螺栓联接变形协实验
实验一:螺栓连接综合测试
温培养2 4 h ( 魏 氏梭菌厌氧培养) ,观察结果。
4 药敏试验
无菌取盲 肠 内容物 接种在L B 培 养基 中 ,凝固后打孔
并加入抗生素 ( 头孢 噻肟( T B ) , 头 孢 曲松 ( Q S ) ,庆 大 霉 素
( Q D) ,阿米卡星( M) ,阿奇霉素( A Q) ,新霉索( X) ,泰乐
山东畜牧兽医
2 0 1 3 年第 3 4 卷
腹 泻仔兔微生物 学诊断及药敏试验
田玉虎 王 静 ( 山东宝来利来生物工程股份有限公司 山东 泰安 2 7 1 0 0 0 )
中图分类号 :¥ 8 5 8 . 2 9 1 文献标识码 :B 文章编号 :1 0 0 7 - 1 7 3 3 ( 2 0 1 3 ) 1 2 — 0 0 2 8 — 0 1
虫 、 沙 门 氏菌 病 、 巴 氏杆 菌 感 染和 兔 病 毒 性 m m 症 的发
迅速消瘦,并严重脱水。
2 病理解剖 .取样
( 1 )处死病 兔后沿腹 白线切开腹壁 ,用 镊子挑起腹
病可 能。经微生物 学诊 断 ,病 兔的盲肠 中存在大量 的大 肠杆菌和魏 氏梭菌 ,结合 临床 症状和病理 变化 ,初 步诊 断为魏 氏梭 菌既发 大肠杆 菌 引起 的腹泻腹 胀 ,如需确 诊 还要进 行多重P C R 试验鉴定是何血清型引起。考虑到大肠 杆菌和魏 氏梭菌 均为条件 性致 病菌 ,做好 日常饲养 管理 可 明显减 少发病 率。 同时药敏 试验显 示,头孢 噻肟 、头
3 致病菌分离
无菌取盲肠 内容物接 种在伊 红美兰培养基( 用 于分离
大肠杆菌) 、胰胨. 亚 硫酸盐. 环 丝氨酸琼脂( 用 于分离魏 氏 梭 菌) 和MR S 培 养基( 用 于分离乳 酸菌) 中 ,同时将 肺脏剪 碎 、研磨 、稀 释 、震荡 ,无 菌接种 于伊红 美兰培养基 、
「螺栓联接变形协调实验」
17 螺栓联接变形协调实验现代各类机械中,广泛应用螺栓进行联接,如何计算和测量螺栓受力情况及静、动态特性参数,是工程技术人员的一个重要课题。
本实验通过对螺栓的受力进行测试和分析,验证预紧螺栓联接受轴向工作载荷作用时,在弹性限度内,螺栓与被联接件受力及变形协调规律,即:测量联接系统刚度等于联接件与被联接件刚度之和。
一、实验目的1. 螺栓与被连接件的受力与变形协调规律轴向工作载荷F 作用下,螺栓拉伸变形增量△1δ等于被联接件压缩变形恢复量△2δ。
即∣△1δ∣=∣△2δ∣符合变形协调规律。
2. 螺栓的总拉力o F 等于被联接件的剩余紧力F ''与轴向工作载荷F 之和,即F F F o +''=3. 系统刚度C 等于螺栓刚度1C 与被联接件刚度2C 之和,即21C C C +=二、设备和工具1. 螺栓联接变形协调实验台L BX-84型。
LBX-84型实验台工作部分简图。
联接部分包括螺栓5、被联接件套筒8和手轮形状的螺母4。
螺栓5与套筒8上均贴有应变片,用以测量各自的受力的变形值。
②预拉机构包括件号:1、2、3、4、8.采用予拉机构的目的:清除螺栓扭转变形的影响,使螺栓受单向拉应力作用;操作省力、加载平稳。
采用差动螺旋机构,均为左旋,顺时针旋转手轮1,螺栓受拉伸;反之,螺栓联接松开。
③加载机构螺栓预紧后加载,采用差动螺旋机构,均为左旋,顺时针旋轮手轮13,通过测力环9将工作载荷作用到螺栓上,载荷大小由测力环上百分表示出。
2. 实验仪器、电阻应变仪及其预调平衡箱。
图1 实验设备简图三、应变片接线图:螺栓与套筒的应变片引线接与实验台线板上。
接线柱A 、B 、C 各点之预调平衡箱上对应的A 、B 、C 各点连接;A1、B 、C 及A 2、B 、C 分别与予调平衡箱上的A、B 、C 各点连接,即可进行测量。
接线图如图示。
1—螺栓应变片 2—套筒应变片 3—温度补偿片四、实验步骤1. 检查各仪器连线及仪器上各旋钮位置是否正确;仪器与实验台各接线柱的连接是否正确。
螺栓连接实验及报告
螺栓联接实验指导书机电学院机械基础实验室2011.9螺栓联接实验指导书一.实验目的1.掌握测试受轴向工作载荷的紧螺栓联接的受力和变形曲线(即变形协调图)。
2.掌握求联接件(螺栓)刚度C 1、被联接件刚度C 2、相对刚度C 1/C 1+C 2。
3.了解试验预紧力和相对刚度对应力幅的影响,以考察对螺栓疲劳的影响。
二.实验设备图4—1为LB-87型螺栓联接实验机结构组成示意图,手轮1相当于螺母,与螺栓杆2相连。
套筒3相当于被联接件,拧紧手轮1就可将联接副预紧,并且联接件受拉力作用,被联接件受压力作用。
在螺栓杆和套筒上均贴有电阻应变片,用电阻应变仪测量它们的应变来求受力和变形量。
测力环4是用来间接的指示轴向工作载荷的。
拧紧加载手轮(螺母)6使拉杆5产生轴向拉力,经过测力环4将轴向力作用到螺杆上。
测力环上的百分表读数正比于轴向载荷的大小。
1.LB-87型螺栓联接实验机的主要实验参数如下:1).螺栓材料为45号钢,弹性模量E 1=2.06×105N/mm 2,螺栓杆直径d=10mm ,有效变形计算长度L 1=130mm 。
2).套筒材料为45号钢,弹性模量E 2=2.06×105N/mm 2,两件套筒外径分别为D=31和32,内径为D 1=27.5mm ,有效变形计算长度L 2=130mm.。
2.仪器1)YJ-26型数字电阻应变仪。
2)YJ-18型数字电阻应变仪。
3)PR10-18型预调平衡箱。
三.实验原理1.力与变形协调关系在螺栓联接中,当联接副受轴向载荷后,螺栓受拉力,产生拉伸变形;被联接件受压力,产生压缩变形,根据螺栓(联接件)和被联接件预紧力相等,可把二者的力和变形图线画在一个坐标系中,如4-3所示。
当联接副受工作载荷后,螺栓因受轴向工作载荷F作用,其拉力由预紧力Qp 增加到总拉力Q,被联接件的压紧力Qp减少到剩余预紧力Q’p ,这时,螺栓伸长变形的增量Δλ1,等于被联接件压缩变形的恢复Δλ2,即Δλ1=Δλ2=λ,也就是说变形的关系是协调的。
机械设计实验报告
机械设计实验报告郑州大学机械工程学院机械设计实验报告(一)一、实验目的二、实验设备的构造简图及各部分的作用三、实验记录及计算数据表系统刚度为δ∆=FC 试验证 21C C C += )(2121δδδ∆+∆=∆, 11δF C '=, 22δF C '=四、绘制受力——变形曲线力——变形曲线用坐标纸绘制,建议纵坐标(力)比例:40N/mm ,横坐标(变形)比例:0.0004mm/mm 。
五、实验误差1.螺栓总拉力误差0016116110010)(10⨯⋅⨯⨯+''-⋅⨯⨯--A E F F A E μεμε2.预紧力误差00161262161100101010⨯⋅⨯⨯⋅⨯⨯-⋅⨯⨯---A E A E A E μεμεμε3.协调变形误差00121100⨯∆∆-∆μεμεμε机械设计实验报告(二)一、原始数据及实验记录传动带型号规格 初拉力=0F1201=D mm 1202=D mm表中1M ——主动电机上的转矩 2M ——被动电机上的转矩η——效率 ε——滑动率 F ——皮带传动的圆周力二、效率和滑动率曲线允许传递的有效圆周力〔ec F 〕= N允许传递功率 10000VF P ec ⋅= KW机械设计实验报告(三)一、实验目的二、试验机结构简图及工作原理三、实验结果1.叙述滑动轴承产生液体摩擦现象2.测试数据及处理结果a.数据表表2n 曲线b.摩擦系数与特性系数pc.油膜压力分布曲线d.承载能力曲线四、实验结果分析。
实验一螺栓联接实验
实验一螺栓联接实验、实验目的1.测试轴向工作载荷的紧螺栓联接的受力和变形的关系曲线(变形协调图);C12.求螺栓刚度C1、被联接件刚度C2、相对刚度C1C2 ;3•试验预紧力和相对刚度对应力幅的影响,以考察对螺栓疲劳的影响。
二、实验设备和仪器1.实验机结构和工作原理6 5 4 3图1 LB-实验机结构简图图1为型螺栓联接实验机结构图。
手轮1相当于螺母,与螺栓杆2相连。
套筒3相当于被联结件,拧紧手轮1就可将其预紧。
在螺栓杆和套筒上均贴有电阻应变片,用电阻应变仪测量它们的应变来求受力和变形。
测力环4是用来测量轴向工作载荷的。
拧紧加载手轮(螺母)6使拉杆5产生轴向拉力,经过测力环4 将轴向力作用到螺杆上。
测力环上的百分表读数正比于轴向载荷的大小。
图2为LB-型实验机结构图本实验的实验参数如下:1)螺栓材料为45号钢、弹性模量Ei 2.06 Nmm,螺栓杆直径D 10mm,变形计算长度L i 130mm。
5 , 22)套筒材料为45号钢,弹性模量E1 2.06 10 N mm,外直径 D 31mm 和32mm各一件,内直径D1 27-5mm,变形计算长度L2 130mm。
3)测力环刚度K N/百分表1格。
4)电阻应变片灵敏度系数_________。
2.仪器1)YJ 16型数字电阻应变仪2)YJ 18型数字电阻应变仪3)PR10 18型预调平衡箱1.背紧手轮2.螺栓3.套筒4.测力环5.拉杆6.加载手轮7.电阻应变片8.百分表9.预紧手轮图2型实验机结构简图三、实验原理1.力与变形协调关系在螺栓联接中,螺栓受拉力,产生拉伸变形;被联结件受压力,产生压缩变形。
根据螺栓和被联接件预紧力相等,可把二者的力和变形图线画在一个坐标系10中,如图3所示。
当螺栓受轴向工作载荷 F 作用时,其拉力由预紧力Q p增加到 总拉力Q 。
被联接件的压紧力Q P减少到剩余预紧力Q P。
这时,螺栓伸长变形 的增量 1,等于被联接件压缩变形的恢复2,即12,也就是说变形的关系是协调的。
机械设计基础-螺栓联接实验
螺栓联接静、动态特性实验报告专业班级 ___________ 姓名 ___________ 日期 2006-08-15 指导教师___________ 成绩 ___________一、实验条件:1、试验台型号及主要技术参数螺栓联接实验台型号:主要技术参数:①、螺栓材料为40Cr、弹性模量E=206000 N/mm2,螺栓杆外直径D1= 16mm,螺栓杆内直径D2=8mm,变形计算长度L=160mm。
②、八角环材料为40Cr,弹性模量E=206000 N/mm2。
L=105mm。
③、挺杆材料为40Cr、弹性模量E=206000 N/mm2,挺杆直径D=14mm,变形计算长度L=88mm。
2、测试仪器的型号及规格①、应变仪型号:CQYDJ-4 ②、电阻应变片:R=120Ω,灵敏系数K=2.2二、实验数据及计算结果1、螺栓联接实验台试验项目:空心螺杆2、螺栓组静态特性实验实测值理论值预紧形变值(μm) 预紧应变值(με) 预紧力(N) 预紧刚度(N/mm) 预紧标定值(με/N)加载形变值(μm) 加载应变值(με) 加载力(N) 加载刚度(N/mm) 加载标定值(με/N)螺栓拉力 40 167 5187.7 129692.5螺栓扭矩 113 177.1八角环 126 0 5219.4 41172.2挺杆 -2 -31.7螺栓拉力 40 250 7766 194150.4螺栓扭矩 342.8八角环 126 7766 61635.1挺杆 0 0 1463.9-0.0184430.0321915 0.1287509 0.0000000 0.0630915 0.0215039 0.3296382 0 45 182 5653.7 129692.5120 185.2118 0 6129.3 41172.2-30 -475.745 281.25 8736.8 194150364118 7272.9 61634.90.0321913 0.1287314 0.0000000 0.0630650 0.0209458 0.3296703 03、螺栓联接静、动特性应力分布曲线图 (空心螺杆)三、实验结果分析。
2-1 螺栓连接性能测试实验报告(已填数据仅供参考)
2-1 螺栓连接性能测试实验报告(已填数据、仅供参考)实验二螺栓组联接性能测试实验报告实验名称班级姓名学号日期成绩一、实验目的 1.掌握螺栓与被联接件的受力-变形规律,并绘制相关曲线; 2.作出螺栓组载荷分布图及应力变化规律分布曲线; 3.了解应变测试原理。
二、实验条件1、实验台型号多功能螺栓组联结综合实验台 2、测试仪器型号及规格(1)静态应变仪CQYJ-12(2)应变片:R=120欧。
灵敏系数2.2 (3)加载负荷: N三、实验内容1.螺栓受力分析及计算; 2.螺栓应变计算; 3.残余预紧力计算;4.利用实测数据描绘螺栓受力―变形图; 5.螺栓组受倾覆力矩时应力变化。
四、实验步骤1.松开联接螺栓,在控制面板上调节ε1-ε调节电位器,使电桥平衡(输出基本为零,或保持5根螺栓的初始值接近)。
2.用扳手给每根螺栓预紧,预紧应变值为120με-200με左右,可在控制面板上读取。
3.按列表中的负载值逐次加载,并记录1―5号螺栓的应变值。
4.计算相关参数并绘制图线。
5.若使用计算机处理,则打开相应界面,每一次加载后,点击界面上的“测试”键后,记录数据。
6.根据实验数据写实验报告。
五、螺栓组静态特性实验数据螺栓号 1 2 0 298 378 3 0 302 300 4 0 298 223 5 0 300 152 6 0 298 447 7 0 298 381 8 0 301 302 9 0 299 224 10 0 298 150 预调零应变(??) 0 预紧应变(??)第一次测试(??) 300 449 第二次测试(??)第三次测试(??)平均值(??)负荷应变(??)应力/1000 预紧拉力F1(N)实验拉力F2(N)负荷拉力△F(N) 447 454 376 375 303 295 224 221 151 151 452 445 380 381 295 294 226 225 152 152 450 150 92700 376 78 77525 299 -3 61663 223 -75 45869 151 -149 31175 448 150 92288 381 83 78417 297 -4 61182 225 -74 46350 151 -147 31175 2050 3075 1025 2036 2571 535 2063 2045 -18 2036 1521 -515 2050 1034 -1016 2036 3061 1025 20362601 565 2057 2029 -27 2043 1537 -506 2036 1034 -1002 六、螺栓组联结受力图螺栓号 1、2、3、4、5 6、7、8、9、10 实验曲线理论曲线七、思考题1、螺栓组连接理论计算与实测的工作载荷间存在误差的原因有哪些?原因是因为实验中用的螺栓它是工业产品,它只能保证测试过程当中一个范围范围内不会受到破坏,所测量得到的数据就是一系列离散的数据。
实验二 螺栓组连接实验
实验二螺栓组联接实验一、实验目的1.测试螺栓组联接在翻转力矩作用下各螺栓所受的载荷;2.深化课程学习中对螺栓组联接受力分析的认识;3.初步掌握电阻应变仪的工作原理和使用方法。
二、实验设备LYS-B螺栓组及单螺栓连接静、动态综合实验台。
三、实验设备的结构及工作原理LYS-B螺栓组联接实验台结构如图1所示:图1多功能螺栓组联接实验台结构1.机座2.测试螺栓3.测试梁.4.托架5.测试齿块6.杠杆系统7.砝码8.齿板接线柱9.螺栓1-5接线柱10.螺栓6—10接线柱11.垫片多功能螺栓组联接实验台结构如图l所示,被联接件机座l和托架4被双排共10个螺栓2联接,联接面间加入垫片II(硬橡胶板),砝码7的重力通过双级杠杆加载系统6(1:75)增力作用到托架4上,托架受到翻转力矩的作用,螺栓组联接受横向载荷和倾覆力矩联合作用,各个螺栓所受轴向力不同,它们的轴向变形也就不同。
在各个螺栓上贴有电阻应变片,可在螺栓中段测试部位的任一侧贴一片,或在对称的两侧各贴一片,如图2所示.各个螺栓的受力可通过贴在其上的电阻应变片的变形,用电阻应变仪测得。
图2 螺栓安装及贴片图静态电阻应变仪主要由:测量桥、桥压、滤波器、A/D 转换器、MCU 、键盘、显示屏组成。
测量方法:由DC2.5V 高精度稳定桥压供电,通过高精度放大器,把测量桥桥臂压差(uV 信号)放大,后经过数字滤波器,滤去杂波信号,通过24位A/D 模数转换送入MCU(即CPU)处理,调零点方式采用计算机内部自动调零。
送显示屏显示测量数据,同时配有RS232通讯口,可以与计算机通讯。
εKEU BD 4=△ 式中:△BD U ——工作片平衡电压差;E ——桥压; K ——电阻应变系数;ε——应变值。
当工作电阻片由于螺栓受力变形,长度变化△L 时,其电阻也要变化△R ,并且RR△正比于ll△,△R 使测量桥失去平衡。
通过应变仪测量出△BD U 的变化,测量出螺栓的应变量。
实验一:螺栓连接综合测试
实验一:螺栓联接变形协调实验一、实验目的验证预紧螺栓联接受轴向工作载荷作用时,在弹性极限内,螺栓与被联接件受力及变形协调规律;测量联接系统刚度等于联接件与被联接件刚度之和,即:螺栓伸长变形的增量△λ1等于被联接件压缩变形的恢复量△λ2,即△λ1=△λ2,符合变形协调规律。
(见图1-1)螺栓总拉力为Q等于被联接件剩余预紧力Qˊp与工作拉力F之和。
即Q=Qˊp+F(见图1-1)图1-1螺栓联接受力变形图图1-2螺栓联接系统刚度测量系统刚度C等于螺栓刚度C1与被联接件刚度C2之和,即C=C1+C2 联接系统刚度C定义为轴向工作载荷F与△λ1或△λ2之比,即C=(F/△λ1)。
在Δdho2中,hg/ho2=eg/do2,在Δado2中,ab/ad=bf/do2,因为hg/ho2=ab/ad,所以bf=eg则:C=F/(△λ1)=bf/(hg)=eg/(hg)=do2/(ho2)=FK/λm式中:Fk=tgd1*(λb+λm)所以C=tgd1(λb+λm)/ λm =tgd1+Fˊ/λm = tgd1+tgd2 =C1+C2二、实验设备及工作原理1. 单螺栓连接实验台(如图1-3所示)图1-3 单螺栓连接实验台结构1-电机2-箱体3-螺栓扭矩测点4-八角环5-螺栓拉力6-上板7-千分表(被联接件)8-千分表(螺栓)9-螺栓、螺母、垫片10-八角环压力测点11-锥塞12-挺杆13-挺杆压力测点14-下板15-实心扳手16-手轮1) 联接部分包括M16空心螺栓、大螺母和垫片组组成。
空心螺栓贴有侧拉力和扭矩的两组应变片,分别测量螺栓在拧紧时所受预紧拉力和扭矩。
空心螺栓的内孔中装有双头螺柱,拧紧或松开其上的小螺母即可改变空心螺栓的实际受载界面积,以达到改变联接件刚度的目的。
2) 被联接件部分有上板、下板和八角环组成,八角环上贴有应变片组,测量被联接件受力的大小,中部有锥形孔,插入或拔出锥塞即可改变八角环的受力,以改变被联接件系统的刚度。
螺栓联接静、动态特性实验报告.doc444
螺栓联接静、动态特性实验报告
专业班级 ___________ 姓名 ___________ 日期 2002-01-01
指导教师 ___________ 成绩 ___________
一、实验条件:
1、试验台型号及主要技术参数
螺栓联接实验台型号:
主要技术参数:
①、螺栓材料为40Cr、弹性模量E=206000 N/mm2,螺栓杆外直径D1=
16mm,螺栓杆内直径D2=8mm,变形计算长度L=160mm。
②、八角环材料为40Cr,弹性模量E=206000 N/mm2。
L=105mm。
③、挺杆材料为40Cr、弹性模量E=206000 N/mm2,挺杆直径D=14mm,变形
计算长度L=88mm。
2、测试仪器的型号及规格
①、应变仪型号:CQYDJ-4 ②、电阻应变片:R=120Ω,灵敏系数K=2.2
二、实验数据及计算结果
1、螺栓联接实验台试验项目:
实心螺杆加锥塞
2、螺栓组静态特性实验
3、螺栓联接静、动特性应力分布曲线图 (实心螺杆加锥塞)
三、实验结果分析。
螺栓组联接实验报告
螺栓组联接实验报告一、实验目的。
本实验旨在通过对螺栓组联接的实验研究,探讨螺栓在不同条件下的受力性能,为工程实践提供可靠的数据支持。
二、实验原理。
螺栓组联接是一种常见的机械连接方式,其受力性能直接影响着机械设备的安全稳定运行。
在螺栓组联接中,螺栓受拉力,而螺母受压力,通过螺纹的摩擦力来实现联接。
实验中将通过拉伸试验和剪切试验来分析螺栓组联接的受力性能。
三、实验材料和设备。
1. 实验材料,选用直径为M8的普通螺栓和相应的螺母;2. 实验设备,拉伸试验机、剪切试验机、螺纹测量仪、万能试验机等。
四、实验步骤。
1. 拉伸试验,将螺栓安装在拉伸试验机上,逐渐增加拉力,记录拉伸过程中的应力-应变曲线,分析螺栓的拉伸性能;2. 剪切试验,将螺栓安装在剪切试验机上,逐渐增加剪切力,记录剪切过程中的应力-应变曲线,分析螺栓的剪切性能;3. 螺纹测量,利用螺纹测量仪对螺栓和螺母的螺纹进行测量,分析其尺寸精度和表面质量;4. 其他,利用万能试验机对螺栓组联接进行综合性能测试,包括抗扭矩、抗压力等。
五、实验结果与分析。
1. 拉伸试验结果表明,螺栓在受力过程中表现出良好的弹性变形和塑性变形能力,具有较高的抗拉性能;2. 剪切试验结果表明,螺栓在受力过程中表现出较高的抗剪性能,未出现明显的断裂现象;3. 螺纹测量结果表明,螺栓和螺母的螺纹尺寸精度高,表面质量良好;4. 综合性能测试结果表明,螺栓组联接具有良好的抗扭矩和抗压力性能。
六、实验结论。
通过本实验的研究分析,得出螺栓组联接在受力过程中表现出良好的受力性能,具有较高的抗拉、抗剪、抗扭矩和抗压力性能。
因此,在工程实践中可以放心使用螺栓组联接,确保机械设备的安全稳定运行。
七、参考文献。
1. 钢结构螺栓连接设计手册。
2. 机械连接技术手册。
3. 螺纹连接设计与计算。
八、致谢。
感谢实验室的老师和同学们在实验过程中的帮助和支持,使本次实验取得了圆满成功。
以上就是本次螺栓组联接实验的报告内容,希望对相关领域的研究和实践工作有所帮助。
实验二 LZS螺栓联接综合实验静动态实验
实验二 LZS螺栓联接综合实验静动态实验一、实验目的:(一)了解螺栓联接在拧紧过程中各部分的受力情况。
(二)计算螺栓相对刚度,并绘制螺栓联接的受力变形图。
(三)验证受轴向工作载荷时预紧螺栓联接的变形规律。
(四)通过螺栓的动载实验,改变螺栓联接相对刚度,观察螺栓动应力幅值的变化,以验证提高螺栓联接强度的各项措施。
二、实验设备及仪器:LZS螺栓联接综合实验台6台,CQYDJ-4静动态测量仪6台,计算机及专用软件等实验设备及仪器6台图1(一)螺栓链接实验台的结构域工作原理(如图2)1.螺栓部分包括M16空心螺栓、大螺母、组合垫片和M8小螺杆组成。
空心螺栓贴有测拉力和扭转的两组应变片。
组合垫片设计成刚性和弹性两用的结构,用以改变被连接件系统的刚度。
2.被连接件组成有:上板、下板和八角环、锥塞。
八角环上贴有一组应变片,测量被连接件受力大小。
3.加载部分由蜗杆、涡轮、挺杆和弹簧组成,挺杆上上贴有应变片,用以测量所加工作载荷的大小,启动电机或转动手轮使挺杆上升或下降改变载荷大小。
(二)CQYDJ-4静动态测量仪的面板按键功能说明:1.校时键:按键后对本仪器时间进行校正。
2.K值键:按该键后进入应变片灵敏系数修改状态。
修改后保存下次生效。
3.设置键:暂无操作功能。
4.保存键:暂无操作功能。
5.背光键:按该键后背光熄灭,再按背光亮。
6.静测键:按该键进入静态电阻应变测量状态。
7.动测键:按该键进入静态电阻应变测量状态。
8.校零键: 按该键进入通道自动校零。
9.C E 键:按该键清除错误输入或退出该功能操作。
10.联机键:静态应变数据采集分析系统(计算机)联机、退出手动测量操作。
11.确定键:按该键确定该功能操作。
12.▲▼键:上下项目选择移动13.0- 9键:为数字键后面板说明:根据顺序链接四个通道,准备好实验采集仪。
三、实验方法及步骤(一)螺栓联接静态实验方法及步骤1.打开测量仪电源开关,启动计算机,进入软件画面,单击“静态螺栓实验”,进入静态螺栓实验主界面。
实验一螺栓联接协调变形
实验一 螺栓联接协调变形一、实验目的验证预紧螺栓联接受轴向工作载荷作用时,在弹性限度内,螺栓与被联接件受力及变形协调规律。
测量联接系统刚度等于联接件与被联接件刚度之和。
即:1.螺栓伸长变形的增加量1δ∆等于被联接件压缩变形的恢复量2δ∆,即21δδ∆=∆符合变形协调规律。
2.螺栓总拉力0F 等于被联接件剩余紧力F ''与工作载荷F 之和,即F F F +''=0。
3.测量系统刚度C 等于螺栓刚度1C 与被联接件刚度2C 之和,即21C C C +=。
图1 螺栓联接受力变形线图 图2 螺栓联接系统刚度联接系统刚度C 定义为轴向工作载荷F 与1δ∆(或2δ∆)之比,即1δ∆=FC 。
在2dho ∆中,22do eg ho hg =,在2d h o ∆中,2do bf ad ab =,因ad ab ho hg =2,所以eg bf =。
2221δδK F ho do hg eg hg bf F C ====∆=式中: )(t a n211δδα+=K F 21212211t a n t a n )(t a n C C C +=+=+=ααδδδα二、实验设备的结构实验设备主要由三部组成。
1.联接部分螺栓联接部分包括螺栓5、被联接件套筒8和手轮形状的螺母4。
螺栓和套筒是被测量的零件,均贴有电阻应变片,用以测量受力的应变值。
图32.预拉机构采用预拉机构的目的是为了消除扭转变形的影响,使螺栓单向受拉和操作省力与加载平稳。
3.加载机构加载机构是对预紧后的螺栓施加轴向工作载荷。
顺时针旋转手轮13,通过测力环9将轴向工作载荷加到螺栓上。
轴向工作载荷的大小可用测力环测出。
三、实验参数1.螺栓材料为45号碳钢,弹性模量51006.2⨯=E N/mm 2。
计算直径10=d mm ,变形计算长度130=l mm 。
2.套筒材料为45号碳钢,弹性模量51006.2⨯=E N/mm 2。
外径312=D mm ,内径5.271=D mm,变形计算长度1302=l mm 。
实验一螺栓连接的综合实验
实验一螺栓联接综合实验一、实验目的1、了解螺栓联接在拧紧过程中各部分的受力情况。
2、计算螺栓相对刚度,并绘制螺栓联接的受力变形图。
3、验证受轴向工作载荷时,预紧螺栓联接的变形规律,及对螺栓总拉力的影响。
4、通过螺栓的动载实验,改变螺栓联接的相对刚度,观察螺栓变应力幅值的变化,以验证提高螺栓联接强度的各项措施。
二、实验项目1、基本螺栓联接静动态实验。
2、增加螺栓刚度的静动态实验。
3、增加被连接件刚度的静动态实验。
三、实验设备及仪器LZS螺栓联接综合实验台一台;LSD-A静动态测量仪一台;计算机及专用软件等实验设备及仪器。
1.螺栓联接实验台的结构与工作原理如图3-1所示。
1)联接部分包括M16空心螺栓、大螺母、垫片组组成。
空心螺栓贴有测拉力和扭矩的两组应变片,分别测量螺栓在拧紧时,所受预紧拉力和扭矩。
空心螺栓的内孔中装有M8螺栓,拧紧或松开其上的手柄杆,即可改变空心螺栓的实际受载截面积,以达到改变联接件刚度的目的。
垫片组由刚性和弹性两种垫片组成。
2)被联接件部分由上板、下板和八角环组成,八角环上贴有应变片,测量被联接件受力的大小,中部有锥形孔,插入或拨出锥塞即可改变八角环的受力,以改变被联接件系统的刚度。
3)加载部分由蜗杆、蜗轮、挺杆和弹簧组成,挺杆上贴有应变片,用以测量所加工作载荷的大小,蜗杆一端与电机相联,另一端装有手轮,启动电机或转动手轮使挺杆上升或下降,以达到加载、卸载(改变工作载荷)的目的。
1.静动态测量仪的工作原理及各测点应变片的组桥方式实验台各被测件的应变量用LSD-A型静动态测量仪测量,通过标定或计算即可换算出各部分的大小。
静动态测量仪是利用金属材料的特性,将非电量的变化转换成电量变化的测量仪,应变测量的转换元件——应变片是用金属箔片印刷腐蚀而成,用粘剂将应变片牢固的贴在被测物件上,当被测件受到外力作用长度发生变化时,粘贴在被测件上的应变片也相应变化,应变片的电阻值也随着发生了ΔR的变化,这样就把机械量转换成电量(电阻值)的变化。
螺栓组联接实验报告
螺栓组联接实验报告螺栓组联接实验报告引言:螺栓组联接是一种常见的机械连接方式,广泛应用于工程结构、机械设备等领域。
本实验旨在通过对螺栓组联接的实验研究,探讨其性能和应用特点,为工程设计和实际应用提供参考依据。
实验目的:1. 研究螺栓组联接的承载能力和稳定性;2. 探究螺栓组联接的材料特性对其性能的影响;3. 分析螺栓组联接的失效原因和预防措施。
实验装置和方法:本实验采用了标准的螺栓组联接装置,包括螺栓、垫圈、螺母等。
实验过程中,我们首先选择了不同材料的螺栓进行测试,包括碳钢螺栓和不锈钢螺栓。
然后,通过施加不同的载荷,观察螺栓组联接的变形情况和承载能力。
最后,我们对实验结果进行了分析和总结。
实验结果:1. 材料特性对螺栓组联接的性能有明显影响。
碳钢螺栓在承载能力方面表现出较高的稳定性,适用于对强度要求较高的场合。
而不锈钢螺栓则具有抗腐蚀性能好的特点,适用于潮湿环境或需要防锈的场合。
2. 载荷的大小和施加方式对螺栓组联接的性能有重要影响。
适当的预紧力可以提高螺栓组联接的稳定性和承载能力,而过大或过小的预紧力都会导致螺栓组联接的失效。
3. 螺栓组联接的失效主要包括松动、断裂和腐蚀等。
松动是最常见的失效形式,可以通过增加预紧力或使用锁紧装置来预防。
断裂则可能与螺栓本身的质量有关,需要选择合适的材料和制造工艺。
腐蚀则需要加强防护措施,选择适合环境的材料或涂层。
讨论与分析:螺栓组联接作为一种常见的机械连接方式,具有许多优点,如可拆卸性、可重复使用性等。
然而,它也存在一些问题,如容易松动、失效风险较高等。
因此,在实际应用中,我们需要综合考虑各种因素,选择合适的螺栓材料、预紧力和防护措施,以确保螺栓组联接的性能和可靠性。
结论:通过本次实验,我们深入了解了螺栓组联接的性能和应用特点。
不同材料的螺栓具有不同的性能优势,可以根据具体需求进行选择。
适当的预紧力和防护措施可以提高螺栓组联接的稳定性和可靠性。
然而,螺栓组联接仍然存在一些问题,需要在实际应用中加以注意和解决。
机械设计基础螺栓连接性能测试实验指导书
机械设计基础螺栓连接性能测试实验指导书螺栓连接性能测试实验指导书——(2)螺栓组连接受力与相对刚度实验一、实验目的1、验证螺栓组连接受力分析理论;2、了解用电阻应变仪测定机器机构中应力的一般方法。
二、实验设备和工作原理螺栓组连接实验台由螺栓连接、加载装置及测试仪器三部分组成。
如图1所示螺栓组连接是由十个均布排列为二行的螺栓将支架11和机座12连接起来而构成。
加载装置是由具有1:100放大比的两极杠杆13和14组成,砝码力G经过杠杆放大而作用在支架上的载荷为P,因此,连接接触面将受有横向载荷P和翻转力矩M。
(N·㎜)(N)式中l—力臂(㎜)由于P和M的作用,在螺栓中引起的受力是通过贴在每个螺栓上的电阻应变片15的变形并借助电阻应变仪而测得。
电阻应变仪是通过载波电桥将机械量转换成电量实现测量的。
如图2所示,将贴在螺栓上的电阻应变片1作为电桥一个桥臂,温度补偿应变片2为另一个桥臂。
螺栓不受力时,使电桥呈现平衡状态。
当螺栓受力发生变形后,应变片电阻值发生变化,电桥失去平衡,输出一个电压讯号,经放大、检波等环节,便可在应变仪上直接读出应变值来。
经过适当的计算就可以得到各螺栓的受力大小。
图1螺栓连接实验台结构简图1,2,……10—实验螺栓;11—支架;12—机座;13—第一杠杆;14—第二杠杆;15—电阻应变片;16—砝码(相关尺寸:l=200㎜;a=160㎜;b=105㎜;c=55㎜;G=22N)图2电桥工作原理图本实验是针对不允许连接接合面分开的情况。
螺栓预紧时,连接在预紧力作用下,接合面间产生挤压应力。
当受载后,支架在翻转力矩M作用下,有绕其对称轴线0-0翻转趋势,使连接右部挤压应力减小,左部挤压应力增加。
为保证连接最右端处不出现间隙,应满足以下条件:(1)式中Qp—单个螺栓预紧力(N);Z—螺栓个数Z=10;A—接合面面积A=a(b-c)(㎜2)M—翻转力矩M=PlW—接合面抗弯剖面模量(㎜3)化简(1)式得为保证一定安全性,取螺栓预紧力为(2)螺栓工作拉力可根据支架静力平衡条件求得,由平衡条件有:M=Pl=F1r1+F2r2+…+Fzrz(3)式中F1、F2…Fz—各螺栓所受工作力r1、r2…rz—各螺栓中心到翻转轴线的距离根据螺栓变形协调条件有:(4)由式(3)和式(4)可得任一位置螺栓工作拉力(5)在翻转轴线0-0右边,Fi使螺栓被拉紧,轴向拉力增大,而在0-0线左边的螺栓被放松,预紧力减小。
螺栓联接综合实验实验原理
螺栓联接综合实验实验原理
螺栓联接综合实验的实验原理主要基于以下两点:
1.螺栓联接接合面的几何形状通常都设计成轴对称的简单几何形
状,如圆形、环形、矩形、框形、三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2.螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,
不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力。
如果同时承受轴向载荷和较大的横向载荷时,应采用销、套
筒、键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
螺栓联接综合实验心得与建议
螺栓联接综合实验心得与建议一、前言螺栓联接是机械工程中常见的一种连接方式,具有简单、可靠、易拆卸和重复使用等特点,广泛应用于各个领域。
为了更好地理解螺栓联接的原理和性能,我们进行了螺栓联接的综合实验。
在实验中,我们通过设计合理的实验方案,选择适当的试验设备和方法,深入研究了螺栓联接的力学性能、失效形式以及影响因素等内容。
在实验过程中,我们不断总结经验、排除故障,最终获得了一些宝贵的心得和建议。
二、实验过程2.1 实验准备在进行螺栓联接实验前,我们首先对实验的目的和要求进行了全面的了解,并进行了充分的准备工作。
具体包括实验设备和试样的准备、实验操作流程的设计、实验数据的处理和分析方法的选择等。
2.2 实验步骤在实验中,我们按照事先设计好的实验步骤进行了实验操作。
首先,我们将试样固定在试验平台上,然后通过加力装置施加不同大小的拉力。
在施加拉力的过程中,我们记录了试样的变形和载荷的变化,并及时调整实验条件,确保实验数据的准确性和可靠性。
2.3 实验数据采集与分析在实验过程中,我们采用了合适的数据采集装置,将试验过程中的数据实时记录下来。
随后,我们对实验数据进行了分析,得出了一些有价值的结论。
同时,我们还通过统计学方法对数据进行处理,计算了一些重要的参数,如拉伸强度、屈服强度等。
2.4 实验结果与讨论根据实验数据和分析结果,我们得出了一些关于螺栓联接的重要结论。
首先,螺栓联接的拉伸性能良好,可以承受较大的拉力。
其次,螺栓联接在较大的载荷作用下会出现塑性变形,同时伴随着载荷的增加,螺栓的失效形式逐渐为断裂。
最后,螺栓联接的力学性能受到许多因素的影响,如螺纹形状、材料性能、预紧力等。
这些结论对于螺栓联接的设计和使用具有重要的指导意义。
三、实验心得3.1 实验设计在实验中,我们设计了合理的实验方案,确定了试验设备和方法,使得实验过程更加顺利。
同时,我们还充分考虑了实验的安全性和可行性,确保了实验操作的简便性和可重复性。
静、动态螺栓变形协调实验测试系统
好地反应上述关系,就需要进行动态螺栓变形协调 实验 。动态实验 中3路信号是 时刻变化 的,这就需 要3 路信号同时处理 ,只有这样才可以把它们之 间
1 模拟量的前置处理
1 1 电桥的 自动平衡 .
b s d o o e f l C . o ae ih t e mo e o rv n e te p rme t o to g p i t a es e a e n p w r M C mp r d w t d f e e in x e u S h p i n ,s me srn on n b e n, s c s c u h a
维普资讯
U ! 2=
C Nl l一2 3 / 0 4 T
实
验
技
术
与
管
理
第2 3卷
第1 1期
20 06年 1 1月
Ex e i n a c n l g n n g me t p rme t l Te h o o y a d Ma a e n
T e t si g s se o o a i i t n eo ma i n h e t y t m f c mp t l y a d d f r t n b i o
o tt n y a c b h fsai a d d n mi o c
B O H it ,Z U Ln j n U h u l ,LA G F n ,C E i — o g A a—a o H i—i ,S N S o —i a n I N e g H N Qn h n g
等,系统达到了一个平衡状态 ,即螺栓与被联接件 套筒的变形协调关系。 为验证 上述关 系的成立 ,螺栓 、套筒 ( 连 被
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17 螺栓联接变形协调实验
现代各类机械中,广泛应用螺栓进行联接,如何计算和测量螺栓受力情况及静、动态特性参数,是工程技术人员的一个重要课题。
本实验通过对螺栓的受力进行测试和分析,验证预紧螺栓联接受轴向工作载荷作用时,在弹性限度内,螺栓与被联接件受力及变形协调规律,即:测量联接系统刚度等于联接件与被联接件刚度之和。
一、实验目的
1. 螺栓与被连接件的受力与变形协调规律
轴向工作载荷F 作用下,螺栓拉伸变形增量△1δ等于被联接件压缩变形恢复量△2δ。
即∣△1δ∣=∣△2δ∣符合变形协调规律。
2. 螺栓的总拉力o F 等于被联接件的剩余紧力F ''与轴向工作载荷F 之和,即F F F o +''=
3. 系统刚度C 等于螺栓刚度1C 与被联接件刚度2C 之和,即21C C C +=
二、设备和工具
1. 螺栓联接变形协调实验台LBX-84型。
LBX-84型实验台工作部分简图。
联接部分
包括螺栓5、被联接件套筒8和手轮形状的螺母4。
螺栓5与套筒8上均贴有应变片,用以测量各自的受力的变形值。
②预拉机构
包括件号:1、2、3、4、8.
采用予拉机构的目的:清除螺栓扭转变形的影响,使螺栓受单向拉应力作用;操作省力、加载平稳。
采用差动螺旋机构,均为左旋,顺时针旋转手轮1,螺栓受拉伸;反之,螺栓联接松开。
③加载机构
螺栓预紧后加载,采用差动螺旋机构,均为左旋,顺时针旋轮手轮13,通过测力环9将工作载荷作用到螺栓上,载荷大小由测力环上百分表示出。
2. 实验仪器、电阻应变仪及其预调平衡箱。
图1 实验设备简图
三、应变片接线图:
螺栓与套筒的应变片引线接与实验台线板上。
接线柱A 、B 、C 各点之预调平衡箱上对应的A 、B 、C 各点连接;A1、B 、C 及A2、B 、C 分别与予调平衡箱上的A 、B 、C 各点连接,即可进行测量。
接线图如图示。
1—螺栓应变片 2—套筒应变片 3—温度补偿片
四、实验步骤
1. 检查各仪器连线及仪器上各旋钮位置是否正确;仪器与实验台各接线柱的连接是否正确。
2. 检查螺栓联接应处于放松状态。
手轮1、4、13应能灵活转动处于完全放松状态;否则应转动手轮使其卸载放松。
3. 将应变仪、预调平衡箱预先调整平衡。
4. 将测力环上百分表调零。
5. 预紧螺栓连接
将预调箱上的分线器旋在螺栓应变片接通的位置,并将应变仪上读数盘转到大约+450 位置,然后顺时针旋转手轮1,直到电表指针回零为止。
再将螺母4旋紧。
逆时针松开手轮1,以除去预拉机构的作用。
此时螺栓既被顶紧。
调整读数盘使电表指针指向零位,记录螺栓在预紧时的微应变值。
将分线器转至套筒应变片接通位置,并调整读数盘位置使电表指针指零,记C
1 2 3
下套筒预紧时的微应变值。
6. 螺栓连接轴向加载
顺时针旋转手轮13,通过测力环9对螺栓联接施加轴向工作载荷。
百分表每增加10小格位一次加载,百分表读数分别为10、20、30、40小格做4次加载,并限制不超过40小格,否者造成过载而损坏应变片,并在每次加载时终了分别记录套筒,螺栓的微应变值(分线器位置分别对应在套筒、螺栓应变片接通位置,转动分线器之前先预调读数盘到某估计值,避免电表指针冲击过大)和百分表读数值。
加载完毕,逆时针方向旋转手轮13直至百分表读数为零,此时完成卸载。
将读数盘转至450 位置,分线器转到螺栓应变片接通位置。
7. 卸除预紧力
顺时针旋转手轮1,为使手轮4能顺利松开,允许读数盘读数增大少许,并松开手轮4,逆时针方向松开手轮1,直至电表指针读数为零为止,手轮1转动灵活。
五、注意事项
1、试验前各注油孔及螺母注入适量溶滑油。
2、螺栓应变值应控制在380με~800με范围内,以避免联接而开缝或螺栓过载。
预紧时螺栓应变值建议在400με~450με。
3、不要随意转动仪器手把及其它元件与导线,试验中要尽量不使导线摆动。
4、试验完了要切断电源。