数学分析期末考试题
西华师范大学数学分析大二期末试题(含答案)
西华师范大学数学分析(2)期末试题课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)1、下列级数中条件收敛的是().A .1(1)nn ∞=−∑B .nn ∞=C .21(1)nn n∞=−∑D .11(1)nn n ∞=+∑2、若f 是(,)−∞+∞内以2π为周期的按段光滑的函数,则f 的傅里叶(Fourier )级数在它的间断点x 处().A .收敛于()f xB .收敛于1((0)(0))2f x f x −++C .发散D .可能收敛也可能发散3、函数)(x f 在],[b a 上可积的必要条件是().A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ,则()f x ′=()A .1xB .ln x xC .21x −D .xe5、已知反常积分20 (0)1dxk kx +∞>+∫收敛于1,则k =()A .2πB .22πC .2D .24π6、231ln (ln )(ln )(1)(ln )n nx x x x −−+−+−+⋯⋯收敛,则()A .x e<B .x e>C .x 为任意实数D .1e x e−<<二、填空题(每小题3分,3×6=18分)1、已知幂级数1nn n a x∞=∑在2x =处条件收敛,则它的收敛半径为.2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+,则其通项n u =,和S =.3、曲线1y x=与直线1x =,2x =及x 轴所围成的曲边梯形面积为.4、已知由定积分的换元积分法可得,10()()bxxaef e dx f x dx =∫∫,则a =,b =.5、数集(1)1, 2 , 3, 1nn n n ⎧⎫−=⎨⎬+⎩⎭⋯的聚点为.6、函数2()x f x e =的麦克劳林(Maclaurin )展开式为.65三、计算题(每小题6分,6×5=30分)1、(1)dxx x +∫.2、2ln x x dx ∫.3、 0(0)dx a >∫.4、 2 0cos limsin xx t dt x→∫.5、dx ∫.四、解答题(第1小题6分,第2、3小题各8分,共22分)1、讨论函数项级数21sin n nxn ∞=∑在区间(,)−∞+∞上的一致收敛性.2、求幂级数1nn x n ∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =,将f 在(,)ππ−上展为傅里叶(Fourier )级数.五、证明题(每小题6分,6×2=12分)1、已知级数1nn a∞=∑与1nn c∞=∑都收敛,且, 1, 2, 3 n n n a b c n ≤≤=⋯,证明:级数1nn b∞=∑也收敛.2、证明:22 00sin cos nn x dx x dx ππ=∫∫.66试题参考答案与评分标准课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)⒈B⒉B⒊A⒋C⒌D⒍D二、填空题(每小题3分,3×6=18分)⒈2⒉2, =2(1)n u S n n =+⒊ln 2⒋1, a b e ==⒌1±⒍201, (,)!nn x x n ∞=∈−∞+∞∑三、计算题(每小题6分,6×5=30分)1.解111(1)1x x x x=−++∵1(1)dxx x ∴+∫(3分)11(1dxx x=−+∫ ln ln 1.x x C =−++(3分)2.解由分部积分公式得231ln ln 3x xdx xdx =∫∫3311ln ln 33x x x d x =−∫(3分)33111ln 33x x x dx x =−⋅∫3211ln 33x x x dx =−∫3311ln 39x x x C =−+(3分)3.解令sin , [0, ]2x a t t π=∈由定积分的换元积分公式,得0∫2220cos atdtπ=∫(3分)6768220(1cos 2)2a t dtπ=+∫221(sin 2)22a t t π=+2.4a π=(3分)4.解由洛必达(L 'Hospital)法则得200cos limsin xx tdtx →∫20cos x x →=4分)lim cos x x→=1=(2分)5.解=(2分)20 sin cos x x dxπ=−∫4204(cos sin ) (sin cos )x x dx x x dx πππ=−+−∫∫(2分)244(sin cos )(sin cos )x x x x πππ=+−+2.=−(2分)四、解答题(第1小题6分,第2、3小题各8分,共22分)1.解(, ), x n ∀∈−∞∞∀+(正整数)22sin nx n n ≤(3分)而级数211n n ∞=∑收敛,故由M 判别法知,21sin n nxn ∞=∑在区间(,)−∞+∞上一致收敛.(3分)2.解幂级数1nn x n∞=∑的收敛半径111lim nn R n→∞==,收敛区间为(1,1)−.(2分)易知1nn x n ∞=∑在1x =−处收敛,而在1x =发散,故1nn x n∞=∑的收敛域为[1,1)−.(2分)01, (1, 1)1n n x x x ∞==∈−−∑(2分)逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈−−∑∫∫.即101ln(1), (1,1).1n nn n x x x x n n+∞∞==−−==∈−+∑∑(2分)3.解函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的,故由收敛性定理知它可以展开为Fourier 级数。
数学分析3-期末考试真题
3 数学分析试卷
11sin sin 01(),
0 0x y xy y x f x xy ⎧+≠⎪=⎨⎪=⎩
当、已知当()()
000000lim (,),lim lim (,)lim lim (,),x y x x y y f x y f x y f x y →→→→→→判断及是否存在,并说明理由。
2222
2,()1z z z x y x y h z x y ∂++=∂∂、已知=()是由确定的。
试求的值。
222
22231 x y z a b c
++=、求椭球体上任一点的切平面于坐标轴所围四面体体积的最大值。
22
22223/222 0()4(,)(,) 0 0x y x y x y f x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩
当、已知,判断的连续性及可微性。
当22265,0
x y z x y z ⎧++=⎨++=⎩、已知曲线方程为求在点(1,-2,1)处的切线方程和法平面方程。
23D 36,D x dxdy y xy
+⎰⎰、求二重积分已知为如图的区域。
7I ().1x y z dxdydz x y z Ω=++Ω++=⎰⎰⎰、计算三重积分其中为平面,
与三个坐标平面围城的空间区域。
2228I cos .1
xdydz ydzdx dxdy x y z ∑++∑++=⎰⎰、求曲面积分=其中为所谓区域的外侧。
L
9I sin . L Pdx x ydy =+⎰、求曲线积分已知如图所示。
S 22I (). S 2xy yz zx dS z x y ax ++=+=⎰⎰10、求曲面积分=已知为柱面所截的曲面。
湖南理工学院数学分析期末考试试题
数学分析期末考试试题一、叙述题:(每小题6分,共18分)1、 牛顿-莱不尼兹公式2、 ∑∞=1n n a收敛的cauchy 收敛原理3、 全微分二、计算题:(每小题8分,共32分)1、40202sin lim x dtt x x ⎰→2、求由曲线2x y =和2y x =围成的图形的面积和该图形绕x 轴旋转而成的几何体的体积。
3、求∑∞=+1)1(n nn n x 的收敛半径和收敛域,并求和 4、已知z y x u = ,求yx u ∂∂∂2 三、(每小题10分,共30分)1、写出判别正项级数敛散性常用的三种方法并判别级数∑∞=1!n n n n 2、讨论反常积分⎰+∞--01dx e x x p 的敛散性3、讨论函数列),(1)(22+∞-∞∈+=x n x x S n 的一致收敛性 四、证明题(每小题10分,共20分)1、设)2,1(11,01 =->>+n n x x x n n n ,证明∑∞=1n n x 发散 2、证明函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在(0,0)点连续且可偏导,但它在该点不可微。
,参考答案一、1、设)(x f 在],[b a 连续,)(x F 是)(x f 在],[b a 上的一个原函数,则成立)()()(a F b F dx x f ba -=⎰2、,0.0>∃>∀N ε使得N n m >>∀,成立ε<+++++m n n a a a 213、设2R D ⊂为开集,D y x y x f z ∈=),(),,(是定义在D 上的二元函数,),(000y x P 为D 中的一定点,若存在只与点有关而与y x ∆∆,无关的常数A 和B ,使得)(22y x o y B x A z ∆+∆+∆+∆=∆则称函数f 在点),(000y x P 处是可微的,并称y B x A ∆+∆为在点),(000y x P 处的全微分二、1、分子和分母同时求导316sin 2lim sin lim 54060202==→→⎰x x x x dt t x x x (8分) 2、 、两曲线的交点为(0,0),(1,1)(2分) 所求的面积为:31)(102=-⎰dx x x (3分) 所求的体积为:103)(105ππ=-⎰dx x x (3分) 3、 解:设∑∞=+=1)1()(n n n n x x f ,1)1(1)2)(1(1lim =+++∞→n n n n n ,收敛半径为1,收敛域 [-1,1](2分)),10(),1ln(11)1()(121'<<---=+=∑∞=-x x x x n x x f n n )10(),1ln(11)()(0'<<--+==⎰x x x x dt t f x f x (3分) x =0级数为0,x =1,级数为1,x =-1,级数为1-2ln2(3分) 4、解: yu ∂∂=z x x z y ln (3分)=∂∂∂y x u 2zx x x x z y z y 1ln 1+-(5分) 三、1、解、有比较判别法,Cauchy,D’Alembert,Raabe 判别法等(应写出具体的内容4分)11)111(lim !)1()!1(lim -∞→+∞→=+-=++e n n n n n n n nn n (4分)由D’Alembert 判别法知级数收敛(1分) 2、解:⎰⎰⎰+∞----+∞--+=1110101dx e x dx e x dx e x x p x p x p (2分),对⎰--101dx e x x p ,由于)0(111+→→---x e x x x p p 故p >0时⎰--101dx e x x p 收敛(4分);⎰+∞--11dx e x x p ,由于)(012+∞→→--x e x x x p (4分)故对一切的p ⎰+∞--11dx e x x p 收敛,综上所述p >0,积分收敛3、解:221)(n x x S n +=收敛于x (4分)0)(sup lim ),(=-+∞-∞∈∞→x x S n x n 所以函数列一致收敛性(6分)四、证明题(每小题10分,共20分)1、证明:11123221213423-=-->=-n n n x x x x x x x x n n n )2(,112>->n x n x n (6分) ∑∞=-211n n 发散,由比较判别法知级数发散(4分)2、证明:||||022xy y x xy≤+≤(4分)22)0,0(),(lim y x xy y x +→=0所以函数在(0,0)点连续,(3分)又00lim 0=∆→∆xx ,)0,0(),0,0(y x f f 存在切等于0,(4分)但22)0,0(),(lim y x y x y x ∆+∆∆∆→∆∆不存在,故函数在(0,0)点不可微(3分)。
数学分析期末考试试题
数学分析期末考试试题一、选择题(每题2分,共20分)1. 函数f(x)=x^2-3x+2在区间[1,3]上的最大值是:A. 0B. 2C. 4D. 62. 以下哪个选项不是闭区间[a, b]上连续函数的性质?A. 有界性B. 保号性C. 介值性D. 可微性3. 函数f(x)=sin(x)在x=0处的导数是:A. 0B. 1C. -1D. 24. 函数f(x)=x^3+2x^2-3x+1在x=-1处的泰勒展开式(展开到x^2项)是:A. -1+2x-x^2B. 1-2x+x^2C. -1+2x+x^2D. 1+2x-x^25. 以下哪个级数是发散的?A. 1 - 1/2 + 1/3 - 1/4 + ...B. 1^2 + 1/2^2 + 1/3^2 + ...C. 1 - 1/2 + 1/4 - 1/8 + ...D. 1 - 1/2^2 + 1/3^2 - 1/4^2 + ...6. 函数f(x)=x^2在x=1处的高阶导数f^(n)(x)(n≥2)是:A. 0B. 1C. 2D. 47. 函数f(x)=e^x的原函数是:A. e^x + CB. ln(x) + CC. sin(e^x) + CD. cos(e^x) + C8. 函数f(x)=x^2在[0,1]上的定积分是:A. 1/3B. 1/2C. 1D. 2/39. 函数f(x)=|x|在x=0处的导数是:A. 1B. -1C. 0D. 不存在10. 以下哪个函数是周期函数?A. f(x)=x^2B. f(x)=e^xC. f(x)=sin(x)D. f(x)=ln(x)二、填空题(每题2分,共10分)11. 若函数f(x)=x^3-6x^2+11x-6在x=2处取得极小值,则f'(2)=_________。
12. 若函数f(x)=x^3+bx^2+cx+d在x=-1处取得最大值,则b=_________。
13. 函数f(x)=ln(x)的原函数是_________。
数学分析期末试题A答案doc
数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。
因此,答案为 D。
2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。
A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。
因此,答案为 B。
3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。
4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。
在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。
因此,答案为 C。
高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。
以下是本次考试的部分试题及其答案,供大家参考。
一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。
数学分析期末复习题
数学分析(三)复习题一、计算题1.求二重极限yx x ay x x +→∞→⎪⎭⎫ ⎝⎛+211lim ;2.求椭球面3x 2+y 2+z 2=16上点(-1,-2,3)处的切平面与平面z=1的交角; 3.求函数z=xy 在条件x+y=1下的极值点。
4.求函数z=x 2+xy+y 2-4lnx-10lny 的极值。
5. 求函数z=4(x-y)-x 2-y 2的极值。
6.求函数z=x 4+y 4-x 2-2xy-y 2的极值。
7. 求函数z=x 3y 2(6-x-y),(x>0,y>0)的极值。
8.求函数z=x 2+(y-1)2的极值。
9. 设u(x,y)=e 3x-y ,x 2+y=t 2,x-y=t+2,求=t dtdu 。
10.求e z -z+xy=3在点(2,1,0)处的切平面与法线方程。
11. 设f(x,y,z)=x+y 2+xz ,求f 在(1,0,1)点沿方向C=(2,-2,1)的方向导数。
12.求函数u=xyz 在点(5,1,2)处沿从点(5,1,2)到点(9,4,14)的方向的方向导数。
13. 求函数u=x 2+y 2-z 2在点M(1,0,1)及P(0,1,0)的梯度之间的夹角。
14.在椭球面2x 2+2y 2+z 2=1上求一点,使得函数f(x,y,z)=x 2+y 2+z 2在该点沿着点A(1,1,1)到点B(2,0,1)方向的方向导数具有最大值(不要求判别)。
15.设函数f(x,y,z)=cos 2(xy)+2zy,试问它在点(0,2,1)处的什么方向上的变化率最大?求出这个方向上的单位向量及函数在点(0,2,1)的最大变化率。
16. 求函数z=arctg xy在位于圆x 2+y 2-2x=0上一点(21,23)处沿这圆周切线方向的方向导数(设切线的倾角α的范围为:0≤α<π)。
17. 设数量场u=222zy x z ++,试求:(1)gradu ;(2)在域1<z<2内,inf|gradu|,及sup|gradu|。
数学系一年级《数学分析》期末考试题 .doc
数学系一年级《数学分析》期末考试题学号 姓名一、 对错判断题:1、设{}{}n n y x ,为两个数列,若n n y x φ (ΛΛ 2 1、、=n )则n n n n y x ∞→∞→lim lim φ ; ( )2、若函数)(x f 以A 为极限,则)(x f 可表为)1()(o A x f += ; ( )3、设)(x f 定义于[b a ,]上,若)(x f 取遍)(a f 与)(b f 之间的任意值,则)(x f 比在[b a ,]上连续; ( )4、若)(x f 在[)+∞,a 连续,且)(lim x f x +∞→存在,则)(x f 在[)+∞,a 有界;( )5、若)(x f y =的导数)('x f 在[b a ,]上连续,则必存在常数L,使2121)()(x x L x f x f -≤- ,[]b a x x , , 21∈∀ ; ( )6、① 当0→x 时,0)n (m )()()(φφn m n m x o x o x o +=+ ; ( ) ② )(n 0a )(n 0n ∞→→⇔∞→→n a ; ( )7、若)(x f 和)(x g 在0x 点都不可导,则)()(x g x f +在0x 点也不可导; ( )8、)(x f 为Ⅰ上凸函数的充要条件为,对Ⅰ上任意三点321x x x ππ有:13131212)()()()(x x x f x f x x x f x f --≤-- ( )9、若)(x f 在0x 二阶可导,则(()00,x f x )为曲线)(x f y =的拐点的充要条件为0)(0''=x f ; ( ) 10、若S 为无上界的数集,则存在一个递增数列{}S x n ⊂,使得)( , ∞→∞←n x n ; ( ) 二、 单项选择题:1、设 =)(x f ⎪⎩⎪⎨⎧=≠-0 ,, )1(1x k x x x在0=x 处连续, 则=k ( ) A. 1 B. e C. e1 D. -12、设 =)(x f ⎪⎩⎪⎨⎧=0 x 1 x 10 2φπx x x 当0=x 是不连续是因为 ( )A.)(x f 在0=x 无定义B.)(lim 0x f x →不存在C. )0()(lim 0f x f x ≠→ D.左,右极限不相等3、设 )()()(x a x x f ϕ-=,其中)(x ϕ在a x =处连续但不可导,则=)('a f( )A. 不存在B. )('a ϕC. )(a ϕD. -)('a ϕ 4、当x 很小时,下列近似公式正确的是 ( ) A. x e x ≈ B.x x ≈ln C. x x n +≈+11 D. x x ≈sin 5、若)(x f 和)(x g 对于区间(b a ,)内每一点都有)()(''x g x f =,在(b a ,) 内有 ( )A.)()(x g x f =B.为常数)(2121 , c , )( , )(c c x g c x f ==D. )()(x cg x f =(c 为任意常数) D. c x g x f +=)()( (c 为任意常数) 三、 证明题:1、 证明 9921lim =+++∞→n n n nn Λ ; 2、 证明不等式:h h h hππarctan 12+ ; 3、 对任意实数b a ,有)(212b ab a e e e+≤+ ;4、 证明:方程033=+-c x x (c 为常数)在[]1,0内不可能有两个不同的实根;5、 设函数)(x f 在点0x 存在左,右导数,试证)(x f 在0x 连续;6、 证明:若极限0lim x x →存在,则它只有一个极限;四、 计算题:1、 写出x x f sin )(=的其拉格朗日型余项的马克劳林公式;2、 求下列极限:① )1021(lim n n n n +++∞→Λ ;② xxx arctan lim0→ ;③ 11lim 1--→n m x x x ;3、 求 )sin(b ax e y +=的微分;4、 设函数)(x y y =的参量方程 ⎩⎨⎧==tb y ta x sin cos (πππt 0)所确定,求dxdy.。
数学分析期末考试题.doc
数学分析期末考试题一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分,共20分)1、 函数)(x f 在 [a,b ] 上可积,那么( ) A )(x f 在[a,b ]上有界 B )(x f 在[a,b ]上连续C )(x f 在[a,b ]上单调D )(x f 在[a,b ]上只有一个间断点 2、函数)(x f 在 [a,b ] 上连续,则在[a,b ]上有( )A )()(x f dx x f dx d b a =⎰B )()(x f dt t f dx d x a =⎰C )()(x f dt t f dx d b x -=⎰D )()(x f dt t f dxd b x =⎰ 3、 在[a ,+∞]上恒有)()(x g x f ≥,则( ) A ⎰+∞a dx x f )(收敛⎰+∞adx x g )(也收敛 B ⎰+∞adx x g )(发散⎰+∞adx x f )(也发散C⎰+∞adx x f )(和⎰+∞adx x g )(同敛散 D 无法判断4、级数∑∞=1n na收敛是( )对p =1,2…,0)(lim 21=++++++∞→p n n n n a a aA 充分条件B 必要条件C 充分必要条件D 无关条件 5、若级数∑∞=+111n n α收敛,则必有( )A 0≤αB 0≥αC 0<αD 0>α 6、)()(1x ax f n n∑∞==在[a ,b ]一致收敛,且a n (x )可导(n =1,2…),那么( )A f (x )在[a ,b ]可导,且∑∞==1'')()(n nx ax fB f (x )在[a ,b ]可导,但)('x f 不一定等于∑∞=1')(n nx aC∑∞=1')(n nx a点点收敛,但不一定一致收敛D∑∞=1')(n nx a不一定点点收敛7、下列命题正确的是( ) A)(1x an n∑∞=在[a ,b ]绝对收敛必一致收敛B)(1x an n∑∞=在[a ,b ] 一致收敛必绝对收敛C)(1x an n∑∞=在[a ,b ] 条件收敛必收敛D 若0|)(|lim =∞→x a n n ,则)(1x an n∑∞=在[a ,b ]必绝对收敛8、∑∞=--1)11()1(n n nx n 的收敛域为( ) A (-1,1) B (-1,1] C [-1,1] D [-1,1) 9、下列命题正确的是( )A 重极限存在,累次极限也存在并相等B 累次极限存在,重极限也存在但不一定相等C 重极限不存在,累次极限也不存在D 重极限存在,累次极限也可能不存在10、函数f (x,y )在(x 0,,y 0)可偏导,则( )A f (x,y )在(x 0,,y 0)可微B f (x,y )在(x 0,,y 0)连续C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在D 以上全不对二、计算题:(每小题6分,共30分)1、)0(21lim1>++++∞→p n n p pp p n 2、计算由曲线2x y =和2y x =围成的面积 3、求极限)1sin 11(lim 2222)0,0(),(x y y x y x y x +-+++→4、 已知),(yx x f z =,求yzx z ∂∂∂∂, 5、 计算nn n n x n ∑∞=--112)1(的收敛半径和收敛域 三、讨论判断题(每小题10分,共30分)1、讨论dx x x qp p⎰∞++--01|1|的敛散性 2、 判断∑∞=--+122)11(n n n 的敛散性3、 判断∑∞=+-121sin )1(n n n nx的一致收敛性 四、证明题(每小题10分,共20分)1、设f (x )是以T 为周期的函数,且在[0,T ]上可积,证明⎰⎰=+TTa adx x f dx x f 0)()(2、设级数∑∞=10n n n x α收敛,则当0αα>时,级数∑∞=1n nn x α也收敛参考答案一、1、A 2、B3、D4、A5、D6、D7、C8、A9、D10、D 二、1、由于px 在[0,1]可积,由定积分的定义知(2分)=++++∞→121lim p p p p n n n 11)21(1lim 10+==++⎰∞→p dx x n n n n n pp p p p p p n (4分) 2、 、两曲线的交点为(0,0),(1,1)(2分)所求的面积为:31)(12=-⎰dx x x (4分) 3、解:由于x1sin 有界,01sin lim )0,0(),(=→x y y x (2分))1sin 11(lim 2222)0,0(),(x y y x y x y x +-+++→=)11)(11()11)((lim22222222)0,0(),(+++-++++++→y x y x y x y x y x (3分)=111lim22)0,0(),(+++→y x y x =2(1分)4、解:xz∂∂=y f f 121+(3分)y z ∂∂=22y x f -(3分)5、解:212)1(lim 1=--∞→n nn n n ,r =2(3分) 由于x =-2,x =2时,级数均不收敛,所以收敛域为(-2,2)(3分)三、1、解、因为被积函数可能在x =0和x =1处无界,所以将其分为dx x x q p p ⎰∞++--01|1|=dx x x p q p ⎰-+-101|1|1+dx x x q p p⎰∞++--11|1|(2分) 考虑奇点x =0应要求p-1<1;奇点x =1应要求p+q<1;(4分)当+∞→x 时,由于1211~)1(1-++--q p q p p xx x ,知2p+q -1>1时积分收敛(2分) 所以反常积分满足p <2且2(1-p)<q<1-p 收敛,其余发散(2分) 2、解:由于nn n n n 1~112112222-++=--+(6分),又∑∞=11n n 发散(2分)所以原级数发散(2分)3、解:2211sin )1(n n nx n ≤+-(6分),由weierstrass 判别法原级数一致收敛性(4分)四、证明题(每小题10分,共20分)1、证明:⎰⎰⎰⎰++++=Ta TT aTa adx x f dx x f dx x f dx x f )()()()(00(1)(4分)⎰⎰⎰=+++=+aaTa Tdt t f T t d T t f t T x dx x f 0)()()()((2)(4分)将式(2)代入(1)得证(2分)2、证明:∑∑∞=-∞==11)1)((00n n n n n nx n x αααα(4分)01αα-n 单调下降有界(3分)由Abel 定理知原级数收敛(3分)。
《数学分析II》期末试卷+参考答案
《数学分析(II )》试题2004.6一.计算下列各题:1.求定积分∫+e x x dx 12)ln 2(;2.求定积分; ∫−222),1max(dx x3.求反常积分dx x x ∫∞++021ln ;4.求幂级数()∑∞=−+1221n n n x n n 的收敛域;5.设,求du 。
yz x u =二.设变量代换可把方程⎩⎨⎧+=−=ay x v y x u ,20622222=∂∂−∂∂∂+∂∂y z y x z x z 简化为02=∂∂∂v u z ,求常数。
a三.平面点集(){}⎭⎬⎫⎩⎨⎧=⎟⎠⎞⎜⎝⎛L U ,2,11sin ,10,0n n n是否为紧集?请说明理由。
四.函数项级数n nn n x x n +⋅−∑∞=−1)1(11在上是否一致收敛?请说明理由。
]1,0[五.设函数在上连续,且满足)(x f ),(∞+−∞1)1(=f 和)arctan(21)2(20x dt t x tf x =−∫。
求。
∫21)(dx x f六.设函数在上具有连续导数,且满足)(x f ),1[∞+1)1(=f 和22)]([1)(x f x x f +=′,+∞<≤x 1。
证明:存在且小于)(lim x f x +∞→41π+。
七.设如下定义函数:dt t t x f x x t1sin 21)(2∫⎟⎠⎞⎜⎝⎛+=,。
1>x 判别级数∑∞=2)(1n n f 的敛散性。
八.设∫=40cos sin πxdx x I n n (L ,2,1,0=n )。
求级数的和。
∑∞=0n n I《数学分析(II )》试题(答案)2004.6一.1.421π⋅; 2.320; 3.; 4. 0)2/1,2/1(−; 5.⎟⎠⎞⎜⎝⎛++=xdz y xdy z dx x yz x dz yz ln ln 。
二.。
3=a 三. 是紧集。
四.一致收敛。
五.43。
六.因为,所以单调增加,因此0)(>′x f )(x f 1)1()(=>f x f 。
数学分析期末考试题1、2(第二份有答案)
第三学期数学分析考试题一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. ( )2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( )3.连续函数的全增量等于偏增量之和. ( )4.xy y x f =),(在原点不可微. ( )5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( )6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( ) 7.平面图形都是可求面积的. ( ) 8.学过的各种积分都可以以一种统一的形式来定义. ( )9.第二型曲面积分也有与之相对应的“积分中值定理”. ( ) 10.二重积分定义中分割T 的细度T 不能用}{max 1i ni σ∆≤≤来代替. ( )二、 填空题(每小题3分,共15分)1.设)sin(y x e z xy+=,则其全微分=dz . 2.设32),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad . 3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy .4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于 .5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为 . 三、计算题(每小题5分,共20分) 1.求极限xy y x y x )(lim22)0,0(),(+→.2. 设),(y x z z =是由方程ze z y x =++所确定的隐函数,求xy z . 3.设]1,0[]1,0[⨯=A ,求⎰⎰++=Ay x ydxdyI 2322)1(. 4.计算抛物线)0()(2>=+a axy x 与x 轴所围的面积.四、(10分)密度22),,(y x z y x +=ρ的物体V 由曲面222y x z +=与2=z 所围成,求该物体关于z 轴的转动惯量. 五、(10分)求第二类曲面积分⎰⎰++S dxdy z dzdx y dydz x222其中S 是球面2222)()()(R c z b y a x =-+-+-并取外侧为正向. 六、(第1小题8分,第2小题7分,共15分).1. 求曲线6222=++z y x ,22y x z +=在点(1,1,2)处的切线方程和法平面方程. 2.证明:221140π=+⎰+∞dx x . 七、(10分)应用积分号下的积分法,求积分)0(ln )1cos(ln 10>>-⎰a b dx xx x x ab .第三学期数学分析参考答案及评分标准一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. (⨯) 2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( √ ) 3.连续函数的全增量等于偏增量之和. ( ⨯) 4.xy y x f =),(在原点不可微. ( √ )5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( ⨯)6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( √ )7.平面图形都是可求面积的. (⨯) 8.学过的各种积分都可以以一种统一的形式来定义. ( √ )9.第二型曲面积分也有与之相对应的“积分中值定理”. (⨯)10.二重积分定义中分割T 的细度T 不能用}{max 1i ni σ∆≤≤来代替. ( √ ) 二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy+=,则其全微分=dzdy y x y x x e dx y x y x y e xy xy )]cos()sin([)]cos()sin([+++++++.2.设32),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad (1,-3,-3). 3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy 2 .4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于b a 532. 5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为111193--=-=-z y x . 三、计算题(每小题5分,共20分) 1.求极限xy y x y x )(lim22)0,0(),(+→.解:先求其对数的极限)ln(lim22)0,0(),(y x xy y x +→.由于)0,(0ln )ln(2222222+→=+→≤+r r y x r r y x xy 令,所以)ln(lim22)0,0(),(y x xy y x +→=0,故xy y x y x )(lim22)0,0(),(+→=1.2. 设),(y x z z =是由方程ze z y x =++所确定的隐函数,求xy z . 解:方程ze z y x =++两边对x ,y 求偏导数,得 xze x z z∂∂=∂∂+1 y z e y z z ∂∂=∂∂+1 解得11-=∂∂=∂∂z e y z x z 32)1()1()11(-=∂∂⋅--=-∂∂=z zz z z xy e e y z e e e y z 。
数学分析B1期末考试题及答案
数学分析B1期末考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是实数集的子集?A. 有理数集B. 整数集C. 无理数集D. 复数集2. 若函数f(x)在点x=a处连续,则下列哪个选项不正确?A. 极限lim(x→a) f(x) = f(a)B. f(a)存在C. f(x)在x=a的邻域内不一定有界D. f(x)在x=a的邻域内不一定连续3. 函数f(x)=x^2在区间[-1,1]上的最大值是:A. 0B. 1C. 4D. 不存在4. 若f(x)=sin(x),x∈[0,2π],则f(x)的原函数F(x)是:A. -cos(x) + CB. cos(x) + CC. -sin(x) + CD. sin(x) + C5. 函数f(x)=ln(x)的导数是:A. 1/xB. xC. ln(x)D. 1/ln(x)答案:1.D 2.C 3.B 4.A 5.A二、填空题(每题2分,共10分)6. 若函数f(x)在[a,b]上连续,则______存在。
7. 函数f(x)=x^3-3x^2+2的一阶导数为______。
8. 函数f(x)=1/x在点x=1处的导数为______。
9. 若f(x)=x^2+2x+1,则f'(1)=______。
10. 函数f(x)=sin(x)+cos(x)的周期为______。
答案:6. 原函数 7. 3x^2-6x 8. -1 9. 5 10. 2π三、简答题(每题10分,共20分)11. 证明:若函数f(x)在区间[a,b]上连续,并且f(a)f(b)<0,则根据介值定理,f(x)在(a,b)内至少有一个零点。
12. 解释什么是泰勒公式,并给出e^x的泰勒公式展开。
答案:11. 证明:由于f(x)在[a,b]上连续,根据连续函数的性质,f(x)在[a,b]上是闭区间上的有界函数。
设M=f(a),m=f(b),因为Mm<0,根据介值定理,存在c∈(a,b)使得f(c)=0,即f(x)在(a,b)内至少有一个零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析期末考试题
一、叙述题:(每小题5分,共10分)
1、 叙述反常积分
a dx x f b
a
,)(⎰
为奇点收敛的cauchy 收敛原理
2、 二元函数),(y x f 在区域D 上的一致连续 二、计算题:(每小题8分,共40分) 1、)21
2111(
lim n
n n n +++++∞
→ 2、求摆线]2,0[)cos 1()
sin (π∈⎩
⎨⎧-=-=t t a y t t a x 与x 轴围成的面积
3、求⎰∞+∞-++dx x x cpv 211)
(
4、求幂级数∑∞
=-12
)1(n n
n x 的收敛半径和收敛域 5、),(y
x
xy f u =, 求y x u ∂∂∂2
三、讨论与验证题:(每小题10分,共30分)
1、y
x y x y x f +-=2
),(,求),(lim lim ),,(lim lim 0000y x f y x f x y y x →→→→;),(lim )0,0(),(y x f y x →是否存在?为
什么?
2、讨论反常积分
⎰
∞
+0
arctan dx x
x
p
的敛散性。
3、讨论∑∞
=-+1
33))1(2(n n
n
n n 的敛散性。
四、证明题:(每小题10分,共20分)
1、 设f (x )在[a ,b ]连续,0)(≥x f 但不恒为0,证明0)(>⎰
b
a
dx x f
2、 设函数u 和v 可微,证明grad (uv )=ugradv +vgradu
参考答案
一、1、,0.0>∃>∀δε使得δδδ<<<∀210,成立
εδδ<⎰
--2
1
)(a a dx x f
2、设2R D ⊂为点集,m
R
D f →:为映射,,0.0>∃>∀δε使得
D x x x x ∈<-∀2,121,δ,成立ε<-)()(21x f x f
二、1、由于
x
+11
在[0,1]可积,由定积分的定义知(2分) )21
2111(
lim n
n n n +++++∞
→ =2ln 11)11211111(
1lim 10=+=+++++⎰∞→dx x n
n n n n n (6分)
2、 、所求的面积为:220
23)cos 1(a dx x a ππ
=-⎰
(8分)
3、 解:π=++=++⎰⎰-+∞→∞
+∞-A A A dx x x dx x x
cpv 2
211lim 11)
( (3分) 4、解:11
lim 2=∞
→n
n x
,r=1(4分) 由于x =0,x =2时,级数均收敛,所以收敛域为[0,2](4分)
5、解: y u ∂∂=221y x f x f -(3分)3
22112212y
x
f xy f y f f y x u -++=∂∂∂(5分) 三、1、解、
0lim lim lim ,1lim lim lim 2
02000200==+-==+-→→→→→→y
y y x y x x x y x y x y x y x y x (5分)由于沿kx y =趋于(0,0)极限为k
+11
所以重极限不存在(5分) 2、解:⎰⎰⎰∞+∞++=1100arctan arctan arctan dx x x dx x x dx x x p p p (2分),对⎰10arctan dx x x
p
,由于
)0(1arctan 1+→→-x x x x p p 故p <2时⎰10arctan dx x x p 收敛(4分);⎰∞+1arctan dx x x p
,由于)(2arctan +∞→→x x x x p p π
(4分)故p >1⎰∞+1arctan dx x
x p 收敛,综上所述1<p <2,积分收敛 3、解:131
23])1(2[lim
3<+=-++∞
→n
n n n n 所以级数收敛(10分)
四、证明题(每小题10分,共20分)
1、证明:由0)(≥x f 但不恒为0,至少有一点],[0b a x ∈ f (x )在[a ,b ]连续(2分),存在
包含x 0的区间],[],[b a d c ⊂,有0)(>x f (4分),0)()(>≥⎰⎰
d
c
b
a
dx x f dx x f (4分)
2、证明:以二元函数为例
ugradv
vgradu v v u u u v u v u v v u v u u v v u u v v u uv grad y x y x y x y x y y x x +=+=+=++=),(),(),(),(),()((10分)。