高考复习资料:回归模型的残差分析
什么是残差分析如何利用残差分析来检验回归模型的适用性
什么是残差分析如何利用残差分析来检验回归模型的适用性残差分析是统计学中一种常用的方法,用于评估回归模型的适用性。
在回归分析中,我们希望通过建立数学模型来描述自变量与因变量之间的关系。
残差分析则是用来检验模型是否能准确地描述实际数据。
残差(residual)是指观测值与回归方程预测值之间的差异。
回归方程可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中Y是因变量,X1、X2、...、Xn是自变量,β0、β1、β2、...、βn是回归系数,ε是误差。
残差计算公式为:残差 = 观测值 - 预测值。
当回归模型适用性良好时,残差应该随机分布在零附近,没有明显的模式或趋势。
接下来,我们将介绍如何利用残差分析来检验回归模型的适用性。
1. 绘制残差图(Residual Plot)残差图是一种展示残差分布的可视化方式。
在横轴上绘制观测值或预测值,纵轴上绘制残差。
如果残差图中的点随机分布在零附近,并且没有明显的模式,则说明回归模型适用性较好。
如果残差图中存在模式或趋势,那么回归模型可能存在问题,需要重新评估模型的可靠性。
2. 检查残差的正态性回归模型通常假设误差项(ε)满足正态分布。
我们可以通过绘制残差的直方图或概率图来检查残差是否服从正态分布。
如果残差近似服从正态分布,则说明回归模型的适用性较好。
3. 检查残差的独立性残差的独立性是指残差之间没有相关性。
我们可以通过绘制残差的自相关图(Autocorrelation Plot)来检验残差是否独立。
如果残差之间没有显示出明显的相关性,则说明回归模型的适用性较好。
4. 检查残差的等方差性等方差性是指残差的方差在自变量的不同取值范围内是恒定的。
我们可以绘制残差的散点图,以观察残差的方差是否与预测值相关。
如果散点图呈现出均匀分布且没有明显的锥形或漏斗形状,则说明回归模型的适用性较好。
总结来说,残差分析是用于检验回归模型适用性的重要方法。
专题05 回归分析(解析版)
专题5 回归分析例1.已知回归方程y=5x+1,则该方程在样本(1,4)处的残差为()A.﹣2B.1C.2D.5【解析】解:当x=1时,y=5x+1=6,∴方程在样本(1,4)处的残差是4﹣6=﹣2.故选:A.例2.研究变量x,y得到一组样本数据,进行回归分析,有以下结论①残差平方和越小的模型,拟合的效果越好;②用相关指数R2来刻画回归效果,R2越小说明拟合效果越好;③在回归直线方程y=−0.2x+0.8中,当解释变量x每增加1个单位时,预报变量y平均减少0.2个单位;④若变量y和x之间的相关系数为r=﹣0.9462,则变量y和x之间的负相关很强.以上正确说法的是①③④.【解析】解:①可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故①正确;②用相关指数R2来刻画回归效果,R2越大说明拟合效果越好,故②错误;③在回归直线方程y=−0.2x+0.8中中,当解释变量x每增加1个单位时,预报变量y平均减少0.2个单位,故③正确;④若变量y和x之间的相关系数为r=﹣0.9462,r的绝对值趋向于1,则变量y和x之间的负相关很强,故④正确.故答案为:①③④.例3.下列命题中,正确的命题有②③.①回归直线y=b x+a恒过样本点中心(x,y),且至少过一个样本点;②用相关指数R2来刻画回归效果,表示预报变量对解释变量变化的贡献率,R2越接近于1说明模型的拟合效果越好;③残差图中残差点比较均匀的落在水平的带状区域中,说明选用的模型比较合适;④两个模型中残差平方和越大的模型的拟合效果越好.【解析】解:①回归直线y=b x+a恒过样本点中心(x,y),不一定过样本点,故①正确;②用相关指数R2来刻画回归效果,表示预报变量对解释变量变化的贡献率,R2越接近于1说明模型的拟合效果越好,正确;③残差图中残差点比较均匀的落在水平的带状区域中,说明选用的模型比较合适,正确;④两个模型中残差平方和越大的模型的拟合效果越差.故④错误,故正确的是②③,故答案为:②③例4.下列命题:①相关指数R2越小,则残差平方和越大,模型的拟合效果越好.②对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”可信程度越大.③残差点比较均匀地落在水平带状区域内,带状区域越宽,说明模型拟合精度越高.④两个随机变量相关性越强,则相关系数的绝对值越接近0.其中错误命题的个数为4.【解析】解:对于①,相关指数R2越小,则残差平方和越大,此时模型的拟合效果越差,所以①错误;对于②,对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”可信程度越小,所以②错误;对于③,残差点比较均匀地落在水平带状区域内,带状区域越宽,说明模型拟合精度越低,所以③错误;对于④,两个随机变量相关性越强,则相关系数的绝对值越接近1,所以④错误.综上知,错误命题的序号是①②③④,共4个.故答案为:4.例5.垃圾是人类日常生活和生产中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,所以需要无害化、减量化处理.某市为调査产生的垃圾数量,采用简单随机抽样的方法抽取20个县城进行了分析,得到样本数据(x i,y i)(i=1,2,……,20),其中x i和y i分别表示第i个县城的人口(单位:万人)和该县年垃圾产生总量(单位:吨),并计算得∑20i=1x i=80,∑20i=1y i=4000,∑20i=1(x i−x)2=80,∑20i=1(y i−y)2=8000,∑20i=1(x i−x)(y i−y)=7000.(1)请用相关系数说明该组数据中y与x之间的关系可用线性回归模型进行拟合;(2)求y关于x的线性回归方程;(3)某科研机构研发了两款垃圾处理机器,如表是以往两款垃圾处理机器的使用年限(整年)统计表:1年2年3年4年5年使用年限台数款式甲款520151050乙款152010550某环保机构若考虑购买其中一款垃圾处理器,以使用年限的频率估计概率.根据以往经验估计,该机构选择购买哪一款垃圾处理机器,才能使用更长久?参考公式:相关系数r=∑n i=1i−x)(y i−y)√∑i=1(x i−x)∑i=1(y i−y)2.对于一组具有线性相关关系的数据(x i,y i)(i=1,2,……,n),其回归直线y=b x+a的斜率和截距的最小二乘估计分别为:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2,a=y−b x.【解析】解:(1)由题意知相关系数r=∑20i=1i−x)(y i−y)√∑i=1(x i−x)2∑i=1(y i−y)2=√80×8000=78=0.875,因为y与x的相关系数接近1,所以y与x之间具有较强的线性相关关系,可用线性回归模型进行拟合.(2)由题意可得,b=∑20i=1(x i−x)(y i−y)∑20i=1(x i−x)2=70080=8.75,a=y−b x=400020−8.75×8020=200−8.75×4=165,所以y=8.75x+165.(3)以频率估计概率,购买一台甲款垃圾处理机器节约政府支持的垃圾处理费用X(单位:万元)的分布列为X﹣50050100P0.10.40.30.2E(X)=﹣50×0.1+0×0.4+50×0.3+100×0.2=30(万元)购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用Y(单位:万元)的分布列为:Y﹣302070120P0.30.40.20.1E(Y)=﹣30×0.3+20×0.4+70×0.2+120×0.1=25(万元)因为E(X)>E(Y),所以该县城选择购买一台甲款垃圾处理机器更划算.例6.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.据统计该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,请计算相关系数r(精确到0.01),并以此判定是否可用线性回归模型拟合y 与x的关系?若是请求出回归直线方程,若不是请说明理由;(2)过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如表关系:周光照量X(单位:小时)30<X<5050≤X≤70n≥2光照控制仪最多可运行台数542若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了5台光照控制仪,求商家在过去50周每周利润的平均值.附:对于一组数据(x1,y1),(x2,y2),……,(x n,y n),其相关系数公式r=∑n i=1i−x)(y i−y)√∑i=1i−x)2∑i=1i−y)2,回归直线y=b x+a的斜率和截距的最小二乘估计分别为:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nxy∑n i=1(x i−x)2,a=y−b x,参考数据√0.3≈0.55,√0.9≈0.95.【解析】解:(1)由已知数据可得x=2+4+5+6+85=5,y=3+4+4+4+55=4,因为∑5i=1(x i−x)(y i−y)=(−3)×(−1)+0+0+0+3×1=6,√∑5i=1(x i−x)2=√(−3)2+(−1)2+02+12+32=2√5,√∑5i=1(y i−y)2=√(−1)2+02+02+02+12=√2.所以相关系数r=∑n i=1i−x)(y i−y)√∑i=1i −x)2√∑i=1i−y)2=2√5⋅√2=√910≈0.95,因为r>0.75,所以可用线性回归模型拟合y与x的关系,因为b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=620=0.3,a=y−b x=2.5,所以回归直线方程y=0.3x+2.5.(2)记商家周总利润为Y元,由条件可得在过去50周里:X>70时,共有10周,只有2台光照控制仪运行,周总利润Y=2×3000﹣3×1000=3000元,当50≤X≤70时,共有35周,有4台光照控制仪运行,周总利润Y=4×3000﹣1×1000=11000元,当X<50时,共有5周,5台光照控制仪都运行,周总利润Y=5×3000=15000元,所以过去50周每周利润的平均值Y=3000×10+11000×35+15000×550=9800元,所以商家在过去50周每周利润的平均值为9800元.例7.湖南省从2021年开始将全面推行“3+1+2”的新高考模式,新高考对化学、生物、地理和政治等四门选考科目,制定了计算转换T分(即记入高考总分的分数)的“等级转换赋分规则”(详见附1和附2),具体的转换步骤为:①原始分Y等级转换;②原始分等级内等比例转换赋分.某校的一次年级统考中,政治、生物两选考科目的原始分分布如表:等级A B C D E比例约15%约35%约35%约13%约2%政治学科各等级对应的原始分区间[81,98][72,80][66,71][63,65][60,62]生物学科各等级对应的原始分区间[90,100][77,89][69,76][66,68][63,65]现从政治、生物两学科中分别随机抽取了20个原始分成绩数据,作出茎叶图:(1)根据茎叶图,分别求出政治成绩的中位数和生物成绩的众数;(2)该校的甲同学选考政治学科,其原始分为82分,乙同学选考生物学科,其原始分为91分,根据赋分转换公式,分别求出这两位同学的转化分;(3)根据生物成绩在等级B的6个原始分和对应的6个转化分,得到样本数据(Y i,T i),请计算生物原始分Y i与生物转换分T i之间的相关系数,并根据这两个变量的相关系数谈谈你对新高考这种“等级转换赋分法”的看法.附1:等级转换的等级人数占比与各等级的转换分赋分区间等级A B C D E原始分从高到低排序的等级人数占比约15% 约35% 约35% 约13% 约2%转换分T 的赋分区间[86,100] [71,85][56,70] [41,55] [30,40]附2:计算转换分T 的等比例转换赋分公式:Y 2−Y Y−Y 1=T 2−T T−T 1.(其中:Y 1,Y 2别表示原始分Y 对应等级的原始分区间下限和上限;T 1,T 2分别表示原始分对应等级的转换分赋分区间下限和上限.T 的计算结果按四舍五入取整).附3:∑ 6i=1(Y i −Y )(T i −T )=74,√∑ 6i=1(Yi −Y)2∑ 6i=1(T i −T)2=√5494≈74.12,r =∑n i=1i −Y)(T i −T)√∑i=1i −Y)2∑i=1i −T)2.【解析】解:(1)根据茎叶图知,政治成绩的中位数为72,生物成绩的众数为73; (2)甲同学选考政治学科的等级为A ,由转换赋分公式:98−8282−81=100−T T−86,解得T =87;乙同学选考生物学科的等级为A ,由赋分转换公式:100−9191−90=100−T T−86,解得T =87;所以甲、乙两位同学的转换分都是87分. (3)由题意知,r =∑n i=1i −Y)(T i −T)√∑ i=1(Y i −Y)2∑ i=1(T i −T)2=7474.12≈0.998, 说法1:等级转换赋分公平,因为相关系数十分接近1,接近函数关系,因此高考这种“等级转换赋分”具有公平性与合理性.说法2:等级转换赋分法不公平,在同一等级内,原始分与转化分是确定的函数关系,理论上原始分与转化分的相关系数为1,在实际赋分过程中由于数据的四舍五入,使得实际的转化分与应得的转化分有一定的误差,极小部分同学赋分后会出现偏高或偏低的现象. (只要说法有道理,都可以得分).例8.某市房管局为了了解该市市民2018年1月至2019年1月期间买二手房情况,首先随机抽样其中200名购房者,并对其购房面积m (单位:平方米,60≤m ≤130)进行了一次调查统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年1月至2019年1月期间当月在售二手房均价y (单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1﹣13分别对应2018年1月至2019年1月).(Ⅰ)试估计该市市民的购房面积的中位数m0;(Ⅱ)现采用分层抽样的方法从购房面积位于[110,130]的40位市民中随机抽取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在[120,130]的概率;(Ⅲ)根据散点图选择y=a+b√x和y=c+d lnx两个模型进行拟合,经过数据处理得到两个回归方程,分别为y=0.9369+0.0285√x和y=0.9554+0.0306lnx,并得到一些统计量的值如表所示:y=0.9369+0.0285√x y=0.9554+0.0306lnx ∑13i=1(y i−y i)20.0005910.000164∑13i=1(y i−y)20.006050请利用相关指数R2判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出2019年12月份的二手房购房均价(精确到0.001).【参考数据】ln2≈0.69,ln3≈1.10,ln23≈3.14,ln25≈3.22,√2≈141,√3≈1.73,√23≈4.80.【参考公式】R2=1−∑ni=1(y i−y i)2∑n i=1(y i−y)2.【解析】解:(I)由频率分布直方图,可得,前三组频率和为0.05+0.1+0.2=0.35,前四组频率和为0.05+0.1+0.2+025=0.6,故中位数出现在第四组,且m0=90+10×0.150.25=96.(Ⅱ)设从位于[110,120)的市民中抽取x人,从位于[120,130]的市民中抽取y人,由分层抽样可知:440=x30=y10,则x=3,y=1,在抽取的4人中,记3名位于[11,120)的市民为A1,A2,A3,位于[120,130]的市民为B则所有抽样情况为:(A1,A2),(A1,A3),(A1,B),(A2,A3),(A2,B),(A3,B)共6种.而其中恰有一人在位于购房面积[120,130]的情况共有3种,故所求概率P=36=12,(III)设模型y=0.9369+0.0285√x和y=0.955+0.0306lnx的相关指数分别为R12,R22,则R12=1−0.0005910.006050,R22=1−0.0001640.006050,显然R12<R22,故模型y=0.9554+0.0306lnx的拟合效果更好.由2019年12月份对应的代码为24,则y=0.9554+0.0306ln24=0.9554+0.0306(3ln2+ln3)≈1.052万元/平方米.例9.某汽车公司拟对“东方红”款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入x(亿元)与科技改造直接收益y(亿元)的数据统计如表:x2346810132122232425y1322314250565868.56867.56666当0<x≤16时,建立了y与x的两个回归模型:模型①:y=4.1x+11.8;模型②:y=21.3√x−14.4;当x>16时,确定y与x满足的线性回归方程为:y=−0.7x+a.(Ⅰ)根据下列表格中的数据,比较当0<x≤16时模型①、②的相关指数R2,并选择拟合精度更高、更可靠的模型,预测对“东方红”款汽车发动机科技改造的投入为16亿元时的直接收益.回归模型模型①模型②回归方程y=4.1x+11.8y=21.3√x−14.4∑7i=1(y i−y i)2182.479.2(附:刻画回归效果的相关指数R2=1−∑n i=1(y i−y i)2∑n i=1(y i−y)2.)(Ⅱ)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入16元与20亿元时公司实际收益的大小;(附:用最小二乘法求线性回归方程y=b x+a的系数公式b=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2;a=y−b x)(Ⅲ)科技改造后,“东方红”款汽车发动机的热效率X大幅提高,X服从正态分布N(0.52,0.012),公司对科技改造团队的奖励方案如下:若发动机的热效率不超过50%但不超过53%,不予奖励;若发动机的热效率超过50%但不超过53%,每台发动机奖励2万元;若发动机的热效率超过53%,每台发动机奖励4万元.求每台发动机获得奖励的数学期望.(附:随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6827,P(μ﹣2σ<ξ<μ+2σ)=0.9545.)【解析】解:(Ⅰ)由表格中的数据,有182.4>79.2,即182.4∑7i=1(y i−y)2>79.2∑7i=1(y i−y)2,∴模型①的R2小于模型②的R2,说明模型②的刻画效果更好.∴当x=16亿元时,科技改造直接收益的预测值为y=21.3×√16−14.4=70.8(亿元);(Ⅱ)由已知可得,x−20=0.5+2+3.5+4+55=3,则x=23,y−60=8.5+8+7.5+6+65=7.2,则y=67.2,∴a=y−0.7x=67.2+0.7×23=83.3,∴当x>16亿元时,y与x满足线性回归方程y=−0.7x+83.3,当x=20亿元时,科技改造直接收益的预测值为y=−0.7×20+83.3=69.3.∴当x=20亿元时,实际收益的预测值为69.3+10=79.3亿元>70.8亿元.∴科技改造投入20亿元时,公司的实际收益更大;(Ⅲ)∵P(0.52﹣0.02<X<0.52+0.02)=0.9545,∴P(X>0.50)=1+0.95452=0.97725,P(X≤0.50)=1−0.95452=0.02275,∵P(0.52﹣0.01<X<0.52+0.01)=0.6827,∴P(X>0.53)=1−0.68272=0.15865,∴P(0.50<X≤0.53)=0.97725﹣0.15865=0.8186.设每台发动机获得的奖励为Y(万元),则Y的分布列为:Y024P0.022750.81860.15865∴每台发动机获得的奖励的数学期望为:E(Y)=0×0.02275+2×0.8186+4×0.15865=2.2718(万元).例10.某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男学生中抽取了1000个样本,得到如下数据.数据一:身高在[170,180)(单位:cm)的体重频数统计体重(kg)[50,55)[55,60)[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)人数206010010080201010数据二:身高所在的区间含样本的个数及部分数据身高x(cm)[140,150)[150,160)[160﹣170)[170﹣180)[180﹣190)平均体重y(kg)4553.66075(Ⅰ)依据数据一将下面男高中生身高在[170﹣180)(单位:cm)体重的频率分布直方图补充完整,并利用频率分布直方图估计身高在[170﹣180)(单位:cm)的中学生的平均体重;(保留小数点后一位)(Ⅱ)依据数据一、二,计算身高(取值为区间中点)和体重的相关系数约为0.99,能否用线性回归直线来刻画中学生身高与体重的相关关系,请说明理由;若能,求出该回归直线方程;(Ⅲ)说明残差平方和或相关指数R2与线性回归模型拟合效果之间关系.(只需写出结论,不需要计算)参考公式:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2,a=y−b x.参考数据:(1)145×45+155×53.6+165×60+185×75=38608;(2)1452+1552+1652+1752+1852﹣5×1652=1000.(3)663×175=116025,664×175=116200,665×175=116375.(4)728×165=120120.【解析】解:(1)身高在[170,180)的总人数为:20+60+100+100+80+20+10+10=400,体重在[55﹣60)的频率为:60400=0.15,体重在[70﹣75)的 频率为:80400=0.2,平均体重为:52.5×0.05+57.5×0.15+62.5×0.25+67.5×0.25+72.5×0.2 +77.5×0.05+82.5×0.025+87.5×0.025≈66.4,(2)因为 r =0.99→1,线性相关很强,故可以用线性回归直线来 刻画中学生身高与体重的相关, x =145+155+165+175+1855=165,y =45+75+60+53.6+66.45=60,b =∑ 8i=1x i y i −8x⋅y ∑ 8i=1x i 2−8x2=38608+175×66.4−5×165×601000=0.728, a =y −b x =60−0.728×165=−60.12, 所以回归直线方程为:y =0.728x −60.12,(3)残差平方和越小或相关指数 R 2 越接近于1,线性回归模型拟合效果越好.例11.2019年的“金九银十”变成“铜九铁十”,国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.如图是该地某小区2018年11月至2019年1月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1~13分别对应2018年11月~2019年11月)根据散点图选择y =a +b √x 和y =c +dlnx 两个模型进行拟合,经过数据处理得到两个回归方程分别为y ^=0.9369+0.0285√x和y^=0.9554+0.0306lnx,并得到以下一些统计量的值:y^=0.9369+0.0285√x y^=0.9554+0.0306lnx ∑13i=1(y i−y^i)20.0005910.000164∑13i=1(y i−y)20.006050(1)请利用相关指数R2判断哪个模型的拟合效果更好;(2)某位购房者拟于2020年4月购买这个小区m(70≤m≤160)平方米的二手房(欲购房为其家庭首套房).若购房时该小区所有住房的房产证均已满2但未满5年,请你利用(1)中拟合效果更好的模型解决以下问题:(i)估算该购房者应支付的购房金额;(购房金额=房款+税费,房屋均价精确到0.001万元/平方米)(ii)若该购房者拟用不超过100万元的资金购买该小区一套二手房,试估算其可购买的最大面积.(精确到1平方米)附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格(计税价格=房款)进行征收的.房产证满2年但未满5年的征收方式如下:首套面积90平方米以内(含90平方米)为1%;首套面积90平方米以上且140平方米以内(含140平方米)1.5%;首套面积140平方米以上或非首套为3%.参考数据:ln2≈0.69,ln3≈1.10,ln17≈2.83,ln19≈2.94,√2≈1.41,√3≈1.73,√17≈4.12,√19≈4.36.参考公式:相关指数R2=1−∑ni=1(y i−y^i)2∑n i=1(y i−y)2.【解析】解:(1)模型一中,y=0.9369+0.0285√x的残差平方和为0.000591,相关指数为R21−0.0005910.006050≈0.923,模型二中,y=0.9554+0.0306lnx的残差平方和为0.000164,相关指数为 R 21−0.0001640.006050≈0.973,∴ 相关指数较大的模型二拟合效果好些. (2)通过散点图确定2020年4月对应的 x =18, 代入(1)中拟合效果更好的模型二,代入计算 y =0.9554+0.0306ln18 =0.9554+0.0306×(ln 2+2ln 3) =0.9554+0.0306×(0.69+2×1.10) ≈1.044 (万元/平方米),则2020年4月份二手房均价的预测值为1.044(万元/平方米).(i )设该购房者应支付的购房金额 h 万元,因为税费中淵方只需缴纳契税, ①当70⩽m ⩽90 时,契税为计税价格的 1%, 故h =m ×1.044×(1%+1)=1.05444m ; ②当90<m ⩽144 时,契税为计税价格的 1.5%, 故h =m ×1.044×(1.5%+1)=1.05966m ; ③当144<m ⩽160 时,契税为计税价格的 3%, 故h =m ×1.044×(3%+1)=1.07532m ;∴ℎ={1.05444m ,70⩽m ⩽901.05966m ,90<m ⩽1441.07532m ,144<m ⩽160;∴ 当 70⩽m ⩽90 时购房金额为 1.05444m 万元, 当 90<m ⩽144 时购房金额为 1.05966m 万元, 当 144<m ⩽160 时购房金额为 1.07532m 万元.(ii )设该购房者可购买该小区二手房的最大面积为 t 平方米,由(i ) 知,当70⩽m ⩽90时,应支付的购房金额为 1.05444t ,又1.05444t ⩽1.05444×90<100, 又因为房屋均价约为1.044万元/平方米,所以 t <100,所以90⩽t <100, 由1.05966t ⩽100,解得 t ⩽1001.05966,且1001.05966≈94.4,所以该购房者可购买该小区二手房的最大面积为94平方米.例12.某新兴科技公司为了确定新研发的产品下一季度的营销计划,需了解月宣传费x (单位:万元)对月销售量y(单位:千件)的影响,收集了2020年3月至2020年8月共6个月的月宣传费x和月销售量y的数据如表:月份345678宣传费x5678910月销售量y0.4 3.5 5.27.08.610.7现分别用模型①y=b x+a和模型②y=e m x+n对以上数据进行拟合,得到回归模型,并计算出模型的残差如表:(模型①和模型②的残差分别为e1和e2,残差=实际值﹣预报值)x5678910y0.4 3.5 5.37.08.610.7e1﹣0.60.540.280.12﹣0.24﹣0.1e2﹣0.63 1.71 2.10 1.63﹣0.7﹣5.42(1)根据上表的残差数据,应选择哪个模型来拟合月宣传费x与月销售量y的关系较为合适,简要说明理由;(2)为了优化模型,将(1)中选择的模型残差绝对值最大所对应的一组数据(x,y)剔除,根据剩余的5组数据,求该模型的回归方程,并预测月宣传费为12万元时,该公司的月销售量.(剔除数据前的参考数据:x=7.5,y=5.9,∑6i=1x i y i=299.8,∑6i=1x i2=355,z=lny.z≈−1.41,∑6i=1x i y i=−73.10,ln10.7≈2.37,e4.034≈56.49.)参考公式:b=∑ni=1x i y i−nxy∑n i=1x i2−nx2,a=y−b x.【解析】解:(1)应选择模型①,因为模型①每组数据对应的残差绝对值都比模型②的小,残差波动小,残差点比较均匀地落在水平的带状区域内,说明拟合精度高.(2)由(1)知,需剔除第一组数据,则剔除后的x=7.5×6−55=8,y=5.9×6−0.45=7,5xy=280,5x2=320,∑5i=1x i y i=299.8−5×0.4=297.8,∑5i=1x i2=355−25=330.∴b=∑5i=1x i y i−5xy∑5i=1x i2−5x2=297.8−280330−320=1.78,a=y−b x=7−1.78×8=−7.24.得①的回归方程为y=1.78x−7.24,则当x=12时,y=1.78×12−7.24=14.12.故月宣传费为12万元时,该公司的月销售量为14.12千件.例13.新型冠状病毒肺炎COVID﹣19疫情发生以来,在世界各地逐渐蔓延.在全国人民的共同努力和各级部门的严格管控下,我国的疫情已经得到了很好的控制.然而,小王同学发现,每个国家在疫情发生的初期,由于认识不足和措施不到位,感染人数都会出现快速的增长.如表是小王同学记录的某国连续8天每日新型冠状病毒感染确诊的累计人数.日期代码x12345678累计确诊人数y481632517197122为了分析该国累计感染人数的变化趋势,小王同学分别用两种模型:①y=bx2+a,②y=dx+c对变量x和y的关系进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差e î=y i−y î):经过计算得它∑8i=1(x i−x)(y i−y)=728,∑8i=1(x i−x)2=42,∑8i=1(z i−z)(y i−y)=6868,∑8i=1(z i−z)2=3570,其中z i=x i2,z=18∑8i=1z i.(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由;(2)根据(1)问选定的模型求出相应的回归方程(系数均保留两位小数);(3)由于时差,该国截止第9天新型冠状病毒感染确诊的累计人数尚未公布.小王同学认为,如果防疫形势没有得到明显改善,在数据公布之前可以根据他在(2)问求出的回归方程来对感染人数做出预测,那么估计该地区第9天新型冠状病毒感染确诊的累计人数是多少?附:回归直线的斜率和截距的最小二乘估计公式分别为:b=∑8i=1(x i−x)(y i−y)∑8i=1(x i−x)2,a=y−b x.【解析】解:(1)选择模型①,理由如下:根据残差图可以看出,模型①的估计值和真实值相对比较接近,模型②的残差相对比较大,所以模型①的拟合效果相对较好;(2)由(1)可知y关于x的回归方程为y=bx2+a,令z=x2,则y=bz+a,由所给的数据可得:z=18(1+4+9+16+25+36+49+64)=25.5,y=18(4+8+16+31+51+71+97+122)=50,b=∑8i=1(z i−z)(y i−y)∑8i=1(z i−z)2=68683570≈1.92,则a=y−b z≈50﹣1.92×25.5=1.04,所以y关于x的回归方程为y=1.92x2+1.04;(3)将x=9代入回归方程,可得y=1.92×92+1.04=156.56≈157(人),所以预测该地区第9天新型冠状病毒感染确诊的累计人数约为157人.例14.H市某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x(吨)与相应的生产总成本y(万元)的五组对照数据.产量x(件)12345生产总成本y(万元)3781012(Ⅰ)根据上达数据,若用最小二乘法进行线性模拟,试求y关于x的线性回归方程y=b x+a;参考公式:b=∑ni=1x i y i−nxy∑n i=1x i2−nx2,a=y−b x.(Ⅱ)记第(Ⅰ)问中所求y与x的线性回归方程y=b x+a为模型①,同时该企业科研人员利用计算机根据数据又建立了y与x的回归模型②:y=12x2+1.其中模型②的残差图(残差=实际值﹣预报值)如图所示:请完成模型①的残差表与残差图,并根据残差图,判断哪一个模型更适宜作为y关于x的回归方程?并说明理由;(Ⅲ)根据模型①中y与x的线性回归方程,预测产量为6吨时生产总成本为多少万元?【解析】解:(Ⅰ)计算x=15(1+2+3+4+5)=3,y=15(3+7+8+10+12)=8,∑5i=1x i2=12+22+32+42+52=55,∑5i=1x i y i=1⋅3+2⋅7+3⋅8+4⋅10+5⋅12=141,b=∑5i=1x i y i−nxy∑5i=1x i2−nx2=141−5×3×855−5×9=2.1,a=y−b x=8−2.1×3=1.7,因此,回归直线方程为y=2.1x+1.7.(Ⅱ)模型①的残差表为:x12345y3781012 y 3.8 5.9810.112.2 e﹣0.8 1.10﹣0.1﹣0.2画出残差图,如图所示;结论:模型①更适宜作为y关于x的回归方程,因为:理由1:模型①的4个样本点的残差点落在的带状区域比模型②的带状区域更窄;理由2:模型①的4个样本点的残差点比模型②的残差点更贴近进x轴..(不列残差表不扣分,写出一个理由即可得分.)(Ⅲ)根据模型①中y与x的回归直线方程,计算x=6时,y=2.1×6+1.7=14.3,所以预测产量为6吨时生产总成本为14.3万元.例15.为了解某企业生产的某产品的年利润与年广告投入的关系,该企业对最近一些相关数据进行了调查统计,得出相关数据见表:23456年广告投入x(万元)346811年利润y(十万元)根据以上数据,研究人员分别借助甲.乙两种不同的回归模型,得到两个回归方程,方程甲:方程甲:y(1)=b(x﹣1)2+2.75,方程乙:y(2)=c x﹣1.6.(1)求b(结果精确到0.01)与c的值.(2)为了评价两种模型的拟合效果,完成以下任务.①完成下表(备注:e î=y i−y î,e î称为相应于点(x i,y i)的残差;年广告投入x(万元)23456年利润y(十万元)346811模型甲估计值y î(1)残差e î(1)模型乙估计值y î(2)残差e î(2)②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.【解析】解:(1)设t=(x﹣1)2,则t=15(1+4+9+16+25)=11.∵y=6.4,∴6.4=b×11+2.75,解得b≈0.33.又x=4,∴6.4=c×4−1.6,即c=2.(2)①经计算,可得下表:年广告投入x(万元)23456年利润y(十万元)346811模型甲估计值y î(1) 3.08 4.07 5.728.0311残差e î(1)﹣0.08﹣0.070.28﹣0.030模型乙估计值y î(2) 2.4 4.4 6.48.410.4残差e î(2)0.6﹣0.4﹣0.4﹣0.40.6②Q1=(−0.08)2+(−0.07)2+0.282+(−0.03)2=0.0906.Q2=0.62×2+(−0.4)2×3=1.2.∵Q1<Q2,∴模型甲的拟合效果更好.。
推荐-23 残差分析 精品
proc reg data=examp2_5;
model y=x1-x3; output out=a p=predict r=resid h=h student=r ;
/* 输出结果集a,变量为因变 量拟合值、残差、杠杆量、学 生化残差,名称predict、 resid、h、r */ run;
data b; /* 建新数据ri
hii
1 33.2 32.464 0.735 0.464 0.183
2 40.3 38.373 1.926 1.133 0.058
3 38.7 38.798 -0.098 -0.060 0.131
4 46.8 43.491 3.308 1.958 0.070
<.0001
• x3
1
1.28894 0.29848 4.32
0.0003
• Xi(i=1,2,3) 对Y影响显著.
9
2.3.1误差项的正态性检验
表2.6 集b有关残差的SAS输出结果(MSE=3.0725)
------残差正态性的频率检验
序号 因变量 拟合值 残差 学生化残差 杠杆 量
Obs y predict resid r h
Box-Cox变换
➢参数选取
4
2.3.1误差项的正态性检验
检 验:ε ~ N (0, 2I) ˆ 2 MSE
一.工具---残差向量
εˆ (ˆ1,ˆ2,,ˆn) (y1 yˆ1, y2 yˆ2,, yn yˆn) Y Yˆ
如 ε ~ N(0, 2I) εˆ ~ N(0, 2(I H)) ˆi ~ N (0, 2 (1 hii ))
•
Sum of
Mean
• Source F
回归模型相关重要知识点总结
回归模型相关重要知识点总结一、线性回归有四个假设:线性:自变量(x)和因变量(y)之间应该存在线性关系,这意味着x值的变化也应该在相同方向上改变y值。
独立性:特征应该相互独立,这意味着最小的多重共线性。
正态性:残差应该是正态分布的。
同方差性:回归线周围数据点的方差对于所有值应该相同。
二、什么是残差,它如何用于评估回归模型残差是指预测值与观测值之间的误差。
它测量数据点与回归线的距离。
它是通过从观察值中减去预测值的计算机。
残差图是评估回归模型的好方法。
它是一个图表,在垂直轴上显示有残差,在x 轴上显示特征。
如果数据点随机散布在没有图案的线上,那么线性回归模型非常适合数据,否则我们应该使用非线性模型。
三、如何区分线性回归模型和非线性回归模型两者都是回归问题的类型。
两者的区别在于他们训练的数据。
线性回归模型假设特征和标签之间存在线性关系,这意味着如果我们获取所有数据点并将它们绘制成线性(直线)线应该适合数据。
非线性回归模型假设变量之间没有线性关系。
非线性(曲线)线应该能够正确地分离和拟合数据。
找出数据是线性还是非线性的三种最佳方法:残差图;散点图;假设数据是线性的,训练一个线性模型并通过准确率进行评估。
四、什么是多重共线性,它如何影响模型性能?当某些特征彼此高度相关时,就会发生多重共线性。
相关性是指表示一个变量如何受到另一个变量变化影响的度量。
如果特征 a 的增加导致特征 b 的增加,那么这两个特征是正相关的。
如果 a 的增加导致特征 b 的减少,那么这两个特征是负相关的。
在训练数据上有两个高度相关的变量会导致多重共线性,因为它的模型无法在数据中找到模式,从而导致模型性能不佳。
所以在训练模型之前首先要尽量消除多重共线性。
五、异常值如何影响线性回归模型的性能?异常值是值与数据点的平均值范围不同的数据点。
换句话说,这些点与数据不同或在第 3 标准之外。
线性回归模型试图找到一条可以减少残差的最佳拟合线。
如果数据包含异常值,则最佳拟合线将向异常值移动一点,从而增加错误率并得出具有非常高MSE 的模型。
简单线性回归模型与分析残差图(ppt 35页)
根据以上数据,你能否判断学生人数(x)如何影 响到销售收入(y)?根据一家连锁店附近大学的人数, 你能够预测该家连锁店的季度销售收入吗?
3
描述学生人数和销售收入之间的关系
第i个标准化残差
其中
Std_ˆi ˆi / sˆi
sˆi s
1 hi ,
1
h i n
(xi x)2 (xi x)2
26
如何分析残差图
如果模型是符合的,那么残差图上的散 点应该落在一条水平带中间,除此之外, 残差图上的点不应呈现出什么规律性。
使用EXCEL对阿姆德连锁店的数据产生残 差图。你能得到什么结论?
协方差(315.56)和相关系数(0.95),散点图;
250
季 度 销 售 收 入 /千 美 圆
200
150
100
50
0
0
5
10
15
20
25
30
学生人数/千人
根据这些你可以得到什么结论?
4
Types of Regression Models
Positive Linear Relationship
散点图; 利用学生化标准残差基本服从标 准正态分布来检测(落在2个标准差之外 时)。
32
带有异常值的散点图示例
80
70
60
50
40
30
20
10
0
0
1
2
3
4
5
6
7
33
检测有影响的观测值
什么是有影响的观测? 观测的杠杆率:
实用回归分析课件(残差与及残差图)
残差的基本概念
定义
残差是指观测值与通过回归模型预测的值之间的 差异。
计算方法
残差 = 观测值 - 预测值。
重要性
残差用于评估回归模型的拟合效果,可以帮助我 们发现异常值、模型的不确定性和误差来源。
02
残差的性质与计算
残差的定义与计算方法
残差
观测值与回归方程预测值之差。
计算方法
实际观测值 - 预测值。
如果残差分布符合正态分布,那 么残差图上的点应该大致呈钟形 分布。通过观察残差图的分布形
状,可以检验残差的正态性。
残差图的用途与限制
01
辅助模型诊断
通过观察残差图,可以对模型的假设条件进行检验,如线性关系、误差
项的正态性等。
02
改进模型
根据残差图的观察结果,可以对模型进行调整和改进,如添加或删除解
详细描述
在案例一中,我们将使用一组线性回归模型的数据,通过计算残差、绘制残差图等方法,分析模型的 拟合效果。我们将重点关注残差的分布、正态性、独立性和同方差性等方面,以评估模型的可靠性。
案例二:时间序列数据的残差分析
总结词
时间序列数据具有时序依赖性和波动性,因此在进行回归分析时需要特别注意残差的分 析。
自相关性诊断方法
通过计算自相关图、使用自相关 系数、偏自相关系数等方法,可 以诊断出自相关性。
自相关性处理方法
处理自相关性可以采用差分、季 节性差分、指数平滑等方法,消 除自相关性对回归分析的影响。
异方差性诊断与处理
异方差性定义
异方差性是指回归模型的残差项的方差不恒 定,即随着预测变量的变化,残差的方差也 会发生变化。
指残差之间存在相关性,通常表现为 时间序列数据的滞后相关性。
线性回归方程的残差分析ppt课件
若两变量存在强正相关性,则Di2应较小,秩序相关系数较大 .若两变量存在强负相关性,则Di2应较大,秩序相关系数 为负,绝对值较大
1 - 12
计算相关系数
(一)相关系数
Kendall相关系数:度量定序定类变量间的线性相关关系
首先计算一致对数目(U)和非一致对数目(V)
如: 对x和y求秩后为:
x: 2 4 3 5 1
差平方和的绝大部分比例,因变量的变差主要由
自变量的不同取值造成,回归方程对样本数据点
拟合得好
在一元回归中R2=r2; 因此,从这个意义上讲,判
定系数能够比较好地反映回归直线对样本数据的 1 - 2代9 表程度和线性相关性。
一元线性回归方程的检验
(二)回归方程的显著性检验 (1)目的:检验自变量与因变量之间的线性关系
n
n
( yˆi y)2
( yi yˆ)2
R2
i1 n
1
i1 n
( yi y)2
( yi y)2
i1
i1
R2=SSR/SST=1-SSE/SST.
R2体现了回归方程所能解释的因变量变差的比例
;1-R2则体现了因变量总变差中,回归方程所无法
解释的比例。
R2越接近于1,则说明回归平方和占了因变量总变
一元线性回归方程的检验
(三)回归方程的显著性检验:t检验 (4)计算t统计量的值和相伴概率p (5)判断:
相伴概率<=a:拒绝H0,即:回归系数与0有显著差异 ,自变量与因变量之间存在显著的线性关系,能够 较好的解释说明因变量的变化.反之,不能拒绝H0
(6)回归系数的区间估计
1 - 32
一元线性回归方程的检验
高中数学第一章统计案例1.1回归分析残差分析的相关概念辨析及应用素材北师大版选修
残差分析的相关概念辨析及应用在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.然后,可以通过残差^^2^1,,,n e e e 来判断模型拟合的效果,判断原始数据中是否存在可疑数据.这方面的分析工作称为残差分析.残差分析一般有两种方法:(1)作残差图;(2)利用相关指数R 2来刻画回归效果..,,2,1,^^^^n i a x b y y y e i i i i i =--=-= ^i e 称为相应于点(x i ,y i )的残差.类比样本方差估计总体方差的思想,可以用)2)(,(2121^^1^2^2>-=-=∑=n b a Q n e n n i i σ 作为σ2的估计量,其中^a 和^b 由公式x b y a ^^-=, ∑∑==---=ni ini i ix xy y x xb 121^)())((给出,Q(^a ,^b )称为残差平方和.可以用^2σ衡量回归方程的预报精度.通常,^2σ越小,预报精度越高.例1.设变量x,y 具有线性相关关系,试验采集了5组数据,下列几个点对应数据的采集可能有错误的是( )A 点A B.点B C.点C D.点E思路与技巧 由散点图判断出,点A,B,C,D,F 呈线性分布,E 点远离这个区域,说明点E 数据有问题. 解答D评析 可以用Excel 画散点图,样本的散点图可以形象的展示两个变量的关系,画散点图的目的是用来确定回归模型的形式,若散点图呈条状分布,则x 与y 有较好的线性相关关系,散点图除了条状分布,还有其他形状的分布.例2.为研究重量x(单位:克)对弹簧长度y(单位:厘米)的影响,对不同重量的6根弹簧进行测量,得如下数据:(1)画出散点图.(2)如果散点图中的各点大致分布在一条直线的附近,求y 与x 之间的回归直线方程. (3)求出残差,进行残差分析.思路与技巧 可以用Excel 画散点图,由散点图发现x 与y 是否呈线性分布,由此判断x 与y 之间是否有较好的线性相关关系,若有,求出线性回归方程,再画出残差图,进行残差分析.解答 (1)由Excel表格画散点图如图(2)设yˆ=bx+a是线性回归直线方程,以重量为横坐标,以残差为纵坐标画残差图如图由残差图看出,这些样本点的残差对应点均匀地落在水平带状区域内,宽度越窄,说明模型拟合精度越高,回归方程预报精度越高.评析回归模型中,残差变量不能被直接观测到,必须通过模型拟合后计算得到.画残差散点图的目的就是直观观测残差图,发现观测数据中可能出现的错误及所用模型是否恰当,若样本点残差较大,需确认这个点在采集过程中是否存在错误,若有,需重新采集数据,重新利用数据拟合.若采集数据没有错误,就另找原因.若残差点比较均匀地落在水平带状区域内,说明选用模型较合适,带状区域宽度越窄,模型拟合精度越高,回归方程预报精度越高.同学们学习残差时应明确以下几点:(1)误差e受许多条件的影响,也受所选用的线性模型的影响,因此线性模型往往只是一种近似的模型.(2)作残差图有时不够精确,也难于认定拟合程度的好坏,因而多数情况下,选用计算相关指数R2来说明拟合效果.(3)可以对某组数据采用几种不同的回归方程进行分析,也可以比较几个R2的值,选择R2大的模型作为这组数据的回归模型.(4)回归方程只适用于我们所研究的样本的总体;建立的回归方程一般都有时间性;样本取值的范围会影响回归方程的适用范围,一般不能超过这个范围,否则没有实用价值;不能期望回归方程得到的预报值就是预报变量的精确值,它是预报变量的可能取值的平均值。
回归模型的残差分析
回归模型的残差分析回归模型的残差分析是评估回归模型表现的一种重要工具。
残差是指实际观测值与回归模型预测值之间的差异,它们表示了变量之间的未解释部分。
通过残差分析,可以检验回归模型是否适用于数据,以及进一步了解模型的有效性和弱点。
下面将详细介绍回归模型的残差分析,包括常见的统计检验和图形可视化。
一、残差检验残差检验是通过统计检验来评估残差的统计性质是否满足模型假设的重要工具。
下面是常见的残差检验方法:1. 正态性检验:使用诸如Shapiro-Wilk检验、Kolmogorov-Smirnov 检验或Anderson-Darling检验等统计检验方法,验证残差是否满足正态分布假设。
如果残差不符合正态分布,则可能存在模型的偏误。
2. 独立性检验:残差应该是相互独立的,这意味着它们之间应该没有明显的相关性。
可以通过Durbin-Watson检验或Ljung-Box检验等方法来检验残差之间的相关性。
3. 同方差性检验:残差应该具有恒定的方差,即同方差性。
常用的检验方法有Breusch-Pagan检验或White检验。
如果检验结果拒绝了同方差性假设,则说明模型不适用于数据。
4.线性性检验:残差应该与自变量之间没有明显的线性关系。
通过绘制残差与预测值、自变量的散点图或低阶多项式回归分析等方法来检验线性性。
5.异常值检测:有时残差会被异常值影响,可以使用统计方法识别和处理异常值,如标准化残差大于一些阈值或离群值距离大于一些阈值等。
通过以上的残差检验,可以获得对回归模型的可靠性的判断。
如果残差满足模型假设,可以认为模型是有效的;如果残差不满足一些假设,则需要考虑模型的修正或改进。
二、残差图形可视化除了统计检验,残差的图形可视化也是评估回归模型的重要手段。
常见的残差图形包括:1.散点图:绘制残差与预测值或自变量的散点图,观察是否存在明显的模式或关联性。
如果散点图中观察到的残差分布均匀、随机分布在0值附近,说明模型是良好的。
残差分析在回归分析中的作用
残差分析在回归分析中的作用
残差分析是统计学和回归分析中常用的一种方法,旨在通过分析模型残差来评估模型效果。
它为回归分析提供了一种定量的方法,检查预测的精度。
由于残差分析的优势,越来越多的研究者使用它来评估统计模型的有效性,以及确定回归分析是否有用。
残差分析能够有效地检测回归模型中存在的偏差或基本构造问题。
通过观察残差分布特征,可以弄清楚回归分析中特征之间的关系。
它可以检测是否存在预测值的偏差,以及实际中的离群值是否影响了分析的准确性。
此外,残差分析可以揭示随机噪声的行为。
残差分析可以检查线性回归的假设,例如水平性,正态分布,无关性等。
如果这些假设不成立,则模型可能被误解为显示具有良好预测能力,但实际上却不是。
最后,残差分析可以用于检测多重共线性。
如果发现自变量之间有相关性,则可以选择更为有效或有意义的模型函数。
残差分析可以检查多重共线性是否影响了统计模型的参数估计,从而避免采用不经过检验的参数来预测新的观测值。
因此,残差分析在回归分析中具有重要作用,可以帮助研究者有效地识别存在的模型偏差,以及检查自变量之间的关系。
这将有助于检查模型的准确性,以及确定自变量的相关性是否会影响分析的有效性。
高考数学复习典型题型专题练习61 残差分析与决定系数
第61讲残差分析与决定系数一、单项选择题(选对方法,事半功倍)1. 在研究线性回归模型时,样本数据(x i,y i)(i=1,2,3,…,n)所对应的点均在直线y=-12x+3上,用R2表示解释变量对于响应变量变化的贡献率,则R2等于()A. -1B. -1 2C. 1D. 22. 对两个变量y和x进行回归分析,得到一组样本数据(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是()A. 由样本数据得到的回归方程y=bx+a必过样本中心点(x,y)B. 残差平方和越小的模型,拟合的效果越好C. 用决定系数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D. 若变量y和x间的相关系数为r=-0.936 2,则变量y和x之间具有线性相关关系3. 某种产品的广告费支出x(单位:万元)与销售额y(单位:万元)之间的关系如下表所示:y与x的经验回归方程为y=6.5x+17.5,当广告支出6万元时,随机误差的残差为()A. -5B. -5.5C. -6D. -6.54. 某种产品的广告支出费用x (单位:万元)与销售量y (单位:万件)之间的对应数据如下表所示:根据表中的数据可得经验回归方程y =2.27x -1.08,R 2≈0.96,以下说法正确的是()A. 第三个样本点对应的残差e ∧3=-1,回归模型的拟合效果一般B. 第三个样本点对应的残差e ∧3=1,回归模型的拟合效果较好 C. 销售量y 的多少有96%是由广告支出费用引起的 D. 销售量y 的多少有4%是由广告支出费用引起的 二、多项选择题(练—逐项认证,考—选确定的)5. (2023·广州模拟)某中学课外活动小组为了研究经济走势,根据该市1999~2021年的GDP(国内生产总值)数据绘制出如图所示的散点图.(第5题)该小组选择了如下两个模型来拟合GDP 值y 随年份x 的变化情况,模型一:y =kx +b (k >0,x >0);模型二:y =k e x +b (k >0,x >0).下列说法正确的有()A. 变量y 与x 正相关B. 根据散点图的特征,模型一能更好地拟合GDP 值随年份的变化情况C. 若选择模型二,y =k e x +b 的图象一定经过点(x ,y )D. 当x =13时,通过模型计算得GDP 值为70,实际GDP 值为71,则残差为16. (2023·济南模拟)进入21世纪以来,全球二氧化碳排放量增长迅速,自2000年至今,全球二氧化碳排放量增加了约40%,我国作为发展中国家,经济发展仍需要大量的煤炭能源消耗.如图所示是2016~2020年中国二氧化碳排放量的统计图表(以2016年为第1年).利用图表中数据计算可得,采用某非线性回归模型拟合时,R 21=0.979 8;采用一元线性回归模型拟合时,经验回归方程为y ∧=1.58x +91.44,R 22=0.983 3.则下列说法正确的是()(第6题)A. 由图表可知,二氧化碳排放量y 与时间x 正相关B. 由决定系数可以看出,线性回归模型的拟合程度更好C. 利用经验回归方程计算2019年所对应的样本点的残差为-0.30D. 利用经验回归方程预计2025年中国二氧化碳排放量为107.24亿吨 三、填空题(精准计算,整洁表达)7. 已知x 和y 的散点图如图所示,在相关关系中,若用y =c 1e c 2x 拟合时的决定系数为R 21,用y ∧=b ∧x +a ∧拟合时的决定系数为R 22,则R 21和R 22中较大的是________.(第7题)8. (2023·漳州模拟)根据下面的数据求得y 关于x 的经验回归方程为y ∧=19.2x +12,则这组数据相对于所求的经验回归方程的4个残差的方差为________.(注:残差是指实际观测值与预测值之间的差)材料的质量y (单位:吨)的相关性,在生产过程中收集4组对应数据(x ,y )如下表所示.(残差=观测值-预测值)根据表中数据,得出y 关于x 的经验回归方程为y =0.7x +a .据此计算出在样本(4,3)处的残差为-0.15,则表中m 的值为________.四、解答题(让规范成为一种习惯)10. 某市某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x (单位:吨)与相应的生产总成本y (单位:万元)的五组对照数据.归方程y ∧=b ∧x +a ∧;(2) 记第(1)问中所求y 与x 的经验回归方程y ∧=b ∧x +a ∧为模型①,同时该企业科研人员利用计算机根据数据又建立了y 与x 的回归模型②:y ∧=12x 2+1.其中模型②的残差图(残差=实际值-预报值)如图(1)所示.(第10题(1))请在图(2)中完成模型①的残差表与残差图,并根据残差图判断哪一个模型更适宜作为y 关于x 的回归方程,并说明理由;(第10题(2))(3) 根据模型①中y 与x 的经验回归方程,预测产量为6吨时生产总成本为多少万元.11. 某小区物业公司决定动手解决小区“停车难”问题,并统计了近六年小区私家车的数量,以编号1对应2017年,编号2对应2018年,编号3对应2019年,以此类推,得到相应数据如下表.试用决定系数R 2分析其拟合效果(R 2精确到0.01);(2) 由于车辆增加,原有停车位已经不能满足有车业主的需求,因此物业公司欲在小区内对原有停车位进行改造,重新规划停车位.若要求在2023年小区停车位数量仍可满足需要,求至少需要规划多少个停车位.参考数据:y i =936,x i y i =4 081,x 2i =91,(y i -y )2=37 586.附:经验回归方程中斜率和截距的最小二乘法估计公式分别为b ∧=∑ni =1x i y i -n x y ∑i =1n x 2i -n x 2,a ∧=y -b ∧x ;决定系数R 2=1-∑ni =1 (y i -y ∧i )2i =1n (y i -y )2,残差e ∧=y i -y ∧i .。
回归模型的残差分析
回归模型的残差分析回归模型的残差分析是指在进行回归分析后,对模型残差进行统计学和经济学的分析。
残差即为实际观测值与回归预测值之间的差异,残差分析是判断回归模型是否符合假设前提的重要方法。
残差分析可以帮助我们检查回归模型的合理性和准确性,评估模型的稳定性,并发现可能存在的问题和异常观测值。
残差分析的主要目的:1.检验回归模型的合理性和准确性:通过检查残差图表,判断模型是否存在违反线性关系、独立性、方差齐性和正态性等假设前提,如果不满足假设前提,可能需要进行模型修正或改进。
2.评估模型的稳定性:通过分析残差随时间或其他相关因素的变化,检查模型是否具有稳定的效应,或是否存在漏项变量或过度拟合等问题。
3.发现异常观测值:通过检查残差进行离群点或异常观测值分析,判断其对模型结果和统计推断的影响。
4.确定修正系数:通过观察残差分布和模型设定,发现变量之间的相关关系或非线性关系,以确定进一步修正模型的变量和系数。
在进行残差分析时,可以使用以下图表和方法:1.残差图:绘制残差与预测值之间的散点图,用于判断残差是否随预测值发生系统性的变化,以检验线性关系的假设。
如果残差无明显模式地分布在水平线附近,表明回归模型可能符合线性关系的假设。
2.偏差-方差图:绘制观测值与残差的散点图,用于检验方差齐性的假设。
如果散点图呈现出对称的瓶颈图形,表明方差齐性假设可能成立。
3.实际值-预测值图:绘制实际观测值与预测值的散点图,用于检查回归模型的准确性和稳定性。
如果散点图基本分布在一条直线附近,表明模型预测准确且稳定。
4.正态概率图:绘制残差的累积分布函数图,用于检验残差的正态性假设。
如果观测值近似于一条直线,表明残差满足正态分布。
5.杠杆影响图和离群点分析:通过计算观测值的杠杆值和离群度来判断异常观测值,并对其进行敏感性分析。
6.残差与时间或其他相关变量的图表:绘制残差随时间或其他相关变量的变化图表,用于判断模型的稳定性和可能存在的问题。
回归模型的残差分析
回归模型的残差分析残差分析是回归分析中十分重要的一环,它用于评估回归模型的适应性和假设的合理性。
在进行回归分析之后,我们得到了模型的参数估计值和拟合值,而残差则反映了模型拟合值与实际观测值之间的差异。
通过对残差进行分析,我们可以检验回归模型的显著性,评估模型的拟合程度,判断模型是否适合应用于未知数据,以及对模型的改进进行指导。
残差的计算方式为实际观测值减去预测值,即e = y - y_hat,其中e代表残差,y代表观测值,y_hat代表拟合值。
残差分析主要包括检验残差是否符合正态分布、是否存在异方差以及是否存在自相关等。
首先,我们进行残差的正态性检验。
正态性是许多统计分析的基础假设之一,因此我们需要确保残差服从正态分布。
可以通过绘制残差的直方图和正态概率图来检验其正态性。
如果直方图呈现钟形曲线且正态概率图上的点呈现线性分布,则残差可以被认为是近似正态分布的。
其次,我们需要检验残差是否存在异方差性。
异方差性指的是残差的方差在不同的自变量取值下不相等。
可以通过绘制残差与拟合值的散点图,观察其是否呈现出漏斗形状或者其他规律性变化。
此外,还可以使用Bartlett检验或Levene检验来定量地检验异方差性是否显著。
最后,我们需要检验模型中的残差是否存在自相关。
自相关性指的是残差之间存在线性相关关系,即残差在时间或空间上不是独立的。
可以通过绘制残差与时间(或其他自变量)的散点图来观察是否存在相关性。
此外,还可以使用Durbin-Watson统计量进行定量检验,该统计量范围在0到4之间,值越接近2则表示残差越具有独立性。
除了上述基本的残差分析方法,还可以进行一些拓展的分析。
例如,可以采用Cook's距离来识别离群点,即那些对模型具有很大影响的观测值。
另外,还可以利用像素密度图、局部回归图等图形工具来发现数据结构和模式。
需要注意的是,残差分析仅仅是检验模型的一个手段,不应该成为判断模型好坏的唯一标准。
如何用残差分析的方法判断回归模型的拟合效果
如何用残差分析的方法判断回归模型的拟合效果发表时间:2018-11-21T17:17:31.740Z 来源:《中小学教育》2019年2月04期作者:佟希君[导读]佟希君黑龙江省肇东市第一中学 151100中图分类号:G635.1 文献标识码:A 文章编号:ISSN1001-2982(2019)04-079-02如何判断回归模型的拟合效果好坏是回归分析的重要内容,在回归分析中通常用残差分析来判断回归模型的拟合效果一:残差分析的方法1.残差图(1)残差:对于样本点,它们的随机误差为,,其估计值,,称为相应于点的残差,即=真实值—预报值(2)残差图:纵坐标为残差,横坐标可以选为样本编号或其他相关数据。
残差点比较均匀地落在水平的带状区域中,说明选用的模型拟合效果好,带状区域宽度越窄,说明拟合精度越高,回归方程的精度越高。
(3)残差平方和:越小拟合效果越好2.相关系数:(1)(2)时线性相关性越强,越弱(3)时认为两个变量有很强的相关关系3相关指数(1)(2)越大,说明残差平方和越小,模型拟合效果越好,,模型拟合效果差(3)与相关系数作用相同(4)实际应用中,应选用大的回归模型二.典例分析例.某运动员训练次数与运动成绩之间的数据关系如下:次数x 30 33 35 37 39 44 46 50成绩y 30 34 37 39 42 46 48 51试预测该运动员训练47次以及55次的成绩。
解:(1)作出该运动员训练次数x与成绩y之间的散点图,如图所示,由散点图可知,它们之间具有线性相关关系。
图1(2)列表计算:次数成绩30 30 900 900 90033 34 1089 1156 112235 37 1225 1369 129537 39 1369 1521 144339 42 1521 1764 163844 46 1936 2116 202446 48 2116 2304 220850 51 2500 2601 2550由上表可求得,,,所以所以回归直线方程为(3)计算相关系数将上述数据代入得,查表可知,而,故y与x 之间存在显著的相关关系。
回归模型的残差分析之欧阳语创编
回归模型的残差阐发山东 胡年夜波判断回归模型的拟合效果是回归阐发的重要内容,在回归阐发中,通经常使用残差阐发来判断回归模型的拟合效果。
下面具体阐发残差阐发的途径及具体例子。
一、残差阐发的两种办法1、差阐发的基本办法是由回归方程作出残差图,通过观测残差图,以阐发和发明观测数据中可能呈现的毛病以及所选用的回归模型是否恰当;在残差图中,残差点比较均匀地落在水平区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型的拟合精度越高,回归方程的预报精度越高。
2、可以进一步通过相关指数∑∑==---=n i ini i iy y y yR 1212^2)()(1来衡量回归模型的拟合效果,一般规律是2R 越年夜,残差平方和就越小,从而回归模型的拟合效果越好。
二、典例阐发:例1、某运带动训练次数与运动成果之间的数据关系如下:试预测该运带动训练47次以及55次的成果。
解答:(1)作出该运带动训练次数x 与成果y 之间的散点图,如图1所示,由散点图可 知,它们之间具有线性相关关系。
(2)列表计算:由上表可求得875.40,25.39==y x ,12656812=∑=i ix,13731812=∑=i i y ,1318081=∑=ii i yx ,所以∑∑==---=81281)())((i ii i ix xy y x xβ.0415.18812281≈--=∑∑==i ii ii xxy x yx00302.0-≈-=x y βα,所以回归直线方程为.00302.00415.1^-=x y(3)计算相关系数 将上述数据代入∑∑∑===---=8181222281)8)(8(8i i i i i ii y y x x yx yx r 得992704.0=r ,查表可知707.005.0=r ,而05.0r r >,故y 与x 之间存在显著的相关关系。
(4)残差阐发:作残差图如图2,由图可知,残差点比较均匀地散布在水平带状区域中,说明选用的模型比较合适。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回归模型的残差分析
山东胡大波
判断回归模型的拟合效果是回归分析的重要内容,在回归分析中,通常用残差分析来判断回归模型的拟合效果。
下面具体分析残差分析的途径及具体例子。
一、残差分析的两种方法
1、差分析的基本方法是由回归方程作出残差图,通过观测残差图,以分析和发现观测数据中可能出现的错误以及所选用的回归模型是否恰当;在残差图中,残差点比较均匀地落在水平区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型的拟合精度越高,回归方程的预报精度越高。
2、可以进一步通过相关指数
∑
∑
=
=
-
-
-
=
n
i
i
n
i
i
i
y
y
y
y
R
1
2
1
2
^
2
)
(
)
(
1来衡量回归模型的拟合效果,一般规律是2
R越大,残差平方和就越小,从而回归模型的拟合效果越好。
二、典例分析:
例1、某运动员训练次数与运动成绩之间的数据关系如下:
次数/x 30 33 35 37 39 44 46 50
成绩/y 30 34 37 39 42 46 48 51
试预测该运动员训练47次以及55次的成绩。
解答:(1)作出该运动员训练次数x与成绩y之间的散点图,如图1所示,由散点图可知,它们之间具有线性相关关系。
次数
i
x
成绩
i
y2
i
x2
i
y
i
x
i
y
30 30 900 900 900
33 34 1089 1156 1122
35 37 1225 1369 1295
37 39 1369 1521 1443
39 42 1521 1764 1638
44 46 1936 2116 2024
46 48 2116 2304 2208
50 51 2500 2601
2550
由上表可求得875.40,25.39==y x ,
126568
1
2=∑=i i
x
,137318
1
2=∑=i i y ,
131808
1
=∑=i
i i y
x ,所以∑∑==---=
8
1
2
8
1
)()
)((i i
i i i
x x
y y x x
β.0415.188
1
2
28
1≈--=
∑∑==i i
i i
i x
x
y x y
x
00302.0-≈-=x y βα,所以回归直线方程为.00302.00415.1^
-=x y
(3)计算相关系数
将上述数据代入∑∑∑===---=
8
1
8
1
2
22
2
8
1
)
8)(8(8i i i i i i
i y y x x y
x y
x r 得992704.0=r ,查表可知
707.005.0=r ,而05.0r r >,故y 与x 之间存在显著的相关关系。
(4)残差分析:
作残差图如图2,由图可知,残差点比较均匀地分布在水平带状区域中,说明选用的模型比较合适。
计算残差的方差得884113.02
=σ
,说明预报的精度较高。
(5)计算相关指数2
R
计算相关指数2
R =0.9855.说明该运动员的成绩的差异有98.55%是由训练次数引起的。
(6)做出预报
由上述分析可知,我们可用回归方程.00302.00415.1^
-=x y 作为该运动员成绩的预报值。
将x =47和x =55分别代入该方程可得y =49和y =57,
故预测运动员训练47次和55次的成绩分别为49和57. 点评:一般地,建立回归模型的基本步骤为:
(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量;
(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等);
(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y =bx +a );
(4)按一定规则估计回归方程中的参数(如最小二乘法);
(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性等等),若存在异常,则检查数据是否有误,或模型是否合适等。
例2、某城区为研究城镇居民月家庭人均生活费支出和月人均收入的相关关系,随机抽月人均收入x/元 月人均生活费y/元 300 255 390 324 420 335 520 360 570 450 700 520 760 580 800 600 850 630 1080
750
试预测人均月收入为1100元和人均月收入为1200元的两个家庭的月人均生活费。
解答:作出散点分布图如图,由图可知,月人均生活费与人均收入之间具有线性相关关系。
通过计算可知4.480,639==y x ,
461030010
1
2=∑=i i
x
,254052610
1
2=∑=i i y ,
341756010
1
=∑=i
i i y
x ,所以=
β.6599.0101010
1
2
210
1≈--∑∑==i i
i i
i x
x
y x y
x
751.58≈-=x y βα,所以回归直线方程为.751.586599.0^
+=x y
计算相关系数得993136.0=r ,而查表知632.005.0=r ,故月人均收入与月人均生活费之间具有显著相关关系。
作残差图如图,由图可知,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适。
计算相关指数得2R =0.9863,说明城镇居民的月人均生活费的差异有98.63%是由月人均收入引起的。
由以上分析可知,我们可以利用回归方程.751.586599.0^
+=x y 来作为月生活费的预报值。
将x =1100代入回归方程得y =784.59元;将x =1200代入回归方程得y =850.58元。
故预测月人均收入分别为1100元和1200元的两家庭的月人均生活费分别为784.59元和850.58元。