安徽师范大学601数学分析2019年考研专业课真题试卷

合集下载

2019年全国硕士研究生入学统一考试数学(一)真题及解析

2019年全国硕士研究生入学统一考试数学(一)真题及解析

2019年全国硕士研究生入学统一考试数学(一)真题及解析(江南博哥)1 [单选题]当x→0时,x-tanx与x k是同阶无穷小,则k=( ).A.1B.2C.3D.4正确答案:C参考解析:因,若要x一tanx与x‘是同阶无穷小,则k=3,故选C项.2 [单选题]A.可导点,极值点B.不可导点,极值点C.可导点,非极值点D.不可导点,非极值点正确答案:B参考解析:因为不存在,所以x=0是f(x)的不可导点;又因为f(x)连续,当x<0时,f’(x)=-2x>0,当0<x<e-1时,f’(x)=lnx+1<0,所以x=0是f(x)的极值点.3 [单选题]设{u n}是单调增加的有界数列,则下列级数中收敛的是( ).A.B.C.D.正确答案:D参考解析:由单调有界收敛定理知{u n}极限存在,由有界性知了C>0满足|u n|≤C,绝对收敛.4 [单选题],如果对上半平面(y>O)内的任意有向光滑封闭曲线C都有Q(x,y)dy=0,那么函数P(x,y)可取为( ).A.B.C.D.正确答案:D参考解析:由题意知,积分与路径无关,则,故只需选择在上半平面有连续偏导数,且满足的P函数只有D项.5 [单选题]设A是三阶实对称矩阵,E是三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型x T Ax的规范形为( ).A.B.C.D.正确答案:C参考解析:设λ是A的特征值,根据A2+A=2E,得λ2+λ=2,解得λ=1或-2,所以A的特征值是1或-2.因为|A|=4,所以A的三个特征值为1,-2,-2,从而二次型x T Ax的规范形为;,故选c项.6 [单选题]如图所示,有3张平面两两相交,交线相互平行,它们的方程a i1x+a i2y+a i3z=d i(i=1,2,3)组成的线性方程组的系数矩阵和增广矩阵分别记为A,,则( ).A.r(A)=2,r()=3B.r(A)=2,r()=2C.r(A)=1,r()=2D.r(A)=1,r()=1正确答案:A参考解析:由题意知3张平面无公共交点,且交线相互平行,所以r(A)≠r(),故排除B和D选项;又因为它们两两相交于一条直线,故其中任意两个平面不平行,所以2=r(A),r()=3,故选A项.7 [单选题]设A,B为随机事件,则P(A)=P(B)的充分必要条件是( ).A.P(A∪B)=P(A)+P(B)B.P(AB)=P(A)P(B)C.P(A)=P(B)D.P(AB)=P()正确答案:C参考解析:因为P(A)=P(A)-P(AB),P(B)=P(B)-P(AB),所以P(A)=P(B)(A)=P(B),故选C项.8 [单选题]设随机变量X和Y相互独立,且都服从正态分布N(μ,σ2),则P{|X-Y|<1}( ).A.与μ无关,而与σ2有关B.与μ有关,而与σ2无关C.与μ,σ2都有关D.与μ,σ2都无关正确答案:A参考解析:X~N(μ,σ2),Y~N(μ,σ2),且X与Y相互独立,则E(X—Y)=0,D(X—Y)=D(X)+D(Y)=2σ2,与μ无关,而与σ2有关.故选A项.9 [填空题]设函数f(u)可导,z=f(siny-sinx)+xy,则参考解析:【解析】10 [填空题]微分方程2yy’-y2-2=0满足条件y(0)=1的特解为______.参考解析:【解析】11 [填空题]幂级数内的和函数S(x)=______.参考解析:【解析】12 [填空题]设∑为曲面x2+y2+4z2=4(z≥0)的上侧,则参考解析:【解析】将曲面方程代入积分表达式,原积分为13 [填空题]设A=1,2,3为三阶矩阵,若1,2线性无关,且3=-1+22,则线性方程组Ax=0的通解为_______.参考解析:【解析】∵1,2线性无关,∴r(A)≥2.∵3=-1+22,∴r(A)<3,∴r(A)=2,∴Ax=0的基础解系中有n-r(A)=3-2=1个线性无关的解向量.∵1-22+3=0,14 [填空题]设随机变量x的概率密度为F(X)为X的分布函数,E(X)为X的数学期望,则P{F(X)>E(X)-1}=.参考解析:【解析】方法一方法二易知Y=F(X)~U(0,1),15 [简答题]设函数y(x)是微分方程满足条件y(0)=0的特解.(I)求y(x);(Ⅱ)求曲线y=y(x)的凹凸区间及拐点.参考解析:(I)16 [简答题]设a,b为实数,函数z=2+ax2+by2在点(3,4)处的方向导数中,沿方向l=-3i-4j的方向导数最大,最大值为10.(I)求a,b;(11)求曲面z=2+ax2+by2(z≥0)的面积.参考解析:(I)函数梯度为▽=(2ax,2by),则函数在点(3,4)处的梯度为(6a,8b),则可知沿方向(-3,-4)的最大方向导数为17 [简答题]求曲线y=e-x sinx(x≥0)与x轴之间所成图形的面积.参考解析:18 [简答题](Ⅰ)证明:数列{a n}单调递减,且(Ⅱ)参考解析:证明:19 [简答题]设Ω是由锥面x2+(y-z)2=(1-z)2(0≤z≤1)与平面z=0围成的锥体,求Ω的形心坐标.参考解析:设力的形心坐标为,根据对称性可知=0.对于0≤z≤1,记D z={(x,y)|x2+(y-z)2≤(1-z)2},则20 [简答题]设向量组1=(1,2,1)T,2=(1,3,2)T,3=(1,a,3)T为R3的一个基,β=(1,1,1)T,在这组基下的坐标为(b,c,1)T.(I)求a,b,c;(Ⅱ)证明2,3,β为R3的一个基,并求2,3,β到1,2,3的过渡矩阵.参考解析:21 [简答题]已知矩阵(I)求x,y;(II)求可逆矩阵P,使得P-1AP=B.参考解析:(Ⅱ)A的特征值与对应的特征向量分别为B的特征值与对应的特征向量分别为22 [简答题]设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=-1}=p,P{Y=1}=1-p,(0<p<1),令Z=XY.(I)求Z的概率密度;(Ⅱ)p为何值时,X与Z不相关?(Ⅲ)X与Z是否相互独立?参考解析:23 [简答题]设总体x的概率密度为其中μ是已知参数,σ>0是未知参数,A是常数,X1,X2,…,X n是来自总体X的简单随机样本.(I)求A;(Ⅱ)求σ2的最大似然估计量.参考解析:。

重庆理工大学2019年研究生入学考试专业课真题601数学分析

重庆理工大学2019年研究生入学考试专业课真题601数学分析

重庆理工大学2019年攻读硕士学位研究生入学考试试题学院名称:理学院 学科、专业名称:数学考试科目(代码):数学分析601(A 卷) (试题共 3 页)一、填空题:1-17小题每小题4分,共68分。

请将答案写在答题纸指定的位置上。

1. lim n =______________。

2.201sin lim x x e x x→--= ______________。

3.已知2610y e xy x ++-=,则(0)y ''= ______________。

4.= ______________。

5.函数34()483f x x x =+-的极大值是______________。

6.3222(2)sin x xdx ππ-+=⎰______________。

7.设13201()()1f x x f x dx x =++⎰,则10()f x dx =⎰______________。

8.21ln (1)x dx x +∞=+⎰______________。

9.设(1,2)是三次曲线329y ax x bx =-+的一个拐点,则a =____________。

第 1 页10.曲线段0tan (0)4x y tdt x π=≤≤⎰的弧长s =______________。

11.幂级数111(1)n n n nx ∞--=-∑在区间(1,1)-内的和函数()s x =_____________。

12. 202sin()lim x y xy x →→=_____________。

13.设函数222(,,)161218x y z u x y z =+++,单位向量n =,则(1,2,3)|u n∂=∂_____________。

14.曲面22z x y =+与平面240x y z +-=平行的切平面方程是_________。

15.已知曲面{(,,)|1,0,0,0}234x y z x y z x y z =++=≥≥≥∑,则 4(2)3z x y dS ∑++=⎰⎰_____________。

2019年数学考研数学分析各名校考研真题及答案

2019年数学考研数学分析各名校考研真题及答案

考研数学分析真题集目录 南开大学 北京大学 清华大学浙江大学华中科技大学一、,,0N ∃>∀ε当N n >时,ε<>∀m a N m ,证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a ,a a kn k =∞→lim ,所以,ε2<-+-≤-a a a a a a k k n n n n二 、,,0N ∃>∀ε当N x >时,ε<-)()(x g x f ,,0,01>∃>∀δε当1'''δ<-x x 时,ε<-)''()'(x f x f对上述,0>ε当N x x >'','时,且1'''δ<-x xε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>∃>∀δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。

三、由,0)('',0)('<>x f a f 得,0)('<x f 所以)(x f 递减,又2))((''21))((')()(a x f a x a f a f x f -+-+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。

(完整版)2019研究生数学考试数一真题

(完整版)2019研究生数学考试数一真题

2019年考研数学—真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答案纸指定位置上。

(1)当0x →时,若tan x x -与k x 是同阶无穷小,则k = (A )1. (B )2. (C )3.(D )4.(2)设函数(),0,ln ,0,x x x f x x x x ⎧≤⎪=⎨>⎪⎩则0x =是()f x 的A.可导点,极值点.B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.(3)设{}n u 是单调递增的有界数列,则下列级数中收敛的是A.1mn n u n=∑B.()111mnn nu =-∑ C.111mn n n u u =+⎛⎫- ⎪⎝⎭∑D.()2211mn n n u u +=-∑ (4)设函数()2,xQ x y y=..如果对上半平面()0y >内的任意有向光滑封闭曲线C 都有()(),,0CP x y dx Q x y dy +=⎰Ñ,那么函数(),P x y 可取为A.23x y y-.B.231x y y-. C.11x y-. D.1x y-. (5)设A 是3阶实对称矩阵,E 是3.阶单位矩阵。

若22A A E +=,且4A =,则二次型T x Ax 的规范形为A.222123y y y ++.B.222123y y y +- C.222123y y y --D.222123y y y ---(6)如图所示,有3张平面两两相交,交线相互平行,他们的方程()1231,2,3i i i i a x a y a z d i +++= 组成的线性方程组的系数矩阵和增广矩阵分别记为,A A ,则A.()()2,3r A r A ==..........B.()()2,2r A r A == C.()()1,2r A r A ==..........D.()()1,1r A r A ==(7)设A ,B 为随机事件,则()()P A P B =的充分必要条件是 ....A..()()()P A B P A P B =+U .........B.()()()P AB P A P B =.C.()()P AB P BA =..................D.()()P AB P AB =(8)设随机变量X 与Y 相互独立,且都服从正态分布()2,N μσ,则{}1P X Y -< A.与μ无关,而与2σ有关..........B.与μ有关,而与2σ无关. C.与2,μσ都有关..................D.与2,μσ都无关.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. ()9 设函数()f u 可导,()sin sin z f y x xy =-+,则11cos cos z zx x y y∂∂⋅+⋅=∂∂(10)微分方程22220yy y --=满足条件()01y =的特解y =.......(11)幂级数()()012!nnn x n ∞=-∑在()0,+∞内的和函数()S x = ()12设∑为曲面()222440x y z z ++=≥的上侧,则z=()13设()123,,A ααα=为三阶矩阵,若12,αα线性无关,且312=2ααα-+。

安徽师范大学2019年硕士研究生招生考试自命题试卷真题-计算机理论基础

安徽师范大学2019年硕士研究生招生考试自命题试卷真题-计算机理论基础

2019年硕士研究生招生考试初试试题科目代码:896科目名称: 计算机理论基础第一部分数据结构(80分)一、 简答题(每小题4分,共20分)1. 根据数据元素之间关系的不同特性,可将逻辑结构分为哪几种?并简述各结构的特性。

2. 试比较顺序表和链表的优缺点。

3. 简述队列的'‘假溢出”现象。

4. 度为2的树是二叉树,此说法是否正确?请给出理由。

5. 有n 个顶点的有向强连通图中最多有多少条边?最少有多少条边?二、 应用题(每小题8分,共40分)1. 以数据集{4, 5, 6, 7, 10, 12, 18}为结点权值,画出构造Huffman 树的 过程,并计算该Huffman 树的带权路径长度(约定:权值最小的作为左孩子, 权值次小的作为右孩子)。

2. 巳知有7个顶点(Vl, V2, V3, V4, V5, V6, V7)的有向图的邻接矩阵如右 图所示。

请回答下面问题:⑴依据邻接矩阵表示,画出该有向图的邻接表。

(2)写出从V!出发的深度优先遍历序列和广度优先遍历序列。

3. 请用克鲁斯卡尔算法为下图构造最小生成树,请画出构造过程。

4. 已知待排序的关键字序列(54, 38, 96, 23, 15, 90, 72, 60, 45, 83),结果非递减有序)。

(1)写出进行一趟希尔排序(增量序列为5)的排序结果;(2)写出以第一个元素 为枢轴的一趟快速排序的排序结果。

5. 设一组关键字为(7, 4, 1, 14, 100, 30, 5, 9, 20, 134), Hash 函数 H (key ) = key % 13, Hash 表表长m=13,用线性探测法解决冲突,试构造Hash 表。

三、算法设计题(每小题10分,共20分)1. 有一个顺序表L,其元素为整型,设计一个算法将L 中所有小于0的整数放在前半部分,大于等 于0的整数放在后半部分,要求:时间复杂度为0(n ),空间复杂度为0(1),给出顺序表的类型定义。

985院校数学系2019年考研数学分析高等代数试题及部分解答

985院校数学系2019年考研数学分析高等代数试题及部分解答
112019年数学分析真题122019年高等代数真题212019年数学分析真题222019年高等代数真题312019年数学分析真题322019年高等代数真题南开大学10412019年数学分析真题10422019年高等代数真题天津大学13512019年数学分析真题13522019年高等代数真题浙江大学16612019年数学分析真题16622019年高等代数真题华中科技大学18712019年数学分析真题18722019年高等代数真题兰州大学21812019年数学分析真题21822019年高等代数真题东南大学24912019年数学分析真题3101922019年高等代数真题2510上海交通大学271012019年数学分析真题271022019年高等代数真题2811同济大学301112019年数学分析真题301122019年高等代数真题3112华东师范大学321212019年数学分析真题321222019年高等代数真题3313大连理工大学351312019年数学分析真题3514电子科技大学371412019年数学分析真题3715武汉大学391512019年数学分析真题3916华中科大2012年数学分析试题解析4017武汉大学2018年数学分析试题解析4418中南大学2010年数学分析试题解析4819浙江大学2016年数学分析试题解析5420吉林大学2015年数学分析试题解析5821中国科大2015年数学分析试题解析6422中国科大2014年数学分析试题解析6823厦门大学2014年数学分析试题解析7024浙江大学2012年高等代数试题解析74410125历年数学竞赛真题与模拟赛题解析82251第十届全国大学生数学竞赛模拟赛题一解析82252第十届全国大学生数学竞赛模拟赛题二解析85253第十届全国大学生数学竞赛模拟赛题三解析87254第十届全国大学生数学竞赛非数类预赛参考答案90255第九届全国大学生数学竞赛非数类预赛参考答案95256第八届全国大学生数学竞赛数学类决赛试题99参考文献北京大学112019年数学分析真题一

2019年数学考研数学分析各名校考研真题及答案

2019年数学考研数学分析各名校考研真题及答案

考研数学分析真题集目录 南开大学 北京大学 清华大学浙江大学华中科技大学一、,,0N ∃>∀ε当N n >时,ε<>∀m a N m ,证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a ,a a kn k =∞→lim ,所以,ε2<-+-≤-a a a a a a k k n n n n二 、,,0N ∃>∀ε当N x >时,ε<-)()(x g x f ,,0,01>∃>∀δε当1'''δ<-x x 时,ε<-)''()'(x f x f对上述,0>ε当N x x >'','时,且1'''δ<-x xε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>∃>∀δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。

三、由,0)('',0)('<>x f a f 得,0)('<x f 所以)(x f 递减,又2))((''21))((')()(a x f a x a f a f x f -+-+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。

2019年考研数学一真题附答案解析

2019年考研数学一真题附答案解析

2019年考研数学一真题解析一、选择题 1—8小题.每小题4分,共32分.1.当0x →时,若tan x x -与k x 是同阶无穷小,则k =( )(A )1 (B )2 (C )3 (D )4【答案】(C )【详解】当0x →时,331tan ()3x x x o x =++,所以331tan ()3x x x o x -=-+,所以3k =. 2.设函数,0()ln ,0x x x f x x x x ⎧≤⎪=⎨>⎪⎩,则0x =是()f x 的( )(A )可导点,极值点 (B )不可导的点,极值点 (C )可导点,非极值点 (D )不可导点,非极值点【答案】(B )【详解】(1)01ln(00)lim ln lim 0,(00)lim 0,(0)01x x x x f x x f x x f x++-→→→-+===-===,所以函数在0x =处连续;(2)0ln (0)lim x x xf x++→'==-∞,所以函数在0x =处不可导;(3)当0x <时,2(),()20f x x f x x '=-=->,函数单调递增;当10x e<<时,()1ln 0f x x '=+<,函数单调减少,所以函数在0x =取得极大值.3.设{}n u 是单调增加的有界数列,则下列级数中收敛的是( )(A )1n n u n ∞=∑ (B )11(1)n n n u ∞=-∑ (C )111n n n u u ∞=+⎛⎫- ⎪⎝⎭∑ (D )2211()n n n u u ∞+=-∑【答案】(D )【详解】设{}n u 是单调增加的有界数列,由单调有界定理知lim n n u →∞存在,记为lim n n u u →∞=;又设n ∀,满足n u M ≤,则221111()()2()n n n n n n n n u u u u u u M u u ++++-=+-≤-,且2210n n u u +-≥,则对于正项对于级数2211()n n n uu ∞+=-∑,前n 项和:221111111()2()2()22nnn k kk k n n k k S uu M u u M u u Mu Mu ++++===-≤-=-≤→∑∑也就是2211()n n n uu ∞+=-∑收敛.4.设函数2(,)xQ x y y=,如果对于上半平面(0)y >内任意有向光滑封闭曲线C 都有 (,)(,)0CP x y dx Q x y dy +=⎰那么函数(,)P x y 可取为( )(A )22x y y - (B )221x y y - (C )11x y- (D )1x y -【答案】(D )【详解】显然,由积分与路径无关条件知21P Q y x y ∂∂≡=∂∂,也就是1(,)()P x y C x y=-+,其中()C x 是在(,)-∞+∞上处处可导的函数.只有(D )满足.5.设A 是三阶实对称矩阵,E 是三阶单位矩阵,若22A A E +=,且4A =,则二次型T x Ax 的规范形是( )(A )222123y y y ++ (B )222123y y y +- (C )222123y y y -- (D )222123y y y ---【答案】(C )【详解】假设λ是矩阵A 的特征值,由条件22A A E +=可得220λλ+-=,也就是矩阵A 特征值只可能是1和2-.而1234A λλλ==,所以三个特征值只能是1231,2λλλ===-,根据惯性定理,二次型的规范型为222123y y y --.6.如图所示,有三张平面两两相交,交线相互平行,它们的方程123(1,2,3)i i i i a x a y a z d i ++==组成的线性方程组的系数矩阵和增广矩阵分别记为,A A ,则( )(A )()2,()3r A r A == (B )()2,()2r A r A == (C )()1,()2r A r A == (D )()1,()1r A r A == 【答案】(A )【详解】(1)显然三个平面没有共同交点,也就是非齐次方程组无解,从而()()r A r A <; (2)从图上可看任何两个平面都不平行,所以()2r A ≥;7. 设,A B 为随机事件,则()()P A P B =的充分必要条件是 ( )(A )()()()P A B P A P B =+ (B ) ()()()P AB P A P B =(C )()()P AB P B A = (D )()()P AB P AB =【答案】(C )【详解】选项(A )是,A B 互不相容;选项(B )是,A B 独立,都不能得到()()P A P B =; 对于选项(C ),显然,由()()(),()()()P AB P A P AB P B A P B P AB =-=-,()()()()()()()()P AB P B A P A P AB P B P AB P A P B =⇔-=-⇔=8.设随机变量X 与Y 相互独立,且均服从正态分布2(,)N μσ.则{1}P X Y -<( )(A )与μ无关,而与2σ有关 (B )与μ有关,而与2σ无关 (C )与μ,2σ都有关 (D )与μ,2σ都无关【答案】(A )【详解】由于随机变量X 与Y 相互独立,且均服从正态分布2(,)N μσ,则2~(0,2)X Y N σ-,从而{1}{11}21P X Y P X Y P -<=-≤-<=≤≤=Φ- 只与2σ有关.二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.设函数()f u 可导,(sin sin )z f y x xy =-+,则11cos cos z zx x y y∂∂⋅+⋅=∂∂ . 【答案】cos cos y x x y+ 解:cos (sin sin ),cos (sin sin )z zx f y x y y f y x x x y∂∂''=-⋅-+=⋅-+∂∂ 11cos cos cos cos z z y xx x y y x y∂∂⋅+⋅=+∂∂ 10.微分方程2220yy y '--=满足条件(0)1y =的特解为y = .【答案】y =【详解】把方程变形2220yy y '--=得22()()20y y '--=,即222(2)22x d y dx y Ce y y +=⇒+=⇒=+由初始条件(0)1y =确定3C =,所以y =11.幂级数1(1)(2)!n nn x n ∞=-∑在(0,)+∞内的和函数()S x = . 看不清楚题目是1(1)(2)!n n n x n ∞=-∑还是0(1)(2)!n n n x n ∞=-∑,我以1(1)(2)!n nn x n ∞=-∑给出解答. 【答案】1【详解】注意20(1)cos ,(,)(2)!n nn x x x n ∞=-=∈-∞+∞∑,从而有:110(1)(1)(1)11,(0,)(2)!(2)!(2)!n n n n nn n n n x x n n n ∞∞∞===---==-=∈+∞∑∑∑ 12.设∑为曲面22244(0)x y z z ++=≥的上侧,则∑= .【答案】32.3【详解】显然曲面∑在xOy 平面的投影区域为22{(,)|4}xy D x y x y =+≤22220432dxdy dxdy 2sin 3x y y y d r dr πθθ∑∑+≤====⎰⎰⎰⎰⎰⎰ 13.设123(,,)A ααα=为三阶矩阵,若12,αα线性无关,且3122ααα=-+,则线性方程组0Ax =的通解为 .【答案】121x k -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,其中k 为任意常数.【详解】显然矩阵A 的秩()2r A =,从而齐次线性方程组0Ax =的基础解系中只含有一个解向量.由3122ααα=-+可知12320ααα-+-=也就是121x -⎛⎫ ⎪= ⎪ ⎪-⎝⎭为方程组基础解系,通解为121x k -⎛⎫⎪= ⎪ ⎪-⎝⎭,其中k 为任意常数.14.设随机变量X 的概率密度为,02()20,xx f x ⎧<<⎪=⎨⎪⎩其他,()F x 为其分布函数,()E X 其数学期望,则{()()1}P F X E X >-= .【答案】2.3【详解】20,01(){},0241,2x F x P X x x x x <⎧⎪⎪=≤=≤<⎨⎪≥⎪⎩,2204()23x E X dx ==⎰.012{()()1}{()}{133P F X E X P F X P X >-=>=>=-=三、解答题15.(本题满分10分)设函数()y x 是微分方程22x y xy e-'+=满足条件(0)0y =的特解.(1)求()y x ;(2)求曲线()y y x =的凸凹区间及拐点. 【详解】(1)这是一个一阶线性非齐次微分方程. 先求解对应的线性齐次方程0y xy '+=的通解:22x y Ce -=,其中C 为任意常数;再用常数变易法求22x y xy e-'+=通解,设22()x y C x e-=为其解,代入方程,得2222(),()1x x C x eeC x --''==,1()1C x dx x C ==+⎰,也就是通解为:221()x y x C e-=+把初始条件(0)0y =代入,得10C =,从而得到22().x y x xe -=(2)2222232222(),()(1),()(3)(x x x x y x xey x ex y x x x ex x x e----'''==-=-=令()0y x ''=得1230,x x x ===.当x <0x <<0y ''<,是曲线的凸区间;当0x <<或x >0y ''>,是曲线的凹区间.曲线的拐点有三个,分别为3322()--.16.(本题满分10分)设,a b 为实数,函数222z ax by =++在点(3,4)处的方向导数中,沿方向34l i j =--的方向导数最大 ,最大值为10.(1)求常数,a b 之值;(2)求曲面222(0)z ax by z =++≥的面积. 【详解】(1)222z ax by =++,则2,2z zax by x y∂∂==∂∂; 所以函数在点(3,4)处的梯度为()(3,4)(3,4)|,6,8z z gradf a b x y ⎛⎫∂∂==⎪∂∂⎝⎭;gradf = 由条件可知梯度与34l i j =--方向相同,且10gradf ==.也就得到2683410a b⎧=⎪--=解出11a b =-⎧⎨=-⎩或11a b =⎧⎨=⎩(舍).即11a b =-⎧⎨=-⎩.(2)22202133Sx y S dS d ππθ+≤====⎰⎰⎰⎰⎰. 17.(本题满分10分)求曲线sin (0)xy e x x -=≥与x 轴之间形成图形的面积.【详解】先求曲线与x 轴的交点:令sin 0x e x -=得,0,1,2,x k k π==当2(21)k x k ππ<<+时,sin 0xy e x -=>;当2(22)k x k πππ+<<+时,sin 0x y e x -=<.由不定积分1sin (sin cos )2x xe xdx e x x C --=-++⎰可得 2221sin (1)2k x k k e xdx e e πππππ+---=+⎰,22221sin (1)2k x k k e xdx e e πππππππ+----+=-+⎰所求面积为22202200220022220sin sin sin 11(1)(1)2211111(1)(1)22121k k xxx k k k k k k k k k k S exdx e xdx e xdxe e e e e e e e e e ππππππππππππππππππ∞∞+∞++---+==∞∞-----==-∞-----===-=++++=+=+=--∑∑⎰⎰⎰∑∑∑18.(本题满分10分)设1(0,1,2,)n a x n ==⎰(1)证明:数列{}n a 单调减少,且21(2,3,)2n n n a a n n --==+;(2)求极限1lim n n n a a →∞-. 【详解】(1)证明:1n a x =⎰,110(0,1,2,)n n a x n ++==⎰当(0,1)x ∈时,显然有1n nxx +<,1110(0n n n n a a x x ++-=-<⎰,所以数列{}n a 单调减少;先设220sin cos ,0,1,2,nn n I xdx dx n ππ===⎰⎰则当2n ≥时,12222202sin sin cos (1)sin cos (1)()nn n n n n I xdx xd x n x xdxn I I πππ---==-=-=--⎰⎰⎰也就是得到22,0,1,1n n n I I n n ++==+令sin ,[0,]2x t t π=∈,则122222201sin cos sin sin 2nnn n n n n a xt tdt dt tdt I I I n πππ++===-=-=+⎰⎰⎰⎰ 同理,2211n n n n a I I I n --=-=-综合上述,可知对任意的正整数n ,均有212n n a n a n --=+,即21(2,3,)2n n n a a n n --==+; (2)由(1)的结论数列{}n a 单调减少,且21(2,3,)2n n n a a n n --==+ 2111111222n n n n n a n n n a a a n n a n ------=>⇒>>+++ 令n →∞,由夹逼准则,可知1lim1nn n a a →∞-=.19.(本题满分10分)设Ω是由锥面222(2)(1)(01)x y z z +-=-≤≤与平面0z =围成的锥体,求Ω的形心坐标.【详解】先计算四个三重积分:22211120(2)(1)1(1)3zD x y z dv dz dxdy dzdxdy z dz ππΩ+-≤-===-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22211120(2)(1)(1)12zD x y z zdv zdz dxdy zdzdxdy z z dz ππΩ+-≤-===-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22211(2)(1)0zD x y z xdv dz xdxdy dzxdxdy Ω+-≤-===⎰⎰⎰⎰⎰⎰⎰⎰⎰22211120(2)(1)22(1)3zD x y z ydv dz ydxdy dzydxdy z dz ππΩ+-≤-===-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 0xdvx dvΩΩ==⎰⎰⎰⎰⎰⎰,2ydvy dvΩΩ==⎰⎰⎰⎰⎰⎰,14zdvz dvΩΩ==⎰⎰⎰⎰⎰⎰.从而设形心坐标为1(,,)(0,2,)4x y z =.注:其实本题如果明白本题中的立体是一个圆锥体,则由体积公式显然13dv πΩ=⎰⎰⎰,且由对称性,明显0x =,2y =.20.(本题满分11分)设向量组1231112,3,123a ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为3R 空间的一组基,111β⎛⎫ ⎪= ⎪ ⎪⎝⎭在这组基下的坐标为1b c ⎛⎫⎪⎪ ⎪⎝⎭.(1)求,,a b c 之值;(2)证明:23,,ααβ也为3R 空间的一组基,并求23,,ααβ到123,,ααα的过渡矩阵.【详解】(1)由123b c βααα=++可得11231231b c b c a b c ++=⎧⎪++=⎨⎪++=⎩,解方程组,得32.2a b c =⎧⎪=⎨⎪=-⎩且当3a =时,()123111111,,23301110123012ααα===≠,即123,,ααα线性无关,确实是3R 空间的一组基.(2)()23111111,,33100220231011ααβ==-=≠-,显然23,,ααβ线性无关,当然也为3R 空间的一组基. 设()()23123,,,,a P αβααα=,则从23,,ααβ到123,,ααα的过渡矩阵为()()1123123111111011111110,,,,3312330.50.512330.501231123 1.50.501230.500P ααβααα---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪===--=- ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21.(本题满分11分)已知矩阵22122002A x -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭与21001000B y ⎛⎫⎪=- ⎪ ⎪⎝⎭相似.(1)求,x y 之值;(2)求可逆矩阵P ,使得1P AP B -=. 【详解】(1)由矩阵相似的必要条件可知:A BtrA trB⎧=⎪⎨=⎪⎩,即2(24)241x y x y --+=-⎧⎨-+=+⎩,解得32x y =⎧⎨=-⎩.(2)解方程组221232(2)(2)(1)0002E A λλλλλλλ+--=--=+-+=+得矩阵A 的三个特征值1232,1,2λλλ==-=-;分别求解线性方程组()0(1,2,3)i E A x i λ-==得到分属三个特征值1232,1,2λλλ==-=-的线性无关的特征向量为:1231112,1,2004ξξξ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()1123111,,212004P ξξξ-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭,则1P 可逆,且11212P AP -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭;同样的方法,可求得属于矩阵B 的三个特征值1232,1,2λλλ==-=-的线性无关的特征向量为:1231100,3,00014ηηη-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()2123110,,030001P ηηη-⎛⎫ ⎪== ⎪ ⎪⎝⎭,则2P 可逆,且12212P BP -⎛⎫⎪=- ⎪ ⎪-⎝⎭;由前面111122P AP P BP --=,可知令112111212004P PP --⎛⎫⎪==-- ⎪⎪⎝⎭,就满足1P AP B -=. 22.(本题满分11分)设随机变量,X Y 相互独立,X 服从参数为1的指数分布,Y 的概率分布为:{1}P Y p =-=,{1}1P Y p ==-,(01)p <<.令Z XY =.(1)求Z 的概率密度;(2)p 为何值时,,X Z 不相关;(3)此时,,X Z 是否相互独立.【详解】(1)显然X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩.先求Z XY =的分布函数:(){}{}{,1}{,1}(1){}{}1()(1())Z X X F z P Z z P XY z P X z Y P X z Y p P X z pP X z F z p F z =≤=≤=≤=+≥-=-=-≤+≥-=-+--()再求Z XY =的概率密度:,0()(())()(1)()0,0(1),0z Z Z X X z pe z f z F z pf z p f z z p e z -⎧<⎪'==-+-==⎨⎪->⎩(2)显然()1,()1;()12E X D X E Y p ===-;由于随机变量,X Y 相互独立,所以()()()()12E Z E XY E X E Y p ===-;22()()()()24E XZ E X Y E X E Y p ===-;(,)()()()12COV X Z E XZ E X E Z p =-=-;要使,X Z 不相关,必须(,)()()()120COV X Z E XZ E X E Z p =-=-=,也就是0.5p =时,X Z 不相关;(3),X Z 显然不相互独立,理由如下:设事件{1}A X =>,事件{1}B Z =<,则11(){1}x P A P X e dx e +∞--=>==⎰;11(){1}{1,1}{1,1}12P B P Z P X Y P X Y e -=<=>-=-+<==-;11(){1,1}{1,1}(1,}{1}{1}P AB P X Z P X XY P X Y P X P Y pe x -=><=><=><=>⋅=-=,当0.5p =时,显然()()()P AB P A P B ≠,也就是,X Z 显然不相互独立.23.(本题满分11分)设总体X 的概率密度为22()2,()0,x A e x f x x μσμσμ--⎧⎪≥=⎨⎪<⎩,其中μ是已知参数,σ是未知参数,A 是常数,12,,,n X X X 是来自总体X 的简单随机样本.(1)求常数A 的值;(2)求2σ的最大似然估计量.【详解】(1)由()1f x dx +∞-∞=⎰可知222()201x Aedx ed μσμσ---+∞+∞===⎰⎰所以A =似然函数为212()22121,(,,;)(,)0,ni i X n n i n i n i A ex L X X X f x μσμσσσ=--=⎧∑⎪⎪≥==⎨⎪⎪⎩∏其他, 取对数,得22212211ln (,,,;)ln ln()()22nn ii n L X X X n A Xσσμσ==---∑11 解方程221222221ln (,,,;)11()0()22()n n i i d L X X X n X d σμσσσ==-+-=∑,得未知参数2σ的最大似然估计量为2211()ni i X n σμ==-∑.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档