《高电压技术》第一篇电介质的电气强度第二节电子崩.pptx

合集下载

高电压技术第一章-PPT课件

高电压技术第一章-PPT课件

第一章 电介质的极化、电导和损耗
夹层式极化:使夹层电介质分界面上出现电 荷积聚的过程。由于夹层极化中有吸收电 荷,故夹层极化相当于增大了整个电介质 的等值电容。 夹层式极化的特点:极化过程缓慢;是非弹 性的;只有在直流电压下或低频电压作用下 ,极化才能呈现出来,有能量损耗。
第一章 电介质的极化、电导和损耗
第一章 电介质的极化、电导和损耗
第一章 电介质的 极化、 电导和损耗
• 要求
熟悉电介质在电场作用下的极化、电 导和损耗等物理现象,以及它们在工程上 的合理应用。
第一章 电介质的极化、电导和损耗
知识点 ● 电介质的极化、电导和损耗的概念 ● 各类电介质的极化、电导和损耗的特 点 ● 相对介电常数εr ● 电介质的等值电路 ● 介质损失角正切tanδ ● 电介质极化、电导和损耗在工程上的 意义
定义:无外电场时对外不显电性。外电场 作用下由于电子发生相对位移而发生极 化。 特点:极化过程时间极短,约10-14~10-15 s ;极化是弹性的,无能量损耗;与电源 频率、温度无关。
第一章 电介质的极化、电导和损耗
图1-2 离子式极化示意图
定义:发生于离子结构的电介质中。正常 对外不呈现极性,在外电场作用下正、 负离子偏移其平衡位置,使介质内正、 负离子的作用中心分离,介质对外呈现 极性。 特点:时间极短,约10-12~10-13s;极化是 弹性的,无能量损耗;极化程度与电源 频率无关,随温度升高而略有增加。
第一章 电介质的极化、电导和损耗
相对介电常数εr
它是表征电介质在电场作用下极化程度 的物理量
εr的值由电介质的材料 决定,并且与温度、频 率等因素有关。
第一章 电介质的极化、电导和损耗
第一章 电介质的极化、电导和损耗

高电压技术 第一章第二节 电子崩

高电压技术 第一章第二节 电子崩
的碰撞电离次数平均值。 即是一个电子在单位长度行程内新电离出的电子数或正离子数。

注意: α必须是电子发生碰撞且电离的次数,若电子只发生
了碰撞没有导致电离则不能计入α中。
School of Electrical Engineering and Information SEEI
We are located in CHENGDU
Sichuan University
第一节 带电粒子的产生和消失
一.气体放电的概念
气体放电——气体中流通电流的各种形式。
1. 正常状态:优良的绝缘体。
在一个立方厘米体积内仅含几千个带电粒子,但这些 带电粒子并不影响气体的绝缘。 空气的利用:架空输电线路个相导线之间、导线与地 线之间、导线与杆塔之间的绝缘;变压器相间的绝缘等。
Sichuan University
α过程的分析(电子崩的计算)
第二节 电子崩
③ 途中新增的电子数或正离子数△n
n na n0 n0 (e αd 1)
na
④ 电子电流增长规律 将式 n n0e x 两边乘以电子电荷qe
式中:I0—初始电子引起的初始电流

d
I I 0e αx
λe
e e e 式中:A、B—与气体种类有关的常数; E—电场强度; e e P—气体压力。
1


xi
xi
ui E
1

ui e E
APe
e
T P 1 当气温不变时, AP , Aui B
e ∝

BP E
School of Electrical Engineering and Information SEEI

(完整版)电子崩.ppt

(完整版)电子崩.ppt

优选
7
电子崩形成的电流
• 1 为了分析电子碰撞电离和电子崩形成的电流, 引入电子碰撞电离系数α。
• 2 α的意义:表示一个电子沿电场方向运动1cm 的行程 所完成的碰撞电离次数平均值。
优选
8
如图1-5为平板电极气 隙,板内电场均匀,设外 界电离因子每秒钟使阴极 表面发射出来的初始电子 数为n0。
概率为e e,所以也就是碰撞电离的概率。
根据碰撞电离系数 的定义,即可得出:
1
xi
e e
1
Ui
e eE
e
e
(1-10)
优选
16
由第一节公式
e
k T 内容可知,电子的平均自
r 2 p
由长度e与气温 T成正比、与气压 p成反比,即:
e
T p
优选
17
当气温不变时,式(1-10)即可改写为:
Bp
优选在曲线oa段电流随电压的提高而增大这是由于电极空间的带电粒子向电极运动加速而导致复合数的减少所致优选当电压接近a点电流时电流趋向于饱和值因为这时外界电离因子所产生的带电粒子几乎能全部抵达电极所以电流值仅取决于电离因子的强弱而与所加电压无关优选一电子崩的形成外界电离因子在阴极附近产生了一个初始电子如果空间电场强度足够大该电子在向阳极运动时就会引起碰撞电离产生一个新的电子初始电子和新电子继续向阳极运动又会引起新的碰撞电离产生更多电子
Ape E
(1-11)
式中A、B是两个与气体种类有关的常数。
由上式不难看出:
➢电场强度E增大时, 急剧增大;
➢ p很大或很小时, 都比较小。
优选
18
➢高气压时, e 很小,单位长度上的碰撞次数很多,但能引

高电压技术(全套)PPT课件

高电压技术(全套)PPT课件
17电介质极化种类及比较极化类型产生场合所需时间能量损耗产生原因电子式极化任何电介质10141015束缚电子运行轨道偏移离子式极化离子式结构电介质10121013几乎没有离子的相对偏移偶极子极化极性电介质1010102夹层极化多层介质的交界面101自由电荷的移动1812电介质的介电常数在真空中有关系式式子中e场强矢量d与e同向比例常数为真空的介电常数10854109880在介质中d与e同向为介质的相对介电常数它是没有量纲和单位的纯数
9
§1.0 电力系统的绝缘材料
绝缘的作用:
绝缘的作用是将电位不等的导体分隔开,使其没有电 气的联系并能保持不同的电位。
分类:
气体绝缘材料:空气,SF6气体等 固体绝缘材料:陶瓷,橡胶,玻璃,绝缘纸等 液体绝缘材料:变压器油 混合绝缘:电缆,变压器等设备
10
§1.1 电介质的极化
定义:电介质在电场作用下产生的束缚电荷的弹 性位移和偶极子的转向位移现象,称为电 介质的极化。
上述的三种极化是带电质
点的弹性位移或转向形成的, 而空间电荷极化的机理则与上 述三种完全不同,它是由带电 质点(电子或正、负离子)的移 动形成的。
最明显的空间电荷极化是 夹层极化。在实际的电气设备 中,如电缆、电容器、旋转电 机、变压器、互感器、电抗器 等的绝缘体,都是由多层电介
质组成的。
如图l-4所示,各层介质的电容分别为C1和C2;各层介质的电导分别为G1 和G2;直流电源电压为U。
26
(2)计算用等效电路(或简化等效电路)(从工程实际测量出发)
GeqR11k
2CP 2RP 1(CPRP)2
CeqCg
CP
1(CPRP)2
27
(3) 相量图
——介质损耗角 ——功率因数角

高电压技术2PPT课件

高电压技术2PPT课件

ed 常数
ed 108
流注的形成与阴极的表面过程无关 流注理论与汤逊放电理论的适用条件不同,二者互为补充。基本 上都是定性理论,不能用来精确计算击穿电压。
第六节 不均匀电场中气隙的放电特性
一、不均匀电场中气隙的放电特征 电晕放电
稍不均匀电场和极不均匀电场的划分依据:电场的不均匀系数 f
p Ts p 2.9 T Ps T
注意:p和T的单位
Ub f d
第五节 气体放电的流注理论
一、汤逊放电理论的局限性
不适用于高气压、长间隙,不能解释雷电放电现象
二、流注放电理论
考虑了高气压、长间隙下若干因素对气体放电过程的影响
(1)空间电荷对原有电场的畸变作用
两个强场区之间形 成一个利于复合的 弱电场区-辐射源
均匀电场:起始电压=击穿电压
不均匀电场:起始电压<击穿电压
三、汤逊理论的适用范围
低气压、短间隙:pd<26.66kPa· cm
第四节 起始电压与气压的关系
一、汤逊理论对巴申定律的解释
Ub
巴申定律:气隙的击穿电压 是气体压强和间隙距离乘积 的函数
pd
根据汤逊自持放电条件可以求出在均匀电场中 起始放电电压
(一)正极性
电晕起始电压有所提高,剩余正空间电荷加强了正离子外部空间的电场,使 整个击穿电压有所降低。
(二)负极性
电晕起始电压有所降低,剩余正空间电荷削弱了外围空间朝向极板方向的电 场,使整个间隙的击穿电压有所提高。 输电线路和电气设备外绝缘的击穿多发生在工频电压的正半周
四、长间隙(大于1m)的击穿过程
巴申曲线
B( pd ) U0 A( pd ) ln ln(1 1 / )

《高电压技术一》PPT课件

《高电压技术一》PPT课件

2、在电场的作用下,电介质中出现的电气现象: 弱电场——电场强度比击穿场强小得多 如:极化、电导、介质损耗等。 强电场——电场强度等于或大于放电起始场 强或击穿场强: 如:放电、闪络、击穿等。
强电场下的放电、闪络、击穿等电气现象是 我们本篇所要研究的主要内容。
3、几个基本概念
击穿:在电场的作用下,电介质由绝缘状态突变为 良导电状态的过程。 放电:特指气体绝缘的击穿过程。
电气设备中常用的气体介质 : 空气、压缩的高电气强度气体(如SF6) 纯净的、中性状态的气体是不导电的,只有气体中出现
了带电粒子(电子、正离子、负离子)后,才可能导电, 并在电场作用下发展成各种形式的气体放电现象。
辉光放 火花放电(雷闪)

大气压力下。
气压较低, 电源功率较小时, 电源功率很小时, 间隙间歇性击穿, 放电充满整个间隙。 放电通道细而明亮。
称为气体的电气强度,通常称之为平均击穿场强。
击穿场强是表征气体间隙绝缘性能的重要参数。
1、电介质的分类
按物质形态分:
➢气体电介质 ➢液体电介质 ➢固体电介质 其中气体最常见。气体介质同其它介质相比,具有在 击穿后完全的绝缘自恢复特性,故应用十分广泛。
按在电气设备中所处位置分:
外绝缘: 一般由气体介质(空气)和固体介质(绝缘子 )联合构成。 内绝缘: 一般由固体介质和液体介质联合构成。
ห้องสมุดไป่ตู้
第一节 带电粒子的产生和消失
(2)电离的四种形式
• 电子要脱离原子核的束缚成为自由电子,则必须给予其能量。能量来源的不同 带电粒子产生的方式就不同。
• 因此,根据电子获得能量方式的不同,带电粒子产生的方式可分为以下几种 。
第一节 带电粒子的产生和消失

高电压技术绝缘部分PPT课件

高电压技术绝缘部分PPT课件
B
Ae T
=f(T) 或 R= f(T)
T
R
在测量电介质的电导或绝缘电阻时,必须
注意温度。
.
18
§1.3 电介质的损耗
一. 电介质损耗的基本概念 1. 在电场的作用下,电介质由于电导引起的损耗和有 损极化(如偶极子极化、夹层极化等)引起的损耗, 总称为电介质的损耗。 2. 等值电路: (1) 细化等效电路(从物理概念出发) R lk ——泄漏电阻,代表电导损耗。 C g ——介质真空和无损耗极化所形成的电容,代表 介质的无损极化。 R p ——有损耗极化形成的等效电阻. 代表各种 C p ——有损耗极化形成的等效电容. 有损极化
.
37
§2.2 气隙的击穿特性
静态击穿电压U。——长时间作 用在间隙上能使间隙击穿的最低 电压。 击穿时间tb——从开始加压的瞬 时起到气隙完全击穿为止总的时 间称为击穿时间。
tbt0ts tf
.
38
(1)升压时间t0——电压从零升到静态击穿电压U0所需的 时间。
(2)统计时延ts——从电压达到U0的瞬时起到气隙中形成 第一个有效电子为止的时间。
介质在电气设备中是作为绝缘材料使用的。
电介质的电气特性分别用以下几个参数来 表示:即
➢ 介电常数εr——电介质的极化
➢ 电导率γ(或电阻率ρ)——电导 ➢ 介质损耗角正切tgδ——损耗 ➢ 击穿场强E ——抗电性能
.
6
§1.1 电介质的极化
一.极化的定义与作用:
1.极化:电介质在电场作用下发生的束缚电荷的 弹性位移和极性分子的趋向位移的现象,叫极化。 2.作用:削弱外电场。
电子崩(α)过程
阴极表面二次发射 (γ过程)
正离子
图 2-1 低气压、短气隙情况下气体的放电过程

高电压技术电介质的电气强度PPT课件

高电压技术电介质的电气强度PPT课件
和陡度。 电晕放电在静电除尘、静电喷涂、臭
氧发生器等方面有广泛的应用。
第43页/晕放电时,空间电荷对放电的
影响已得到关注。由于高场强电极极性 的不同,空间电荷的极性也不同,对放 电发展的影响也就不同,这就造成了不 同极性的高场强电极的电晕起始电压的 不同,以及间隙击穿电压的不同,称为 极性效应。
第37页/共149页
• 均匀电场是一种少有的特例,在实际电 力设施中常见的却是不均匀电场。
• 为了描述各种结构的电场不均匀程度, 可引入一个电场不均匀系数f,表示为:
f Emax Ev
• f<2时为稍不均匀电场, f>4属不均匀电场。
第38页/共149页
一、电晕放电 在极不均匀场中,当电压升高到一
第17页/共149页
(1)在I-U曲线的OA段: 气隙电流随外施电压的提高而增大,
这是因为带电质点向电极运动的速度加 快导致复合率减小。当电压接近 时,U A 电流趋于饱和,因为此时由外电离因素 产生的带电质点全部进入电极,所以电 流值仅取决于外电离因素的强弱而与电 压无关
第18页/共149页
(2)在I-U曲线的B、C点: 电压升高至 UB 时,电流又开始增
第5页/共149页
第一节 带电粒子的产生和消失
一、带电粒子在气体中的运动 1.自由行程长度
某粒子在单位行程中的碰撞次数Z的 倒数λ称为该粒子的平均自由行程长度。
2.带电粒子的迁移率 v:粒子沿着电场方向 漂移的速度。 E: 电场强度。
k v E
第6页/共149页
3.扩散 在热运动的过程中,粒子会从浓度较大
U0
B( pd)
ln
A( pd)
ln(1
1
)
第30页/共149页

高电压技术第一章课件.ppt

高电压技术第一章课件.ppt
• 这些电离强度和发 展速度远大于初始
电子崩的二次电子
崩不断汇入初崩通
道的过程称为流注。
流注条件
• 流注的特点是电离强度很大和传播速度很快, 出现流注后,放电便获得独立继续发展的能 力,而不再依赖外界电离因子的作用,可见 这时出现流注的条件也就是自持放电的条件。
• 流注时初崩头部的空间电荷必须达到某一个临界 值。对均匀电场来说,自持放电条件为:
n
n0
e
dx
0
n n0ed
• 途中新增加的电子数或正离子数应为:
n na n0 n0 (ed 1)
• 将等号两侧乘以电子的电荷qe ,即得 电流关系式::
I I0ed I0 n0qe
一旦除去外界电离因子?
(三)自持放电与非自持放电
在I-U曲线的BC段 一旦去除外电离因素,
气隙中电流将消失。 外施电压小于U0时 的放电是 非自持放 电。
• 复合可能发生在电子和正离子之间,称 为电子复合,其结果是产生一个中性分 子;
• 复合也可能发生在正离子和负离子之间, 称为离子复合,其结果是产生两个中性 分子。
气体放电的基本理论
• 汤逊理论 • 流注理论 • 巴申定律
一 汤逊气体放电理论
1. 电子崩
• 电子崩的形成过程 • 碰撞电离和电子崩引起的电流 • 碰撞电离系数
一、带电粒子在气体中的运动
(一)自由行程长度
气体中存在电场时, 粒子进行 热运动和 沿电场定向运动
• 各种粒子在气体中运动时 不断地互相碰撞,任一粒 子在1cm的行程中所遭遇 的碰撞次数与气体分子的 半径和密度有关。
• 单位行程中的碰撞次数Z 的倒数λ
–即为该粒子的平均自由行 程长度。
二、带电粒子的产生

《高电压技术》第1篇电介质的电气强度第一节 带电粒子的产生和消失.ppt

《高电压技术》第1篇电介质的电气强度第一节 带电粒子的产生和消失.ppt

◆带电粒子的产生
气体原子的激励和电离
施加能量 W > Wi 自由电子
施加能量 施加能量
自由电子
激发 分级游离
施加能量 激发
光子
◆带电粒子的产生
• 气体原子的激励和电离
△电离
外界以某种方式给处于某一能级轨道上的电子施加 一定的能量,该电子就可能摆脱原子核的束缚而成 为自由电子。原来中性的原子变成带负电的自由电 子和带正电的正离子的物理过程。
● 除了电力工业、电工制造业外,高电压技术 目前还广泛应用于大功率脉冲技术、激光 技术、核物理、等离子体物理、生态与环 境保护、生物学、医学、高压静电工业应 用等领域。
第一篇 电介质的电气 强度
第一章 气体放电的基本物理过程
第一节 带电粒子的产生和消失 第二节电子崩 第三节 自持放电条件 第四节 起始电压与气压的关系 第五节 气体放电的流注理论 第六节 不均匀电场中的放电过程 第七节 放电时间和冲击电压下的气隙击穿 第八节 沿面放电和污闪事故
△电离能
产生电离所需要的最小能量。
△激励
一个或若干个电子向较高能级轨道的跃迁。
△分级电离
先经过激励再接着产生电离的过程。
◆带电粒子的产生
按照所加能量的形式不同,电离可分为:
●热电离 ●光电离 ●碰撞电离
W 3 kT 2
普朗克常数 6.63×10-34J·s
W h
波尔茨曼常数 1.38×10-23J/K
绝对温度,K
W≥Wi(电离能)
条件: hc
Wi
1 2
mv2
eEx
Wi
条件:x Ui E
●电极表面的电离
一些金属的逸出功
金属
逸出功(eV)

高电压技术知识

高电压技术知识

高电压技术知识第一篇电介质的电气强度第1章气体的绝缘特性与介质的电气强度1、气体中带电质点产生的方式热电离、光电离、碰撞电离、表面电离2、气体中带电质点消失的方式流入电极、逸出气体空间、复合3、电子崩与汤逊理论电子崩的形成、汤逊理论的基本过程及适用范围4、巴申定律及其适用范围击穿电压与气体相对密度和极间距离乘积之间的关系。

两者乘积大于0.26cm 时,不再适用5、流注理论考虑了空间电荷对原有电场的影响和空间光电离的作用,适用两者乘积大于0.26cm时的情况6、均匀电场与不均匀电场的划分以最大场强与平均场强之比来划分。

7、极不均匀电场中的电晕放电电晕放电的过程、起始场强、放电的极性效应8、冲击电压作用下气隙的击穿特性雷电和操作过电压波的波形冲击电压作用下的放电延时与伏秒特性50%击穿电压的概念9、电场形式对放电电压的影响均匀电场无极性效应、各类电压形式放电电压基本相同、分散性小极不均匀电场中极间距离为主要影响因素、极性效应明显。

10、电压波形对放电电压的影响电压波形对均匀和稍不均匀电场影响不大对极不均匀电场影响相当大完全对称的极不均匀场:棒棒间隙极大不对称的极不均匀场:棒板间隙11、气体的状态对放电电压的影响湿度、密度、海拔高度的影响12、气体的性质对放电电压的影响在间隙中加入高电强度气体,可大大提高击穿电压,主要指一些含卤族元素的强电负性气体,如SF613、提高气体放电电压的措施电极形状的改进空间电荷对原电场的畸变作用极不均匀场中屏障的采用提高气体压力的作用高真空高电气强度气体SF6的采用第2章液体和固体介质的绝缘的电气强度1、电介质的极化极化:在电场的作用下,电荷质点会沿电场方向产生有限的位移现象,并产生电矩(偶极矩)。

介电常数:电介质极化的强弱可用介电常数的大小来表示,与电介质分子的极性强弱有关。

极性电介质和非极性电介质:具有极性分子的电介质称为极性电介质。

由中性分子构成的电介质。

极化的基本形式电子式、离子式(不产生能量损失)转向、夹层介质界面极化(有能量损失)2、电介质的电导泄漏电流和绝缘电阻气体的电导:主要来自于外界射线使分子发生电离和强电场作用下气体电子的碰撞电离液体的电导:离子电导和电泳电导固体的电导:离子电导和电子电导3、电介质的损耗介质损耗针对的是交流电压作用下介质的有功功率损耗电介质的并联与串联等效回路介质损耗一般用介损角的正切值来表示气体、液体和固体电介质的损耗液体电介质损耗和温度、频率之间的关系4、液体电介质的击穿纯净液体介质的电击穿理论纯净液体介质的气泡击穿理论工程用变压器油的击穿理论5、影响液体电介质击穿的因素油品质、温度、电压作用时间、电场均匀程度、压力6、提高液体电介质击穿电压的措施提高油品质,采用覆盖、绝缘层、极屏障等措施7、固体电介质的击穿电击穿、热击穿、电化学击穿的击穿机理及特点8、影响固体电介质击穿电压的主要因素电压作用时间温度电场均匀程度受潮累积效应机械负荷9、组合绝缘的电气强度“油-屏障”式绝缘油纸绝缘第二篇电气设备绝缘试验第3章绝缘的预防性试验1、绝缘电阻与吸收比的测量用兆欧表来测量电气设备的绝缘电阻吸收比K定义为加压60s时的绝缘电阻与15s时的绝缘电阻比值。

高电压技术优秀课件.ppt

高电压技术优秀课件.ppt

温度很敏感;金属中主要由外加电压决定,杂质、温度不是
主要因素
3.液体和固体电介质的γ与温度的关系:
B/ kT
Ae
温度↑ a.热运动加剧→离子迁移率↑→γ↑ b.介质分子或杂质热离解↑→γ↑
高电压技术优秀课件
4. 固体电介质的体积电阻和表面电阻 体积电阻-电介质内部绝缘状态的真实反映 表面电阻-受介质表面吸附的水分和污秽影响 水分起着特别重要作用。 亲水性介质(玻璃、陶瓷)表面电导大 憎水性介质(石蜡、四氟乙烯、聚苯乙烯)
目前常用的主要有变压器油、电容器油、电缆油 等矿物油
二. 液体电介质的击穿理论
电击穿:认为在电场作用下,阴极上由于强场发射或热发 射出来的电子产生碰撞电离形成电子崩,最后导致液体击 穿
高电压技术优秀课件
气泡击穿:认为液体分子由电子碰撞而产生气泡,或在电 场作用下因其它原因产生气泡,由气泡内的气体放 电, 产生电和热而引起液体击穿。
液体中气泡产生的原因: • 油中易挥发的成分; • 阴极的强场发射或热发射的电子电流加热液体介质,分解
出气体; • 溶解于油中的外来气体; • 由电场加速的电子碰撞液体分子,使液体分子解离产生气
体; 1. 电极上尖的或不规则的凸起物上的电晕放电引起液体气化
高电压技术优秀课件
表面电导小
高电压技术优秀课件
三.电介质的损耗(dielectric loss) 1. 介质损耗的含义
任何电介质在电场作用下都有能量损耗,包 括由电导引起的损耗和由某些极化过程引起的损 耗。电介质的能量损耗简称介质损耗。
高电压技术优秀课件
2. 电介质的三支路等值电路
i i1i2 i3
i1
i2
u C1
无 几乎没有

1-1高电压技术-PPT课件

1-1高电压技术-PPT课件

光子来源

(3)碰撞电离(collision ionization )
1 2 ( mv )与质点电荷量(e)、电场强度( E )以 2 及碰撞前的行程( x )有关.即
电子或离子在电场作用下加速所获得的动能
1 2 mv eEx 2
(1-3)
高速运动的质点与中性的原子或分子碰 撞时,如原子或分子获得的能量等于或大于 其电离能,则会发生电离。 因此,电离条件为
返回
1.1.2 带电质点的消失
带电质点的消失可能有以下几种情况:
带电质点受电场力的作用流入电极

带电质点因扩散而逸出气体放电空间; 带电质点的复合。
带电质点的复合(recombination)
复合:当气体中带异号电荷的粒子相遇时,有可 能发生电荷的传递与中和,这种现象称为复合。 复合可能发生在电子和正离子之间,称为电子 复合,其结果是产生一个中性分子; 复合也可能发生在正离子和负离子之间,称为 离子复合,其结果是产生两个中性分子。
不同金属的逸出功不同,如表1-2所示:
电子从电极表面逸出所需的能量可通过下述途
径获得 :
(1)正离子撞击阴极 (2)光电子发射 (3)强场发射 (4)热电子发射
3、气体中负离子的形成
附着:电子与气体分子碰撞时,不但有可
能引起碰撞电离而产生出正离子和新电子,也
可能发生电子附着过程而形成负离子。 负离子的形成并未使气体中带电粒子的数 目改变,但却能使自由电子数减少,因而对气 体放电的发展起抑制作用。
为此引入系数。 阴极表面电离,统称为 过程。
设外界光电离因素在阴极表面产生了一个自由电
子,此电子到达阳极表面时由于 过程,电子总数
增至 e d 个。因在对 系数进行讨论时已假设每次电

高电压技术ppt

高电压技术ppt
x
P x e


二、带电质点的消失
会出现:激励、电离导致放电、闪络、击穿等。
原子的激励 激励(激发)——原子在外界因素(电场、高温等) 的作用下,吸收外界能量使其内部能量增加,原子 核外的电子将从离原子核较近的轨道上跳到离原子 核较远的轨道上去的过程。 激励能(We)——产生激励所需的能量。等于该 轨道和常态轨道的能级差。
空间游离 带电质点产生 表面游离 气体放电 发展过程 带电质点消失
光游离 热游离
碰撞游离 正离子碰撞阴极 光电效应 强场发射 热电子发射
负离子的形成 带电粒子被极板吸收 带电粒子的扩散 带电粒子的复合
气体放电现象
辉光放电 气压较低, 电源功率很小时, 放电充满整个间 隙。
火花放电(雷闪)
电弧放电
击穿场强E:描述介质抗电能力的常数(耐受电压作用的能力)。
击穿电压:电介质击穿时的最低临界电压。 实际标注的击穿场强是指均匀电场中击穿电压Uj与间隙距离d
之比,也叫电气强度,是表征电介质耐受电压作用的能力。
空气在标准状态下的电气强度为30kV/cm;
注意:不能把不均匀场中气隙Ub与间隙距离之比称为气体的
一、带电质点的产生
二、带电质点的消失
一、带电质点的产生
带电质点的来源:游离 1.定义
游离:中性质点获得外界能量分解出带电质点的过程。
游离能(Wi) :使中性质点发生游离所需的能量。
2.游离的分类
(一)空间游离:碰撞游离、光游离、热游离。
(二)表面游离:热电子发射、二次发射、光发射、
强电场发射。
(一)空间游离
电晕放电
大气压力 极不均匀 大气压力下。 电场,高电场 电源功率较小时, 下,电源功率 强度电极附近 间隙间歇性击穿, 较大时,放电 出现发光薄层。 放电通道细而明亮。具有明亮、持 续的细致通道。

高电压技术全套ppt课件590

高电压技术全套ppt课件590

➢影响扩散的因素:气压越低,温度越高(密度 小),则扩散进行的越快。
➢电子扩散速度快:电子的热运动速度大,自由行 程长度也大,所以其扩散速度也要比离子快得多。
2021年4月13日12时59分
高电压技术 2015
13
第一节 带电粒子的产生和消失
二、带电粒子的产生
电离:产生带电粒子的过程称为电离(或游离),
15
第一节 带电粒子的产生和消失
表1-1 某些气体的激励能和电离能
气体 激励能We (eV) 电离能Wi (eV) 气体 激励能We (eV) 电离能Wi (eV)
N2
6.1
15.6
CO2
10.0
13.7
O2
7.9
12.5
H2O
7.6
12.8
H2
11.2
15.4
SF6
6.8
15.6
1eV 1.602177331019 J
行程长度
e
1 r 2 N
式中 r-----气体分子的半径; N-----气体分子的密度;
由于 N p ,代入上式即得 kT
e
kT r 2 p
式中 p-----气压,Pa; T-----气温,K; k-----波尔茨曼常数,
k 1.381023 J / K
➢结论:电子的平均自由行程与气体种类、气压及温度
发生空间光电离的条件为 h Wi
或者
hc
Wi
式中 λ——光的波长,m;
c——光速 3108 m / s ;
Wi ——气体的电离能,eV。
2021年4月13日12时59分
高电压技术 2015
17
第一节 带电粒子的产生和消失

高电技术总结1-5 174页PPT文档

高电技术总结1-5 174页PPT文档

转向极化(偶极弛豫极化)
需时较长,10-610-2 s;非弹性极 化、有损;影响因素:电场强度 (有关);电源频率(有关); 温度(温度较高时降低,低温段 随温度增加)
夹层介质界面极化(空间电荷极化)
带电质点移动;不均匀夹层介质中; 需时很长;非弹性极化、有损;影 响因素:场强(有关); 电源频率 (低频下存在); 温度(有关); 介质的等值电容增大。
高电压技术
1
第3章 电介质的电气性能
2
电介质的电气性能
电介质电气性能的划分
极化特性:介电常数ε 损耗特性:介损tgδ 电气传导特性:载流子移动、高场强下的
电气传导机理等,电导G 或电阻 R 电气击穿特性:包括击穿机理、劣化、电
压--时间特性曲线(V–t )等,击穿电压 UC 或击穿场强EC
r 和温度的关系相似单位体积中的分
子数与温度的关系(密度与温度)
极性电介质
如蓖麻油、氯化联苯等,r数值在26
范围内。还能用作绝缘介质
11
强极性电介质
如酒精、水等, r>10,其电导也
很大,不能用做绝缘材料。用作 电容器浸渍剂时,可使电容器的 比电容增大,但通常损耗都较大
电场的频率对极性液体电介质介电
工程用纯净液体电介质中,离子性 电导与电场强度的关系(分成两个 区域)
离子性电导随温度的升高而增加
AeBT
固体电介质的电导
中性分子电介质的电导主要是杂质离 子引起的,高温时,中性分子可能发 生分解产生自由离子,形成电导
纯 净 介 质 的 电 导 率 可 达 10-17~10-19 /Ω•cm
气体放电的主要形式
根据气体压力、电源功率、电极形状等因素的不 同,击穿后气体放电可具有多种不同形式。利 用放电管可以观察放电现象的变化

高电压之电介质的电气强度103页PPT

高电压之电介质的电气强度103页PPT
已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
高电压之电介质的电气强度
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 电子崩
◆非自持放电和自持放电的不同特点
电流随外施电压的提 高而增大,因为带电 粒子向电极运动的速 度加快复合率减小
电流饱和,带电粒 子全部进入电极, 电流仅取决于外界 电离因子的强弱 (良好的绝缘状态)
由于电子碰 撞电离引起 的电流增大
电流急剧上升 放电过程进入 了一个新的阶 段(击穿)
自持放电 起始电压
n
图1-5 均匀电场中的电子崩计算
x
n n0e0 dx
n n ex 0
n n0ed
n n n0 n0 (ed 1)
◆影响碰撞电离的因素
1
平均碰撞次数为1/λ (λ:电子平均自由行
程)
碰撞引起电离的概率 碰 撞电离的条件 x Ui / E
T
p
ApeBp E
普 通 高 等 教 育 “十 二 五” 国 家 规 划 教 材 电 气 工 程 及 其 自动化专业系列教材
高电压技术
第 一 篇 电介质的电气强度
绪论
● 高电压技术主要研讨高电压(强电场)下的各种电气物理问题。 ● 高电压技术的发展始终与大功率远距离输电的需求密切相关。 ● 对于电力类专业的学生来说,学习本课程的主要目的是学会正确处理电力系统中过电压与绝 缘这一对矛盾。 ● 为了说明电力系统与高电压技术的密切关系, 以高压架空输电线路的设计为例,在图 0-1中 列出了种种与高电压技术直接相关的工程问题。
谢 谢!
广东水利电力职业技术学院 电力工程系—供用电技术专业
● 除了电力工业、电工制造业外,高电压技术 目前还广泛应用于大功率脉冲技术、激光 技术、核物理、等离子体物理、生态与环 境保护、生物学、医学、高压静电工业应 用等领域。
第一篇 电 介质的电气强度
第一章 气体放电的基本物理过程
第一节 带电粒子的产生和消失 第二节电子崩 第三节 自持放电条件 第四节 起始电压与气压的关系 第 五节 气体放电的流注理论 第六节 不均匀电场中的放电过程 第七节 放电时间和冲击电压下的气隙击穿 第八节 沿面放电和污闪事故
图1-3 气体放电的伏安特性曲线
外施电压小于U0时的放电是非自持放电。电压到达U0 后,电流剧增,间隙中电离过程只靠外施电压已就能维持,
不再需要外界电离因子。
◆电子崩的形成(BC段电流剧增原因)
电子碰撞电离系数α:代表一个电子沿电场
方向运动1cm的行程中所完成的碰撞电离次数
平均值。
dn ndx
dn dx
相关文档
最新文档