光纤G.652
培训学习资料-G652、G657光纤介绍-2022年学习资料
G.652.A、G.652.B、G.652.C和G.652.D光纤光缆的特性-参数-数值-光纤类型-模场直 -范围-8.6-9.5um-包层直径-标称-125.0μm-125.0um-omin-1300m-1300 m-色散-%omax-1324hm-1324nm-1324tm-Somin-0.093ps/nm2-k-0 093ps/nm2-km-0.093ps/nm2.km-1310nm-0.5 dB/km-0.4 dB/k -一一-衰减-1550nm-0.35 dB/km-0.3 dB/km-1625nm-04B1m-M-20 ables-PD系数-Q-0.01%-最大PD-0.5ps/km-0.2ps/km-0.2ps./km
Hale Waihona Puke 1G.652光纖的譜損耗曲線-0.6-OH吸收峰-人-20-0.5-10-0.4-0.3-0.2-0.1200-1300-1400-1500-1600-1700-波长nm-光纖的譜損耗曲线
2G.652光纤的分类-G.652光纤是现在网络上应用比较多的一种光纤,ITU-T对于G.652分为四类光 纤G.652A、B、C、D。-G.652四种光纤的分类主要基于PMD偏振模色散的要求和在1383nm处的衰 耗要求。
3G.652光纤技术参数-1.光纤类型-二氧化硅B1.1单模光纤-2.工作波长-满足1310nm和155n 传输窗口的性能指标-3.截止波长-2m涂覆光纤上测试的入c值为1100cm~1280nm,22m成缆光纤上 试的入cc值-≤1270nm。-4.几何特性-模场直径:标称值9.32m±10%。-包层直径:标称值125 mt2心m。-涂层直径:标称值245±10m。-场模不圆度:≤6%。-包层不圆度:<2%-模场/包层同心度 差:≤1.0化m。-包层/涂层同心度误差:≤12.5儿m。
什么是G.652光缆
什么是G.652光缆
什幺是G.652光缆
概述
在我国,目前无论是骨干网还是城域网,主要应用的还是G.652光纤。
过去由于技术的限制光纤只有少数的几种,同时我国已埋设的光纤几乎都是常规单模光纤,选型问题就不那幺重要。
现在新型光纤越来越多。
在设计传输系统和进行传输网建设时,光纤的选型就十分重要。
英国爱达讯工程师为您介绍以下4种G.652特性。
G.652光纤特性
G.652光纤是现在网络上应用比较多的一种光纤,ITU-T对于G.652分为四类光纤。
G.652四种光纤的分类主要基于PMD的要求和在1383nm处的衰耗要求。
G.652.A光纤用于支持G.957和G.691最高速率为STM-16或10Gbit/s最大传输距离为40 km (Ethernet)和STM-256用于G.693的应用。
G.652.B光纤用于支持速率高达STM-64的更高比特率的应用,如G.691和。
G.652光纤技术参数[转帖]
G.652光纤技术参数[转帖]1、光纤类型二氧化硅B1.1单模光纤。
2、工作波长满足13l0nm和1550nm传输窗口的型能指标3、截止波长2m涂覆光纤上测试的λc值为1100cm~1280nm,22m成缆光纤上测试的λcc值≤1270nm。
4、几何性质模场直径:标称值(9.3 μm)±10%。
包层直径:标称值125μm±2μm。
涂层直径:标称值245±10μm。
场模不圆度:≤6%。
包层不圆度:<2%。
模场/包层同心度偏差:≤1.0μm。
包层/涂层同心度误差: ≤12.5μm。
5、涂覆层光纤涂敷层与光纤表面紧密接触不退色、不迁染。
涂覆层须易剥离,以便光纤接续。
6、筛选水平和疲劳系数光纤须通过全长度张力测试,其筛选水平须相当于在应力至少0.42GPa(相当于应变约0.6%)下持续一秒时间。
光纤的疲劳系数≥20。
7、色散特性(1)零色散波长范围为1300~1324nm(2)最大零色散点斜率不大于0.093ps/(n㎡.km)。
(3)1288~1339nm范围内色散系数不大于3.5ps/n㎡.km(4)1271—1360mm范围内色散系数不大于5.3ps/n㎡.km(5)1550nm波长的色散系数不大于18ps/n㎡.km(6)1480—1580nm范围内色散系数不大于20ps/n㎡.km8、衰减特性(1)在13l0nm波长上的最大衰减系数为:0.36dB/km。
在1285~1330nm波长范围内,任一波长上光纤的衰减系数与13l0nm波长上的衰减系数相比,其差值不超过0.03dB/km。
在1550nm波长上的最大衰减系数为:0.21dB/km。
在1480~1580nm波长围为,任一波长上光纤的衰减系数与1550nm波长上的衰数相比,其差值不超过0.05dB/km。
(2)光纤衰减曲线应有良好的线性并且无明显台阶。
用OTDR检测任意一根光纤时,在13l0nm和1550 nm处500m光纤的衰减值不大于(amean±0.10dB)/2, amean是光纤的平均衰减系数。
G652B与G652D
IEC标准光纤分类详解内容提要:按照 IEC 标准分类,IEC 标准将光纤分为A类多模光纤和B类单模光纤。
以下是对IEC标准光纤分类的详细解答。
按照 IEC 标准分类,IEC 标准将光纤分为A 类多模光纤:A1a 多模光纤(50/125μm 型多模光纤)A1b 多模光纤(62.5/125μm 型多模光纤)A1d 多模光纤(100/140μm 型多模光纤)B 类单模光纤:B1.1 对应于 G652 光纤,增加了 B1.3 光纤以对应于G652C 光纤B1.2 对应于 G654 光纤B2 光纤对应于 G.653 光纤B4 光纤对应于 G.655 光纤A 类多模光纤渐变型多模光纤工作于 0.85μm 波长窗口或 1.3μm 波长窗口,或同时工作于这两个波长窗口。
光纤适用于哪个窗口,主要由其带宽指标决定。
多模光纤由于衰减大、带宽小,主要适合于低速率、短距离的场合传输需要,因其传输设备和器件费用低廉、连接容易,至今仍无法由单模光纤完全代替。
常规单模光纤(G.652 光纤)常规单模光纤也称为非色散位移光纤,于 1983 年开始商用。
其零色散波长在1310nm 处,在波长为 1550nm 处衰减最小,但有较大的正色散,大约为18ps/(nm·km)。
工作波长既可选用1310nm,又可选用 1550nm。
这种光纤是使用最为广泛的光纤,我国已敷设的光纤、光缆绝大多数是这类光纤。
G.652 光纤中的三个子类 G.652A、G.652B、G.652C 的区别主要在于:G.652A:最高传输速率为 2.5Gb/sG.652B:最高速率 10Gb/s,最高速率传输时需色散补偿G.652C:低水峰光纤,波长范围更宽,最高速率 10Gb/s,最高速率传输时需色散补偿。
色散位移光纤(G.653 光纤)G.653 光纤又称为色散位移光纤(DSF,Dispersion Shifted Fiber),于 1985 年开始商用。
G.652D光纤技术指标
ps/nm·km
零色散波长
≥1302≤1322
nm
零色散斜率
≤0.091
ps/nm2·km
偏振模色散系数(PMD)
单根光纤最大值
≤0.2
ps/km1/2
光纤链路值
≤0.08
ps/km1/2
光纤截止波长λc
≥1180≤1330
nm
光缆截止波长λcc
≤1260
nm
模场直径(MFD)
1310nm
9.2±0.4
温度-湿度循环附加衰减
-10℃到+85℃,90%相对湿度
≤0.05
dB/km
加速老化附加衰减
85℃,85%相对湿度,30天
≤0.05
dB/km
浸水附加衰减
20℃,30天
≤0.05
dB/km
机械特性
筛选张力
离线
≥9.0
N
≥1.0
%
≥100
KPSI
宏弯附加衰减
1550nm
1圈φ32mm
≤0.50
dB
100圈φ60mm
G.652D光纤技术指标
特性
条件
数据
单位
光学特性
衰减
1310nm
≤0.36
dB/km
1383nm(氢老化后)
≤0.35
dB/km
1550nm
≤0.22
dB/km
1625nm
≤0.24
dB/
波长范围内的色散
1285~1340nm
≥-3.0≤3.0
ps/nm·km
1550nm
≤18
ps/nm·km
1625nm
几何特性
ITU-T G.652单模光纤和光缆的特性
国际电联 2005 版权所有。未经国际电联事先书面许可,不得以任何手段复制本出版物的任何部分。
ii
ITU-T G. 652 建议书(06/2005)
ITU-T G.652 建议书
单模光纤和光缆的特性
摘要
本建议书描述了单模光纤和光缆的几何、机械及传输属性,光纤的零色散波长约为 1310nm。这 种光纤原本是为在 1310nm 波长范围内使用而进行优化的,但也可以用于 1550nm 波长范围。这个最 初于 1984 年编制的最新版本的建议书明确提出,PMDQ 必须在未成缆光纤上标明,并缩小某些容差。 本版旨在保持此光纤在高性能光传输系统不断发展的情况下继续取得商业成功。
表3g652c属性类似于g652a允许在1360nm到1530nm的扩展波长范围内的部分传表4g652d属性类似于g652b允许在1360nm到1530nm的扩展波长范围内的部分传652062005652a波长1310nm标称值范围8695标称值1250核壳同心度误差最大值06包层不圆度最大值10光缆截止波长最大值1260半径30mm100宏弯损耗在1550nm区域的最大值01db表面应力最小值069gpa0min1300nm0max1324nm色散系数0max0092psnmkm在1310nm区域的最大值05dbkm衰减系数在1550nm区域的最大值04dbkm20光缆001pmd系数最大pmdq05pskm注根据62的规定确定了未成缆光纤的最大pmd652062005652b波长1310nm标称值范围869506m标称值1250m包层直径核壳同心度误差最大值06m包层不圆度最大值10光缆截止波长最大值1260nm半径30mm100宏弯损耗在1625nm区域的最大值01db表面应力最小值069gpa0min1300nm0max1324nm色散系数0max0092psnmkm衰减系数在1310nm区域的最大值04dbkm在1550nm区域的最大值035dbkm在1625nm区域的最大值04dbkm20根光缆001pmd系数pmd的最大值020pskm注根据62的规定确定了未成缆光纤 参考性文献 ........................................................................................................................
g.652光纤光缆标准
g.652光纤光缆标准
G.652 是国际电信联盟(ITU)制定的一项光纤光缆标准。
它定
义了单模光纤的参数和特性,是目前最常用的单模光纤标准之一。
G.652 标准主要涵盖了以下几个方面:
1. 光纤的传输特性,G.652 标准规定了光纤的传输特性,包括
衰减、色散、带宽等参数。
这些参数决定了光纤的传输性能和距离
限制。
2. 光纤的几何参数,G.652 标准定义了光纤的几何参数,包括
芯径、包层直径、包层折射率等。
这些参数决定了光纤的光学特性
和光信号的传输效率。
3. 光纤的波长特性,G.652 标准规定了光纤在不同波长下的传
输特性。
这些特性对于光纤通信系统中的波分复用和波长分割多路
复用等技术起到重要作用。
4. 光纤的机械特性,G.652 标准还包括了光纤的机械特性,如
抗拉强度、抗弯曲性能和温度稳定性等。
这些特性对于光纤的安装、
维护和使用具有指导意义。
总的来说,G.652 光纤光缆标准对单模光纤的参数和特性进行
了明确规定,为光纤通信系统的设计、建设和运营提供了技术依据。
它在全球范围内得到广泛应用,并成为了现代光纤通信的基础。
G652光纤标准
INTERNATIONAL TELECOMMUNICATION UNIONITU-T G.652(03/2003) TELECOMMUNICATIONSTANDARDIZATION SECTOROF ITUSERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKSTransmission media characteristics – Optical fibre cablesCharacteristics of a single-mode optical fibre and cableCAUTION !PREPUBLISHED RECOMMENDATIONThis prepublication is an unedited version of a recently approved Recommendation. It will be replaced by the published version after editing. Therefore, there will be differences between this prepublication and the published version.FOREWORDThe International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.NOTEIn this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.INTELLECTUAL PROPERTY RIGHTSITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.ITU 2003All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.Recommendation G.652CHARACTERISTICS OF A SINGLE-MODE OPTICAL FIBRE AND CABLEITU-T RECOMMENDATION G.652CHARACTERISTICS OF A SINGLE-MODE OPTICAL FIBRE AND CABLESummaryThis Recommendation describes the geometrical, mechanical, and transmission attributes of a single-mode optical fibre and cable which has zero-dispersion wavelength around 1310 nm. This fibre was originally optimized for use in the 1310 nm wavelength region, but can also be used in the 1550 nm region. This is the latest revision of a Recommendation that was first created in 1984. This revision creates new categories of the fibre having a reduced PMD link design value of 0.20 ps/ km, in order to accommodate systems with higher bit rate/distance products than had been possible with prior revisions. This revision is intended to maintain the continuing commercial success of this fibre in the evolving world of high-performance optical transmission systems. Source and history1984ITU-T Recommendation G.652 was created by Study Group 15 (1981-1984)1988ITU-T Recommendation G.652 was revised by Study Group 15 (1985-1988).1992ITU-T Recommendation G.652 was revised by Study Group 15 (1989-1992).1996ITU-T Recommendation G.652 was revised by Study Group 15 (1993-1996).2000ITU-T Recommendation G.652 was revised by Study Group 15 (1997-2000) and was approved under the WTSC Resolution No. 1 procedure in October 2000. This revision includes the addition of tables for different levels of system support.2003 ITU-T Recommendation G.652 was revised by Study Group 15 (2001-2004) and was approved as the sixth version, under AAP procedure on XXX of 200y. This revision clarified the nomenclature for the different categories or fibre. Also, in accordance with the agreement on spectral band description, the upper limit of the L-band is changed from 16XX to 1625 nm. The attenuation characteristics for reduced water peak categories, (G.652.C and G.652.D) are generalised to a broad region from a single wavelength. PMD requirements are added for all categories and two categories have reduced limits (compared to 0.5 ps/ km). For the macrobending test, mandrel diameter is reduced to 30 mm radius.As seen above, this Recommendation has evolved considerably over the years; therefore the reader is warned to consider the appropriate version to determine the characteristics of already deployed product, taking into account the year of production. In fact, products are expected to comply with the Recommendation that was in force at the time of their manufacture, but may not fully comply with subsequent versions of the Recommendation.Contents1. Scope2.References2.1Normative references2.2Informative references3. Terms and definitions4. Abbreviations5. Fibre attributes5.1 Mode field diameter5.2 Cladding diameter5.3 Core concentricity error5.4 Non-circularity5.5 Cut-off wavelength5.6 Macrobending loss5.7 Material properties of the fibre5.8 Refractive index profile5.9 Longitudinal uniformity of chromatic dispersion5.10 Chromatic dispersion6. Cable attributes6.1 Attenuation coefficient6.2 Polarisation mode dispersion coefficient7. Tables of recommended valuesAppendix I – Information for link attributes and system design Appendix II - BibliographyITU-T RECOMMENDATION G.652CHARACTERISTICS OF A SINGLE-MODE OPTICAL FIBRE AND CABLE(revised in 2000)1 ScopeThis Recommendation describes a single-mode optical fibre cable which has the zero-dispersion wavelength around 1310 nm and which is optimised for use in the 1310 nm wavelength region, and which can also be used in the 1550 nm region (where this fibre is not optimised). Both analogue and digital transmission can be used with this fibre.The geometrical, optical, transmission and mechanical parameters are described below in three categories of attributes:fibre attributes are those attributes that are retained throughout cabling and installation.cable attributes that are recommended for cables as they are delivered.link attributes that are characteristic of concatenated cables, describing estimation methods of system interface parameters based on measurements, modelling, or other considerations.Information for link attributes and system design are in Appendix I.This Recommendation, and the different performance categories found in the tables of clause 7, is intended to support the following related system Recommendations:G.957G.691G.692G.693G.959.1Note: Depending on the length of the links, dispersion accommodation can be necessary for some ITU-T G.691, ITU-T G.692, or G.959.1 application codes.The meaning of the terms used in this Recommendation and the guidelines to be followed in the measurement to verify the various characteristics are given in ITU-T Recommendations G.650.1 and G.650.2. The characteristics of this fibre, including the definitions of the relevant parameters, their test methods and relevant values, will be refined as studies and experience progress.2 ReferencesThe following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation2.1Normative referenceThe following ITU-T Recommendation contains provisions which, through reference in this text, constitute provisions of this Recommendation.–ITU-T Recommendation G.650.1 (2002), Definitions and test methods for linear, deterministic attributes of single-mode fibres.–ITU-T Recommendation G.650.2 (2002), Definitions and test methods for statistical and non-linear related attributes of single-mode fibres–IEC 60793-2-50, Sectional specification for class B single-mode fibres2.2Informative referencesThe following ITU-T Recommendations contain provisions which, through reference in this text, constitute other relevant information.–ITU-T Recommendation G.663 (2000), Application related aspects of optical fibre amplifier devices and sub-systems.ITU-T Recommendation G.691(2000), Optical interfaces for single channel SDH systems with optical amplifiers, and STM-64 systems.ITU-T Recommendation G.692(1998), Optical interfaces for multichannel systems with optical amplifiers.ITU-T Recommendation G.957(1999), Optical interfaces for equipments and systems relating to the synchronous digital hierarchy.ITU-T Recommendation G.693 (2002), Optical interfaces for intra-office applications.ITU-T Recommendation G.959.1 (2000), Optical transport network physical layerinterfaces3 Terms and definitionsFor the purpose of this Recommendation, the definitions given in ITU-T Recommendations G.650.1 and G.650.2 apply. Values shall be rounded to the number of digits given in the Tables of Recommended values before conformance is evaluated.4 AbbreviationsFor the purpose of this Recommendation, the following abbreviations are used:GPa GigaPascalsSDH Synchronous Digital HierarchyWDM Wavelength Division MultiplexingDWDM Dense wavelength division multiplexingPMD Polarisation mode dispersionPMD Q Statistical parameter for link PMDDGD Differential group delayA eff Effective areaTBD To be determined5 Fibre attributesOnly those characteristics of the fibre providing a minimum essential design framework for fibre manufacture are recommended in this clause. Ranges or limits on values are presented in the tables of clause 7. Of these, cable manufacture or installation may significantly affect the cabled fibre cut-off wavelength and PMD. Otherwise, the recommended characteristics will apply equally to individual fibres, fibres incorporated into a cable wound on a drum, and fibres in an installed cable.5.1 Mode field diameterBoth a nominal value and tolerance about that nominal value shall be specified at 1310 nm. The nominal that is specified shall be within the range found in clause 7. The specified tolerance shall not exceed the value in clause 7. The deviation from nominal shall not exceed the specified tolerance.5.2 Cladding diameterThe recommended nominal value of the cladding diameter is 125 m. A tolerance is also specified and shall not exceed the value in clause 7. The cladding deviation from nominal shall not exceed the specified tolerance.5.3 Core concentricity errorThe core concentricity error shall not exceed the value specified in clause 7.5.4 Non-circularity5.4.1 Mode field non-circularityIn practice, the mode field non-circularity of fibres having nominally circular mode fields is found to be sufficiently low that propagation and jointing are not affected. It is therefore not considered necessary to recommend a particular value for the mode field non-circularity. It is not normally necessary to measure the mode field non-circularity for acceptance purposes.5.4.2 Cladding non-circularityThe cladding non-circularity shall not exceed the value found in clause 7.5.5 Cut-off wavelengthThree useful types of cut-off wavelength can be distinguished:a) cable cut-off wavelength cc;b) fibre cut-off wavelength c;c) jumper cable cut-off wavelength cj.Note - For some specific submarine cable applications other cable cut-off wavelength values may be required.The correlation of the measured values of c, cc and cj depends on the specific fibre and cable design and the test conditions. While in general cc < cj < c, a general quantitative relationship cannot be easily established. The importance of ensuring single mode transmission in the minimum cable length between joints at the minimum operating wavelength is paramount. This may be performed by recommending the maximum cable -cut-off wavelength cc of a cabled single-modefibre to be 1260 nm, or for typical jumpers by recommending a maximum jumper cable cut-off to be 1250 nm, or for worst case length and bends by recommending a maximum fibre cut-off wavelength to be 1250 nm.The cable cut-off wavelength, cc, shall be less than the maximum specified in clause 7.5.6 Macrobending lossMacrobending loss varies with wavelength, bend radius and number of turns about a mandrel with a specified radius. Macrobending loss shall not exceed the maximum given in clause 7 for the specified wavelength(s), bend radius, and number of turns.Note 1 – A qualification test may be sufficient to ensure that this requirement is being met.Note 2 –The recommended number of turns corresponds to the approximate number of turns deployed in all splice cases of a typical repeater span. The recommended radius is equivalent to the minimum bend-radius widely accepted for long-term deployment of fibres in practical systems installations to avoid static-fatigue failure.Note 3 –If for practical reasons fewer than the recommended number of turns are chosen to implement, it is suggested that not less than 40 turns, and a proportionately smaller loss increase be required.Note 4 – The macrobending loss recommendation relates to the deployment of fibres in practical single-mode fibre installations. The influence of the stranding-related bending radii of cabled single-mode fibres on the loss performance is included in the loss specification of the cabled fibre. Note 5 – In the event that routine tests are required a smaller diameter loop with one or several turns can be used instead of the recommended test, for accuracy and measurement ease. In this case, the loop diameter, number of turns, and the maximum permissible bend loss for the several-turn test should be chosen so as to correlate with the recommended test and allowed loss.5.7 Material properties of the fibre5.7.1 Fibre materialsThe substances of which the fibres are made should be indicated.Note –Care may be needed in fusion splicing fibres of different substances. Provisional results indicate that adequate splice loss and strength can be achieved when splicing different high-silica fibres.5.7.2 Protective materialsThe physical and chemical properties of the material used for the fibre primary coating and the best way of removing it (if necessary) should be indicated. In the case of single jacketed fibre similar indications shall be given.5.7.3 Proofstress levelThe specified proofstress p shall not be less than the minimum specified in clause 7.Note – The definitions of the mechanical parameters are contained in clause 1.2 and clause 2.6 of ITU-T Recommendation G.650.1.5.8 Refractive index profileThe refractive index profile of the fibre does not generally need to be known.5.9 Longitudinal uniformity of chromatic dispersionUnder study.Note - At a particular wavelength, the local absolute value of the chromatic dispersion coefficient can vary away from the value measured on a long length. If the value decreases to a small value at a wavelength that is close to an operating wavelength in a WDM system, four-wave mixing can induce the propagation of power at other wavelengths, including, but not limited to other operating wavelengths. The magnitude of the four-wave mixing power is a function of the absolute value of the chromatic dispersion coefficient, the chromatic dispersion slope, the operating wavelengths, the optical power, and the distance over which four-wave mixing occurs.For DWDM operations in the 1550 nm region, the chromatic dispersion of ITU-T G.652 fibres is large enough to avoid four-wave mixing. Chromatic dispersion uniformity is therefore not a functional issue. 5.10Chromatic dispersion coefficientThe chromatic dispersion coefficient, D, is specified by putting limits on the parameters of a chromatic dispersion curve that is a function of wavelength in the 1310 nm region. The chromatic dispersion coefficient limit for any wavelength, λ, is calculated with the minimum zero-dispersion wavelength, λ0min , the maximum zero-dispersion wavelength, λ0max , and the maximum zero-dispersion slope coefficient, S 0max , according to:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-4m in 0m ax 04m ax 0m ax 01414λλλλλλλS D SThe values of λ0min , λ0max , and S 0max shall be within the ranges specified in clause 7. The aboveequation, when used with these values, can be used to determine upper limits of the chromatic dispersion coefficient in the 1550 nm region.Note – It is not necessary to measure the chromatic dispersion coefficient of single-mode fibre on a routine basis.6 Cable attributesSince the geometrical and optical characteristics of fibres given in clause 5 are barely affected by the cabling process, this section gives recommendations mainly relevant to transmission characteristics of cabled factory lengths.Environmental and test conditions are paramount and are described in the guidelines for test methods. 6.1Attenuation coefficientThe attenuation coefficient is specified with a maximum value at one or more wavelengths in both the 1310 nm and 1550 nm regions. The optical fibre cable attenuation coefficient values shall not exceed the values found in clause 7.Note – The attenuation coefficient may be calculated across a spectrum of wavelengths, based on measurements at a few (3 to 4) predictor wavelengths. This procedure is described in 5.4.4 of Recommendation G.650.1 and an example is given in Appendix III of that Recommendation.6.2 Polarisation mode dispersion coefficientNot all tables include requirements on PMD. When required, cabled fibre polarisation mode dispersion shall be specified on a statistical basis, not on an individual fibre basis. The requirements pertain only to the aspect of the link calculated from cable information. The metrics of the statistical specification are found below. Methods of calculations are found in IEC 61282-3, and are summarised in Appendix IV of Recommendation G.650.2.The manufacturer shall supply a PMD link design value, PMD Q, that serves as a statistical upper bound for the PMD coefficient of the concatenated optical fibre cables within a defined possible link of M cable sections. The upper bound is defined in terms of a small probability level, Q, which is the probability that a concatenated PMD coefficient value exceeds PMD Q. For the values of M and Q given in clause 7, the value of PMD Q shall not exceed the maximum PMD coefficient specified in clause 7.Measurements on uncabled fibre can be used to generate cabled fibre statistics when the design and processes are stable and the relationships between the PMD coefficients of uncabled and cabled fibres are known. When such a relationship has been demonstrated, then the cabler may optionally specify a maximum PMD value on the uncabled fibres.The limits on the distribution of PMD coefficient values can be interpreted as being nearly equivalent to limits on the statistical variation of the differential group delay (DGD), that varies randomly with time and wavelength. When the PMD coefficient distribution is specified for optical fibre cable, equivalent limits on the variation of DGD can be determined. The metrics and values for link DGD distribution limits are found in Appendix I.Note 1 – PMD Q specification would be required only where cables are employed for systems that have the specification of the max DGD, i.e. for example, PMD Q specification would not be applied to systems recommended in G.957.Note 2 –PMD Q should be calculated for various types of cables, and they should usually be calculated using sampled PMD values. The samples would be taken from cables of similar construction.Note 3 –The PMD Q specification should not be applied to short cables such as jumper cables, indoor cables and drop cables.7 Tables of Recommended valuesThe following tables summarise the recommended values for a number of categories of fibres that satisfy the objectives of this Recommendation. These categories are largely distinguished on the basis of PMD requirements and attenuation requirement at 1383 nm. See Appendix I for information about transmission distances and bit-rates relative to PMD requirements.Table 1/G.652, G.652.A Attributes, contains the recommended attributes and values needed to support applications such as those recommended in G.957 and G.691 up to STM-16 – as well as 10 Gbit/s up to 40 km (Ethernet) and STM-256 for G.693.Table 2/G.652, G.652.B Attributes, contains recommended attributes and values needed to support higher bit rate applications, up to STM-64, such as some in G.691 and G.692, STM-256 for some applications in G.693 and G.959.1. Depending on the application, chromatic dispersion accommodation may be necessary.Table 3/G.652, G.652.C Attributes, is similar to G.652.A, but allows transmissions in portions of an extended wavelength range from 1360 nm to 1530 nm.Table 4/G.652, G.652.D Attributes, is similar to G.652.B, but allows transmissions in portions of an extended wavelength range from 1360 nm to 1530 nm.TABLE 1/G.652 G.652.A ATTRIBUTES____________________0An optional maximum PMD coefficient on uncabled fibre may be specified by cablers to support the primary requirement on cable PMD Q if it has been demonstrated for a particular cable construction.____________________0An optional maximum PMD coefficient on uncabled fibre may be specified by cablers to support the primary requirement on cable PMD Q if it has been demonstrated for a particular cable construction.____________________0An optional maximum PMD coefficient on uncabled fibre may be specified by cablers to support the primary requirement on cable PMD Q if it has been demonstrated for a particular cable construction.2 This wavelength region can be extended to 1 260 nm by adding 0.07 dB/km induced Rayleigh scattering loss to the attenuation value at 1 310 nm. In this case, the cable cut-off wavelength should not exceed 1250 nm.3 The sampled attenuation average at this wavelength shall be less than or equal to the value specified at 1310 nm after hydrogen ageing according to IEC 60793-2-50 regarding the B1.3fibre category..____________________Table 4/G.652 G.652.D Attributes____________________0An optional maximum PMD coefficient on uncabled fibre may be specified by cablers to support the primary requirement on cable PMD Q if it has been demonstrated for a particular cable construction.2 This wavelength region can be extended to 1 260 nm by adding 0.07 dB/km induced Rayleigh scattering loss to the attenuation value at 1 310 nm. In this case, the cable cut-off wavelength should not exceed 1250 nm.3 The sampled attenuation average at this wavelength shall be less than or equal to the value specified at 1310 nm after hydrogen ageing according to IEC 60793-2-50 regarding the B1.3 fibre category..____________________APPENDIX I (to Recommendation G.652)Information for link attributes and system designA concatenated link usually includes a number of spliced factory lengths of optical fibre cable. The requirements for factory lengths are given in clauses 5 and 6 of this Recommendation. The transmission parameters for concatenated links must take into account not only the performance of the individual cable lengths but also the statistics of concatenation.The transmission characteristics of the factory length optical fibre cables will have a certain probability distribution which often needs to be taken into account if the most economic designs are to be obtained. The following paragraphs in this section should be read with this statistical nature of the various parameters in mind.Link attributes are affected by factors other than optical fibre cables by such things as splices, connectors, and installation. These factors cannot be specified in this Recommendation. For the purpose of link attribute values estimation, typical values of optical fibre links are provided in the tables below. The estimation methods of parameters needed for system design are based on measurements, modeling or other considerations. I.1AttenuationThe attenuation A of a link is given by:yx L A c s ααα++=where = typical attenuation coefficient of the fibre cables in a link s = mean splice loss x = number of splices in a link c = mean loss of line connectorsy = number of line connectors in a link (if provided)L = Link lengthA suitable margin should be allocated for future modifications of cable configurations (additional splices, extra cable lengths, ageing effects, temperature variations, etc.). The above equation does not include the loss of equipment connectors. The typical values found in I.5 are for the attenuation coefficient of optical fibre links. The attenuation budget used in designing an actual system should account for the statistical variations in these parameters. I.2Chromatic dispersionThe chromatic dispersion in ps/nm can be calculated from the chromatic dispersion coefficients of the factory lengths, assuming a linear dependence on length, and with due regard for the signs of the coefficients (see clause 5.10).When these fibres are used for transmission in the 1550 nm region, some forms of chromatic dispersion compensation are often employed. In this case, the average link chromatic dispersion isused for design. The measured dispersion in the 1550 nm window can be characterised within the 1550 nm window by a linear relationship with wavelength. The relationship is described in terms of the typical chromatic dispersion coefficient and dispersion slope coefficient at 1550 nm.Typical values for the chromatic dispersion coefficient, D 1550, and chromatic dispersion slope coefficient, S 1550, at 1550 nm are found in I.1. These values, together with link length, L Link , can be used to calculate the typical chromatic dispersion for use in optical link design.()()[]155015501550-+=λλS D L D Link Link (ps/nm)I.3 Differential group delay (DGD)The differential group delay is the difference in arrival times of the two polarisation modes at a particular wavelength and time. For a link with a specific PMD coefficient, the DGD of the link varies randomly with time and wavelength as a Maxwell distribution that contains a single parameter, which is the product of the PMD coefficient of the link and the square root of the link length. The system impairment due to PMD at a specific time and wavelength depends on the DGD at that time and wavelength. So, means of establishing useful limits on the DGD distribution as it relates to the optical fibre cable PMD coefficient distribution and its limits have been developed and are documented in IEC 61282-3 and are summarised in Appendix IV. The metrics of the limitations of the DGD distribution follow:Note – The determination of the contribution of components other than optical fibre cable is beyond the scope of this Recommendation, but is discussed in IEC 61282-3.Reference link length, L Ref : A maximum link length to which the maximum DGD and probability will apply. For longer link lengths, multiply the maximum DGD by the square root of the ratio of actual length to the reference length.Typical maximum cable length, L Cab : The maxima are assured when the typical individual cables of the concatenation or the lengths of the cables that are measured in determining the PMD coefficient distribution are less than this value.Maximum DGD, DGD max : The DGD value that can be used when considering optical system design.Maximum probability, P F : The probability that an actual DGD value exceeds DGD max I.4Nonlinear coefficientThe effect of chromatic dispersion is interactive with the nonlinear coefficient, n 2/A eff , regarding system impairments induced by nonlinear optical effects (see G.663 and G.650.2). Typical values vary with the implementation. The test methods for nonlinear coefficient remain under study. I.5Tables of common typical valuesThe values in the Tables I.1 and I.2 are representative of concatenated optical fibre links according to clauses I.1 and I.3, respectively. The implied fibre induced maximum DGD values in Table I.2 are intended for guidance in regard to the requirements for other optical elements that may be in the link.Table I.1/G.652 Representative value of concatenated optical fibre links。
G.652单模光纤具体分类 G.652A B C D 有什么区别?
G.652单模光纤具体分类 G.652A B C D 有什么区别?
G.652单模光纤称为非色散位移光纤,也被叫作1310nm波长性能最佳的单模光纤,1983年开始投入商用,其零色散波长在1310nm,在波长为1550nm时衰减最少,但有较大的正色散,其色散系数为18ps/(nm.km),所以G.652工作波长既可选1310nm,也可选1510nm,是目前应用最广泛的单模光纤。
G.652单模光纤按特性分为A B C D四类主要区别在宏弯损耗、衰减系数、PMD系数上有所差异。
形成这种差异的原因在于生产制造技术,1998朗讯公司采用新的生产技术尽可能消除原料中的OH根形成的1383nm附近的水吸收峰,使光纤的损耗完由坡墩的本征损耗所决定
1.G.65
2.A支持10Gbit/s系统传输距离可达400km,10Gbit/s以太网的传输达40km,支持40Gbit/s系统的距离为2km。
2.G.652.B型光纤,支持10Gbit/s系统传输距离可达3000km以上,40Gbit /s系统的传输距离为80km。
3.G.652.C型光纤,基本属性与G.652A相同,但在1550nm的衰减系数更低,而且消除了1380nm附近的水吸收峰,即系统可以工作在1360~1530nm波段。
4.G.652D型光纤的属性与G.652B光纤基本相同,而衰减系数与G.652C光纤相同,即系统可以工作在1360~1530nm波段。
G.652.D是所有G.652级别中指标最严格的并且完全向下兼容的,结构上与普通的G.652光纤没有区别,是目前最先进的城域网用非色散位移光纤。
g.652 光纤 纤芯直径
g.652 光纤纤芯直径
G.652是ITU-T(国际电信联盟电信标准化部门)定义的一种光纤标准,也称为单模光纤。
在G.652标准中,定义了几种光纤的参数,包括纤芯直径。
对于G.652光纤,通常有两种主要的规格,分别是G.652.A和G.652.B。
以下是它们的一些基本参数:
* G.652.A:
* 纤芯直径(Core Diameter):约为8.2至9.5微米。
* G.652.B:
* 纤芯直径(Core Diameter):约为8.6至9.5微米。
这里的纤芯直径是指光纤中心的核心部分的直径。
G.652标准主要用于单模光纤,适用于长距离传输系统,如光纤通信网络。
请注意,具体的纤芯直径可能会因制造商而异,因此在实际选择和使用光纤时,最好查看相关的产品规格表或与制造商联系,以确保准确的参数。
1。
G652、G657光纤介绍
附加衰减:光纤成缆之后产生的衰减。
1.附加衰减: 在实际使用的光缆线路中,光缆中的光纤不可避免地受 到各种弯曲应力 作用。这些弯曲应力作用的结果是 使光纤中的传导模变换为辐射模而导致光 功率损失。这些弯曲应力作用的结果是使光纤中的传导模变换为辐射模而导 致光功率损失。 光纤的弯曲损耗α与光纤的折射率 分布结构参数(相对折射率△、纤芯 半径a)有关,即 α=k(a/△)2 式中,k是比例常数,它与光纤接触面的粗糙程度和 材料特性有关。 结论:抗弯曲光纤应该具有比较大的芯/包折射率差的结构.
G.652、G.652012.7.29
一、G.652光纤知识简介
G.652光纤为标准单模光纤,是指零色散波长在1.3μm窗口的单模光纤。 其特点是当工作波长在1.3μm时,光纤色散很小,系统的传输距离只受光纤衰 减所限制。 但这种光纤在1.3μm波段的损耗较大,约为0.3dB/km~0.4dB/km;在 1.55μm波段的损耗较小,约为0.2dB/km~0.25dB/km。色散在1.3μm波段为 3.5ps/nm·km,在1.55μm波段的损耗较大,约为20ps/nm·km。这种光纤可支持 用于在1.55μm波段的2.5Gb/s的干线系统,但由于在该波段的色散较大,若传 输10Gb/s的信号,传输距离超过50公里时,就要求使用价格昂贵的色散补偿模 块。
8. 衰减特性 (1)在13l0nm波长上的最大衰减系数为:0.36dB/km。在1285~1330nm波长范围 内,任一波长上光纤的衰减系数与13l0nm波长上的衰减系数相比,其差值不超过 0.03dB/km。 在1550nm波长上的最大衰减系数为:0.21dB/km。在1480~1580nm波长范围 内,任一波长上光纤的衰减系数与1550nm波长上的衰数系数相比,其差值不超过 0.05dB/km。 (2)光纤衰减曲线应有良好的线性并且无明显台阶。用OTDR(光时域反射仪) 检测任意一根光纤时,在13l0nm和1550nm处500m光纤的衰减值不大于 (amean±0.10dB)/2, amean是光纤的平均衰减系数。 9. 宏弯损耗 以半径37.5mm送绕100圈,在1550波长上测得的弯曲附加损耗≤0.5dB 10. 衰减不均匀性 光纤衰减不均匀性:≤0.05dB
G652、G657光纤介绍
对于G.652C型光纤,基本属性与G.652A相同,但在1550nm的衰减系数更低, 而且消除了1380nm附近的水吸收峰,即系统可以工作在1360~1530nm波段。
G.652D型光纤的属性与G.652B光纤基本相同,而衰减系数与G.652C光纤相 同,即系统可以工作在1360~1530nm波段。
吸收衰减:由石英玻璃中的OH离子吸收和过渡金属离子吸收所造成的衰减 。 散射衰减:主要取决于瑞利散射和波导散射。瑞利散射属于固有散射,是由于
光纤材料中折射率不均匀造成的。波导 散射是与光纤波导结构缺陷 有关的散射。 附加衰减:光纤成缆之后产生的衰减。
1.附加衰减: 在实际使用的光缆线路中,光缆中的光纤不可避免地受 到各种弯曲应力
10. 衰减不均匀性 光纤衰减不均匀性:≤0.05dB
二、G.657光纤知识简介
在FTTH建设中,由于光缆被安放在拥挤的管道中或者经过多次弯曲 后被固定在接线盒或插座等具有狭小空间的线路终端设备中,所以FTTH用 的光缆应该是结构简单、敷设方便和价格便宜的光缆。因此,一些著名的 制造厂商纷纷开展了抗弯曲单模光纤的研究。为了规范抗弯曲单模光纤产 品的性能,ITU-T于2006年12月发布了ITU-TG.657“接入网用弯曲不敏感单 模光纤和光缆特性”的标准建议,即G.657光纤标准。
作用。这些弯曲应力作用的结果是 使光纤中的传导模变换为辐射模而导致光 功率损失。这些弯曲应力作用的结果是使光纤中的传导模变换为辐射模而导 致光功率损失。
光纤的弯曲损耗α与光纤的折射率 分布结构参数(相对折射率△、纤芯 半径a)有关,即 α=k(a/△)2
G.652单模光纤与G.655非零色散光纤特性参数
◆常规单模G.652光纤◆光学特性衰减≤ 0.36dB/km (@ 1310nm)≤ 0.22dB/km (@ 1550nm)色散,绝对值≤ 3.5ps/km.nm(@ 1288-1339nm)≤ 18.0ps/km.nm(@ 1550nm) 零色散波长1300 - 1324零色散斜率≤ 0.092ps/km.nm2光缆截止波长(λCC)≤ 1260nm偏振模色散(PMD) ≤ 0.5ps/◆几何特性模场直径(MFD) 9.3 ± 0.5 μm(@ 1310nm)包层直径125 ± 1 μm模场/包层同心度误差≤ 0.6μm包层不圆度≤2%涂层直径245±10μm◆机械特性筛选应变( 持续1秒) 1%(100 kpsi)弯曲附加衰减(Φ75mm轴100圈)≤0.1dB(@1550nm)动态疲劳参数≥20◆环境特性耐温附加衰减(-60~+85℃) ≤0.05dB/km(@1310nm &1550nm)◆非零色散位移单模G.655 光纤◆光学特性衰减A≤ 0.22dB/km (@B≤ 0.25dB/km (@ 1550nm)色散 2.0≤︱D(λ)︱≤6.0ps/km.nm(@1530~1565)光缆截止波长(λcc) ≤1470nm偏振模色散(PMD) ≤0.5PS/◆几何特性模场直径(MFD) 9.5 ± 0.5 μm(@ 1550nm)色层直径125 ± 1 μm模场/包层同心度误差≤ 0.6μm包层不圆度≤2%涂层直径245±10μm◆机械特性筛选应变( 持续1秒) 1%(100 kpsi)弯曲附加衰减(Φ75mm轴100圈)≤0.1dB(@1550nm)动态疲劳参数≥20◆环境特性耐温附加衰减(-60~+85℃) ≤0.05dB/km(@1310nm &1550nm) 摘自“西古光纤光缆有限公司”网页,转载注明,谢绝商业用途。
G.652单模光纤具体分类 G.652A B C D 有什么区别
单模光纤具体分类 B C D 有什么区别
单模光纤称为非色散位移光纤,也被叫作1310nm波长性能最佳的单模光纤,1983年开始投入商用,其零色散波长在1310nm,在波长为1550nm时衰减最少,但有较大的正色散,其色散系数为18ps/,所以工作波长既可选 1310nm,也可选1510nm,是目前应用最广泛的单模光纤。
单模光纤按特性分为A B C D四类主要区别在宏弯损耗、衰减系数、PMD系数上有所差异。
形成这种差异的原因在于生产制造技术,1998朗讯公司采用新的生产技术尽可能消除原料中的OH根形成的1383nm附近的水吸收峰,使光纤的损耗完由坡墩的本征损耗所决定。
型光纤,支持10Gbit/s系统传输距离可达3000km以上,40Gbit /s系统的传输距离为80km。
.652A相同,但在1550nm的衰减系数更低,而且消除了1380nm附近的水吸收峰,即系统可以工作在1360~1530nm波段。
.,结构上与普通的光纤没有区别,是目前最先进的城域网用非色散位移光纤。
什么是G.652和零水峰光缆
(1)G.652光纤单模光纤,芯径一般为9或10μm,在1310nm波长处,其的总色散为零。
从光纤的损耗特性来看,1310nm正好是光纤的一个低损耗窗口,因此1310nm波长区就成了光纤通信的一个很理想的工作窗口,另一个窗口为1550nm。
1310n m常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此常规单模光纤又称G652光纤。
ITU-T对于G.652分为四类光纤,分别是G.652.A、G.652.B、G.652.C和G.652.D,四种光纤的分类主要基于PMD(色散)的要求和在1383nm处的衰耗要求(2003年1月修改G.652光纤标准)。
⌝ G.652.A光纤用于支持10Gbit/s系统传输距离可达400km;10Gbit/s以太网的传输达40km,支持40Gbit/s系统的距离为2km。
⌝ G.652.B光纤用于必须支持10Gbit/s系统传输距离可达3000km以上,40Gbit/s系统的传输距离为80km。
⌝ G.652.C基本属性与G.652A相同,但在1550nm的衰减系数更低,而且消除了1380n m附近的水吸收峰,即系统可以工作在1360~1530nm波段。
与G.652.A类似,但是允许的波长范围扩展到从1360 nm到1530 nm。
⌝ G.652.D属性与G.652B光纤基本相同,而衰减系数与G.652C光纤相同,即系统可以工作在1360~1530nm波段。
无水吸收峰光纤G.652.D比G.652.C的PMDQ要求更严格。
(2)零水峰光缆,又称全波光缆传统单模光纤的制造过程中,在1400nm波长区域会出现一个叫水峰的光吸收峰,此吸收峰源于氢氧根离子的吸收。
水峰增加了在此特定区域的衰减损耗。
随着像40Gb/s等更高传输率应用的研究和开发,多信道波分复用(WDM-波长划分多路复用)越多被采用。
传统单模光纤在1400n m的水峰区使E-波段的4个信道无法使用,因此无法获得最理想的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G.652
G.652光纤是目前已广泛使用的单模光纤,称为1310nm性能最佳的单模光纤,又称为色散未移位的光纤。
按纤芯折射率剖面,又可分为匹配包层光纤和下陷包层光纤两类,两者的性能十分相近,前者制造简单,但在1550nm波长区的宏弯损耗和微弯损耗稍大;而后者连接损耗稍大。
主要指标:[1]
1、衰减:ITU-T G.652建议规定光纤在1310nm窗口和1550nm窗口的衰减常数应分别小于0.5dB/km和0.4dB/km。
1310窗口目前一般在0.3~0.4dB/km,典型值0.35dB/km;1550窗口目前一般在0.17~0.25dB/km,典型值0.20dB/km。
2、色散:零色散波长的允许范围是1300~1324nm。
在1550nm窗口的色散系数是正的。
在波长1550nm处,色散系数D的典型值是17ps/(nm²km),最大值一般不超过20ps/(nm²km)。
3、PMD:ITU-T 建议规定,G.652光纤的PMD系数小于0.5ps/(km)^1/2,即400km 光纤的PMD是10ps。
但是,早期铺设的光纤由于受当时的工艺条件限制,PMD 系数有可能较大。
4、模场直径:1310nm处的模场直径是8.6~9.5μm,最大偏差不能超过±10%。
在1550nm处,ITU-T 建议没有规定模场直径,但一般大于0.3μm。
主要特性:
G.652单模光纤特性
光学特性
典型衰减,@1310nm
≤0.34 dB/km
典型衰减,@1550nm
≤0.20 dB/km
零色散波长
1300-1324nm
零色散斜率
≤0.092ps/(nm²km)
模场直径(MFD) @1310nm
9.2±0.4μm
偏振模色散(PMD)
单根光纤最大值
≤0.2ps/√km
链路最大值
≤0.12ps/√km
截止波长λcc
≤1260nm
有效群折射率(Neff) @1310nm
1.4675
有效群折射率(Neff) @1550nm
1.4680
宏弯损耗(60mm直径,100圈)@1550nm
≤0.1dB
背向散射特性(在1310nm和1550nm处)
衰减局部不连续点
≤0.05dB
衰减均匀性
≤0.05dB
背向散射衰减系数差异(双向测量)
≤0.05dB/km
几何特性
包层直径
125±1μm
包层不圆度
≤1%
芯层/包层同心度误差
≤0.5μm
涂覆层直径(未着色)
245±5μm
包层/涂覆层同心度误差
≤12.0μm
光纤翘曲半径
≥4m
交货长度(公里/盘)
24.7km;25.2km
机械性能
筛选应力最小值
0.69Gpa(100kpsi)
涂层剥离力(典型值)
1.4N
动态疲劳参数Nd
≥20
环境特性(在1310nm和1550nm)
温度特性(-60°C ~+85°C)
≤0.05dB/km
热老化特性(85°C±2°C,30天)
≤0.05dB/km
浸水性能(23°C±2°C,30天)
≤0.05dB/km
湿热性能(85°C±2°C, RH85%,30天)
≤0.05dB/km
G.653色散位移光纤
针对衰减和零色散不在同一工作波长上的特点,20世纪80年代中期,人们开发成功了一种把零色散波长从 1.3μm移到 1.55μm的色散位移光纤(DSF,Dispersion-ShiftedFiber)。
ITU把这种光纤的规范编为G.653。
然而,色散位移光纤在1.55μm色散为零,不利于多信道的WDM传输,用的信道数较多时,信道间距较小,这时就会发生四波混频(FWM)导致信道间发生串扰。
如果光纤
线路的色散为零,FWM的干扰就会十分严重;如果有微量色散,FWM干扰反而还会减小。
针对这一现象,人们研制了一种新型光纤,即非零色散光纤(NZ-DSF)———G.655。
光纤在 1.3μm附近有最小的色散,称为零色散波长,这正是早期光纤通信采用1.3μm为工作波长的原因.如果改变光纤的材料以及光芯的半径,则零色散波长会有相应的变化.人们利用多包层的光纤还能在1.25--1.65μm波长范围调节零色散波长.
使零色散波长移开1.3μm的光纤被称为色散位移光纤.
G.652光纤为单模光纤。
主要指标
1、衰减:目前一般在 0.19~0.25dB/km。
2、色散:G.653 的零色散波长在 1550nm 附近,在1525~1575nm 范围内,最大色散系数是3.5ps/(nm²km)。
由于在1550窗口,特别是在 C_band,色散位移光纤的色散系数太小或可能为零,对于密集波分复用(Dense Wavelength Division Multiplexing,DWDM)系统很容易引起四波混频效应,因此DWDM系统一般尽量不使用色散光纤。
3、PMD:ITU-T 建议规定,G.653 光纤的 PMD 系数小于 0.5ps/(km)1^2,即 400km 光纤的 PMD 是 10ps。
4、模场直径:1550nm 处的模场直径是 7.8~8.5μm,最大偏差不能超过±10%。
[1]
G.655非零色散光纤
针对色散位移光纤在1.55μm色散为零,会产生四波混频,导致信道间发生串扰,不利于多信道的WDM系统的问题,如果有微量色散,FWM干扰反而还会减小。
针对这一特点,人们研制了非零色散光纤(NZ-DSF)。
非零色散光纤实质上是一种改进的色散位移光纤,其零色散波长不在 1.55μm,而是在 1.525μm或1.585μm处。
非零色散光纤削减了色散效应和四波混频效应,而标准光纤和色散移位光纤都只能克服这两种缺陷中的一种,所以非零色散光纤综合了标准光纤和色散位移光纤最好的传输特性,既能用于新的陆上网络,又可对现有系统进行升级改造,它特别适合于高密度WDM系统的传输,所以非零色散光纤是新一代光纤通信系统的最佳传输介质。
当光纤传输速率较低、距离较短时,采用G.655光纤进行传输的办法是可行的,但是G.655光纤并没有解决色散问题,高速长距离的传输中仍然需要色散补偿。