点F ,试说明OE =2OF .【难度】★★【解析】60F OFG OE G ∠=︒过点作,交于点60(..)60609030ABC A ABC AB BC AB BCABE BCD A ABC AE BD ABE BCD S A S ABE BCDADO ABC BCD ADO BOD ABE BOD ABC EOF OFG OG OF GFEF CD OFE OEF ∆∴∠=∠=︒==⎧⎪∆∆∠=∠⎨⎪=⎩∴∆≅∆∴∠=∠∠=∠+∠∠=∠+∠∴∠=∠=︒∴∠=︒∴∆∴==⊥∴∠=︒∴∠=︒∠是等边三角形,,在与中,,,又为等,,,,边三,角,形,,302.GFE OEF GFE GE GF OF OE OG GE OF =︒∴∠=∠∴==∴=+=,,,【总结】本题主要考查了等边三角形的判定与性质的综合运用,注意对方法的选择. 易错点二:直角三角形的性质与判定1.(1)等腰三角形底角是75°,腰长为9,则此三角形的面积是_______;(2)等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的顶角的度数是_____________. 【难度】★★ 【答案】(1)481;(2)30°或150°. 【解析】(1)∵等腰三角形底角是75°,∴顶角为30度,则腰上的高为29,则三角形的面 积为48129921=⨯⨯;(2)注意分锐角三角形和钝角三角形两种情况分类讨论.【总结】考察直角三角形的性质.注意等腰三角形分为锐角等腰三角形和钝角等腰三角形. 2.(1)直角三角形两边长为3和4,则此三角形第三边长为_________; (2)直角三角形两直角边长为3和4,则此三角形斜边上的高为_________; (3)等腰三角形两边长是2、4,则它腰上的高是____________. 【难度】★★【答案】(1)5或7;(2)512;(3)215.【解析】(1)3和4可以是两直角边长,也可以是一个直角边和斜边; (2)由勾股定理可得:斜边长为5,则由等面积法可知:三角形斜边上的高为512543=⨯; (3)∵2、2、4不能构成三角形,所以三角形的三边长为4、4、2, 作等腰三角底边上的高,则由等腰三角形三线合一性质和勾股定理可得:底边上的高为15,则由等面积法可知:此三角形腰上的高为2154152=⨯. 【总结】考察等腰三角形的性质和勾股定理的应用,注意分类讨论.3.已知已直角三角形的周长为2,求这个直角三角形的面积.【难度】★★【答案】52.【解析】∵斜边上的中线为2,所以斜边长为4.∵直角三角形的周长为4+26,∴两直角边之和为26. ∵斜边长为4,则两直角边的平方和为16,∴设两直角边分别为x y ,,则有⎩⎨⎧=+=+261622y x y x ,解得:()()52222=+-+=y x y x xy ,∴直角三角形的面积为25. 【总结】考察勾股定理和直角三角形性质的应用,解题时注意方法的运用.4.如图,公路MN 和公里PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所中学,AP =160米,假设拖拉机行驶时,周围100米以内会受到噪音的影响,那么拖拉机在MN 上沿PN 方向行驶时,学校是否会受到噪音的影响?请说明理由;如果受影响,已知拖拉机的速度是18千米/时,那么学校受影响的时间是多少秒?【难度】★★ 【答案】24秒.【解析】过A 做AB ⊥MN ,垂足为B .在Rt △ABP 中,∠QPN =30°,160=AP ,∴8021==AP AB∵80<100,所以学校会受到噪音的影响.假设在C 处开始受到噪音影响,在D 处开始不受影响, ∴100100==AD CA ,由勾股定理可得:60==BD CB ∴受影响的路程为120米=0.12千米∴学校受影响的时间为秒2436001812.0=⨯. 【总结】考察勾股定理和直角三角形性质的应用,解题时注意对题意的分析.5.如图,在四边形ABCD 中,BC >BA ,AD=CD ,BD 平分∠ABC,求证:∠A+∠C=180°.【解析】解:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.6.如图,OC平分∠AOB,点D,E分别在OA,OB上,点P在OC上且有PD=PE.求证:∠PDO=∠PEB.【解析】证明:过点P作PF⊥OA,PH⊥OB,∵OC平分∠AOB,∴PF=PH,在Rt△PDF和Rt△PEH中,,∴△PDF≌△PEH(HL),∴∠PDO=∠PEB.易错点三:两外角角平分线模型应用1.如图,在△ABC中,∠ABC的外角平分线与∠ACB的外角平分线相交于点D,那么∠BDC与∠A的数量关系是_____________.【答案】90°-∠A.【解析】解:∵BD、CD是∠ABC和∠ACB外角的平分线,∴∠CBD=(∠A+∠ACB),∠BCD=(∠A+∠ABC),∵∠ABC+∠ACB=180°-∠A,∠BDC=180°-∠CBD-∠BCD=180°-(∠A+∠ACB+∠A+∠ABC)=180°-(2∠A+180°-∠A)=90°-∠A.即∠BDC=90°-∠A,故答案为:∠BDC=90°-∠A.2.如图,已知射线ox与射线oy互相垂直,B,A分别为ox、oy上一动点,∠ABx、∠BAy的平分线交于C.问:B、A在ox、oy上运动过程中,∠C的度数是否改变?若不改变,求出其值;若改变,说明理由.【解析】解:∠C的度数不会改变.∵∠ABN、∠BAM的平分线交于C,∴∠C=180°-(∠1+∠2)=180°-(∠ABN+∠BAM)=180°-(∠O+∠OAB+∠BAM)=90°-∠O=45°.3.如图,在△ABC中,分别作其内角∠ACB与外角∠DAC的角平分线,且两条角平分线所在的直线交于点E(1)填空:①如图1,若∠B=60°,则∠E=______;②如图2,若∠B=90°,则∠E=______;(2)如图3,若∠B=α,求∠E的度数;(3)如图4,仿照(2)中的方法,在(2)的条件下分别作∠EAB与∠ECB的角平分线,且两条角平分线交于点G,求∠G的度数.【解析】(1)①根据三角形的外角性质可得∠DAC﹣∠ACB=∠B=60°,再根据角平分线的定义可得∠F AC﹣∠ACE=30°,可求∠E的度数;②根据三角形的外角性质可得∠DAC﹣∠ACB=∠B=90°,再根据角平分线的定义可得∠F AC﹣∠ACE=45°,可求∠E的度数;(2)根据三角形的外角性质可得∠DAC﹣∠ACB=∠B=12α,再根据角平分线的定义可得∠F AC﹣∠ACE=12α,可求∠E的度数;(3)根据角平分线的定和义可得三角形的外角性质可得∠G=∠HAC﹣∠ACG=32∠F AC﹣32∠ACE=32(∠F AC﹣∠ACE),可求∠G的度数.【详解】(1)①∠DAC﹣∠ACB=∠B=60°.∵EA平分∠DAC,EC平分∠ACB,∴∠F AC=12∠DAC,∠ACE=12∠ACB,∴∠E=∠F AC﹣∠ACE=12∠B=30°;②∠DAC﹣∠ACB=∠B=60°.∵EA平分∠DAC,EC平分∠ACB,∴∠F AC=12∠DAC,∠ACE=12∠ACB,∴∠E=∠F AC﹣∠ACE=12∠B=45°;(2)∠DAC﹣∠ACB=∠B=α.∵EA平分∠DAC,EC平分∠ACB,∴∠F AC=12∠DAC,∠ACE=12∠ACB,∴∠E=∠F AC﹣∠ACE=12∠B=12α;易错点四:利用角平分线的性质求点到直线的距离1.如图,AB∥CD,O为∠BAC、∠ACD的平分线的交点,OE⊥AC于E,且OE=2,则AB与CD间的距离为_______.【答案】4cm【解析】解:如图,过点O作OF⊥AB于F,作OG⊥CD于G,∵O是∠ACD与∠BAC的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=2 cm,∵AB//CD,∴AB与CD间的距离=OF+OG=2+2=4 cm.故答案为:4 cm.2.如图,已知在△ABC中,BD,CE分别平分∠ABC,∠ACB,且BD,CE交于点O,过O作OP⊥BC于P,OM⊥AB于M,ON⊥AC于N,则OP,OM,ON的大小关系为___________.【答案】OP=ON=OM.【解析】解:∵BD,CE分别平分∠ABC,∠ACB,OP⊥BC于P,OM⊥AB于M,ON⊥AC于N∴OP=ON,OP=OM∴OP=ON=OM.故填OP=ON=OM.易错点五:利用角平分线的性质求三角形的周长1.如图,在△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D,问能否在AB上确定一点E,使△BDE 的周长等于AB的长?若能,请作出点E,并给出证明;若不能,请说明理由.【解答】解:能,过点D作DE⊥AB于E,则△BDE的周长等于AB的长.理由:如图,∵CD⊥AC于C,DE⊥AB于E又∵AD平分∠BAC∴CD=ED,AC=AE在Rt△DEB中,∠B=45°,∴DE=BE△BOE的周长=BD+DE+BE=BD+CD+BE∴AC=BC又∵BD+CD=BC∴BD+CD=AC∴BD+CD=AE∴△BOE的周长=AE+BE=AB2.如图,在中,,分别是和的角平分线,且,,则的周长是_______.【答案】5.【解答】∵分别是和的角平分线,∴,.∵,,∴,,∴,,∴,∴的周长.易错点六:利用角平分线的性质证明线段相等1.已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D.(1)PC和PD有怎样的数量关系是.(2)请你证明(1)得出的结论.【解答】解:(1)PC=PD.(2)过P分别作PE⊥OB于E,PF⊥OA于F,∴∠CFP=∠DEP=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠1+∠FPD=90°,(直角三角板)又∵∠AOB=90°,∴∠FPE=90°,∴∠2+∠FPD=90°,∴∠1=∠2,在△CFP和△DEP中,∴△CFP≌△DEP(ASA),∴PC=PD.2.如图,为△ABC平分线上的一点,点D和E分别在AB和BC上,且PD=PE,试探究∠BDP与∠BEP的数量关系,并给予证明.【解析】解:过P作PM⊥AB于M,PN⊥BC于N由角分线性质得PM=PN在Rt△DPM和Rt△EPN中,PD=PE,PM=PN∴Rt△DPM≌Rt△EPN(HL),∴∠ADP=∠BEP,又∠BDP+∠ADP=180°∴∠BDP+∠BED=180°易错点七:利用角平分线的性质解决面积问题1.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是_______.【答案】31.5.【解析】解:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF,∴S△ABC=S△OBC+S△OAC+S△OAB=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.故填31.5.2.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=20cm,AC=8cm,则DE的长为______cm.【答案】2【解析】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴S△ABC=AB•DE+AC•DF=28,即×20×DE+×8×DF=28,解得DE=2cm.故答案为:2易错点八:角平分线的判定应用1.如图,在△ABC中,点P是角平分线AD、BE的交点.求证:点P在∠C的平分线上.【解析】证明:如图,过点P作PM⊥AB,PN⊥BC,PQ⊥AC,垂足分别为M、N、Q,∵P在∠BAC的平分线AD上,∴PM=PQ,P在∠ABC的平分线BE上,∴PM=PN,∴PQ=PN,∴点P在∠C的平分线.2.如图:在△ABC中,∠B,∠C相邻的外角的平分线交于点D.求证:点D在∠A的平分线上.【解析】解:过D作DE⊥BC于E,DF⊥AB,交AB延长线于F,作DG⊥AC,交AC延长线于G,∵BD是∠CBF的角平分线,DE⊥BC,DF⊥AB,∴DE=DF,同理可得DE=DG,∴DF=DG,又∵DF⊥AB,DG⊥AC,∴点D在∠BAC的角平分线上.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档