旋转体的表面积与体积
空间几何旋转体的表面积与体积
空间几何旋转体的表面积与体积空间几何常常涉及到旋转体的表面积与体积的计算,这在数学中具有重要的理论和应用价值。
本文将介绍旋转体的概念,并探讨如何计算旋转体的表面积与体积。
一、旋转体的概念旋转体是指由平面图形绕某一轴旋转而生成的立体图形。
在数学中,旋转体通常围绕x轴、y轴或z轴旋转。
根据旋转轴的不同,旋转体可以分为横截面旋转体和轴截面旋转体。
横截面旋转体是指当一个平面图形沿与它平行的轴旋转一周,形成的立体图形。
常见的横截面旋转体有圆柱体、圆锥体和球体。
其中圆柱体是由一个矩形或圆形横截面图形沿着与横截面平行的轴旋转一周形成,圆锥体是由一个三角形横截面图形沿着与横截面平行的轴旋转一周形成,而球体是由一个圆形横截面图形沿着与横截面平行的轴旋转一周形成。
轴截面旋转体是指当一个平面图形沿与它的一个边垂直的轴旋转一周,形成的立体图形。
常见的轴截面旋转体有圆盘和球壳。
圆盘是指由一个圆形边界沿着与边界垂直的轴旋转一周形成,球壳是由一个圆形边界沿着与边界垂直的轴旋转一周形成。
二、计算旋转体的表面积计算旋转体的表面积需要根据旋转体的类型进行计算,下面将分别介绍横截面旋转体和轴截面旋转体的表面积计算方法。
1. 横截面旋转体的表面积计算对于圆柱体的表面积计算,可以利用公式S = 2πrh + 2πr²,其中r是圆柱体的底面半径,h是圆柱体的高。
对于圆锥体的表面积计算,可以利用公式S = πrl + πr²,其中r是圆锥体的底面半径,l是圆锥体的斜高。
对于球体的表面积计算,可以利用公式S = 4πr²,其中r是球体的半径。
2. 轴截面旋转体的表面积计算对于圆盘的表面积计算,可以利用公式S = πr²,其中r是圆盘的半径。
对于球壳的表面积计算,可以利用公式S = 2πrh,其中r是球壳的半径,h是球壳的高。
三、计算旋转体的体积计算旋转体的体积同样需要根据旋转体的性质进行计算,下面将分别介绍横截面旋转体和轴截面旋转体的体积计算方法。
利用形心坐标计算旋转体的体积和表面积
2 形心的坐标为: x c =
0 x 2dx = 4 / 5 = 3 。
A
4/3 5
故所求体积:V = 2π 3 ⋅ 4 = 8π 53 5
5. 结论
在平面图形形心已知和平面曲线形心已知的情况下,用古鲁金定理求旋转体的体积和 表面积,运算非常简单。因此,第二古鲁金定理适于求圆、半圆、三角形、矩形、梯形绕其 平面内不相交的直线旋转所得立体之体积;第一古鲁金定理适于求圆、半圆、三角形、梯形、 矩形、直线段绕其平面内某直线旋转所得立体之表面积。
R
⋅2R
+
2π
π
− π
2
R
⋅π
R
= 2π 2 R 2
例 7:求圆锥的侧面积。已知圆锥的高为 H, 底圆半径为 R。
解:示意图如图 11,圆锥可以看成直线绕 y 轴旋转而成。直线段的长为
形心坐标为 x c
=
1 2
R 。故所求侧面积为:
A = 2π R ⋅ R 2 + H 2 = π R R 2 + H 2 2
1. 重心与形心
在图 1 中,设总重力作用在 C( x c , y c ),它对原点的力矩必须等于诸分力对原点的力
矩之和,即:
∑ ∑ P xc =
pi xi =
ρi gxi∆si
∑ ∫∫ ∫∫ ∴ x c =
pixi = P
xdp
S
=
dp
S
xρ gds
S
ρ gds
S
这就是重心 x 的坐标公式[1]。
A
=
2π
xc
⋅π
R
=
4π
R2
,所以: xc
=
2R π
简单旋转体的表面积和体积关系教学案
简单旋转体的表面积和体积关系教学案一、引言旋转体是数学中的一种非常重要的几何体,在现实生活中也有很多应用。
比如我们日常生活中听到的“圆柱形”、“圆锥形”、“球形”等,这些都属于旋转体。
旋转体的表面积和体积关系是数学中一个基础又实用的概念,而且对于那些想深入研究数学的人来说,这是必学的一部分。
二、旋转体的概念旋转体是由一个基本形状,绕某一条轴线旋转而生成的几何体,比如圆形绕着轴线旋转,就可以生成一个圆柱形;三角形绕着轴线旋转,可以生成一个圆锥形。
旋转体有许多种类,比如圆柱体、圆锥体、球体,甚至我们平时看到的各种像眼镜、奖杯、水瓶等等,都可以看成是由某一基本形状旋转而成的。
三、旋转体的表面积和体积旋转体的表面积和体积是我们最为关心的问题,因为在很多实际问题中,我们需要通过表面积和体积来计算物体的质量、重量、密度等等一系列问题。
1、旋转体的表面积旋转体的表面积就是它的侧面积与底面积的和。
比如一个圆柱体,它的表面积等于其侧面积与两个底面积之和,即:S=2πrh+2πr²其中r为圆柱体的半径,h为圆柱体的高度。
对于其他类型的旋转体,我们也可以采用类似的方法来计算它的表面积。
2、旋转体的体积旋转体的体积就是其所包含的空间体积。
对于圆柱体、圆锥体、球体等等,它们的体积计算公式分别为:圆柱体的体积:V=πr²h圆锥体的体积:V=13πr²h球体的体积:V=43πr³其中r为基本形状的半径,h为由基本形状绕轴线旋转得到的旋转体的高度。
四、旋转体的表面积和体积关系一个简单的旋转体,它的表面积和体积之间并没有什么直接关系。
但是在实际应用中,我们通常会遇到一些需要计算其表面积和体积之比的问题。
比如我们需要制作一个密度为1克/立方厘米的铁球体,在保证铁球体积不变的条件下,如果我们要增加铁球体的质量,我们应该怎样做?答案是,这时我们需要将铁球表面加厚,因为铁球的密度不变,增加表面积就等于增加了总质量。
简单几何体的面积与体积
例2.如图所示,在平行六面体ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=3.(1)求证:顶点A1在底面ABCD上的射影O在∠BAD的平分线上;(2)求这个平行六面体的体积.题型2:锥体的体积和表面积例3.在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60 ,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60 ,求四棱锥P-ABCD的体积.例4. 在三棱锥S—ABC中,∠SAB=∠SAC=∠ACB=90°,且AC=BC=5,SB=55.(1)证明:SC⊥BC;(2)求侧面SBC与底面ABC所成二面角的大小;(3)求三棱锥的体积V S-AB C.例5.ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GB垂直于正方形ABCD所在的平面,且GC=2,求点B到平面EFC的距离?例6.如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则必有()A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1,S 2的大小关系不能确定题型3:棱台的体积、面积及其综合问题例7. 在多面体ABCD —A 1B 1C 1D 1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等, 侧棱延长后相交于E ,F 两点,上、下底面矩形的长、宽分别为c ,d 与a ,b ,且a >c ,b >d ,两底面间的距离为h .(1)求侧面ABB 1A 1与底面ABCD 所成二面角的大小;(2)证明:EF ∥面ABCD ;(3)在估测该多面体的体积时,经常运用近似公式V 估=S 中截面·h 来计算.已知它的体积公式是 V =6h(S 上底面+4S 中截面+S 下底面),试判断V 估与V 的大小关系,并加以证明.题型4:球的体积、表面积例8.已知过球面上,,A B C 三点的截面和球心的距离为球半径的一半,且2AB BC CA ===,求球的表面积.例9. 如图,球面上有四个点P 、A 、B 、C ,如果PA ,PB ,PC 两两互相垂直,且PA=PB=PC=a ,求这个球的表面积.DBAOCEF例10. 如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,P 在球面上,如果 163P ABCD V -=,(1)求球O 的表面积;(2)半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方 体棱长为6,求球的表面积和体积.题型5:球的经纬度、球面距离问题例11. 我国首都靠近北纬40纬线,(1)求北纬40纬线的长度等于多少km ?(地球半径大约为6370km ) (2)在半径为13cm 的球面上有,,A B C 三点,12AB BC AC cm ===,求球心到经过这三点的截面的距离. 随堂练习 (一)选择题1. 如果棱台的两底面积分别是S 、S ′,中截面的面积是S 0,那么( ) A .S S S '+=02B .S S S '=0C .2S 0=S +S ′D .S 02=2S ′S2. 已知正六棱台的上、下底面边长分别为2和4,高为2,则其体积为( ) A .323B .283C .243D .2033. 一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .23B .32C .6D .64. 将一个长方体沿从同一个顶点出发的三条棱截去一个棱锥,棱锥的体积与剩下的几何体的体积之比为( ) A .1:2 B .1:3 C .1:4 D .1:55. 如图,在多面体ABCDEF 中,已知四边形ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为( ) A .23B .33 C .43D .326. 已知几何体的三视图如图所示,它的表面积是( )A.42+ B.22+C.32+D.6(二)填空题7. 如图,三棱柱111CBAABC-中,若FE,分别为ACAB,的中点,平面11CEB将三棱柱分成体积为21,VV的两部分,那么21VV:= .8.已知三棱柱111CBAABC-的体积为V,E是棱CC1上一点,三棱锥E—ABC的体积是V1,则三棱锥E—A1B1C1 的体积是________.9. 已知某个几何体的三视图如,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是3cm.(三)解答题10. 如图在ABC∆中,若AC=3,BC=4,AB=5,以AB所在直线为轴,将此三角形旋转一周,求所得旋转体的表面积和体积.11.表面积为324π的球,其内接正四棱柱的高是14,(1)求这个正四棱柱的表面积.(2)正四面体ABCD的棱长为a,球O是内切球,球O1是与正四面体的三个面和球O都相切的一个小球,求球O1的体积.12.在北纬45圈上有,A B两点,设该纬度圈上,A B两点的劣弧长为24Rπ,求,A B两点间的球面距离.家庭作业(一)选择题1. 一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是()A.ππ221+B.ππ441+C.ππ21+D.ππ241+2.如图,啤酒瓶的高为h,瓶内酒面高度为a,若将瓶盖盖好倒置,酒面高度为a′(a′+b=h),则酒瓶容积与瓶内酒的体积之比为()A. 1+ba且a+b>h B. 1+ba且a+b<hC. 1+ab且a+b>h D. 1+ab且a+b<h3. 设计一个杯子,其三视图如图所示,现在向杯中匀速注水,杯中水面的高度h随时间t变化的图象是()4. 在△ABC中,AB=2,BC=1.5,∠ABC=120°(如图所示),若将△ABC绕直线BC旋转一周,则所形成的旋转体的体积是()A.π29B.π27C.π25D.π235. 若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是()A.π3 B.π33C.π6 D.π9(二)填空题6. 如图,一个底面半径为R的圆柱形量杯中装有适量的水.若放入一个半径为r的实心铁球,水面高度恰好升高r,则rR= .7.如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q及点P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.8. 已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如图所示,则该凸多面体的体积V=________. (三)解答题9. 在右图所示的几何体中,平面PAC⊥平面ABC,PM∥BC,PA=PC,AC=1,BC=2PM=2,AB=5,若该几何体的侧视图的面积为3.4(1)求证:PA⊥BC;(2)画出该几何体的正视图,并求其面积S;(3)求出多面体A—BMPC的体积V.10. 如图,AA1是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A、B的任意一点,A1A=AB=2. (1)求证:BC⊥平面A1AC;(2)求三棱锥A1-ABC的体积的最大值.参考答案 例题讲解例1.解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy ())2(1由(2)的平方得:x2+y2+z2+2xy+2yz+2xz=36(3) 由(3)-(1)得x2+y2+z2=16,即l2=16,所以l=4(cm).点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察.我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系. 例2.解析:(1)如图,连结A 1O ,则A 1O ⊥底面ABCD ,作OM ⊥AB 交AB 于M , 作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N.由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD.∵∠A 1AM=∠A 1AN ,∴Rt △A 1NA ≌Rt △A 1MA ,∴A 1M=A 1N ,从而OM=ON. ∴点O 在∠BAD 的平分线上. (2)∵AM=AA 1cos3π=3×21=23,∴AO=4cosπAM =223. 又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9-29=29, ∴A 1O=223,平行六面体的体积为22345⨯⨯=V 230=. 例3. 解:(1)在四棱锥P-ABCD 中,由PO ⊥ABCD ,得∠PBO 是PB 与平面ABCD 所成的角, ∠PBO=60°.在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO ,于是PO=BOtan60°=3,而底面菱形的面积为23. ∴四棱锥P -ABCD 的体积V=31×23×3=2. 点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积.在能力方面主要考查空间想象能力. 例4. 解:(1)证明:∵∠SAB =∠SAC =90°,∴SA ⊥AB ,SA ⊥A C.又AB ∩AC =A ,∴SA ⊥平面AB C.由于∠ACB =90°,即BC ⊥AC ,由三垂线定理,得SC ⊥BC .(2)解:∵BC ⊥AC ,SC ⊥BC .∴∠SCA 是侧面SCB 与底面ABC 所成二面角的平面角.在Rt △SCB 中,BC =5,SB =55,得SC =22BC SB -=10.在Rt △SAC 中AC =5,SC =10,cos SCA =21105==SC AC , ∴∠SCA =60°,即侧面SBC 与底面ABC 所成的二面角的大小为60°. (3)解:在Rt △SAC 中,∵SA =755102222=-=-AC SC , S △ABC =21·AC ·BC =21×5×5=225,∴V S -ABC =31·S △ACB ·SA =631257522531=⨯⨯. 点评:本题较全面地考查了空间点、线、面的位置关系.要求对图形必须具备一定的洞察力,并进行一定的逻辑推理. 例5. 解:如图,取EF 的中点O ,连接GB 、GO 、CD 、FB 构造三棱锥B -EFG.设点B 到平面EFG 的距离为h ,BD =42,EF =22, CO =344232×=. G O C O G C =+=+=+=222232218422(). 而GC ⊥平面ABCD ,且GC =2. 由V V B E F G G E F B--=,得16EF GO h ··=13S E F B △·GC点评:该问题主要的求解思路是将点面的距离问题转化为体积问题来求解.构造以点B 为顶点,△EFG 为底面的三棱锥是解此题的关键,利用同一个三棱锥的体积的唯一性列方程是解这类题的方法,从而简化了运算. 例6. 解:连OA 、OB 、OC 、OD ,则V A -BEFD =V O -ABD +V O -ABE +V O -BEFDV A -EFC =V O -ADC +V O -AEC +V O -EFC 又V A -BEFD =V A -EFC , 而每个三棱锥的高都是原四面体的内切球的半径,故S ABD +S ABE +S BEFD =S ADC +S AEC +S EFC 又面AEF 公共,故选C点评:该题通过复合平面图形的分割过程,增加了题目处理的难度,求解棱锥的体积、表面积首先要转化好平面图形与空间几何体之间元素间的对应关系.例7.(1)解:过B 1C 1作底面ABCD 的垂直平面,交底面于PQ ,过B 1作B 1G ⊥PQ ,垂足为G .如图所示:∵平面ABCD ∥平面A 1B 1C 1D 1,∠A 1B 1C 1=90°, ∴AB ⊥PQ ,AB ⊥B 1P .∴∠B 1PG 为所求二面角的平面角.过C 1作C 1H ⊥PQ ,垂足为H .由于相对侧面与底面所成二面角的大小相等,故四边形B 1PQC 1为等腰梯形. ∴PG =21(b -d ),又B 1G =h ,∴tan B 1PG =d b h -2(b >d ),∴∠B 1PG =arctand b h -2,即所求二面角的大小为arctan db h-2. (2)证明:∵AB ,CD 是矩形ABCD 的一组对边,有AB ∥CD ,又CD 是面ABCD 与面CDEF 的交线,∴AB ∥面CDEF . ∵EF 是面ABFE 与面CDEF 的交线,∴AB ∥EF .∵AB 是平面ABCD 内的一条直线,EF 在平面ABCD 外,∴EF ∥面ABC D. (3)证明:∵a >c ,b >d ,∴V -V 估=h d b c a d b c a ab cd h 22)224(6+⋅+-+⋅+⋅++ =12h [2cd +2ab +2(a +c )(b +d )-3(a +c )(b +d )]=12h (a -c )(b -d )>0. ∴V 估<V .点评:该题背景较新颖,把求二面角的大小与证明线、面平行这一常规运算置于非规则几何体(拟柱体)中,能考查考生的应变能力和适应能力,而第三步研究拟柱体的近似计算公式与可精确计算体积的辛普生公式之间计算误差的问题,是极具实际意义的问题.考查了考生继续学习的潜能. 例8. 解:设截面圆心为O ',连结O A ',设球半径为R ,则23232323O A '=⨯⨯=, 在Rt O OA '∆中,222OA O A O O ''=+,∴222231()34R R =+, ∴43R =,∴26449S R ππ==. 点评: 正确应用球的表面积公式,建立平面圆与球的半径之间的关系.例9. 解析:如图,设过A 、B 、C 三点的球的截面圆半径为r ,圆心为O ′,球心到该圆面的距离为d.在三棱锥P —ABC 中,∵PA ,PB ,PC 两两互相垂直,且PA=PB=PC=a , ∴AB=BC=CA=2a ,且P 在△ABC 内的射影即是△ABC 的中心O ′. 由正弦定理,得︒60sin 2a =2r ,∴r=36a .又根据球的截面的性质,有OO ′⊥平面ABC ,而PO ′⊥平面ABC ,∴P 、O 、O ′共线,球的半径R=22d r +.又PO ′=22r PA -=2232a a -=33a , ∴OO ′=R -33a =d=22r R -,(R -33a )2=R 2 – (36a )2,解得R=23a , ∴S 球=4πR 2=3πa 2.点评:本题也可用补形法求解.将P —ABC 补成一个正方体,由对称性可知,正方体内接于球,则球的直径就是正方体的对角线,易得球半径R=23a . 例10. 解:(1)如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,PO ⊥底面ABCD ,PO=R ,22ABCD S R =,163P ABCD V -=, 所以2116233R R ⋅⋅=,R=2, 球O 的表面积是16π.(2)作轴截面如图所示,6CC '=,2623AC =⋅=,设球半径为R ,则222R OC CC '=+22(6)(3)9=+=∴3R =,∴2436S R ππ==球,34363V R ππ==球. 点评:本题重点考查球截面的性质以及球面积公式,解题的关键是将多面体的几何要素转化成球的几何要素. 例11. 解:(1)如图,A 是北纬40上一点,AK 是它的半径,∴OK AK ⊥, 设C 是北纬40的纬线长,∵40AOB OAK ∠=∠=,∴22cos 2cos 40C AK OA OAK OA πππ=⋅=⋅⋅∠=⋅⋅42 3.1463700.7660 3.06610()km ≈⨯⨯⨯≈⨯所以北纬40纬线长约等于43.06610km ⨯.(2)解:设经过,,A B C 三点的截面为⊙O ',设球心为O ,连结OO ',则OO '⊥平面ABC ,∵32124323AO '=⨯⨯=,∴2211OO OA OA ''=-=, 所以,球心到截面距离为11cm .随堂练习(一)选择题1. 解析:设该棱台为正棱台来解即可,答案为A ;2. 解析:正六棱台上下底面面积分别为:S 上=6·43·22=63,S 下=6·43·42=243, V 台=328)(31=+⋅+下下上上S S S S h ,答案B.3. 解析:设长方体共一顶点的三边长分别为a =1,b =2,c =3,则对角线l 的长为l =6222=++c b a ;答案D.4. 解析:设长方体同一顶点引出的三条棱长分别是a ,b ,c ,则棱锥的体积V1=13×12abc=16abc.长方体的体积V=abc ,剩下的几何体的体积为V2=abc-1566abc =abc ,所以V1:V2=1:5,故选D. 5. 解析:将几何体割成一个三棱柱和两个相同的三棱锥.在梯形ABFE 中,易知BN=32, ∴S △BCN=12BC·HN=12×1×22.24=故该几何体体积为24×1+2×1212,3423=⨯⨯选A. 6. 解析:该几何体为直三棱柱,其表面积为2×12×1×1+2×12+2×1=3+2,选C.(二)填空题7. 解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh.∵E 、F 分别为AB 、AC 的中点,∴S △AEF =41S , V 1=31h(S+41S+41⋅S )=127Sh ,V 2=Sh-V 1=125Sh , ∴V 1∶V 2=7∶5.点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系.最后用统一的量建立比值得到结论即可.8. 解析:如图,过E 作AC 、BC 的平行线EF 、EG ,分别与AA1、BB1交于F 、G ,连接FG.∵三棱锥E —ABC 的体积是V1,∴三棱柱EFG —CAB 的体积是3V1,∴三棱柱EFG —C1A1B1的体积是V-3V1,∵VE —A1B1C1=13VEFG —C1A1B1, ∴VE —A1B1C1=13 (V-3V1)=3V -V1, 答案:3V -V1 9.解析:该几何体由半个圆柱和一个正方体构成的组合体.其体积为23+12×π×2=(8+π) cm3,答案:8+π (三)解答题 10. 解:如图所示,所得旋转体是两个底面重合的圆锥,高的和为AB=5.底面半径等于CO=125AC BC AB =,所以所得旋转体的表面积 S=π·OC·(AC+BC)=π·125·(3+4)=845π; 其体积V=13·π·OC2·AO+13·π·OC2·BO=13·π·OC2·AB=485π. 评析:求一些组合体的表面积和体积时,首先要弄清楚它由哪些基本几何体构成,再通过轴截面分析和解决问题.11. 解:(1)设球半径为R ,正四棱柱底面边长为a ,则作轴截面如图,14AA '=,2AC a =, 又∵24324R ππ=,∴9R =,∴2282AC AC CC ''=-=, ∴8a =,∴6423214576S =⨯+⨯=表(2)如图,设球O 半径为R ,球O 1的半径为r ,E 为CD 中点,球O 与平面ACD 、BCD切于点F 、G ,球O 1与平面ACD 切于点H .由题设a GE AE AG 3622=-= ∵ △AOF ∽△AEG∴ a R a a R 233663-=,得a R 126= ∵ △AO 1H ∽△AOF∴ R r R a r R a =---36236,得a r 246= ∴ 3331728624634341a a r V O =⎪⎪⎭⎫ ⎝⎛==ππ球 点评:正四面体的内切球与各面的切点是面的中心,球心到各面的距离相等.12. 解:设北纬45圈的半径为r ,则24r R =,设O '为北纬45圈的圆心,α=∠B AO ', ∴24r R απ=,∴2224R R απ=, ∴2πα=,∴2AB r R ==,∴ABC ∆中,3AOB π∠=,所以,,A B 两点的球面距离等于3R π.点评:要求两点的球面距离,必须先求出两点的直线距离,再求出这两点的球心角,进而求出这两点的球面距离. 家庭作业(一)选择题1. 解析:设圆柱的底面半径为r ,高为h ,则由题设知h =2πr .∴S 全=2πr 2+(2πr )2=2πr 2(1+2π).S 侧=h 2=4π2r 2,∴ππ221+=侧全S S .答案为A. 点评:本题考查圆柱的侧面展开图、侧面积和全面积等知识. 2. 解析:设酒瓶下底面面积为S ,则酒的体积为Sa ,酒瓶的体积为Sa+Sb ,故体积之比为1+,b a 显然有a<a′,又a′+b=h ,故a+b<h.选B.3. 解析:由三视图可知杯子是圆柱形的,由于圆柱形的杯子上下大小相同,所以当向杯中匀速注水时,其高度随时 间的变化是相同的,反映在图象上,选项B 符合题意.故选B.4. 解析:如图所示,该旋转体的体积为圆锥C —ADE 与圆锥B —ADE 体积之差,又∵求得AB =1.∴23133125331πππ=⋅⋅⋅-⋅⋅⋅=-=--ADE B ADE C V V V ,答案D. 5. 解析:∵S =21ab sin θ,∴21a 2sin60°=3,∴a 2=4,a =2,a =2r , ∴r =1,S 全=2πr +πr 2=2π+π=3π,答案A.(二)填空题6. 解析:水面高度升高r ,则圆柱体积增加πR 2·r .恰好是半径为r 的实心铁球的体积,因此有34πr 3=πR 2r . 故 332=r R .答案为332. 点评:本题主要考查旋转体的基础知识以及计算能力和分析、解决问题的能力.7. 解析:由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P —ABCD(如图),其中PD ⊥平面ABCD , 因此该四棱锥的体积V=13×6×6×6=72,而棱长为6的正方体的体积V=6×6×6=216,故需要216372=个这样 的几何体,才能拼成一个棱长为6的正方体. 答案:3评析:几何体的展开与折叠问题是近几年高考的一个热点内容,通过折叠与展开问题,可以很好地考查学生的空间想象能力以及推理能力.解决折叠与展开问题时,关键是弄清楚折叠与展开前后,位置关系和数量关系变化的情况,画出准确的图形解决问题.8. 解析:该几何体形状如图所示,是一个正方体与正四棱锥的组合体,正方体的体积是1,正四棱锥的体积是2,6故该凸多面体的体积为216+.点评:通过识图、想图、画图的角度考查了空间想象能力.而对空间图形的处理能力是空间想象力深化的标志,是高考从深层上考查空间想象能力的主要方向.(三)解答题9.解:(1)证明:AC=1,BC=2,AB=5,∴AC2+BC2=AB2.∴AC⊥BC.又∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,∴BC⊥平面PAC.又∵PA⊂平面PAC,∴PA⊥BC.(2)设几何体的正视图如图所示:∵PA=PC,取AC的中点D,连接PD,则PD⊥AC.又平面PAC⊥平面ABC,∴PD⊥平面ABC.∴几何体侧视图的面积=12AC·PD=12×1×PD=34.∴PD=32.易知△PAC是边长为1的正三角形.∴正视图的面积是上、下底边长分别为1和2,PD的长为高的直角梯形的面积.∴S=12333.224=⨯+(3)取PC的中点N,连接AN,由△PAC是边长为1的正三角形,可知AN⊥PC,由(1)知BC⊥平面PAC,∴AN⊥BC,∴AN⊥平面PCBM.∴AN是四棱锥A—PCBM的高,且AN=3.2由BC⊥平面PAC,可知BC⊥PC.由PM∥BC,可知四边形PCBM是上、下底边长分别为1和2,PC的长1为高的直角梯形.其面积S′=32,∴V=13S′·AN=3.410. 解:(1)证明:∵C是底面圆周上异于A、B的任意一点,且AB是圆柱底面圆的直径,∴BC⊥AC.∵AA 1⊥平面ABC ,BC平面ABC ,∴AA 1⊥BC . ∵AA 1∩AC =A ,AA 1平面AA 1C ,AC 平面AA 1C ,∴BC ⊥平面AA 1C .(2)设AC =x ,在Rt △ABC 中,BC =AB 2-AC 2=4-x 2(0<x <2),故VA 1-ABC =13S △ABC ·AA 1=13·12·AC ·BC ·AA 1=13x 4-x 2(0<x <2), 即VA 1-ABC =13x 4-x 2=13x 2(4-x 2)=13-(x 2-2)2+4. ∵0<x <2,0<x 2<4,∴当x 2=2,即x =2时,三棱锥A 1-ABC 的体积最大,其最大值为23.。
柱体、锥体、台体的表面积与体积(附答案)
柱体、锥体、台体的表面积与体积[学习目标] 1.通过对柱、锥、台体的研究,掌握柱、锥、台体的表面积的求法.2.了解柱、锥、台体的表面积和体积计算公式;能运用柱、锥、台的表面积和体积公式进行计算和解决有关实际问题.知识点一 多面体的表面积多面体的表面积就是各个面的面积的和,也就是展开图的面积. 知识点二 旋转体的表面积思考 求圆柱、圆锥、圆台的表面积时,要求的关键量是什么?答 求圆柱、圆锥的表面积时,关键是求其母线长与底面的半径;求圆台的表面积时,关键是求其母线长与上、下底面的半径. 知识点三 体积公式1.柱体:柱体的底面面积为S ,高为h ,则V =Sh .2.锥体:锥体的底面面积为S ,高为h ,则V =13Sh .3.台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V 3思考 简单组合体分割成几个几何体,其表面积如何变化?其体积呢? 答 表面积变大了,体积不变.题型一 空间几何体的表面积例1 圆台的母线长为8 cm ,母线与底面成60°角,轴截面两条对角线互相垂直,求圆台的表面积.解 如图所示的是圆台的轴截面ABB 1A 1,其中∠A 1AB =60°,过A 1作A 1H ⊥AB 于H ,则O 1O =A 1H =A 1A ·sin 60°=43(cm), AH =A 1A ·cos 60°=4(cm), 即r 2-r 1=AH =4.① 设A 1B 与AB 1的交点为M , 则A 1M =B 1M . 又∵A 1B ⊥AB 1,∴∠A 1MO 1=∠B 1MO 1=45°. ∴O 1M =O 1A 1=r 1. 同理OM =OA =r 2.∴O 1O =O 1M +OM =r 1+r 2=43,② 由①②可得r 1=2(3-1),r 2=2(3+1).∴S 表=πr 21+πr 22+π(r 1+r 2)l =32(1+3)π(cm 2).跟踪训练1 已知棱长为a ,各面均为等边三角形的四面体SABC (即正四面体SABC ),求其表面积.解 由于四面体SABC 的四个面是全等的等边三角形, 所以四面体的表面积等于其中任何一个面面积的4倍. 先求△SBC 的面积,过点S 作SD ⊥BC ,交BC 于点D ,如图所示.因为BC =a ,SD =SB 2-BD 2=a 2-⎝⎛⎭⎫a 22=32a ,所以S △SBC =12BC ·SD =12a ×32a =34a 2.因此,四面体SABC 的表面积为S =4×34a 2=3a 2.题型二 空间几何体的体积例2 在Rt △ABC 中,AB =3,BC =4,∠ABC =90°,把△ABC 绕其斜边AC 所在的直线旋转一周后,所形成的几何体的体积是多少?解 如图所示,两个圆锥的底面半径为斜边上的高BD , 且BD =AB ·BC AC =125,两个圆锥的高分别为AD 和DC , 所以V =V 1+V 2=13πBD 2·AD +13πBD 2·CD=13πBD 2·(AD +CD )=13πBD 2·AC =13π×⎝⎛⎭⎫1252×5=485π. 故所形成的几何体的体积是485π. 跟踪训练2 如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求A 到平面A 1BD 的距离d .解 在三棱锥A 1-ABD 中,AA 1⊥平面ABD ,AB =AD =AA 1=a , A 1B =BD =A 1D =2a , ∵11--=,A ABD A A BD V V∴13×12a 2·a =13×12×2a ×32·2a ·d . ∴d =33a .∴A 到平面A 1BD 的距离为33a . 题型三 与三视图有关的表面积、体积问题例3 (1)某几何体的三视图如图所示(单位:cm),则该几何体的表面积等于( ) A.8π cm 2 B.7π cm 2 C.(5+3)π cm 2D.6π cm 2(2)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.答案 (1)B (2)6+π解析 (1)此几何体是由一个底面半径为1,高为2的圆柱与一个底面半径为1,母线长为2的圆锥组合而成的,故S 表=S 圆柱侧+S 圆锥侧+S 底=2π×1×2+π×1×2+π×12=7π. (2)由三视图可知该几何体是组合体.下面是长方体,长、宽、高分别为3,2,1;上面是一个圆锥,底面圆半径为1,高为3,所以该几何体的体积为3×2×1+13π×12×3=(6+π) m 3.跟踪训练3 某几何体的三视图如图所示,则该几何体的体积是________.答案 16π-16解析 由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为16π-16.分割转化求体积例4 如图所示,已知ABCD -A 1B 1C 1D 1是棱长为a 的正方体,E ,F 分别为AA 1,CC 1的中点,求四棱锥A 1-EBFD 1的体积.分析 本题若直接求解较为困难,这里利用“割”的思想,将四棱锥的体积转化为两个等底的三棱锥的体积之和,从而简化求解步骤. 解 因为EB =BF =FD 1=D 1E = a 2+⎝⎛⎭⎫a 22=52a ,D 1F ∥EB ,所以四边形EBFD 1是菱形. 连接EF ,则△EFB ≌△EFD 1.易知三棱锥A 1-EFB 与三棱锥A 1-EFD 1的高相等, 故111122---==.A EBFD A EFB F EBA V V V 又因为1∆EBA S =12EA 1·AB =14a 2,则1-F EBA V =112a 3,所以111122---==A EBFD A EFB F EBA V V V =16a 3.圆柱体积的求解例5 把长、宽分别为4,2的矩形卷成一个圆柱的侧面,求这个圆柱的体积. 分析 利用底面的周长,求得底面半径,利用圆柱的体积公式求解. 解 设圆柱的底面半径为r ,母线长为l ,高为h .如图①所示,当2πr =4,l =2时,r =2π,h =l =2,所以V 圆柱=πr 2h =8π;如图②所示,当2πr =2,l =4时,r =1π,h =l =4;所以,此时V 圆柱=πr 2h =4π.1.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比是( ) A.1+2π2π B.1+2π4π C.1+2ππ D.1+4π2π2.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,则该几何体的体积为( )A.5πB.6πC.20πD.10π3.一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积为( )A.12πB.18πC.24πD.36π4.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.5.如图,在上、下底面对应边的比为1∶2的三棱台中,过上底面一边作一个平行于棱CC 1的平面A 1B 1EF ,这个平面分三棱台成两部分,这两部分的体积之比为________.一、选择题1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4π B.3π C.2π D.π2.已知高为3的直棱柱ABC -A 1B 1C 1的底面是边长为1的正三角形,则三棱锥B 1-ABC 的体积为( ) A.14 B.12C.36D.343.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的表面积是( ) A.3π B.33π C.2π D.9π4.在一个长方体中,过一个顶点的三条棱长的比是1∶2∶3,它的体对角线长是214,则这个长方体的体积是( ) A.6 B.12 C.24 D.485.一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+3C.21D.186.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是( )A.54B.54πC.58D.58π7.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A.16B.13C.23D.1二、填空题8.一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和正三角形,则它们的表面积之比为________.9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.11.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________. 三、解答题12.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ;(2)求该几何体的侧面积S .13.已知底面半径为 3 cm ,母线长为 6 cm 的圆柱,挖去一个以圆柱上底面圆心为顶点,下底面为底面的圆锥,求所得几何体的表面积及体积.当堂检测答案1.答案 A解析 设底面圆半径为r ,母线长为h ,∴h =2πr ,则S 表S 侧=2πr 2+2πrh 2πrh =r +h h =r +2πr 2πr =1+2π2π.2.答案 D解析 用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π. 3.答案 C解析 由三视图知该几何体为圆锥,底面半径r =3,母线l =5,∴S 表=πrl +πr 2=24π.故选C. 4.答案 12解析 设正六棱锥的高为h ,侧面的斜高为h ′.由题意,得13×6×12×2×2×32×h =23,∴h =1.∴斜高h ′=12+⎝⎛⎭⎫2×322=2,∴S 侧=6×12×2×2=12.5.答案 3∶4(或4∶3)解析 设三棱台的上底面面积为S 0,则下底面面积为4S 0,111-A B C ABC V 三棱柱=S 0h .111-ABC A B C V 三棱台=73S 0h .设剩余的几何体的体积为V , 则V =73S 0h -S 0h =43S 0h ,体积之比为3∶4或4∶3.课时精练答案一、选择题 1.答案 C解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C. 2.答案 D 解析 S 底=12×1×1-⎝⎛⎭⎫122=34,所以1B ABC V -三棱锥=13S 底·h =13×34×3=34.3.答案 A解析 设圆锥底面的半径为R ,则由12×2R ×3R =3,得R =1.所以S圆锥表=πRl +πR 2=π×1×2+π=3π. 4.答案 D解析 设长方体的三条棱长分别为a,2a,3a ,那么a 2+(2a )2+(3a )2=214.解得a =2,长方体的体积为V =2×4×6=48. 5.答案 A解析 由三视图可知,该多面体为一个边长为2的正方体在左下角与右上角各切去一个三棱锥,因此该多面体的表面积为6×⎝⎛⎫4-12+12×2×62×2=21+ 3. 6.答案 A解析 设上底面半径为r ,则由题意求得下底面半径为3r ,设圆台高为h 1,则52=13πh 1(r 2+9r 2+3r ·r ),∴πr 2h 1=12.令原圆锥的高为h ,由相似知识得r 3r =h -h 1h ,∴h =32h 1,∴V 原圆锥=13π(3r )2×h =3πr 2×32h 1=92×12=54.7.答案 B解析 如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V =13×12×1×1×2=13,故选B. 二、填空题 8.答案 2∶1解析 S 圆柱=2·π⎝⎛⎭⎫a 22+2π·a 2·a =32πa 2, S 圆锥=π⎝⎛⎭⎫a 22+π·a 2·a =34πa 2, ∴S 圆柱∶S 圆锥=2∶1. 9.答案7解析 设新的底面半径为r ,则有13×πr 2×4+πr 2×8=13×π×52×4+π×22×8,解得r =7.10.答案 83π11 解析 由三视图可知原几何体是由两个圆锥和一个圆柱组成的,它们有共同的底面,且底面半径为1,圆柱的高为2,每个圆锥的高均为1,所以体积为2×13π×12×1+π×12×2=8π3(m 3). 11.答案 32解析 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2.由S 1S 2=94,得πr 21πr 22=94,∴r 1r 2=32. 由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2.∴V 1V 2=πr 21h 1πr 22h 2=r 1r 2=32. 三、解答题12.解 由已知可得该几何体是一个底面为矩形、高为4、顶点在底面的投影是矩形中心的四棱锥V -ABCD .(1)V =13×(8×6)×4=64. (2)该四棱锥的两个侧面VAD ,VBC 是全等的等腰三角形,且BC 边上的高为h 1= 42+⎝⎛⎭⎫822=42,另两个侧面VAB ,VCD 也是全等的等腰三角形,AB 边上的高为h 2= 42+⎝⎛⎭⎫622=5.因此S 侧=2⎝⎛⎭⎫12×6×42+12×8×5=40+24 2. 13.解 作轴截面如图,设挖去的圆锥的母线长为l ,底面半径为r ,则l =(6)2+(3)2=9=3(cm).故几何体的表面积为S =πrl +πr 2+2πr ·AD=π×3×3+π×(3)2+2π×3× 6=33π+3π+62π =(33+3+62)π(cm 2).几何体的体积为V =V 圆柱-V 圆锥=π·r 2·AD -13πr 2AD =π×3×6-13×π×3× 6 =26π(cm 3).。
极坐标系下旋转体体积和表面积的计算
极坐标系下旋转体体积和表面积的计算
极坐标系是一种二维坐标系,它的一个特征是,坐标变换出来的体积和表面积计算是比较复杂的问题。
本文将介绍用于计算极坐标系下旋转体体积和表面积的方法。
极坐标系体积和表面积的计算可以分为以下三个步骤:首先,对被转模型实行极坐标变换,即把三维模型变成极坐标系下的模型;其次,将极坐标系下的模型分别朝x、y、z方向旋转,求出旋转体的体积和表面积;最后,将旋转体体积和表面积的计算结果应用到实际应用中去。
极坐标系下,旋转体体积和表面积的计算有其比较复杂的特点。
首先,需要考虑旋转体在极坐标系下变形的问题,以此来改变旋转体的表面面积;其次,需要考虑极坐标系下的体积和表面积的计算方法,才能正确的计算出旋转体的体积和表面积。
所以,正确的极坐标系下旋转体体积和表面积的计算,要综合运用极坐标变换和旋转体的特性,按照该坐标系下的公式和方法来解决。
本文介绍了极坐标系下旋转体体积和表面积的计算方法,希望能帮助大家深入理解极坐标系旋转体的表面积和体积的计算。
专题4 第1讲 空间几何体(教师版)
第1讲 空间几何体【要点提炼】考点一 表面积与体积1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr(r +l)(r 为底面半径,l 为母线长).(2)S 圆锥侧=πrl ,S 圆锥表=πr(r +l)(r 为底面半径,l 为母线长).(3)S 球表=4πR 2(R 为球的半径).2.空间几何体的体积公式V 柱=Sh(S 为底面面积,h 为高);V 锥=13Sh(S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径). 【热点突破】【典例】1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.【答案】 402π【解析】 因为母线SA 与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直角三角形.设底面圆的半径为r ,则母线长l =2r.在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158. 因为△SAB 的面积为515,即12SA ·SBsin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.【答案】 233 【解析】 如图,取BC 的中点O ,连接AO.∵正三棱柱ABC -A 1B 1C 1的各棱长均为2,∴AC =2,OC =1,则AO = 3.∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3.又11BB C S =12×2×2=2, ∴11D BB C V =13×2×3=233. 易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算).(2)一些不规则几何体的体积不会采用分割法或补形思想转化求解.(3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.【拓展训练】1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π【答案】 B【解析】 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.【答案】 327 【解析】 设CD =DE =x(0<x<1),则四边形ABDE 的面积S =12(1+x)(1-x)=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝ ⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 【要点提炼】考点二 多面体与球解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.【典例】2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________.【答案】 64π【解析】 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上,即球心就是△PAB 的外心,根据正弦定理AB sin ∠APB=2R ,解得R =4, 所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.【答案】 23π 【解析】 圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π. 规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心.(3)多面体的内切球可利用等积法求半径.【拓展训练】2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】 C【解析】 如图所示,设球O 的半径为R ,因为∠AOB =90°,所以S △AOB =12R 2,因为V O -ABC =V C -AOB ,而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大,此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36, 故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.【答案】 20π【解析】 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3,∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1,则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21, 可得PA 2=R 21-r 21=102,∴PA =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10,∴r 2=102,∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题训练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形【答案】 A【解析】 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12 【答案】 C【解析】 设正四棱锥的底面正方形的边长为a ,高为h ,侧面三角形底边上的高(斜高)为h ′,则由已知得h 2=12ah ′. 如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22, ∴h ′2=12ah ′+14a 2, ∴⎝ ⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( ) A.12 B.13 C.14 D.18【答案】 C【解析】 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形,设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元【答案】 B【解析】 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】 B【解析】 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h(h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B.4π3 C.5π3 D .2π 【答案】 C【解析】 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3. 7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】 A【解析】 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a.由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3 B .3π C.4π3 D .8π【答案】 A【解析】 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3, ∴2r =AB sin ∠ACB =112=2, 即O 1A =1,O 1O =12AA 1=3, ∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A. 9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27 C .81πD .128π【答案】 B 【解析】 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h(0<h<5),底面半径为r(0<r<5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h<5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h<53时,V ′>0,V 单调递增;当53<h<5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝ ⎛⎭⎪⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( )A.36B.12C.13D.32【答案】 C【解析】 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O ,∵球O 的半径为1, ∴正方体的边长为233,即PA =PB =PC =233, 球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △PAB ×PC =13× 12×⎝ ⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形, S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13. 二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值【答案】 AD【解析】 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确. 12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π【答案】 AD【解析】 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE.由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.【答案】 1【解析】 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r ·l =2.由于侧面展开图为半圆,可知12πl 2=2π, 可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________cm 2.【答案】 2 600π【解析】 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2 600π(cm 2). 15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________.【答案】 823π 【解析】 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π. 16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2π2【解析】 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q ,连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形,则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ. 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1,同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点,∴∠PEQ =π2, 知PQ 的长为π2×2=2π2,即交线长为2π2.。
旋转体的概念
旋转体的对称 轴数量:旋转 体可以有多个 对称轴,但只 有一个主对称
轴。
旋转体的对称 性分类:根据 旋转体的几何 特性,可以分 为轴对称、中 心对称、旋转 对称等类型。
04
旋转体的物理特性
旋转体的转动惯量
定义:物体转动惯量是指物体转动时,惯性大小的量度 计算公式:I=mr^2,其中m是质量,r是质点到旋转轴的距离 物理意义:转动惯量是描述旋转体转动状态的物理量,与旋转体的质量和形状等因素有关 应用:在物理学、工程学等领域中,转动惯量是研究旋转体运动规律的重要参数
添加标题
添加标题
测量技术:采用高精度测量仪器, 对旋转体的各项参数进行测量, 以评估其性能和精度。
数据处理:对实验数据进行处理 和分析,提取有用的信息,进一 步验证旋转体的性能和仿真结果 的可靠性。
感谢观看
汇报人:
05
旋转体的动力学特 性
旋转体的动力学方程
旋转体的动力学 方程是描述旋转 体运动状态的重 要公式,由牛顿 第二定律推导而 来。
旋转体的动力学 方程包括角动量 守恒定律和角动 量定理,它们描 述了旋转体的转 动惯量、力矩和 角速度之间的关 系。
旋转体的动力学 方程还包括科里 奥利力和离心力 等效应,这些效 应在高速旋转或 非惯性参考系中 尤为重要。
航空航天:旋转体的 应用也涉及到航空航 天领域,如飞机的螺 旋桨、直升机的旋翼 等。
交通运输:旋转体的 应用还涉及到交通运 输领域,如汽车的轮 胎、火车的车轮等。
日常生活:旋转体 的应用也涉及到我 们的日常生活,如 电风扇的叶片、洗 衣机的工作原理等。
03
旋转体的几何特性
旋转体的几何描述
旋转体的定义:由一个平面图形绕该平面内的一条直线旋转一周形成的立体 旋转体的轴:旋转时所围绕的那条直线 旋转体的面:由旋转体上任意一点与旋转轴构成的平面 旋转体的体积:由旋转体的几何特性所决定的立体体积
高中数学必修二 8 简单几何体的表面积与体积(精讲)(含答案)
8.3 简单几何体的表面积与体积(精讲)考点一 旋转体的体积【例1】(2021·山东莱西·高一期末)在ABC 中,2AB =,32BC =,120ABC ∠=︒,若将ABC 绕BC 边所在的直线旋转一周,则所形成的面围成的旋转体的体积是______. 【答案】32π 【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以sin 602OA AB =︒==,1cos60212OB AB =︒=⨯=,所以旋转体的体积:()21332V OC OB ππ=⋅⋅-=故答案为:32π. 【一隅三反】1.(2021·湖南省邵东市第三中学高一期中)圆台上、下底面面积分别是π、4π积是( )A B .C D 【答案】D【解析】由题意1(4)3V ππ=+=.故选:D .2.(2021·山东任城·高一期中)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有_______斛.【答案】12.5【解析】设圆柱的底面半径为r 尺,则14⨯2πr =6,∴r ≈4,∴圆锥的体积V =21134543⨯⨯⨯⨯=20立方尺,∴堆放的米约有201.6=12.5斛. 故答案为:12.5.3.(2021·上海市七宝中学)已知圆锥的侧面展开图是半径为2的半圆,则圆锥的体积为________.【解析】由题意圆锥的母线长为2l =,设圆锥底面半径为r ,则22r ππ=,1r =,所以高为h体积为2211133V r h ππ==⨯=..考点二 旋转体的表面积【例2】(2021·吉林·延边二中高一期中)如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱,(1)求剩余几何体的体积 (2)求剩余几何体的表面积【答案】(1)103π;(2)8π+. 【解析】(1)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=.(2)因为圆锥的底面直径和高均是4,所以半径为2,母线l =所以圆锥的表面积为2122(4S πππ=⨯+⨯⨯+, 挖去的圆柱的侧面积为:22124S ππ=⨯⨯=,所以剩余几何体的表面积为12(4+4+8S S S πππ==+=+. 【一隅三反】1.(2021·广东·仲元中学高一期中)已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π【答案】D【解析】将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r = 由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π.故选:D.2.(2021·全国·高一课时练习)已知圆台的上、下底面半径分别为10和20,它的侧面展开图的扇环的圆心角为180°,则这个圆台的侧面积为( ) A .600π B .300π C .900π D .450π【答案】A【解析】圆台的上底面圆半径10r '=,下底面圆半径20r =,设圆台的母线长为l ,扇环所在的小圆的半径为x ,依题意有:220()210l x x ππππ⨯=+⎧⎨⨯=⎩,解得2020x l =⎧⎨=⎩,所以圆台的侧面积20()()1020600+S r r l πππ'=⨯=+=. 故选:A3(2021·全国·高一课时练习)圆台的上、下底面半径和高的比为1:4:4,若母线长为10,则圆台的表面积为________. 【答案】168π【解析】圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,高为h 则4h R r ==,则它的母线长为510l r =, 所以2r,8R =.故()(82)10100S R r l πππ=+=+⨯=侧,22100464168S S r R ππππππ=++=++=表侧.故答案为:168π考点三 多面体的体积【例3-1】(2021·全国·高一课时练习)如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,则三棱锥D-ACD 1的体积是( )A .16B .13C .1 2D .1【答案】A【解析】三棱锥D-ACD 1的体积等于三棱锥D 1-ACD 的体积,三棱锥D 1-ACD 的底面ACD 是直角边长为1的等腰直角三角形,高D 1D=1,∴三棱锥D-ACD 1的体积为V=1132⨯×1×1×1=16.故选:A【例3-2】(2021·全国·高一课时练习)若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为( ) A .8 B .4C .2D .【答案】C【解析】如图,设棱台的上、下底面边长分别为2x ,8x ,斜高h '为5x ,则棱台的高h x ,由棱台的体积公式1()3V S S h '=得:2224161)31(6444++x x x x ⋅=,解得12x =,棱台的高为h =4x =2. 故选:C 【一隅三反】1.(2021·全国·高一课时练习)设四棱锥的底面是对角线长分别为2和4的菱形,四棱锥的高为3,则该四棱锥的体积为( ) A .12 B .24 C .4 D .30【答案】C【解析】所求的体积为11324432⨯⨯⨯⨯=,故选:C.2.(2021·全国·高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于( )A .6B .3+C .6+D .6【答案】C【解析】依题意,棱台的上底面面积2S '=,下底面面积4S =,高为3h =,故由公式可知,棱台的体积是()()11243633V S S h '==⨯⨯=+ 故选:C.3.(2021·全国·高一课时练习)若一个四棱锥的底面的面积为3,体积为9,则其高为( ) A .13B .1C .3D .9【答案】D【解析】设四棱锥的高为h ,则由锥体的体积公式得:13×3h =9,解得h =9,所以所求高为9. 故选:D4.(2021·广东·仲元中学高一期中)如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为( )A .1:5B .1:4C .1:3D .1:2【答案】A【解析】由图知:13C A DD A DD V C D S'''''-''=⋅⋅,ABCD A B C D A D DA V C D S ''''''-''=⋅,而2A D DA A DD S S''''=,∴剩余部分的体积为53ABCD A B C D C A DD A DD V V C D S'''''''''--''-=⋅,∴棱锥C A DD '''-的体积与剩余部分的体积之比为1:5.故选:A考点四 多面体的表面积【例4】(2021·全国·高一课时练习)正六棱柱的底面边长为2,最长的一条对角线长为积为()A .4)B .2)C .1)D .8)【答案】B【解析】正六棱柱的底面边长为2,最长的一条对角线长为12BB =,它的表面积为)16=2622sin 6222412223S S S π=+⨯⨯⨯⨯⨯+⨯⨯==表面积底面积矩形.故选:B. 【一隅三反】1.(2021·全国·高一课时练习)若六棱柱的底面是边长为3的正六边形,侧面为矩形,侧棱长为4,则其侧面积等于( ) A .12 B .48 C .64 D .72【答案】D【解析】六棱柱的底面是边长为3的正六边形, 故底面周长6318C =⨯=, 又侧面是矩形,侧棱长为4, 故棱柱的高4h =,∴棱柱的侧面积72S Ch ==,故选:D2.(2021·全国·高一课时练习)如图,在正方体ABCD -A 1B 1C 1D 1中,三棱锥D 1AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1C .1D .1∶2【答案】C【解析】设正方体的边长为a ,则表面积216S a =,因为三棱锥11D AB C -的各面均是正三角形,其边长为正方体侧面对角线.,三棱锥D 1AB 1C 的表面积)222142S =⨯⨯=,所以2221::6S S a ==故选:C3(2021·全国·高一课时练习)长方体同一顶点上的三条棱长分别为2,2,3,则长方体的体积与表面积分别为( ) A .12,32 B .12,24 C .22,12 D .12,11【答案】A【解析】长方体的体积为22312⨯⨯=,表面积为()222+23+2332⨯⨯⨯=, 故选:A.4.(2021·全国·高一课时练习)(多选)正三棱锥底面边长为3,侧棱长为则下列叙述正确的是( )A .正三棱锥高为3 BC D 【答案】ABD【解析】设E 为等边三角形ADC 的中心,F 为CD 的中点,连接,,PF EF PE , 则PE 为正三棱锥的高,PF 为斜高,又PF ==32EF ==,故3PE ==, 故AB 正确.而正三棱锥的体积为1393⨯=,侧面积为1332⨯⨯=故C 错误,D 正确. 故选:ABD.5(2021·全国·高一课时练习)(多选)在正方体1111ABCD A B C D -中,三棱锥11D AB C -的表面积与正方体的表面积的比不可能是( )A .1:1B .C .D .1:2【答案】ABD【解析】设正方体1111ABCD A B C D -的棱长为a ,则正方体1111ABCD A B C D -的表面积为226S a =.三棱锥11D AB C -的正四面体,其中一个面的面积为212S ==,则三棱锥11D AB C -的表面积为2214S ==所以三棱锥11D AB C -的表面积与正方体的表面积的比为22126S S a ==::故选:ABD.考点五 有关球的计算【例5-1】(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .72π B .56π C .14π D .16π【答案】C【解析】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴2414S R ππ球==. 故选:C【例5-2】(2021·广东高州·高一期末)已知正四面体ABCD的表面积为A 、B 、C ,D 四点都在球O 的球面上,则球O 的体积为( ) A. BCD .3π【答案】C【解析】正四面体各面都是全等的等边三角形,设正四面体的棱长为a ,所以该正四面体的表面积为2142S a =⨯⨯=,所以a =1, 所以正方体的外接球即为该正四面体的外接球,O 的体积为343π⨯=⎝⎭. 故选:C. 【一隅三反】1.(2021·全国·高一课时练习)表面积为16π的球的内接轴截面为正方形的圆柱的体积为( )A .B .C .16πD .8π【答案】A【解析】由题意可知,4πR 2=16π,所以R =2,即球的半径R =2.设圆柱的底面圆半径为r 2R =,即2816r =,所以r ,∴V 圆柱=πr 2·2r =2π·π.故选:A.2.(2021·全国·高一课时练习)若一个正方体内接于表面积为4π的球,则正方体的表面积等于( )A .B .8C .D .【答案】B【解析】设正方体棱长为x ,球半径为R ,则24π4πS R ==球,解得1R =,22R ==,解得x =所以该正方体的表面积为22668S x ==⨯=正.故选:B.3.(2021·全国·高一课时练习)(多选)我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( ) A .半径是3 B .体积为18π C .表面积为27π D .表面积为18π【答案】ABC【解析】如图,PAC △是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,,棱锥体积为2312)1833V r r =⨯⨯==,3r =,半球体积为332231833V r πππ==⨯=,表面积为2223327S πππ=⨯+⨯=, 故选:ABC .4.(2021·全国·高一课时练习)一个球内有相距9cm 的两个平行截面,它们的面积分别为249cm π和2400cm π2,求球的体积和表面积.【答案】球的表面积为22500cm π,球的体积为362500cm 3π. 【解析】(1)当截面在球心的同侧时,如图①所示为球的轴截面,由截面性质知12AO //BO ,1O ,2O 为两截面圆的圆心,且11OO AO ⊥,22OO BO ⊥,①设球的半径为R ,因为2249O B ππ=,所以27cm O B =,同理得120cm O A =.设1cm OO x =,则2(9)cm OO x =+, 在1Rt O OA 中,22220R x =+,① 在2Rt OO B 中,2227(9)R x =++,② 联立①②可得15x =,25R =.所以2242500cm S R ππ==球,33462500cm 33V R ππ==球.(2)当截面在球心的两侧时,如图②所示为球的轴截面,由球的截面性质知,12O A//O B ,1O ,2O 分别为两截面圆的圆心,且11OO O A ⊥,22OO O B ⊥.②设球的半径为R ,因为2249O B ππ⋅=,所以27cm O B =.因为21400O A ππ⋅=,所以120cm O A =.设1cm O O x =,则2(9)cm OO x =-. 在1Rt OO A △中,22400R x =+,在2Rt OO B 中,22(9)49R x =-+, 所以22400(9)49x x +=-+, 解得15x =-(不合题意,舍去) 综上所述,球的表面积为22500cm π. 球的体积为362500cm 3π. 考点六 综合运用【例6】(2021·全国·高一课时练习)一块边长为12cm 的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.(1)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积V 表示为关于x 的函数,并标明其定义域; (2)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.请指出此时x 的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积S .【答案】(1)323(012)82x V x x =-+<<;(2)6cm x =,2S =侧.【解析】(1)结合平面图形数据及三棱柱直观图,求得三棱柱的高6cm 2x h ⎫=-⎪⎝⎭,其底面积22cm S =,则三棱柱容器的容积232236624282x x x x V Sh x x ⎫⎛⎫==-=-=-+⎪ ⎪⎝⎭⎝⎭, 即所求函数关系式为323(012)82x V x x =-+<<;(2)此时6cm x =,而相应棱柱的高h ,故侧面积为236S =⨯=. 【一隅三反】1.(2021·安徽镜湖·高一期中)如图所示,在边长为5的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥的底面,围成一个圆锥,求该圆锥的表面积与体积.【答案】表面积10π. 【解析】设圆的半径为r ,扇形的半径为R ,由题意,得(522R r Rr ππ⎧+=⎪⎨=⎪⎩,解得r R ⎧=⎪⎨=⎪⎩所以围成的圆锥的母线长为l =r =h ∴圆锥的表面积210S rl r πππ=+=;∴圆锥的体积为213V r h π==.2.(2021·全国·高一课时练习)有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).【答案】36【解析】易知由下向上三个正方体的棱长依次为2,1.考虑该几何体在水平面的投影,可知其水平投影面积等于下底面最大正方体的底面面积.∴S 表=2S 下+S 侧=2×22+4×[22+2+12]=36, ∴该几何体的表面积为36.3.(2021·全国·高一课时练习)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高为4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m (高不变);二是高度增加4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些?【答案】(1)2563π(m 3),96π(m 3);(m 2),60π(m 2);(3)方案二比方案一更加经济. 【解析】(1)若按方案一,仓库的底面直径变成16 m ,则仓库的体积为V 1=13S ·h=13×π×2162⎛⎫⎪⎝⎭×4=2563π(m 3).若按方案二,仓库的高变成8 m ,则仓库的体积为V 2=13S ·h=13×π×2122⎛⎫⎪⎝⎭×8=96π(m 3).(2)若按方案一,仓库的底面直径变成16 m ,半径为8 m.圆锥的母线长为l 1m ),则仓库的表面积为S 1=π×8×(m 2). 若按方案二,仓库的高变成8 m.圆锥的母线长为l 210(m ), 则仓库的表面积为S 2=π×6×10=60π(m 2).(3)由(1)、(2)知,V 1<V 2,S 2<S 1,故方案二体积更大,表面积更小,所需耗材更少,即方案二比方案一更加经济.。
高中数学简单几何体的表面积与体积考点及例题讲解
简单几何体的表面积与体积考纲解读 1.结合三视图求几何体的表面积与体积;2.利用几何体的线面关系求表面积和体积;3.求常见组合体的表面积或体积.[基础梳理]1.多面体的表面积与侧面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.旋转体的表面积与侧面积名称侧面积 表面积 圆柱(底面半径r ,母线长l ) 2πrl 2πr (l +r ) 圆锥(底面半径r ,母线长l ) πrl πr (l +r ) 圆台(上、下底面半径r 1,r 2,母线长l )π(r 1+r 2)lπ(r 1+r 2)l +π(r 21+r 22) 球(半径为R )4πR 23.空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1)V 柱体=Sh .特别地,V 圆柱=πr 2h (r 为底面半径). (2)V 锥体=13Sh .特别地,V 圆锥=13πr 2h (r 为底面半径).(3)V 台体=13h (S +SS ′+S ′).特别地,V 圆台=13πh (r 2+rr ′+r ′2)(r ,r ′分别为上、下底面半径).(4)V 球=43πR 3(球半径是R ).[三基自测]1.正六棱柱的高为6,底面边长为4,则它的表面积为( ) A .48(3+3) B .48(3+23) C .24(6+2) D .144答案:A2.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.答案:1∶473.一直角三角形的三边长分别为6 cm,8 cm,10 cm ,绕斜边旋转一周所得几何体的表面积为________.答案:3365π cm 24.(必修2·1.3A 组改编)球内接正方体的棱长为1,则球的表面积为________. 答案:3π5.(2017·高考全国卷Ⅰ改编)所有棱长都为2的三棱锥的体积为________. 答案:223考点一 几何体的表面积与侧面积|易错突破[例1] (1)(2018·九江模拟)如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为( )A .6+42+23B .8+42C .6+6 2D .6+22+43(2)某品牌香水瓶的三视图如图(单位:cm),则该几何体的表面积为( )A.⎝⎛⎭⎫95-π2cm 2 B.⎝⎛⎭⎫94-π2cm 2 C.⎝⎛⎭⎫94+π2cm 2 D.⎝⎛⎭⎫95+π2cm 2 (3)一个几何体的三视图如图所示,则该几何体的表面积为________.[解析] (1)直观图是四棱锥P ABCD ,如图所示,S △P AB =S △P AD =S △PDC =12×2×2=2,S △PBC =12×22×22×sin 60°=23,S 四边形ABCD =22×2=42,故此棱锥的表面积为6+42+23,故选A.(2)该几何体的上下为长方体,中间为圆柱. S 表面积=S 下长方体+S 上长方体+S 圆柱侧-2S 圆柱底=2×4×4+4×4×2+2×3×3+4×3×1+2π×12×1-2×π⎝⎛⎭⎫122=94+π2(cm 2). (3)由三视图可知,该几何体是一个长方体内挖去一个圆柱体,如图所示.长方体的长、宽、高分别为4,3,1,表面积为4×3×2+3×1×2+4×1×2=38, 圆柱的底面圆直径为2,母线长为1, 侧面积为2π×1=2π,圆柱的两个底面面积和为2×π×12=2π. 故该几何体的表面积为38+2π-2π=38. [答案] (1)A (2)C (3)38 [易错提醒]1.以三视图为载体的几何体的表面积或侧面积问题,要分清三视图中的量是否为各表面计算面积所用的量.2.几何体切、割后的图形的表面,不一定是减少,甚至可能增加.3.组合体的表面积,要注意衔接部分分散在哪个面中来计算.[纠错训练]1.已知某斜三棱柱的三视图如图所示,求该斜三棱柱的表面积.解析:由题意知,斜三棱柱的直观图如图中ABC A 1B 1C 1所示.易知正方体的棱长为2.斜三棱柱的两个底面积的和为2S △ABC =2×12×AB ×AC =2,侧面ABB 1A 1的面积S 侧面ABB 1A 1=2×1=2,侧面ACC 1A 1为矩形,S 侧面ACC 1A 1=AA 1·AC =25,侧面BCC 1B 1是边长为5的菱形,连接CB 1、BC 1,易得CB 1=23,BC 1=22,且CB 1⊥BC 1,所以S 侧面BCC 1B 1=12CB 1·BC 1=12×23×22=26,所以斜三棱柱ABC A 1B 1C 1的表面积为4+2(5+6).2.(2016·高考全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,求它的表面积.解析:该几何体是一个球体挖掉18剩下的部分,如图所示,依题意得78×43πR 3=28π3,解得R =2,所以该几何体的表面积为4π×22×78+34π×22=17π.考点二 空间几何体的体积|方法突破[例2] (1)(2017·高考全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(2)正三棱柱ABC A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥C 1B 1DA 的体积为( )A .3 B.32 C .1D.32(3)(2017·高考山东卷)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.[解析] (1)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:依题意,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π,选择B.(2) 在正△ABC 中,D 为BC 中点, 则有AD =32AB =3, S △DB 1C 1=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ⊂平面ABC ,∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A B 1DC 1底面上的高.∴VC 1B 1DA =VA C 1B 1D =13S △DB 1C 1·AD =13×3×3=1.(3)该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.[答案] (1)B (2)C (3)2+π2[方法提升]求几何体的体积的方法 方法解读适合题型 直接法对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解 规则 几何体割补法当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体不规则 几何体 等积转换法 利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.求体积时,可选择“容易计算”的方式来计算三棱锥[跟踪训练]1.(2018·大连双基检测)如图,在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的体积为( )A .15B .13C .12D .9解析:几何体的直观图如图所示,其中底面ABCD 是一个矩形(其中AB =5,BC =2),棱EF ∥底面ABCD ,且EF =3,直线EF 到底面ABCD 的距离是3.连接EB ,EC ,则题中的多面体的体积等于四棱锥E ABCD 与三棱锥E FBC 的体积之和,而四棱锥E ABCD 的体积等于13×(5×2)×3=10,三棱锥E FBC 的体积等于13×⎝⎛⎭⎫12×3×3×2=3,因此题中的多面体的体积等于10+3=13,选B.答案:B2.如图所示(单位:cm),则图中的阴影部分绕AB 所在直线旋转一周所形成的几何体的体积为________.解析:由题图中数据,根据圆台和球的体积公式,得 V圆台=13×(π×AD 2+π×AD 2×π×BC 2+π×BC 2)×AB =13×π×(AD 2+AD ×BC +BC 2)×AB=13×π×(22+2×5+52)×4=52π(cm 3), V 半球=43π×AD 3×12=43π×23×12=163π(cm 3),所以旋转所形成几何体的体积V =V 圆台-V半球=52π-163π=1403π(cm 3).答案:1403π(cm 3)考点三 有关球的组合体及面积、体积最值问题|思维突破[例3] (1)已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积取最大值时,其高的值为( )A .33 B.3 C .2 6D .23(2)(2017·高考全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.(3)正四棱柱ABCD A 1B 1C 1D 1的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最________值,为________.[解析] (1)设正六棱柱的底面边长为a ,高为h ,则可得a 2+h 24=9,即a 2=9-h 24,那么正六棱柱的体积V =⎝⎛⎭⎫6×34a 2×h =332(9-h 24)h =332(-h 34+9h ). 令y =h 34+9h ,∴y ′=-3h 24+9.令y ′=0,∴h =2 3.易知当h =23时,正六棱柱的体积最大,故选D.(2)设球O 的半径为R ,∵SC 为球O 的直径,∴点O 为SC 的中点,连接AO ,OB (图略),∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB ,∴V SABC =V ASBC =13×S △SBC×AO =13×(12×SC ×OB )×AO ,即9=13×(12×2R ×R )×R ,解得R =3,∴球O 的表面积为S =4πR 2=4π×32=36π.(3)如图,截面图为长方形ACC 1A 1和其外接圆.球心为EE 1的中点O , 则R =OA .设正四棱柱的侧棱长为b ,底面边长为a ,则AC =2a ,AE =22a ,OE =b2,R 2=⎝⎛⎭⎫22a 2+⎝⎛⎭⎫b 22, ∴4R 2=2a 2+b 2,则正四棱柱的侧面积: S =4ab =2·2a ·2b ≤2(a 2+2b 2)=42R 2,故侧面积有最大值,为42R 2,当且仅当a =2b 时等号成立. [答案] (1)D (2)36π (3)大 42R 2 [思维升华]1.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形问题,再利用平面几何知识寻找几何中元素间的关系求解.2.解决几何体最值问题的方法 方法解读适合题型基本不等式法根据条件建立两个变量的和或积为定值,然后利用基本不等式求体积的最值(1)求棱长或高为定值的几何体的体积或表面积的最值;(2)求表面积一定的空间几何体的体积最大值和求体积一定的空间几何体的表面积的最小值函数法通过建立相关函数式,将所求的组合体中的最值问题最值问题转化为函数的最值问题求解,此法应用最为广泛几何法 由图形的特殊位置确定最值,如垂直图形位置变化中的最值[跟踪训练](2015·高考全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:△AOB 的面积为定值,当OC 垂直于平面AOB 时,三棱锥O ABC 的体积取得最大值.由16R 3=36得R =6.从而球O 的表面积S =4πR 2=144π.故选C.答案:C1.[考点二](2017·高考全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:球心到圆柱的底面的距离为圆柱高的12,球的半径为1,则圆柱底面圆的半径r=1-(12)2=32,故该圆柱的体积V =π×(32)2×1=3π4,故选B.答案:B2.[考点一](2016·高考全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:由三视图知圆锥的高为23,底面半径为2,则圆锥的母线长为4,所以圆锥的侧面积为12×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.答案:C3.[考点二](2015·高考全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:设圆锥底面的半径为R 尺,由14×2πR =8得R =16π,从而米堆的体积V =14×13πR 2×5=16×203π(立方尺),因此堆放的米约有16×203×1.62×3≈22(斛).故选B.答案:B4.[考点一、三](2017·高考全国卷Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.解析:依题意得,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R ,则有2R =14,R =142,因此球O 的表面积等于4πR 2=14π.答案:14π5.[考点一、三](2017·高考全国卷Ⅰ改编)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,求所得三棱锥体积(单位:cm 3)的最大值.解析:法一:由题意可知,折起后所得三棱锥为正三棱锥,当△ABC 的边长变化时,设△ABC 的边长为a (a >0)cm ,则△ABC 的面积为34a 2,△DBC 的高为5-36a ,则正三棱锥的高为⎝⎛⎭⎫5-36a 2-⎝⎛⎭⎫36a 2=25-533a , ∴25-533a >0,∴0<a <53,∴所得三棱锥的体积V =13×34a 2×25-533a =312×25a 4-533a 5.令t =25a 4-533a 5,则t ′=100a 3-2533a 4,由t ′=0,得a =43,此时所得三棱锥的体积最大,为415 cm 3.法二:如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG =36BC ,∴OG 的长度与BC 的长度成正比.设OG =x ,则BC =23x ,DG =5-x ,S △ABC =23x ·3x ·12=33x 2,则所得三棱锥的体积V =13×33x 2×(5-x )2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52,则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2,则当x ∈⎝⎛⎭⎫0,52时,f (x )≤f (2)=80,∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415.。
旋转体表面积和体积的数值计算
五、模型的建立与求解
5.1 问题一模型建立与求解
5.1.1 问题一的分析 针对问题一,我们需要做出该花瓶的三维立体图形,首先要求出边缘曲线,令其绕 轴旋转形成三维立体图形。我们首先对题目所提供的花瓶图片进行数据处理,整理数据 资料,为接下来的模型建立与求解做好基础。数据处理步骤如下: Step1:导入 BMP 图像,运用 Matalab 读取图像信息。 将花瓶的侧面投影图片,导入到 Matlab 中,获得关于图片的二维矩阵信息。由于 BMP 文件在计算机中是以二进制进行储存的。图像保存在一个二维的由 0 或 1 组成的矩 阵中。1 表示该位置有一个黑色像素点;0 表示该位置存在一个白色像素点。每一个像 素在图片中都有一个确定的坐标, 我们将 BMP 图片中的像素的位置信息转换为 0 和 1 组 成的文本文件,利用文本文件中的数据计算花瓶侧面投影的边界点坐标。像素位置信息 的二维矩阵内容详细见附录 1。 Step2:数据处理得到花瓶侧面投影边缘曲线数据。 获得图片像素位置坐标的数组后,我们利用 Matlab 计算出花瓶侧面投影的边界曲 线点的坐标,并拟合出边界曲线。
图 5.1.1.1 提取轮廓线
4
图像中位于轮廓线上的点,它与其相邻的点的灰度值差有一定的跳跃,故通过值的 对比,就可以将那些边缘点提取出来。将中心被检测点依次与其上下、左右、左上、右 下,和右上、左下 8 个点做比较,若差值大于规定值,则该检测点就是轮廓线上的点, 反之不是。 编写 matlab 程序[1]完成模型求解, 程序具体代码见附录 2。 效果如图 5.1.1.1. 对于提取出的轮廓线的结果与所提供的花瓶侧面投影结果吻合并读取边界点坐标 信息,同时我们利用 matlab 编程,建立直角坐标系,如下图所示,将每一个点的坐标 表示出来,发现花瓶两端的点距离坐标轴相同的距离,整个数据中只有一个数据不符合 对称关系,我们分析研究发现,图片左下角放大后有一个多出来的黑色像素点,而右侧 没有导致不对称,我们决定剔除该数据,认为该花瓶为对称的。坐标详细信息见附录 1。 5.1.2 问题一模型的建立 模型一:采用斜率单变点分析法确定花瓶侧面曲线的分段模型 斜率单变点分析法的原理如下: 斜率变点的新概念是指曲线斜率加(减)速变化最大的点。即寻求单一斜率变点的 回归系数二阶差分方法。它可对单调性和凹凸性均单一的曲线求其“转折点” 。实例表 明,该法具有简单、直观、有效等优点。 先研究最简单的斜率变点问题。假定已知一条曲线中有且只有一个斜率变点,问题 是如何找到一种方法可简单、定量、准确地确定此变点。 一般地,大多数的测量数据都呈离散的数据点对,正如本题中花瓶侧面的曲线实际 上我们只是得到了其侧面上的一些离散的点。并且当测量间隔(诸如时间或距离)较长 时,不易形成能真实反映过程变化的连续曲线。因此,多数观测序列不易用曲线方程表 达,因而就无法用微积分求导数的方法求出各点处的斜率。只能用求某点两侧一些相继 数据点的线性回归系数的方法近似地求出某时刻点(或距离点)两侧较短时间间隔(或 距离)内曲线的斜率。这是因为在较短的时间间隔(或距离)内,曲线是近似直线的。 某点两侧曲线斜率之差可反映该点两侧斜率变化的幅度,这可说是用到了一阶差分。但 这里拟找的“转折点”并不是斜率变化最大的点,而是斜率局部加(减)速变化最大的 点。在监测时间是等时间间隔(或等间距)的条件下,斜率变化幅度的二阶差分就反映 了斜率变化的加(减)速度。通过寻找斜率变化的加(减)速度局部极大值或趋势相同 的区间的方法,就可找出斜率变点所落在的单位位置,便可定量地求出斜率变点的估计 值了。 其模型建立的一般分析方法如下: (1)取定探索点:由于我们的数据是一个一个的像素点,为此选取每个像素点为探 索点,构成探索点序列。 (2) 以各探索点为中心构造滑动窗口,以便计算出探索点前、后附近曲线的斜率 (即探索点前、后各若干数据点的线性回归系数) 。由于参加回归的数据点数 n 的多少 会影响回归系数的取值,故在探索点前、后各取一样多(n)数据点构成滑动窗口,这 样可在同等条件下进行前、后斜率的对比。又由于曲线只在较短的距离内才近似直线, 故 n 也不能取得太大。本例分别取 n=4 构成滑动窗口。 (3) 对探索点 ti 前的 n (本题中取 4) 个数据点作线性回归, 求出回归系数, 记为 bl (ti ) , 同样,对探索点 ti 后的 n 个数据点作线性回归,求出回归系数,记为 br (ti ) 。 (4)对每个探索点 ti ,计算 br (ti ) 与 bl (ti ) 之差,并记 S (ti ) ,即
多面体与旋转体的表面积和体积
版
面.
数 学
一个投影面水平放置,叫做水平投影面,光线从几何
体的上面向下面正投影,投射到这个平面内的图形叫做俯
视图.
一个投影面放置在正前方,这个投影面叫做直立投影
面;光线从几何体的前面向后面正投影,投射到这个平面
内的图形叫做正视图.
第九章 立体几何
和直立、水平两个投射面都垂直的投射面叫做侧立投
影面,通常把这个平面放在直立投影面的右面,光线从几
答案:D
第九章 立体几何
[例4] 已知四棱锥P-ABCD的直观图及三视图如图所
示.
(1)求四棱锥P-ABCD的体积;
人 教
A
(2)若E是侧棱PC的中点,求证:PA∥平面BDE;
版 数
学
(3)若E是侧棱PC上的动点,不论点E在什么位置,是
否都有BD⊥AE?证明你的结论.
第九章 立体几何
解析:(1)由该四棱锥的直观图和三视图可知,该四棱
定的平面表示水平平面.
第九章 立体几何
③已知图形中,平行于x轴、y轴或z轴的线段,在直观
图中分别画成平行于x′轴,y′轴、z′轴的线段.并使它们和
所画坐标轴的位置关系,与已知图形中相应线段和原坐标
轴的位置关系相同.
人 教
A
④已知图形中平行于x轴和z轴的线段,在直观图中保
版 数
学
持长度不变,平行于y轴或在y轴上的线段,长度为原来的
做球面,球面所围成的几何体叫球体,简称球.
(2)球的截面性质
人 教
A
①用一个平面去截球,截面是圆面.
版 数
学
②球心到截面的距离d与球的半径R及截面的半径r,有
下面的关系:
(如图)
旋转体的计算
旋转体的计算旋转体是在数学中经常出现的一个概念,它由一个曲线或者曲面绕着某个轴旋转而成。
对于旋转体的计算,我们可以通过几何方法或者积分方法进行求解。
下面将介绍一些常见的旋转体计算方法。
一、旋转体的体积计算对于一个曲线绕着x轴旋转一周所得到的旋转体,其体积可以通过以下公式进行计算:V = π * ∫[a,b] (f(x))^2 dx其中,a和b为曲线与x轴的交点,f(x)为曲线的方程。
这个公式可以通过将曲线分成无穷多个微小的圆柱体,并对其进行求和得到。
同样地,对于一个曲线绕着y轴旋转一周所得到的旋转体,其体积可以通过以下公式计算:V = π * ∫[c,d] (g(y))^2 dy其中,c和d为曲线与y轴的交点,g(y)为曲线的方程。
二、旋转体的表面积计算旋转体的表面积计算可以通过以下公式进行求解:A = 2π * ∫[a,b] f(x) * √(1 + (f'(x))^2) dx其中,a和b为曲线的范围,f(x)为曲线的方程,f'(x)为曲线的导数。
对于一个曲线绕着y轴旋转一周所得到的旋转体,其表面积可以通过以下公式进行计算:A = 2π * ∫[c,d] g(y) * √(1 + (g'(y))^2) dy其中,c和d为曲线的范围,g(y)为曲线的方程,g'(y)为曲线的导数。
三、例题演示假设有一个半径为r的圆形,我们希望计算其绕着x轴旋转一周所得到的旋转体的体积和表面积。
已知圆的方程为x^2 + y^2 = r^2。
体积的计算:V = π * ∫[-r,r] (r^2 - x^2) dx= π * [r^2 * x - (x^3)/3] |[-r,r]= π * [r^3 - (-r^3)/3]= (4/3)π * r^3表面积的计算:A = 2π * ∫[-r,r] (r * √(1 + (x/r)^2)) dx= 2π * [r^2 * ln(x + √(x^2 + r^2))] |[-r,r]= 2π * [r^2 * (ln(2r) - ln(r))]= 2π * r^2 * ln(2)结论:对于绕着x轴旋转一周的圆形,其体积为(4/3)π * r^3,表面积为2π * r^2 * ln(2)。
旋转体的表面积和体积计算
旋转体的表面积和体积计算旋转体是指通过绕某一轴旋转而形成的立体图形。
在几何学中,计算旋转体的表面积和体积是一种重要的技巧。
本文将介绍旋转体的表面积和体积计算方法,以及一些常见的旋转体示例。
一、旋转体的表面积计算方法要计算旋转体的表面积,我们可以使用定积分的方法。
设旋转体由曲线y=f(x)(0≤x≤a)绕x轴旋转而成,其中f(x)在闭区间[0,a]上连续且非负。
基于定积分的表面积计算公式为:S = 2π∫[a→0] y·ds其中,ds表示曲线的微小弧长。
在极坐标下,微小弧长ds可以表示为:ds = √(1+(dy/dx)²)·dx通过将dy/dx替换为f'(x),我们可以将表面积计算公式简化为:S = 2π∫[a→0] f(x)·√(1+f'(x)²)·dx通过求解上述定积分,即可得到旋转体的表面积。
二、旋转体的体积计算方法旋转体的体积计算同样可以使用定积分的方法。
仍假设旋转体由曲线y=f(x)(0≤x≤a)绕x轴旋转而成。
体积计算公式为:V = π∫[a→0] y²·dx通过将y替换为f(x),我们可以将体积计算公式写为:V = π∫[a→0] f(x)²·dx求解上述定积分即可得到旋转体的体积。
三、旋转体计算示例下面将以圆锥为例,演示旋转体的表面积和体积计算方法。
圆锥由一条斜边和底面形成,底面是一个半径为r的圆。
我们将底面放置在坐标轴上,圆锥的斜边与x轴的交点记为(0,h)。
要计算圆锥的表面积和体积,首先我们需要确定圆锥的方程。
通过类似三角函数的方法,我们可以得到圆锥的方程为:y = h/r·x其中,0≤x≤r,0≤h≤√(r²-x²)。
根据上述方程,我们可以计算出圆锥的表面积和体积。
四、总结通过本文的介绍,我们了解了旋转体的表面积和体积计算方法,并以圆锥为例进行了演示。
旋转体体积和侧面积的计算公式
旋转体体积和侧面积的计算公式
一,旋转体体积
绕x轴旋转体体积公式是V=π∫[a,b]f(x)^2dx。
绕y轴旋转体积公式同理,将x,y互换即可,V=π∫[a,b]φ(y)^2dy。
或者是V=2π∫[a,b]y*f(y)dy,也是绕x轴旋转体积。
绕x轴旋转体的侧面积为A=2π∫[a,b]y*(1+y'^2)^0.5dx,其中y'^2是y对x的导数的平方。
二,旋转体侧面积
旋转体侧面积公式是:2π∫(1,t)(t-x)/x^2dx+2π∫(t,2)(x-t)/x^2dx。
1、根据定积分公式可得:2π∫(1,t)(t-x)/x^2dx+2π∫(t,2)(x-t)/x^2dx。
2、一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;该定直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体。
3、表面积是指所有立体图形的所能触摸到的面积之和。
球体表面积计算公式为:S=4πR^2。
4、定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。
即由y=0,x=a,x=b,y=f(X)所围成图形的面积。
这个图形称为曲边梯形,特例是曲边三角形。
平面几何中的旋转体和旋转体的表面积和体积
平面几何中的旋转体和旋转体的表面积和体积在平面几何中,旋转体是一种常见的二维图形,它可以通过沿着一条固定的轴线旋转而生成。
旋转体的表面积和体积是我们研究旋转体的重要内容之一,在本文中,我们将详细探讨旋转体的表面积和体积以及它们的计算方法。
一、什么是旋转体旋转体是由一个平面图形沿着一条固定的轴线旋转而形成的一种三维图形。
常见的旋转体包括圆柱体、圆锥体和球体等。
例如,我们可以将一个直径为d的圆形绕着它的直径旋转一周,就可以形成一个圆柱体,其高度为d,底面积与初始的圆形相等。
二、旋转体的表面积1. 圆柱体的表面积圆柱体的表面积是由底面积、顶面积和侧面积三部分组成的。
底面积是一个圆形,其面积为πr^2,顶面积与底面积相同;侧面积是一个矩形,其宽度为圆柱体的高度h,长度为底面的周长2πr。
因此,圆柱体的表面积为:2πr^2 + 2πrh = 2πr(r + h)。
2. 圆锥体的表面积圆锥体的表面积是由底面积、侧面积和斜面积三部分组成的。
底面积是一个圆形,其面积为πr^2。
侧面积是一个三角形,由圆锥体的母线和斜面组成,母线的长度为l,斜面的长度为s,圆锥体的高为h。
根据勾股定理,有l^2 = h^2 + r^2,同时s = √(h^2 +r^2),因此侧面积为πrl。
斜面积是由圆锥体顶点到底面的距离所形成的圆,它的面积为πr^2。
因此,圆锥体的表面积为:πr^2 +πrl + πr^2 = πr(r + l)。
3. 球体的表面积球体的表面积是由无数个半径相等的圆圆心旋转而形成的,因此其表面积为4πr^2。
三、旋转体的体积1. 圆柱体的体积圆柱体的体积是底面积与高的乘积。
因此,圆柱体的体积为πr^2h。
2. 圆锥体的体积圆锥体的体积是底面积与高的乘积再除以三。
因此,圆锥体的体积为πr^2h/3。
3. 球体的体积球体的体积是由圆心到球面的距离为半径的圆旋转形成的,因此其体积为4/3πr^3。
四、旋转体的应用旋转体的应用非常广泛,例如,在工业制造中,圆柱体可以用作储存器或压缩机的部件,圆锥体可以用作灯罩或者烟囱的设计,球体则可以用来设计珠子或者风铃。
绕y轴旋转体表面积
绕y轴旋转体表面积绕y轴旋转体是指物体绕y轴转动,产生的物体形状。
它的计算是指,将物体沿y轴旋转,结果形成的物体的表面积。
这种物体又叫椭圆体,它具有一个固定的轴线,围绕这条轴线旋转的表面积即椭圆体的表面积,它具有极其丰富的应用价值。
椭圆体的表面积通过椭圆曲线的方程式来进行计算,椭圆曲线的方程式为:x2/a2+y2/b2=1,其中a为椭圆长轴,b为椭圆短轴。
由于椭圆曲线的弧长可以用椭圆积分来计算,椭圆积分为:∫d(t)=∫[1+(dy/dx)2]1/2dt,其中d(t)为椭圆的弧长的函数,t可以理解为椭圆曲线上任意点的参数,dy/dx为椭圆曲线y方向上的切线斜率。
椭圆体的表面积可以通过椭圆曲线的积分,来求得。
通常情况下,椭圆体的表面积是椭圆长轴与短轴的乘积,即S=pab,其中p为常数,a为椭圆长轴,b为椭圆短轴。
椭圆体的表面积可以用于工程中的各种实际应用,如测绘、油田地质、工业结构体、飞行器设计、汽车制造等领域。
椭圆体的表面积有助于更好地表达空间几何和测量几何的性质,实现可靠的计算机模拟,有利于我们更好地了解计算问题。
椭圆体的表面积计算是一种复杂但重要的计算,它需要深入研究,熟练掌握椭圆曲线的积分方法,能够有效地解决椭圆体表面积的计算问题。
从理论上讲,只要熟悉和掌握椭圆曲线的积分方法,就能计算椭圆体的表面积。
椭圆体的应用非常广泛,它不仅可以用于测绘、油田地质、工业结构体、飞行器设计、汽车制造等领域,还可以用于天文学、几何学、力学、气象学等领域。
特别是在需要计算面积或体积的工作中,椭圆体的表面积计算特别重要。
在实际应用中,椭圆体的表面积计算有时很困难,这是因为椭圆曲线的积分方法很复杂,需要专业人员进行计算。
目前,椭圆体的表面积计算已经有许多计算工具和算法出现,能够更好地解决椭圆体的表面积计算问题。
总而言之,绕y轴旋转体的表面积是指其形状,可以通过椭圆曲线的积分方法来计算。
椭圆体的表面积有着重要的应用价值,并且能够起到重要的计算作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
棱柱、棱锥、棱台的表面积和体积
h'
h'
表面积就是各侧面面积和底面面积之和.
V柱体 Sh
V台体
V锥体
1 Sh 3
1 (S上 3
S上S下 S下)h
圆柱的表面积和体积
r O
O 圆柱的侧面展开图是矩形
S圆柱表面积 S上 S下 S侧
V圆柱
2r 2rl 2r (r l ) 2 Sh r h
圆台的表面积和体积
参照圆柱和圆锥的侧面展开图,试想象圆台的侧 面展开图是什么 . 圆台的侧面展开图是扇环
O’
S圆台表面积 S上 S下 S侧
2 2
O
r上 r下 (r上l r下l )
V圆台 1 (S上 3 S上S下 表面积 r上 r
V圆台
S上 S下
S圆锥侧面积 r下l
1 上 0 (S上 S上S下 S下)h S 3
V圆锥 1 Sh 3
V圆柱 Sh
球的表面积和体积
S球表面积 4R
2
V球
1 R 3 3
思考:圆柱的底面直径与高都等于球的直径: ① 球的体积等于圆柱体积的2/3; ② 球的表面积等于圆柱的侧面积.
《运动会素描》
莘莘学子竞赛场,政杰浩然各无双。 前有四百已囊括,后破纪录如反掌。
一千五百犹激烈,朝生夏杰均相当。 最喜接力压轴戏,巾帼不把须眉让。
跑跳投掷展身手, 听说读写竞风流。 化赛场力量,竞学习风流。
旋转体的表面积和体积
圆柱 棱柱 圆锥 多面体棱锥 旋转体 圆台 棱台 球体
2
2 下
(r上l r下l )
O’
V圆台
1 (S上 3
S上S下 S下)h
O
思考:已知如图所示圆台的 三视图,求其表面积和体积。
圆柱、圆台、圆锥的侧面积和体积的内在联系
S圆台侧面积 (r上l r下l )
r上 0
r上 r下
S圆柱侧面积 2r下l
2
思考:边长为1的正方形以其一边所在直线旋转 一周,所得几何体的表面积和体积?
圆锥的表面积和体积
圆锥的侧面展开图是扇形
S圆锥表面积 S底 S侧 r rl r (r l )
2
V圆锥 1 1 Sh r 2 h 3 3
O
思考:边长为2的正方形以其一对角线所在直 线旋转一周,所得几何体的表面积和体积?