高分子材料

合集下载

高分子工程材料有哪些

高分子工程材料有哪些

高分子工程材料有哪些
高分子工程材料是一类以高分子化合物为基础的材料,它具有优异的力学性能、耐热性、耐化学性,广泛应用于各个领域。

常见的高分子工程材料包括:
1. 聚氯乙烯(PVC):具有较好的绝缘性能和耐候性,常用于电线电缆、建筑材料等。

2. 聚乙烯(PE):具有良好的机械性能和化学稳定性,常用于容器、管道、绝缘材料等。

3. 聚丙烯(PP):具有良好的耐热性和耐化学性,常用于汽车零件、电器外壳等。

4. 聚苯乙烯(PS):具有较好的透明性和耐冲击性,常用于塑料杯、餐具等。

5. 聚氨酯(PU):具有优异的强度和弹性,常用于汽车零件、家具等。

6. 聚酯(PET):具有良好的耐热性和耐化学性,常用于瓶子、纤维等。

7. 聚碳酸酯(PC):具有较好的透明性和耐冲击性,常用于手机壳、眼镜等。

8. 聚甲醛(POM):具有良好的耐磨性和机械性能,常用于齿轮、轴承等。

除了以上常见的高分子工程材料,还有更多种类的高分子材料,如聚醚醚酮(PEEK)、聚酰亚胺(PI)等,它们在特定领域有着特殊的性能和应用。

高分子环境材料相关知识简介

高分子环境材料相关知识简介
可种植型高分子降解材料 细菌制造的可降解高分子材料如聚羟基烷酸

(1)光降解高分子材料
光降解塑料就是一种能在日光条件下快 速光老化的塑料,其主要反应是塑料吸 收太阳光中的紫外线,引发光化学反应, 使高分子链键断裂的过程。
在塑料中加入光敏性物质
国外已应用于农用地膜、垃圾袋、快餐 容器、饮料罐拉环,以及包装塑料制品 等一次性用品
原油 开采
丙烯 生产
环氧丙 烷生产
PPC 生产
使用
废弃
HT POCP AP GWP ADP
图 各生产阶段的归一化结果
PPC的环境负荷主要来自生产阶段,即丙烯、环氧丙烷和聚合物生产;主要环境负荷工序 是环氧丙烷生产;环氧丙烷和丙烯生产的主要环境负荷类型均为温室效应,聚合物生产则 以酸化效应为主。结合清单分析可知这三个工序的能耗大小与其环境负荷大小相对应。
四种树脂的环境排放与能耗
1.20E+05
1.00E+05
8.00E+04
PE
6.00E+04
PPC
NPC
4.00E+04
PLA
2.00E+04
0.00E+00
废气
废水
废渣
能耗
图 四种树脂的污染物排放与能耗
各种环境影响类型的分析
1.20E-10
1.00E-10
8.00E-11
6.00E-11
4.00E-11
糠醛 生产
糠醇 缩水甘油 聚合物 生产 醚生产 生产
使用
图 非石油基聚碳酸酯生命周期过程各阶段的归一化结果
NPC的主要环境负荷工序是生产阶段的糠醛和缩水甘油醚的生产。
废弃
HT POCP AP GWP ADP

高分子是什么材料

高分子是什么材料

高分子是什么材料高分子是一类由大量重复单元组成的大分子化合物,由于其独特的结构和性质,在各个领域都有着广泛的应用。

高分子材料的种类繁多,包括塑料、橡胶、纤维和树脂等,它们在日常生活和工业生产中都起着重要的作用。

首先,我们来了解一下高分子材料的特点。

高分子材料通常具有较高的分子量和相对较长的链状结构,这使得它们具有良好的柔韧性和韧性。

同时,高分子材料还具有较强的耐磨损性和化学稳定性,能够在不同的环境条件下保持稳定的性能。

此外,高分子材料还具有较低的密度,使得它们成为轻量化材料的理想选择。

高分子材料的制备方法多种多样,其中最常见的是聚合反应。

聚合反应是通过将单体分子进行化学反应,使其重复结合形成长链状分子的过程。

在聚合反应中,可以通过控制反应条件和单体种类来调控高分子材料的结构和性能,以满足不同的需求。

高分子材料在塑料制品中有着广泛的应用。

塑料制品是高分子材料的一种常见形式,其在日常生活中随处可见。

塑料制品具有轻质、耐用、易加工等特点,被广泛应用于包装、建筑、家居用品等领域。

与传统材料相比,塑料制品具有成本低、生产效率高的优势,因此受到了广泛的青睐。

橡胶是另一种重要的高分子材料。

橡胶具有良好的弹性和耐磨损性,被广泛应用于轮胎、密封件、橡胶制品等领域。

随着汽车工业和工程机械的发展,对橡胶制品的需求不断增加,橡胶材料的研发和生产也得到了迅速发展。

此外,高分子材料还在纤维和树脂等领域发挥着重要作用。

纤维材料如涤纶、尼龙等具有良好的柔软性和耐磨损性,被广泛应用于纺织品、绳索、工业滤料等领域。

树脂材料如环氧树脂、聚酯树脂等具有良好的粘接性和耐腐蚀性,被广泛应用于建筑、航空航天、电子等领域。

总的来说,高分子材料作为一种重要的材料类别,在各个领域都有着广泛的应用前景。

随着科学技术的不断发展,高分子材料的研究和应用也将不断取得新的突破,为人类的生活和工业生产带来更多的便利和可能性。

有机高分子/无机物杂化纳米材料

有机高分子/无机物杂化纳米材料
纳米材料可以兼顾无机物分子的分离能级和半导体的 连续谱的优点,因而可用作光,电等功能材料.
纳米粒子具有量子尺寸效应,其吸收光谱随粒经的减 小而发生蓝移.量子效应,隧道效应是未来微电子器 件的基础.
以上特点决定了纳米组装体具有高密度,多功 能,高集成度,高存储密度,协调和协同效应, 且材料透明,可用于光学通讯.
三.利用单体R’Si(OR)3,R’是可在光照 或加热情况下聚合的基团。例如:光聚 合或热聚合得到的带三乙氧基硅烷的聚 合物与TEOS、H2O反应,得到有机聚合 物在二氧化硅基体中。
5.5预聚体杂化
预聚体带有较小的无机网络,端基带有可聚合的基团, 聚合得到有机-无机杂化材料。例子。P288
6嵌段共聚物杂化 两嵌段共聚物组成变化引起的形态变化有:球形、圆
有机小分子 有机高分子
○ + 有机无机互穿网络
无机小分子无机高分子
5.2分子内自杂化
由一种反应物(含亲水基团),水解缩合后生 成带可聚合基团的产物。例子。P287
3大分子混合杂化 ○ 大分子与大分子的杂化,若是简单混合,
ΔS混合≈0,只有当ΔH混合<0,即混合过程放 热, ΔG混合<0才能实现,而这样的体系很 少.大分子与大分子的杂化不能依靠简单混合 实现,而要用反应杂化来实现.
单击添加副标题
有机高分 子/无机 物杂化纳
米材料
2023
杂化材料是从二十世纪八十年代末开始 迅速发展的多学科交叉的材料.
1.无机材料,有机高分子材料及生物物质的特点
无机材料: 结构材料(高强度,高刚性,高硬度); 光,电,磁等功能材料(光谱谱线较窄); 性能长期稳定,使用寿命长; 加工成型较难(高温烧结,冶炼,晶体培养等加工成型方法).
有机高分子材料: 易于成型加工; 某些高分子材料可作结构材料(较高的强度,刚

高分子定义及简介

高分子定义及简介

功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。

功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。

近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%。

按照功能来分类1化学功能离子交换树脂、螯合树脂、感光性树脂、氧化还原树脂、高分子试剂、高分子催化剂、高分子增感剂、分解性高分子等.2.物理功能导电性高分子(包括电子型导电高分子、高分子固态离子导体、高分子半导体)、高介电性高分子(包括高分子驻极体、高分子压电体)、高分子光电导体、高分子光生伏打材料、高分子显示材料、高分子光致变色材料等.3.复合功能高分子吸附剂、高分子絮凝剂、高分子表面活性剂、高分子染料、高分子稳定剂、高分子相溶剂、高分子功能膜和高分子功能电极等.4.生物、医用功能抗血栓、控制药物释放和生物活性等 .按照功能特性通常可分成以下几类(1)分离材料和化学功能材料(2)电磁功能高分子材料(3)光功能高分子材料(4)生物医用高分子材料编辑本段离子交换树脂它是最早工业化的功能高分子材料。

经过各种官能化的聚苯乙烯树脂,含有H 离子结构,能交换各种阳离子的称为阳离子交换树脂,含有OH一离子结构能交换各种阴离子的称为阴离子交换树脂。

它们主要用于水的处理。

离子交换膜还可以用于饮用水处理、海水炎化、废水处理、甘露醇、柠檬酸糖液的钝化、牛奶和酱油的脱盐、酸的回收以及作为电解隔膜和电池隔膜。

编辑本段高分子催化剂和高分子试剂催化生物体内多种化学反应的生物酶属于高分子催化剂。

它具有魔法般的催化性能,反应在常温、常压下进行,催化活性极高,几乎不产生副产物。

目前,人们试图用人工合成的方法模拟酶,将金属化合物结合在高分子配体上,开发高活性、高选择性的高效催化剂,这种高分子催化剂称为高分子金属催化剂。

高分子类环境材料

高分子类环境材料

2、高分子材料的环境问题
—使用过程中带来的环境问题



















3、高分子环境材料
3R原则: ——减量化原则(reduce) ——再使用原则(reuse) ——再循环原则(recycle)
3、高分子环境材料 ——采用的天然原料完全生物降解,所制造的塑料不会产生污染;
——解决严重的“白色污染”问题 2、高分子材料的环境问题 ——解决严重的“白色污染”问题 —使用过程中带来的环境问题 4)化学降解
4、可降解高分子材料
高分子材料的降解有4种主要方式: 1)微生物降解 2)大型生物降解 3)光降解 4)化学降解
微生物降解
光降解
光降解机理: 光降解是指高分子材料在日光照射下发生劣化
分解反应,在一段时间内失去机械强度,其实质 是在紫外线照射下的一种快速光老化反应过程。
光-生物共降解
• 在光和微生物的共同作用下发生的分解过 程。
Ø可降解高分子材料 在光和微生物的共同作用下发生的分解过程。
先通过自然日光作用发生光氧化降解,并在光降解达到衰变期后可继续被微生物降解,最终变成二氧化碳、水及一些低分子化合物, 参与大自然的循环过程。 —使用过程中带来的环境问题
Ø高分子的再生循环 高分子材料的降解有4种主要方式:
—使用过程中带来的环境问题 光降解是指高分子材料在日光照射下发生劣化分解反应,在一段时间内失去机械强度,其实质是在紫外线照射下的一种快速光老化反
• 先通过自然日光作用发生光氧化降解,并 在光降解达到衰变期后可继续被微生物降 解,最终变成二氧化碳、水及一些低分子 化合物,参与大自然的循环过程。

高分子化学材料在日常生活中应用

高分子化学材料在日常生活中应用

浅析高分子化学材料在日常生活中的应用(巩义市第三中等专业学校河南巩义451200)高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。

高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。

高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。

如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。

生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。

下面就以塑料和纤维素举例说明。

一、生活中常见的高分子材料——塑料塑料是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,可以自由改变形体样式。

是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分是合成树脂。

塑料主要有以下特性:①大多数塑料质轻,化学性稳定,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。

塑料的优点1、大部分塑料的抗腐蚀能力强,不与酸、碱反应。

2、塑料制造成本低。

3、耐用、防水、质轻。

4、容易被塑制成不同形状。

5、是良好的绝缘体。

6、塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。

塑料的缺点1、回收利用废弃塑料时,分类十分困难,而且经济上不合算。

2、塑料容易燃烧,燃烧时产生有毒气体。

3、塑料是由石油炼制的产品制成的,石油资源是有限的。

高分子复合材料的应用场景

高分子复合材料的应用场景

高分子复合材料的应用场景随着科技的不断进步,高分子复合材料在各个领域得到了广泛的应用。

它具有轻质、高强度、耐腐蚀等优点,使得它成为了替代传统材料的理想选择。

下面将以人类的视角,介绍高分子复合材料在不同领域的应用场景。

1. 轻量化汽车制造高分子复合材料在汽车制造领域得到了广泛应用。

与传统金属材料相比,高分子复合材料具有更轻的重量和更高的强度,能够减轻汽车的整体重量。

这不仅能够提升汽车的燃油效率,减少尾气排放,还能提高汽车的安全性能。

高分子复合材料在汽车车身、车门、座椅等部件上的应用,使得汽车更加节能环保,同时保证了车辆的舒适性和安全性。

2. 航空航天领域航空航天领域对材料的要求非常高,高分子复合材料凭借其良好的物理性能和化学性能,在航空航天领域得到了广泛的应用。

例如,高分子复合材料可以用于制造飞机机身、翼面、螺旋桨等部件,能够大幅度减轻飞机的重量,提高燃油效率,同时还能提高飞机的强度和耐久性。

此外,高分子复合材料还可以用于制造航天器的外壳和热防护材料,能够承受极端的温度和压力,保护航天器的安全。

3. 建筑领域高分子复合材料在建筑领域的应用也越来越广泛。

在地震频发的地区,高分子复合材料可以用于制造抗震支撑结构,提高建筑物的抗震能力。

此外,高分子复合材料还可以用于制造外墙保温材料,能够有效隔热保温,提高建筑物的能源利用效率。

高分子复合材料还可以用于制造建筑物的屋顶、地板等部件,具有轻质、强度高的特点,提高了建筑物的整体质量。

4. 医疗器械领域高分子复合材料在医疗器械领域的应用也非常广泛。

例如,高分子复合材料可以用于制造人工关节、骨修复材料等,具有良好的生物相容性和机械性能,能够有效替代传统的金属材料。

高分子复合材料还可以用于制造医用导管、缝线等,具有良好的柔韧性和耐腐蚀性,能够提高手术的安全性和舒适性。

高分子复合材料在汽车制造、航空航天、建筑和医疗器械等领域都有广泛的应用。

它的轻质、高强度、耐腐蚀等优点使得它成为了替代传统材料的理想选择。

高分子复合材料的研究和应用

高分子复合材料的研究和应用

高分子复合材料的研究和应用随着科技的不断进步,高分子复合材料在各个领域中应用越来越广泛。

高分子复合材料是由高分子基质和多种纤维增强材料、无机材料等加工制成的材料。

这种材料的优点是具有潜在的机械性能、耐腐蚀性能、热稳定性能、振动耐受性能等,因此在汽车、飞机、船舶、纺织、建筑、医疗、电子、环境保护、水净化等领域得到广泛应用。

本文将简要介绍高分子复合材料的种类、特点以及应用。

高分子复合材料种类高分子复合材料包括热固性塑料增强材料、热塑性塑料增强材料、橡胶增强材料、粘结增强材料、纤维增强材料等。

其中,纤维增强材料是最常见和应用最广泛的。

常见的纤维增强材料有碳纤维、玻璃纤维、芳纶等。

碳纤维的强度和模量比钢铁更高,因此在航空航天和赛车等领域中得到广泛应用。

采用碳纤维增强材料制造的飞机和赛车,能减轻重量,提高速度和性能。

玻璃纤维的使用范围更广泛。

它是一种低成本的增强材料,具有优异的生物相容性和化学稳定性。

采用玻璃纤维制成的船舶、管道和储罐等能够耐受海水、化学物质等环境的腐蚀和侵蚀。

芳纶是一种聚酰亚胺纤维,具有高强度和高温稳定性能。

采用芳纶增强材料制成的防弹衣、防火服、高温设备等能够保护人员和设备的安全。

高分子复合材料特点高分子复合材料的特点主要体现在以下几个方面:1.轻质:高分子复合材料具有较低的密度,比金属轻。

2.高强度:由于增强材料的加入,高分子复合材料的强度比单一高分子材料高数倍。

3.耐腐蚀性:高分子复合材料在酸碱、盐水等环境下有较强的耐腐蚀性。

4.耐磨性:高分子复合材料具有良好的耐磨性,适用于易磨损的物品。

5.耐高低温性:高分子复合材料在高温和低温环境下也能保持高强度和稳定性。

高分子复合材料应用高分子复合材料在各个领域中广泛应用。

以汽车工业为例,高分子复合材料可以用于车身和车架的制造,比常规钢铁结构减轻60%的重量,减少了燃料消耗和废气排放,同时提高了车身的刚性和安全性。

在医疗领域,高分子复合材料可以用于制造人工器官、骨骼修复材料等,这些材料具有生物相容性,可以更好的适应人体环境。

高分子合成材料范文

高分子合成材料范文

高分子合成材料范文高分子合成材料是一种由化学合成而成的大分子化合物,通常具有高分子量、高强度和高导电性等特点。

高分子合成材料广泛应用于各个领域,如塑料、橡胶、纤维、涂料、胶黏剂等。

在本篇文章中,将会探讨高分子合成材料的特点、分类以及应用领域。

1.高分子量:高分子合成材料的分子量通常在10^4-10^6之间,因此具有较高的物理强度和化学稳定性。

2.可塑性:高分子合成材料具有较好的塑性,可以通过热加工、注塑等方法加工成不同形状的制品。

3.耐磨性:高分子合成材料通常具有较好的耐磨性能,可以用于制造耐磨部件,如轮胎、刷子等。

4.耐化学性:高分子合成材料通常具有较好的耐化学性,不易受到化学药品的侵蚀。

1.聚合物:聚合物是一种由同种或不同种化学单体通过聚合反应合成的高分子化合物,可以进一步分为塑料和橡胶。

塑料是一种具有可塑性的高分子合成材料,可以根据聚合单体的不同特性,如聚乙烯、聚丙烯、聚氯乙烯等分类。

橡胶是一种具有高弹性的高分子合成材料,可以根据其硬度和化学结构的不同,如天然橡胶、丁苯橡胶等。

2.高分子复合材料:高分子复合材料由高分子基质和增强材料组成,可以提高材料的力学性能。

常见的高分子复合材料包括聚合物基复合材料、纳米复合材料和纤维增强复合材料等。

3.高分子溶液:高分子溶液是指高分子化合物在溶剂中形成的溶液。

通过调整高分子溶液的浓度、溶剂的种类和温度等条件,可以使其具有不同的性质和应用前景。

1.医疗领域:高分子合成材料被广泛用于医疗器械的制造,如医用塑料制品、人工骨骼和人工器官等。

此外,高分子合成材料还被用于制造药物缓释系统和生物医学材料。

2.电子领域:高分子合成材料被广泛应用于电子器件的制造,如电子电缆、绝缘材料和电子芯片等。

3.环保领域:高分子合成材料被广泛应用于环保材料的研发和生产,如可降解塑料和水处理材料等。

4.能源领域:高分子合成材料被应用于太阳能电池板、燃料电池和锂离子电池等能源领域。

总之,高分子合成材料具有高分子量、可塑性、耐磨性和耐化学性等特点,广泛应用于医疗、电子、环保和能源等领域。

高分子建筑材料

高分子建筑材料
1,聚合物
2,稳定剂 3,增塑剂 4,填充剂和增强剂 5,固化剂和固化促进剂
6,发泡剂和发泡促进剂
7,阻燃剂 8,着色剂 9,抗静电剂
建筑上常用的高分子原料
• • • • • • • 聚氯乙烯 聚烯烃 苯乙烯类聚合物 有机玻璃 聚碳酸酯 有机硅树脂 热固性材料
高分子建筑材料主要分为以下几个大类:
4,建筑声学材料
一些建筑材料的制品:
塑料异型材和门窗
普通壁纸
塑料管材和管件
塑料壁纸
发泡壁纸
塑料地板
特种壁纸
经过加过的玻璃可以制备成:各款各型的无菌操作箱、 医疗科研用品、广告牌、食品箱、糖果盒、化妆品架、 电话亭、指示牌。
高分子建筑材料
发展历史:
高分子材料作为建筑材料,20世纪50年代,现在已成为水泥,木材, 钢筋之后的一种重要建筑材料。
概念:
以聚合物为基础,配以适当的助剂制备而成的,多数以产品的形式 在建筑现场使用。主要形式有塑料制品,橡胶制品,涂料,粘结剂 和密封剂,玻璃钢,防水材料,装饰材料等。
高分子建筑材料的基本组成:
1,建筑防火材料
为使建筑物成为不燃性或难然性,以防止火灾的发生 和蔓延。
防火板材有:纤维增强硅酸钙板,石膏板材、泰伯墙 板、纤维增强水泥平板、难燃铝塑建筑装饰板等。
2,建筑防水材料
防水卷材:以合成树脂、合成橡胶或其共混体为基材, 加入助剂和填充料,通过压延、挤出等加工工艺而制成 的片状防水材料。 3,建筑保温隔热材料

高分子陶瓷复合材料简介

高分子陶瓷复合材料简介
晶态结构 :线型聚合物固化时可以结晶,但由于分子链运 动较困难,不可能完全结晶。所以晶态聚合物实际为晶区 (分子有规律排列)和非晶区(分子无规律排列)两相结 构,一般结晶度(晶区所占有的重量百分比)只有50%~ 85%,特殊情况可达到98%。在结晶聚合物中,晶区与非 晶区相互穿插,紧密相连,一个大分子链可以同时穿过许 多晶区和非晶区。
(二)晶态高聚物形变与温度的关系
高度结晶的高聚物,具有明确的熔点Tm,温度达到Tm之后, 材料转变为流体,进入粘流态,此时, Tm也就是粘流温度。
形变
若相对分子质量太大,非晶区 的粘流温度Tf高于晶区的熔点 Tm则晶区熔融后将出现高弹 态,直至温度升高Tf到才进入 粘流态。
1
2
温度 Tg Tm Tf
单轴取向
双轴取向 26
非晶态:分子取向 大尺寸(整链);小尺寸(链段) 大尺寸取向 小尺寸取向 27
晶态:聚集态结构变化 机理:晶面滑移为主 片晶折 叠链→伸直链 (微丝结构)
第三节、温度对高聚物结构性能的影响
(一)线型无定形高聚物形变与温度的关系 Tg玻璃化温度 Tf粘流化温度 •塑料的高聚物 Tg要高; Tf 不要 太高, Tg—Tf 范 围不要太大。 •橡胶的高聚物Tg要低; Tf 较高, Tg—Tf 范围要求宽。 28
2
(二)高分子化合物的分类及命名
按材料的性能 和用途分类 按聚合物分子 结构分类
塑料、橡胶、纤维、涂料、胶粘剂、功能高分子等。 碳链聚合物:大分子主链全部由碳原子组成。如,聚乙 烯、聚丙烯、聚氯乙烯等。 杂链聚合物:大分子主链上除碳原子外,还有氧、硫、 氮等元素。如,聚酯、聚醚、聚酰胺、聚胺酯 元素有机聚合物:大分子主链上没有碳原子,由硅、硼、 铝、氧、氮、硫等元素组成,但侧基由有机基团组成。 如,有机硅橡胶、有机硅树脂。

高分子装修材料种类

高分子装修材料种类

高分子装修材料种类高分子装修材料是利用高分子材料制造的各种装修材料。

它们比传统材料更轻,更坚固,更耐用,更具有环保特性。

高分子装修材料因其独特的性质,广泛应用于各种建筑装修和室内设计中。

以下是几种常见的高分子装修材料:1. 聚氨酯泡沫聚氨酯泡沫是一种轻质、高强度的材料,主要用于室内装修中各种建筑构件的制造。

它具有优异的保温隔热性能、吸音效果和抗震性能。

它还可以用于制造墙板、屋顶板、门窗框以及室内地板等。

2. PVC地板PVC地板是一种由聚氯乙烯制成的地板材料。

它具有防水、防潮、防虫、防火等功能,同时还有很好的保温、防滑和吸音效果。

这种材料在室内装修中很常见,如办公室、宾馆、商场及家庭卫生间、厨房等。

3. 丙烯酸(PMMA)板材丙烯酸板材是一种透明、无色的高分子材料。

它具有较好的耐热性、硬度和韧性,同时具有较好的化学稳定性和加工性能。

因此,丙烯酸板材经常用于制造室内装修中的需要透明或半透明的物品,如台灯罩、墙面装饰、展示架、展示柜等。

4. 聚苯乙烯(XPS)板材聚苯乙烯板材属于一种发泡塑料材料,主要用于保温隔热和防潮处理。

它们具有较好的绝热和防潮性能,同时还有高强度和稳定的物理性能。

因此,聚苯乙烯板材经常用于室内装修中的各种防潮、隔热、保温等工程建设中。

5. 人造文理石人造文理石是一种以合成树脂为基础,通过模拟自然大理石的花纹、颜色纹理制造而成。

这种材料具有高强度、耐磨损、易于清洁和维护等优点,同时也有节能环保的特点。

它通常用于室内装修中的地面、门框、窗框、梯步、墙面等。

总的来说,高分子装修材料由于其轻便、强度高、安全、环保等特点,在室内装修中具有广泛的应用价值。

随着材料科技的不断创新进步,这些材料的应用范围也会不断扩大,为人们的生活和工作带来更多的便利和舒适。

高分子的凝聚态和聚集态

高分子的凝聚态和聚集态

高分子的凝聚态和聚集态引言高分子是由成千上万个重复单元组成的大分子化合物,其分子量往往非常大。

高分子材料在现代科技和工业中扮演着重要的角色。

在不同的条件下,高分子可以出现不同的凝聚态和聚集态。

本文将介绍高分子的凝聚态和聚集态的概念、特点以及相关的应用。

一、高分子的凝聚态高分子的凝聚态是指高分子在无外界作用力下,在固定温度下保持稳定的结构状态。

在凝聚态下,高分子分子间保持着一定的有序性和排列规律。

1.晶体态晶体态是高分子的一种凝聚态,其特点是高分子链在立体空间有规则地排列,形成高度有序的晶体结构。

高分子晶体具有高度结晶度、透明度和硬度等特点,广泛应用于塑料、纤维和电子材料领域。

2.玻璃态玻璃态是高分子的另一种凝聚态,其特点是高分子链呈无规则排列,形成非晶态结构。

高分子玻璃具有高强度、耐高温等优点,在包装、建筑和航空航天等领域有广泛的应用。

二、高分子的聚集态高分子的聚集态是指高分子在外界作用力下,分子间呈现出聚集、堆积的状态。

在聚集态下,高分子分子间相互作用较强。

1.胶体态胶体态是高分子的一种聚集态,其特点是分散相微粒的大小在1~1000纳米之间。

高分子胶体具有分散性好、介电常数大等特点,广泛应用于涂料、纸张和医药等领域。

2.凝胶态凝胶态是高分子的另一种聚集态,其特点是高分子在某种溶剂中形成三维网络结构,并具有可逆的溶胀性。

高分子凝胶具有大孔结构、储存能力强等特点,在制备人工器官和药物控释等方面具有重要应用价值。

三、高分子的应用高分子材料的凝聚态和聚集态在众多领域中都具有广泛的应用。

1.材料领域高分子晶体被广泛应用于塑料、纤维和电子材料领域。

高分子玻璃在包装、建筑和航空航天等领域具有重要应用。

高分子胶体被用于涂料、纸张和医药等领域。

高分子凝胶在制备人工器官和药物控释等方面具有重要作用。

2.生物医学领域高分子凝胶在生物医学领域中具有广泛的应用,如用于人工器官的制备、药物控释系统的设计以及组织工程领域的研究。

高分子生物材料

高分子生物材料

高分子生物材料引言高分子生物材料是一种结合了高分子材料和生物材料特性的材料,具有广泛的应用前景。

本文将介绍高分子生物材料的定义、特点及其在医学、食品、环境等领域的应用。

一、高分子生物材料的定义和特点高分子生物材料是指以高分子材料为基础,通过特殊的处理方法,使其具备生物材料的特性和功能。

与传统的高分子材料相比,高分子生物材料具有以下特点:1. 生物相容性:高分子生物材料具有良好的生物相容性,可以与生物体组织相互作用而不引起明显的免疫排斥反应。

2. 生物降解性:高分子生物材料可以在生物体内发生降解,降解产物可以通过正常的代谢途径排出体外,不会对生物体产生长期的不良影响。

3. 生物活性:高分子生物材料可以通过改变材料的表面性质或引入生物活性物质,具备特定的生物功能,如抗菌、促进组织再生等。

二、高分子生物材料在医学领域的应用1. 人工器官和组织工程:高分子生物材料可以用于制造人工器官,如人工心脏瓣膜、人工血管等。

同时,高分子生物材料也可以作为支架材料用于组织工程,促进组织再生和修复。

2. 药物传递系统:高分子生物材料可以作为药物载体,通过调控材料的释放性能,实现药物的缓慢释放和靶向传递,提高药物疗效并减少副作用。

3. 包装材料:高分子生物材料可以用于制造医疗器械的包装材料,保护器械免受外界环境的污染,并延长其使用寿命。

三、高分子生物材料在食品领域的应用1. 食品包装材料:高分子生物材料可以用于制造食品包装材料,具有良好的防潮、防氧化和抗菌性能,保持食品的新鲜度和品质。

2. 食品添加剂:高分子生物材料可以作为食品添加剂,用于增加食品的稳定性、口感和营养价值,并改善食品的质感。

3. 生物传感器:高分子生物材料可以用于制造食品质量检测的生物传感器,实现对食品中有害物质的快速检测和监测。

四、高分子生物材料在环境领域的应用1. 污水处理:高分子生物材料可以用于污水处理,通过吸附、分离和催化等作用,去除污水中的有害物质,提高水质。

高分子材料的特性

高分子材料的特性

高分子材料的特性
高分子材料是一类由大量分子组成的材料,具有许多独特的特性。

首先,高分子材料具有良好的机械性能。

由于其分子结构中存在大量的共价键和非共价键,使得高分子材料具有较高的强度和韧性。

例如,聚乙烯、聚丙烯等塑料材料具有较好的韧性和耐磨性,适用于制作各种日常用品和工业制品。

其次,高分子材料具有较好的耐化学性能。

由于高分子材料中的分子链结构较为稳定,使得其对酸、碱、溶剂等化学物质具有一定的抵抗能力。

例如,聚四氟乙烯具有出色的耐腐蚀性能,被广泛应用于化工设备、管道和阀门等领域。

此外,高分子材料还具有良好的绝缘性能。

由于高分子材料中分子链之间存在较大的空隙,使得其具有较好的绝缘性能。

例如,聚乙烯、聚氯乙烯等塑料材料被广泛应用于电线、电缆等领域,用于绝缘材料。

另外,高分子材料还具有较好的加工性能。

由于高分子材料可以通过热塑性和热固性两种方式进行加工,使得其可以通过挤出、注塑、压延等方式制备成各种形状的制品。

例如,聚丙烯、聚苯乙烯等塑料材料可以通过注塑成型制备成各种日常用品和工业制品。

总的来说,高分子材料具有良好的机械性能、耐化学性能、绝缘性能和加工性能,被广泛应用于日常生活和工业生产中。

随着科技的不断进步,高分子材料的特性将会得到更好的发挥和应用,为人类社会的发展做出更大的贡献。

高分子是什么材料

高分子是什么材料

高分子是什么材料高分子材料是由大分子化合物构成的一类材料。

它是由重复单元(称为聚合物)构成的大分子化合物,通过化学反应或物理方法制备而成。

由于高分子材料具有独特的结构和性质,被广泛应用于各个领域。

高分子材料的主要特点之一是其分子量较大,通常在数千到数百万之间。

这使得高分子材料具有较高的柔韧性和可变形性,可以通过改变其化学结构和聚合度来调节其物理和化学性能。

高分子材料的种类繁多,包括塑料、橡胶、纤维和涂料等。

塑料是最常见的高分子材料之一,具有广泛的应用领域。

根据其性质可以分为热塑性塑料和热固性塑料。

热塑性塑料在加热后可以软化并重新加工,而热固性塑料在加热后凝固成硬态,难以再次加工。

橡胶是高弹性和耐磨损的高分子材料,在汽车轮胎、密封件和振动吸收装置等领域中广泛应用。

纤维是高分子材料的另一种重要应用,包括天然纤维和合成纤维。

如棉、麻、丝等天然纤维,以及尼龙、涤纶等合成纤维,都是高分子材料的典型代表。

高分子材料具有许多优点。

首先,高分子材料具有较低的密度,具有轻质的特点,可用于制造轻便的产品。

其次,高分子材料具有较高的抗腐蚀性和耐磨性,可以在恶劣环境下长时间稳定使用。

此外,高分子材料还具有优异的绝缘性能、良好的柔性和可塑性,以及较高的可回收性。

高分子材料在各个领域都有着广泛的应用。

在建筑领域,高分子材料被用于制造绝缘材料、涂料和密封剂等。

在电子行业中,高分子材料被用于制造电缆、绝缘子和电子设备等。

在医疗领域,高分子材料用于制造人工器官、医用用品和药物载体等。

此外,高分子材料还被广泛应用于汽车制造、航空航天、纺织、包装和环保等领域。

总而言之,高分子材料作为一种特殊的大分子化合物,具有独特的结构和性质,广泛应用于各个领域。

它们不仅能够满足不同领域的需求,还可以通过改变其化学结构和聚合度来调节其性能,为人类社会的发展做出了重要贡献。

高分子概论高分子合成材料资料讲解

高分子概论高分子合成材料资料讲解
油基树脂漆、合成树脂类漆——成膜物质
2020/10/17
涂 料 —— 涂料类型
油基树脂漆: 油脂类漆——基于植物油、或植物油加天然树脂、或
植物油加改性酚醛树脂的涂料。 大漆——天然漆(土漆、笨漆、生漆),水乳胶漆;
含有50-80%漆酚(成膜物质)、〈1%漆酶(催干剂)、 20-40%水分、3-9%树脂质、1-5%油分。
v3
V2 > V1 = V3
擦胶
2020/10/17
橡胶加工工艺
压出——在压出机机筒和螺杆间的挤压下,使胶料连续通
过一定形状的口型,制成各种复杂断面半成品。
成型——把构成制品的各部件,通过粘贴、压合等方法组
合成一定形状的最终制品。
硫化——使橡胶大分子由线型结构转变为网状结构
目的:消除永久变形、提高力学性能。
2020/10/17
橡胶制品的原材料
生胶、再生胶 配合剂: 硫化剂
硫化促进剂 硫化活性剂 防焦剂 防老剂 补强剂、填充剂 软化剂、着色剂、溶剂、
发泡剂、隔离剂等。 骨架材料(纤维、金属材料)
纺织纤维、钢丝、玻璃纤维 帘子布、帆布、线绳、针织品 钢丝、钢丝帘子布
2020/10/17
2020/10/17
2020/10/17
2020/10/17
2020/10/17
塑料 塑料 – plastics:以聚合物为主要成分,在一定条件下 (温度、压力)可塑成一定形状,并且在常温下保持 其形状不变的材料。 热塑性塑料:可重复受热塑化、冷却硬化。 热固性塑料:交联聚合物,受热后不再回到可塑状态。
通用塑料:产量大、价格低、力学性能一般,主要作为非结构 材料使用,如:PP、PE、PVC、PSt等。
混炼——将配合剂混入生胶中制成质量均匀的混炼胶 目的:得到符合性能要求的混炼胶。 方法:机械混炼——开炼机、密炼机、螺杆塑炼机

高分子材料的优点

高分子材料的优点

高分子材料的优点
高分子材料是一类由大量重复单元组成的高分子化合物,具有许多优点,使其在各种领域得到广泛应用。

首先,高分子材料具有优异的物理性能。

例如,高分子材料具有较低的密度,使其成为轻量化材料的理想选择。

此外,高分子材料还具有良好的机械性能,如强度高、韧性好等,能够满足不同领域对材料性能的要求。

其次,高分子材料具有良好的化学稳定性。

高分子材料在常温下具有较好的耐腐蚀性能,能够在恶劣的环境条件下保持稳定。

这使得高分子材料在化工、航空航天等领域得到广泛应用,成为各种设备和器件的重要构成材料。

另外,高分子材料还具有良好的加工性能。

高分子材料可以通过热压、注塑、挤出等多种加工工艺进行成型,使其在制造过程中具有较大的灵活性和可塑性。

这一特点使得高分子材料成为现代工业制造中不可或缺的材料之一。

此外,高分子材料还具有良好的绝缘性能和隔热性能。

这使得高分子材料在电子电器、建筑等领域得到广泛应用,能够有效地保护设备和建筑结构,提高其安全性和稳定性。

总的来说,高分子材料具有物理性能优异、化学稳定性好、加工性能良好、绝缘性能和隔热性能优秀等诸多优点,使其在各种领域得到广泛应用。

随着科学技术的不断进步,相信高分子材料将会在更多领域展现出其独特的优势,为人类社会的发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超高分子量聚乙烯的抗塑性变形和磨损和通过其增强的可能性辐射改性耶Kansy的阿德里安Barylski,耶CYBO,Joanna Maszybrocka的,西里西亚大学,计算机科学与材料科学学院,材料科学系,PL-41-200索斯诺维茨,波兰二零一一年十一月二零一一年十一月三十日接受DOI10.1002/app.36573的线上发表于2012年2月29 Wiley Online Library的()。

摘要:操作耐久性的运动学聚合物- 金属系统中,在许多应用中,需要包括用于全膝关节或髋关节的内用假体,联合关节置换术,在很大程度上取决于高抗磨损和永久变形的聚合物杯,尤其是在其附近的表面层,与金属接触的一部分。

在这项研究中的磨损和变形阻力超高分子量聚乙烯(UHMWPE)等级,以及用于在关节置换术GUR1020和GUR1050作为其增强放射治疗的可能性进行了详细研究。

分子特性的影响,这些成绩的功能特性,包括永久塑性变形,显微硬度,弹性模量的微机械的磨损系数的影响。

较高分子量的GUR1050的属性,被发现优于GUR1020级。

这还证实,与电子束照射有效的方法修改,从而改善两个抗永久变形和磨损超高分子量聚乙烯。

结果表明,显微硬度,杨氏模量,耐磨系数增加比例的照射剂量应用。

VC2012威利期刊,应用高分子科学125:4188-4196,2012关键词:聚乙烯,超高分子量聚乙烯,辐照;变形,磨损,机械性能简介运行耐久性的聚合物- 金属运动学在技术和医学系统(关节置换术)在相当大的程度上取决于低电阻的聚乙烯,这是常用用于体内用假体,塑性变形以及磨料和粘结剂wear.1-3在最近几年,进行了许多尝试提高耐磨特性的聚合物金属的情侣包括新的类型的材料,应用抗磨损上层植入选定的化学元素的离子的协作surfaces.4-6,但在约90%的情况下的艺术塑料程序,常规和仍是最具成本效益的聚乙烯金属配合物使用。

为了改善其性能的人造关节,已使用了两种基本的方法:物理改性聚乙烯的微观结构它的化学结构和修改。

第一,利用塑性变形诱导分子取向的聚合物(通常是在升高的温度高于110℃),而且常常是加上变形后交联,然而,此方法的取向工作平面的联合,必须精确地调整现有的变形的方向。

在我们以前的研究中,约减少五倍易感性的永久变形和超高分子量聚乙烯的摩擦磨损达到(泰科纳Chirulen 1120级)。

这种作用是实现由一个联合的应用比较小(室温压缩塑性变形永久真应变为EF = 0.14-0.32)和电子束照射(26和52千戈瑞)。

而小变形的目的是诱发一些微妙的形态变化,小到破坏初始的各向同性的整体结构,而不是整个聚合物的重取向样品。

由于这种治疗的结果,在操作的条件下,变形的上部的厚度,减少的聚乙烯层,其结晶度进行了修改和调整层状相,结构安排的程度的增加,作为一个结果,操作的耐久性聚合物是被提升的.11-13物理改性的进展慢于在过去十年中预期导致再次到越来越大的兴趣结构的化学方法变形例中,主要是通过聚合物的交联。

超高分子量聚乙烯的阻力其中三个主要航线的化学交联,化学生成的自由基,使用硅烷的照射下,最后的方法是最重要的,从实际的角度来看,在制造人工关节。

它包括广泛使用的照射,用c辐射和较不频繁的电子光束照射。

交联的方法连同许多副作用协助照射进行了审查Lewis14 Kurtz.15McKellop等的结论是,实现一个非常良好的耐磨性超高分子量聚乙烯的照射,剂量为10毫拉德(100千戈瑞)通常是不够的,而更高的剂量可导致一些恶化的属性(例如,耐裂纹性)的材料。

最近,越来越多的关注已经支付给更安全,经济的照射电子束。

结果发现,应用高剂量超过25kGy的促进长链的断裂,空间重排的结构,有效的交联超高分子量聚乙烯。

较高的剂量,甚至高达150千戈瑞时,结合辐照后热治疗,结果在增加耐氧化,以及显着提高耐wear.1718 Premnath Bellare19指出,然而,该电子束照射后,用20-200千戈瑞剂量和随后的聚合物在空气中老化(长期在常温下贮存)同比增长的熔融温度和结晶度成比例的剂量进行了观察。

增加高照射后立即为5%和长大7-13%,贮存后的材料在室温下为5-29个月。

而更改的结晶结构所表示的结晶度的增加和熔融温度,可以带来重大的降低韧性和抗脆性断裂。

此外,经过约30期间个月有所下降的交联度同时也观察到了。

过去十年的文件,提高耐磨损和老化超高分子量聚乙烯,聚等级最高分子量,均衡的比例晶相和非晶相,必须使用有人建议用于制造人造关节.这些指导方针已满足生产过程中的树脂,通过修饰的分子量分布,通过改变聚物种的不同的比例的分子量。

这导致保护高结构稳定性以及更好的热操作的效果性和耐前几个因素的影响23年,两个特殊的医疗被引入到超高分子量聚乙烯年级市场,泰科纳增加假体的生命时间。

这些成绩GUR1020和GUR1050106和9.2×106的分子量为5g / mol的分别。

临床广泛使用的假体杯GUR 1020 GUR 1050牌号鼓励我们做了更深这些聚乙烯的性能分析。

进行了针对性的两个重要方面:•确定变形和耐磨性整齐的聚合物和一种可能的改进电子束照射这些属性(26-104千戈瑞)。

•确定一些参数的阻力变形,显微硬度和摩擦穿在近地面层的变形的聚合物。

这是执行的基础上,微压痕和sclerometric的测量,因为任何变形层直接调查摩擦学测试期间将是极其困难的,因为尺寸和几何形状的限制。

实验过程医用级1020和GUR超高分子量聚乙烯:GUR 1050泰科纳公司,该聚合物制造的杆的形式提供通过压缩模塑。

这样的棒广泛用作髋臼假体的商品。

样品整齐的GUR 1020 GUR 1050(BZ20,BZ50,分别编码),样品塑性变形(编码BZO20,BZO50)照射用电子束,然后变形(NO20.k,NO50.k),只照射(N20.k N50.k)进行了调查。

代码BZ,N和O表明初始整齐的材料,辐照,变形样品,分别该指数20和50是指GUR 1020和GUR 1050的测试成绩,而K表= 1-4照射手段的倍增因子用剂量为26 kGy。

电子束照射进行使用直线加速器的Elektronika10/10(电子能量:10兆电子伏;束功率:10千瓦)。

在一个单一的传递到样品的剂量传球是26千戈瑞。

样品照射在一个四道次,使总剂量范围26 - 104千戈瑞。

为了扑灭自由基,离开了辐照他们稳定的热处理的样品样品浸入甘油和加热到温度为130下在4小时,然后接下来的2小时,并在该温度下退火允许另一个10小时内慢慢冷却下来。

这是假设引起的变形在操作过程中的运动学聚乙烯系统可以通过静电的影响模拟在压机中的聚合物样品的压缩。

单轴压缩圆筒状样品进行英斯特朗1195万能试验机。

对样品进行了压缩的率:5毫米/分钟,在室温下。

总压缩ZT40,50,60,70,和80%施加(三个样品的制备每个压缩意)。

压缩ZT被定义为:h是试样的初始高度,升在最大负载下,样品高度和DH¼HL何先生是的高度降低由于压缩。

到达假定的压缩后,样品立即卸载。

相对应的负载的Pt所施加的压缩ZT记录,可名义应力,RT¼Pt./A0(A0是初始横截面区域的样本)进行了计算。

无负载的样品被允许恢复部分的弹性和非弹性的过程中的应变。

永久,有效压缩经过10天的恢复,使用以下确定方程(hf为样品的最终高度):有效,可以永久塑性应变的真应变(Hencky应变)表示:有效压缩ZEF和塑性真应变效率都与通过公式:将回收的弹性变形成分ZELZT和ZEF之间的差被确定为由式。

(1)和(2)。

的范围内变化的应力和应变压缩实验参数进行在这项研究中被列于表I对于所分析的压缩数据集的相互依存的压力RT和应变参数ZT,ZEL,EF,近似方程的线性回归,显示了相关性系数R大于等于0.99:其中:重新整齐聚乙烯的屈服应力(重新¼21兆帕的GUR1020和1050,根据制造商的数据),W(W0¼þ周)强度的应激反应应变:W0¼1.58和1.78兆帕/%GUR1020 1050(估计整齐的材料BZO20 BZO50)和周¼0:16(估计从数据的电子辐照样品NO20.k和NO50.k)k(下¼14)的电子的倍增因子光束照射剂量(D¼26千戈瑞)N(N0¼þNK)的系数增加了重大阻力增加真实塑性应变(n0时¼3和3.36,从数据估计的整齐的样品BZO20和BZO50,和nk¼零时十三分,估计从数据的电子辐照样品,NO20.k和NO50.k)WEL107强度的应激反应的弹性应变:(取为1.5和2.5兆帕/%纯样品BZO50,分别辐照样品NO50.k 的并为4.5和9为BZO20 NO20.k,分别)。

细观的硬度计性能的影响研究聚合物的决定。

微米伽玛仪(在技术基辅大学,乌克兰)配备一个自流平表中。

在这两种试验微生物,负载平行于装载方向(LD)的应用前压缩实验(压缩模拟由假体施加的压力头在工作面上的聚合物杯),即,前表面的塑性变形的圆柱状样品,它垂直于LD,直接探测。

在微压痕试验,使用的Berkovich穿甲弹。

所施加的负载为1 N,并且在最大负载下的时间被设置为15秒。

要确定的显微硬度H和杨氏模量E,标准奥利弗·法尔方法应用。

在近似的卸载曲线与第二位的多项式,70%以上的近似曲线进一步分析[比照。

图图1(a)]。

将结果平均七个独立的微压痕测试。

在测试硬度计,Berkovich压头定位金字塔尖凿指着的向从头开始运动的方向。

划痕试验期间,一个正常的力为2.5 N90流明/秒的速度为7毫米长的应用划伤。

划伤的通道区域A和塑料嘴唇海拔地区B组与泰勒霍布森轮廓仪测量仪与TalyMap通用软件[比照。

图图1(c)]。

一个2毫米?2毫米一节,划痕探测与采样距离所述= 1,流明和y = 2流明。

为了进行分析,500 profilograms收集并分析了每个试样确定耐磨系数Wb的。

聚乙烯的磨损只为了研究标本不变形整齐辐照样品。

对于每一个样品,三个圆柱试样,直径5毫米,长12毫米,加工从12毫米厚的部分的照射杆直径为25毫米的样品。

从磁盘VitaliumVR合金(60%的钴,20%的铬,并5%的钼),作为一个计数器样本。

工作表面的标本制备根据ISO 7206-2标准。

''引脚ondisc的'' 型仪表T-01(ITEE,拉多姆,波兰)用于摩擦测量。

正常的应力被设置到2 MPa。

在单向滑动速度旋转的磁盘计数器样本为0.137米/秒,总路径为68公里。

一个非常轻的润滑用蒸馏水(0.6毫升/分钟,T:36 6 2 C)应用。

相关文档
最新文档