初三数学一元二次函数几何变换及应用

合集下载

一元二次函数

一元二次函数

一元二次函数一元二次函数是数学中常见且重要的函数类型。

它的一般形式可以表示为f(x) = ax^2 + bx + c,其中a、b、c为常数,a不为零。

在本文中,我将介绍一元二次函数的特点、图像和应用,并且探讨一些与之相关的数学概念。

特点:1. 定义域和值域:一元二次函数的定义域为实数集R,即对于任意实数x,都存在函数值。

值域则取决于函数的开口方向和导数的正负性。

2. 对称性:一元二次函数的图像关于抛物线的对称轴对称。

对称轴的横坐标可以通过满足函数为0的x解出,即x = -b / (2a)。

这一点在求解函数的最值时有重要作用。

3. 零点:一元二次函数的零点即为使函数值等于零的横坐标。

零点可以通过求解ax^2 + bx + c = 0的根来获得,其中根的个数取决于判别式的值。

图像:一元二次函数的图像是一个抛物线。

抛物线的开口方向由二次项系数a的正负性决定。

当a大于零时,抛物线开口向上;当a小于零时,抛物线开口向下。

抛物线的顶点坐标为(-b / (2a), f(-b / (2a))),其中f(-b/ (2a))表示在对称轴上的函数值。

应用:1. 物理学:一元二次函数可以用来描述抛体运动、自由落体等物理现象。

例如,抛出物体的高度与时间的关系就可以建模为一元二次函数。

2. 经济学:一元二次函数可以用来建立成本、收益、利润等经济指标之间的关系模型,帮助决策者做出更准确的经济预测和决策。

3. 工程学:一元二次函数在工程领域中也有广泛的应用。

例如,在建筑设计中,可以利用一元二次函数来确定柱状物体的最佳高度;在电路设计中,可以利用一元二次函数来描述电流、电压等变量之间的关系。

数学概念:1. 判别式:一元二次函数的判别式决定了根的情况。

判别式的表达式为Δ = b^2 - 4ac,其中Δ大于零时,方程有两个不等的实根;Δ等于零时,方程有两个相等的实根;Δ小于零时,方程没有实根。

2. 最值:由于一元二次函数的图像是一个抛物线,它在对称轴上有一个极值点。

人教版2020年九年级数学上册 二次函数-函数的性质及几何变换(含答案)

人教版2020年九年级数学上册 二次函数-函数的性质及几何变换(含答案)

人教版2020年九年级数学上册二次函数-函数的性质及几何变换一、选择题1.已知二次函数y=2(x+1)(x﹣a),其中a>0,且对称轴为直线x=2,则a的值是( )A.3B.5C.7D.不确定2.点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是( )A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y33.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是( )4.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则( )A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定5.已知二次函数y=3(x-1)2+k的图象上有A(,y1),B(2,y2),C(-,y3)三个点,则y1,y2,y3的大小关系是( )A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y16.已知关于x的方程ax2+bx+c=5的一个根是2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则这条抛物线的顶点坐标为()A.(2,﹣3)B.(2,1)C.(2,5)D.(5,2)7.对于抛物线y=﹣x2+2x+3,有下列四个结论:①它的对称轴为x=1;②它的顶点坐标为(1,4);③它与y轴的交点坐标为(0,3),与x轴的交点坐标为(﹣1,0)和(3,0);④当x>0时,y随x的增大而减小.其中正确的个数为()A.1 B.2 C.3 D.48.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为( )A.y =5(x-2)2+1B.y =5(x+2)2+1C.y =5(x-2)2-1D.y =5(x+2)2-19.在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( )A.y=(x+2)2+2B.y=(x-2)2-2C.y=(x-2)2+2D.y=(x+2)2-210.抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x﹣3,则b、c的值为()A.b=2,c=2B.b=2,c=0C.b=﹣2,c=﹣1D.b=﹣3,c=2二、填空题11.已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是________.12.二次函数y=x2+6x+5图象的顶点坐标为 .13.如图,点E是抛物线y=a(x﹣2)2+k的顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D.点A是对称轴上一点,连结AC、AB.若△ABC是等边三角形,则图中阴影部分图形的面积之和是.14.抛物线y=﹣x2+bx+c的部分图象如图所示,若y=0,则x= .15.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.16.把抛物线y=x2-4x+5的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是三、解答题17.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.18.如图,已知抛物线y=ax2+bx+c与x轴交于点A(1,0),点B(3,0),且过点C(0,-3).(1)求抛物线的函数表达式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的函数表达式.19.已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).(1)求二次函数的解析式;(2)若把图象沿y轴向下平移5个单位,求该二次函数的图象的顶点坐标.20.如图,抛物线的顶点D的坐标为(1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A、B两点.(1)求该抛物线的函数关系式;(2)在抛物线上存在点P(不与点D重合),使得S△PAB=S△ABD,请求出P点的坐标.21.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.22.已知二次函数y=ax2-4x+c的图象过点(-1, 0)和点(2,-9).(1) 求该二次函数的解析式并写出其对称轴;(2) 已知点P(2 , -2),连结OP , 在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).参考答案1.答案为:B.2.D 3.C4.A5.答案为:C6.C7.C.8.A9.B10.B11.答案为:(1,4);12.答案为:(﹣3,﹣4).13.答案为2.14.答案为:﹣3或115.答案为:(-2,0).16.答案为:y=x2-10x+2417.解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).∴抛物线的解析式为;y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,(2)∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为:(1,4).18.解:(1)∵抛物线与x轴交于点A(1,0),点B(3,0),∴可设抛物线表达式为y=a(x-1)(x-3),把C(0,-3)的坐标代入,得3a=-3,解得a=-1,故抛物线表达式为y=-(x-1)(x-3),即y=-x2+4x-3.∵y=-x2+4x-3=-(x-2)2+1,∴抛物线的顶点坐标为(2,1);(2)答案不唯一,如:先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=-x2,平移后抛物线的顶点为(0,0),落在直线y=-x上.19.解:(1)由已知,有,即,解得∴所求的二次函数的解析式为.(2)(1,)20.解:(1)∵抛物线的顶点D的坐标为(1,﹣4),∴设抛物线的函数关系式为y=a(x﹣1)2﹣4,又∵抛物线过点C(0,﹣3),∴﹣3=a(0﹣1)2﹣4,解得a=1,∴抛物线的函数关系式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)∵S△PAB=S△ABD,且点P在抛物线上,∴点P到线段AB的距离一定等于顶点D到AB的距离,∴点P的纵坐标一定为4.令y=4,则x2﹣2x﹣3=4,解得x1=1+2,x2=1﹣2.∴点P的坐标为(1+2,4)或(1﹣2,4).21.解:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x=﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.22.解:(1)对称轴是x=2(2)。

2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)

2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)

热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。

此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。

只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。

考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。

1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。

初三数学上册(人教版)第二十二章二次函数22.1知识点总结含同步练习及答案

初三数学上册(人教版)第二十二章二次函数22.1知识点总结含同步练习及答案

描述:2.二次函数的图象与性质()的图象与性质()的图象与性质(、、 是常数,)的图象与性质所以 .m =2y =a x 2a ≠0y =a (x −h +k )2a ≠0y =a +bx +c x 2a b c a ≠函数 ()在上的最值问题:y =a +bx +c a ≠0y =a +bx +c x 2a >0m <x <n描述:例题:3.二次函数图象的变换平移“上加下减,左加右减”,上下平移时在整体后面进行加减,左右平移时针对的是 进行加减.对称旋转函数图象旋转可以看成先把原图象上的点(通常我们选择顶点)绕着旋转中心旋转,得到旋转后的点的坐标,即可得到新的函数.x (1) 将二次函数 的图象向右平移 个单位,再向上平移 个单位后,所得图象的函数表达式是______.(2) 如果保持抛物线 的图象不动,把 轴、 轴分别向上、向右平移 个单位,那么在新坐标系下该抛物线的解析式是_____.解:(1) ;(2) .(1) “上加下减,左加右减”,上下平移时在整体后面进行加减,左右平移时针对的是 进行加减.(2) 把 轴、 轴分别向上、向右平移 个单位,就相当于把函数分别向下、向左平移 个单位.y =x 212y =2x 2x y 2y =(x −1+2)2y =2(x +2−2)2x x y 22将二次函数 的图象绕坐标原点 旋转 ,则旋转后的图象对应的解析式为______.y =−2x −1x 2O 180∘y =−−2x +12描述:例题:4.二次函数的解析式设一般式 ()若已知条件或根据已知可推出图象上三个点,可以设成一般式,将已知条件代入解析式,得出关于 、、 的三元一次方程组,解方程即可.设顶点式 ()若已知条件或根据已知可推出函数的顶点或对称轴与最值时,可以设成顶点式,将已知条件代入解析式,求出待定系数.设交点式 ()若已知条件或根据已知可推出图象上纵坐标相同的两个点的坐标为 和 时,可以设交点式,将已知条件代入解析式,求出待定系数.解:.可以看成先把原图象上的点绕着坐标原点 旋转 ,得到旋转后的点的坐标,即可得到新的函数.y =−−2x +1x 2O 180∘(1) 抛物线 关于 轴对称的图象为______.(2) 在平面直角坐标系中,先将抛物线 关于 轴作轴对称变换,再将所得的抛物线关于 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为____.(3) 将抛物线 的图象绕它的顶点 旋转 ,则旋转后的抛物线的函数关系式为______.解:(1) ;(2) ;(3) .y =−2x −3x 2x y =+x −2x 2x y y =−2x +1x 2A 180∘y =−+2x +3x 2y =−+x +2x 2y =−+2x −1x 2y =a +bx +c x 2a ≠0a b c y =a (x −h +k )2a ≠0y =a (x −)(x −)+m x 1x 2a ≠0(,m )x 1(,m )x 2二次函数的图象经过 ,, 三点,求该二次函数的解析式.分析:已知条件中给出三个点,所以可以设一般式.解:设二次函数的解析式为 ().将 ,, 三点代入,得解得即二次函数的解析式为 .A (1,2)B (0,−1)C (−2,5)y =a +bx +c x 2a ≠0A (1,2)B (0,−1)C (−2,5)⎧⎩⎨a +b +c =2,c =−1,4a −2b +c =5.⎧⎩⎨a =2,b =1,c =−1.y =2+x −1x 2已知二次函数的图象的顶点为 ,且过点 ,求该二次函数的解析式.分析:已知一个顶点和另一个点,所以可以设顶点式.解:设二次函数的解析式为 .将点 的坐标代入,解得 .所以二次函数的解析式为 .A (−1,4)B (2,−5)y =a (x +1+4)2B (2,−5)a =−1y =−(x +1+4=−−2x +3)2x 2已知抛物线与 轴的交点坐标是 ,,且抛物线经过 ,求抛物线的解析x A (−2,0)B (1,0)C (2,8)四、课后作业 (查看更多本章节同步练习题,请到快乐学)高考不提分,赔付1万元,关注快乐学了解详情。

初三数学. 二次函数的图象判断和几何变换

初三数学. 二次函数的图象判断和几何变换

二次函数的图象判断和几何变换模块一:二次函数的图象判断1.二次函数图象与系数的关系 (1)a 决定抛物线的开口方向当0a >时,抛物线开口向上;当0a <时,抛物线开口向下.反之亦然. (2)b 和a 共同决定抛物线对称轴的位置:“左同右异”当0b =时,抛物线的对称轴为y 轴;当a 、b 同号时,对称轴在y 轴的左侧;当a 、b 异号时,对称轴在y 轴的右侧.(3)c 的大小决定抛物线与y 轴交点的位置当0c =时,抛物线与y 轴的交点为原点;当0c >时,交点在y 轴的正半轴;当0c <时,交点在y 轴的负半轴.2.二次函数的图象信息(1)根据抛物线的开口方向判断a 的正负性. (2)根据抛物线的对称轴判断b 的正负性. (3)根据抛物线与y 轴的交点,判断c 的正负性. (4)根据抛物线与x 轴有无交点,判断24b ac -的正负性. (5)根据抛物线的对称轴可得2ba-与1±的大小关系,可得2a b ±的正负性. (6)根据抛物线所经过的已知坐标的点,可得到关于a ,b ,c 的等式.(7)根据抛物线的顶点,判断244ac b a -的大小.模块二:二次函数的几何变换 1.二次函数图象的平移平移规律:在原有函数的基础上“左加右减”,“上加下减”.2.二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达. (1)关于x 轴对称关于x 轴对称后,得到的解析式是.2()y a x h k =-+关于x 轴对称后,得到的解析式是2()y a x h k =---. (2)关于轴对称关于y 轴对称后,得到的解析式是.2()y a x h k =-+关于y 轴对称后,得到的解析式是2()y a x h k =++. (3)关于原点对称关于原点对称后,得到的解析式是.2y ax bx c =++2y ax bx c =---y 2y ax bx c =++2y ax bx c =-+2y ax bx c =++2y ax bx c =-+-2()y a x h k =-+关于原点对称后,得到的解析式是2()y a x h k =-+-. (4)关于点(,)m n 对称2()y a x h k =-+关于点(,)m n 对称后,得到的解析式是2(2)2y a x h m n k =-+-+- 3.二次函数图象的翻折函数的图象可以由函数通过关于x 轴的翻折变换得到.具体规则为函数图象在x 轴上方的部分不变,在x 轴下方的部分翻折到x 轴上方.|()|y f x =()y f x =()y f x =模块一 二次函数的图象判断题组一:(1)二次函数2y ax bx c =++的图象如图1-1,则一次函数()y a b x ac =++的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限(2)二次函数2y ax bx c =++的图象如图1-2,则下列六个代数式:ab 、ac 、a b c ++、a b c -+、2a b +、2a b -、24b ac -中,其值为正的式子的个数是( ) A .5个 B .4个 C .3个 D .2个(3)二次函数2y ax bx c =++的图象如图1-3,则22a b c a b c a b a b ++--+++--_______0.(填“>”、“<”或“=”).图1-1 图1-2 图1-3题组二:(1)如图2-1,二次函数2y ax bx c =++的图象经过点(1,2)-,下列结论:①420a b c -+<;②20a b -<;③2b <-;④22()a c b +<,其中正确的结论有________.(填序号)(2)如图2-2,已知二次函数2y ax bx c =++的图象经过点(1,2),下列结论:①20a b +<;②0abc <;③1a c +<-;④284b a ac +<,其中正确结论的有________.(填序号)(3)(成外半期)二次函数2(0)y ax bx c a =++≠的图象如图2-3所示,有下列5个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->;⑤()a b m am b +>+,(1m ≠的实数),其中正确的结论的有________.(填序号)图2-1 图2-2 图2-3题组三:(1)已知二次函数2(0)y ax bx c a =++≠的图像如图3-1所示,它与x 轴两个交点分别为(1,0)-,30(,).对于下列命题:①20b a -=;②0abc <;③102a b c --+<;④80a c +>.其中正确的有________.(填序号)(2)如图3-2,抛物线2(0)y ax bx c a =++≠的对称轴是1x =-,且过点1,02⎛⎫ ⎪⎝⎭,有下列结论:①0abc >;②240a b c -+=;③251040a b c -+=;④320b c +>.其中正确的结论有________.(填序号) (3)如图3-3,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(10A -,),对称轴为直线1x =,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当3x >时,0y <;②30a b +<;③213a -≤≤-;④248acb a ->;其中正确的结论是_________.(填序号)图3-1 图3-2 图3-3题组四:(1)已知二次函数y ax bx c 2=+++2的图象如图4-1所示,顶点为(,)-10,下列结论:①abc <0;②b ac 2-4=0;③a >2;④a b c 4-2+>0.其中正确结论的个数是____________.(填序号) (2)二次函数2y ax bx c =++的图象如图4-2所示,给出下列结论:①20a b +>;②若11m n -<<<,则bm n a+<-;③3||||2||a cb +<;④b ac >>,其中正确的结论有____________.(填序号)图4-1 图4-2yAO xx =1模块二 二次函数的几何变换题组一:(1)二次函数2241y x x =-++的图象如何移动就得到22y x =-的图象( ). A .向左移动1个单位,向上移动3个单位 B .向右移动1个单位,向上移动3个单位 C .向左移动1个单位,向下移动3个单位D .向右移动1个单位,向下移动3个单位(2)一抛物线向右平移3个单位,再向下平移2个单位后得抛物线224y x x =-+,则平移前抛物线的解析式为________________.(3)如果将抛物线228y x =-+向右平移a 个单位后,恰好过点(3,6),那么a 的值为__________. 题组二:(1)如图6-1所示,已知抛物线0C 的解析式为22y x x =-,则抛物线0C 的顶点坐标____________;将抛物线0C 每次向右平移2个单位,平移n 次,依次得到抛物线1C 、2C 、3C 、…、n C (n 为正整数),则抛物线n C 的解析式为___________. (2)如图6-2,把抛物线212y x =平移得到抛物线m ,抛物线m 经过点(6,0)A -和原点(0,0)O ,它的顶点为P ,它的对称轴与抛物线212y x =交于点Q ,则图中阴影部分的面积为___________.图6-1 图6-2题组三:已知二次函数221y x x =--,求:(1)与此二次函数关于x 轴对称的二次函数解析式为_____________________; (2)与此二次函数关于y 轴对称的二次函数解析式为_____________________; (3)与此二次函数关于原点对称的二次函数解析式为_____________________. 题组四:已知二次函数2441y ax ax a =++-的图象是1C . (1)求1C 关于点(1,0)R 中心对称的图象2C 的解析式;(2)设曲线1C 、2C 与y 轴的交点分别为A ,B ,当||18AB =时,求a 的值.xyO…C nC 1C 0题组五:作出2|5|y x x =+的函数图象. 题组七:已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线1()2y x b b k =+<与此图象有两个公共点时,b 的取值范围.复习巩固模块一 二次函数的图象判断(1)二次函数2y ax bx c =++的图象如图1-1,则一次函数by ax c =-的图象不经过第________象限.(2)如图1-2,二次函数2y ax bx c =++的图象经过点(1,2)-和(1,0),给出五个结论:①0abc <;②20a b +>;③1a c +=;④1a >;⑤9640a b c ++>.其中结论正确的是________.(3)二次函数2y ax bx c =++的图象如图1-3,小丹观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,其中结论正确的是________.图1-1 图1-2 图1-3(1)已知二次函数2y ax bx c =++的图象如图2-1所示,有下列结论:①240b ac ->;②0abc >;③20a b +>;④930a b c ++<;⑤80a c +>.其中结论正确的是________.(填序号即可)(2)如图2-2,抛物线2y ax bx c =++的图象交x 轴于1(,0)A x 、(2,0)B ,交y 轴正半轴于C ,且OA OC =.下列结论:①0a b c ->;②1ac b =-;③12a =-;④22bc +=,其中结论正确的是________.图2-1 图2-2Oyx模块二 二次函数的几何变换(1)(树德实验半期)把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后的抛物线的解析式为________.(2)将函数2y x x =+的图象向右平移(0)a a >个单位,得到函数232y x x =-+的图象,则a 的值为________.(3)如图,在平面直角坐标xOy 中,抛物线1C 的顶点为(1,4)A --,且过点(3,0)B -: ①将抛物线1C 向右平移2个单位得抛物线2C ,则抛物线2C 的解析式_____________; ②写出阴影部分的面积S =_____________.(1)在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,则经两次变换后所得的新抛物线的解析式为________.(2)已知二次函数234y x x =--的图象,将其函数图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,结合图象写出当直线(1)y x n n =+<与这个新图象有两个公共点时,n 的取值范围为__________.y xOyxO AB。

二次函数几何变换

二次函数几何变换
解析式是否发生改变,联立方程求 与坐标轴的交点
注意问题:
1.是否可取等号问题 2.解析式是否发生变化 3.是否考虑全面
练1.二次函数 y = x2 + bx + c 的顶点坐标为M(1,-4).
(1)求二次函数的解析式 (2)将二次函数的图象在X轴下方的部分沿X轴翻折,图象的 其余部分保持不变,得到一个新的图象,请你结合新图象回答: 当直线y=x+n与这个新图象有两个公共点时,求n的取值范围
△△△ >0 =0 <0 21无 个个交 交交点 点点
3 与非平行于坐标轴的直线交点
y
y=kx+b
x
基础练习
(1)判断直线y x 1
y 与x抛2 物3x线 1
交点情况?
如果有交点,请求y 出交x 点1 坐标。 解:联立 y x2 3x 1
x2 2x 0

△ =4 >0
所以有两个交点,交点坐标为(0,1)和(2,-1)
平移后的抛物线与 直线联立,根据判 别式来进行确定。
n=0
解题思路:
1 列出平移后的函数 解析式。 y=4x+6+n B(-1-n,0) C(3-n,0)
二次函数 几何变换与交点问题
新东方初中数学组 张志安
平移 旋转 翻折
一 平移
抛物线平移问题
例1.将抛物线 y = 2x2 + 4x - 3 向右平移3个单位, 再向上平移5个单位,求平移后所得抛物线的解析式。
方法一:顶点平移
y = 2x2 + 4x - 3 = 2(x +1)2 - 5
顶点坐标为(-1,-5)
y 2x2 - 4x - 2
练1:

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。

《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三、例题分析例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

一元二次函数定点式-解释说明

一元二次函数定点式-解释说明

一元二次函数定点式-概述说明以及解释1.引言1.1 概述一元二次函数是数学中常见且重要的函数类型之一,其定义为y = ax^2 + bx + c,其中a、b、c 是实数常数且a 不等于零。

一元二次函数的图像呈现出特定的形状,通常为一个开口朝上或朝下的抛物线。

在本文中,我们将重点研究一元二次函数的定点式及其含义。

定点式是一种表示函数图像上顶点坐标的方式,它提供了关于函数最高或最低点的关键信息。

通过研究函数的定点式,我们可以更深入地理解一元二次函数的性质和变化规律。

本文旨在通过对一元二次函数定点式的探讨,让读者对这一函数类型有更全面的了解,并认识到定点式在函数分析和解题过程中的重要性。

同时,我们还将展望定点式的应用领域,探索更多与一元二次函数定点式相关的实际问题,并寻找使用定点式解决这些问题的可能性。

在下一节中,我们将首先介绍一元二次函数的定义,为后续讨论奠定基础。

1.2文章结构文章结构是指文章的组织结构和框架,它决定了文章内容的组织方式和展示顺序。

一个良好的文章结构能够帮助读者更好地理解文章主题,并且使文章更加连贯和有条理。

下面将介绍关于一元二次函数定点式的文章结构打算。

在本文中,文章的结构主要分为三个部分:引言、正文和结论。

引言部分(Chapter 1)是文章的开篇,目的是引导读者进入主题,并介绍文章的背景和意义。

具体包括以下几个方面的内容:1.1 概述:介绍一元二次函数的基本概念和定义,简要说明一元二次函数在数学中的重要性。

1.2 文章结构:详细说明本文的组织结构和框架,引导读者了解文章的整体布局和内容安排。

1.3 目的:明确本文的写作目的和研究问题,阐述对一元二次函数定点式的探索和分析。

1.4 总结:对引言部分进行总结,承接下文,为读者带来连贯的阅读体验。

正文部分(Chapter 2)是文章的核心部分,通过对一元二次函数定点式的定义、图像特点和含义进行详细解析,以展现该主题的全面性和深度。

具体包括以下几个方面的内容:2.1 一元二次函数的定义:介绍一元二次函数的基本形式和表达式,解释其在数学中的重要性和应用。

初中数学中考[函数]第4讲二次函数的应用与方程和不等式(教师版)

初中数学中考[函数]第4讲二次函数的应用与方程和不等式(教师版)

⎧⎪⎪⎪⎨⎪⎪⎪⎩二次函数与一次函数及反比例函数的综合二次函数的几何变换二次函数应用二次函数与方程二次函数与不等式二次函数的实际应用一.直线与抛物线的交点(1)y 轴与抛物线2y ax bx c =++的交点为()0c ,. (2)与y 轴平行的直线x h =与抛物线2y ax bx c =++有且只有一个交点()2h ah bh c ++,. (3)抛物线与x 轴的交点:二次函数2y ax bx c =++的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程20ax bx c ++=的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0∆>⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0∆=⇔抛物线与x 轴相切;【方法技巧】【知识梳理】③没有交点⇔0∆<⇔抛物线与x 轴相离.(4)直线与抛物线的交点,可以联立方程来求交点,交点的个数可以通过判断联立方程的△的正负性,可能有0个交点、1个交点、2个交点.(5)抛物线与x 轴两交点之间的距离.若抛物线2y ax bx c =++与x 轴两交点为()()1200A x B x ,,,,12AB x x =- 二、二次函数常用的解题方法(1)求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;(2)求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; (3)根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;(4)二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.三、二次函数图象的平移变换平移规律:在原有函数的基础上“左加右减”,(1)若为一般式2y ax bx c =++,往左(右)平移m 个单位,往上(下)平移n 个单位, 则解析式为()()2y a x m b x m c n =±+±+±(2)若为顶点式()2y a x h k =-+,往左(右)平移m 个单位,往上(下)平移n 个单位,则解析式为()2y a x h m k n =-±+±(3)若为双根式()()12y a x x x x =--,往左(右)平移m 个单位,往上(下)平移n 个单位,则解析式为()()12y a x x m x x m n =-±-±±四、二次函数图象的几何变换二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 五、二次函数与实际应用 1、二次函数求最值的应用依据实际问题中的数量关系,确定二次函数的解析式,结合方程、一次函数等知识解决实际问题.【注意】对二次函数的最大(小)值的确定,一定要注意二次函数自变量的取值范围,同时兼顾实际问题中对自变量的特殊要求,结合图像进行理解. 2、利用图像信息解决问题 两种常见题型:(1)观察点的特点,验证满足二次函数的解析式及其图像,利用二次函数的性质求解; (2)由图文提供的信息,建立二次函数模型解题.【注意】获取图像信息,如抛物线的顶点坐标,与坐标轴的交点坐标等. 3、建立二次函数模型解决问题利用二次函数解决抛物线的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线所对应的函数解析式,通过解析式解决一些测量问题或其他问题.【注意】构建二次函数模型时,建立适当的平面直角坐标系是关键。

初三二次函数课件ppt课件

初三二次函数课件ppt课件

02
二次函数的解析式
一般式
总结词
最通用的二次函数形式,包含三个系数a、b和c。
详细描述
一般式为y=ax^2+bx+c,其中a、b和c为实数,且a≠0。它可以表示任意二次 函数,通过调整系数a、b和c的值,可以改变函数的形状、开口方向和大小。
顶点式
总结词
包含顶点坐标的二次函数形式。
详细描述
顶点式为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。通过顶点式可以直接 读出顶点的坐标,并且可以快速判断抛物线的开口方向和对称轴。
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面坐标系中沿x轴或y轴方向进行缩放。
详细描述
伸缩变换包括沿x轴方向的伸缩和沿y轴方向的伸缩。沿x轴方向的伸缩是指将图像在x轴方向上放大或 缩小,对应的函数变换是将x替换为kx(k>1表示放大,0<k<1表示缩小)。沿y轴方向的伸缩是指将图 像在y轴方向上放大或缩小,对应的函数变换是将y替换为ky(k>1表示放大,0<k<1表示缩小)。
利用二次函数求面积
详细描述
通过设定一个变量为常数,将 二次函数转化为一次函数,再 根据一次函数的性质求出面积 。
总结词
几何图形面积
详细描述
在几何图形中,如矩形、三角 形、圆等,可以利用二次函数
来求解面积。
生活中的二次函数问题
总结词
生活中的二次函数
总结词
实际应用案例
详细描述
在生活中,许多问题都可以用二次函数来 描述和解决,如速度、加速度、位移等物 理量之间的关系。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形 状由系数$a$决定。

初中一元二次函数方程式

初中一元二次函数方程式

初中一元二次函数方程式一元二次函数是指一个二次方程,也就是具有形如y=ax^2+bx+c的函数,其中a、b、c是已知的实数常数,并且a不等于0。

这个函数的图像是一个抛物线,可以向上开口、向下开口或者是一个平行于x轴的线段。

在一元二次函数中,自变量x的最高次数是2,所以函数的图像一般是一个平滑的曲线。

一元二次函数的一般形式是y=ax^2+bx+c,其中a、b、c都是已知的实数常数。

其中a决定了函数图像的开口方向和开口大小,当a 大于0时,抛物线向上开口,当a小于0时,抛物线向下开口。

b 决定了抛物线图像的左右平移位置,正值向左平移,负值向右平移。

c决定了抛物线图像的上下平移位置,正值向上平移,负值向下平移。

对于一元二次函数方程式y=ax^2+bx+c,我们可以通过解方程来求解其零点,即函数与x轴的交点。

零点即函数取值为0的x值,可以通过因式分解、求根公式或配方法来求解。

其中最常用的求根公式是二次方程的根公式:x = (-b ± √(b^2-4ac)) / 2a根据根的个数和判别式的值,我们可以判断一元二次方程的根的情况:1. 当判别式大于0时,方程有两个不相等的实根;2. 当判别式等于0时,方程有两个相等的实根;3. 当判别式小于0时,方程没有实根,但有两个共轭复根。

一元二次函数方程式在数学中有广泛的应用。

它可以用来描述抛物线的形状、物体的运动轨迹、自然界中的现象等等。

在物理学中,一元二次函数方程式可以用来描述自由落体运动、抛体运动等。

在经济学中,一元二次函数方程式可以用来描述成本、收益、供求关系等。

在工程学中,一元二次函数方程式可以用来描述弧线的形状、结构的强度等。

一元二次函数方程式是一种重要的数学模型,它可以用来描述许多实际问题。

通过解方程可以求得函数的零点,从而得到函数与x轴的交点。

一元二次函数方程式的图像是一个抛物线,其开口方向、大小和位置都可以通过函数方程中的系数来确定。

通过研究一元二次函数方程式,我们可以更好地理解和应用数学知识。

几何画板软件在初中二次函数教学中的应用

几何画板软件在初中二次函数教学中的应用

几何画板软件在初中二次函数教学中的应用
几何画板软件是一种数学教学辅助工具,可以通过绘制图形、几何变换、求解方程等功能,帮助学生更好地理解和掌握数学知识。

在初中二次函数的教学中,几何画板软件可以为学生提供一个图形化的学习环境,帮助学生深入理解二次函数的相关概念和性质,提高数学学科的学习兴趣和成绩。

一、绘制二次函数图像
几何画板软件可以通过绘制坐标系和输入函数公式的方式,快速绘制出二次函数的图像。

比如,我们可以打开几何画板软件,先绘制出二维坐标系,然后在输入框输入二次函数的公式y=ax²+bx+c,设置a、b、c的取值,即可得到二次函数的图像,如图1所示。

通过几何画板软件,不仅可以绘制出二次函数图像,还可以根据具体的需求进行图形调整和变换,比如,平移、缩放、旋转等等。

二、探究二次函数的性质
在学习二次函数过程中,学生需要掌握二次函数的性质,如函数的对称性、解析式中参数的含义等等。

几何画板软件可以通过绘制图形以及相关定理的演示,帮助学生深入理解二次函数的性质和规律。

比如,我们可以利用几何画板软件绘制出二次函数的图像,并通过对称轴的绘制,演示二次函数的对称性。

如图2所示,我们可以绘制出二维坐标系和二次函数y=-x²+4的图像,并在函数图像上绘制出对称轴x=0。

这样,学生可以通过对称轴的演示,理解二次函数的对称性,并进一步分析函数图像的特点和性质。

图2 二次函数对称轴
三、解二次函数方程
在学习初中二次函数时,学生需要掌握利用二次函数将未知数的方程转化成解析式,并通过解析式求出方程的根的方法。

几何画板软件可以通过方程的绘制和演示,帮助学生巩固和加深对二次函数方程的理解和掌握。

初三数学知识点概述

初三数学知识点概述

初三数学知识点概述数学作为一门基础性学科,对于初中生来说至关重要。

初三数学是整个初中数学学习中的最后一个阶段,也是数学知识点最为基础而又全面的一个阶段。

在这个阶段,学生需要牢固掌握前期学习的数学知识,同时还需要学习新的知识点和方法。

本文将对初三数学知识点进行概述,以帮助同学们更好地学习和掌握初三数学知识。

一、函数与图像函数是数学中非常重要的一个概念,它描述的是两个数集之间的对应关系,常见的函数包括一次函数、二次函数、立方函数等等。

在初三中,同学们需要学习并掌握函数的概念、函数的图像及其性质、函数的性质以及应用等方面的知识。

二、几何变换几何变换是初三数学中比较重要的一部分内容,包括平移、旋转、翻折、对称等。

同学们需要学习并掌握不同几何变换的方法和规律,以及应用场合,例如在解决几何问题时,几何变换常常可以化解难题。

三、三角函数三角函数是初三数学中的一部分重点内容,它是数学中的一种基础函数,在几何和科学等领域都有广泛的应用。

在初三中,同学们需要学习并掌握三角函数的定义、三角函数的常见关系式和特点、三角函数的应用等方面的知识。

四、概率与统计概率与统计是初中数学中的另外一部分重点内容,在初三中也占据了很重要的位置。

同学们需要学习并掌握有关事件与概率、随机事件的概念及其特点、概率的计算方法、统计图表的制作及解读等方面的知识。

五、证明证明是初三数学中的重要内容之一,也是数学学习的一个关键环节。

同学们需要学习并掌握各种证明方法和技巧,例如利用反证法、数学归纳法、生成法和递推法等来进行证明。

六、代数式代数式是初三数学中的基础部分,也是学习数学的起点之一。

同学们需要学习并掌握多项式的概念、多项式的根及其性质、代数式的基本性质和运算法则、分式及分式方程等基础知识。

七、三视图三视图是初三数学中的一部分重点内容,它描述了一个物体的三个投影面,包括平面图形的三视图和立体图形的三视图。

同学们需要学习并掌握绘制和应用三视图的方法,以应对不同的几何问题。

第14章 二次函数的应用

第14章 二次函数的应用

第十四章 二次函数的应用(2012北海,7,3分)7.已知二次函数y =x 2-4x +5的顶点坐标为: ( )A .(-2,-1)B .(2,1)C .(2,-1)D .(-2,1)【解析】二次函数的顶点坐标公式为(ab ac a b 44,22--),分别把a ,b ,c 的值代入即可。

【答案】B【点评】本题考查的是二次函数顶点公式,做题时要灵活把握,求纵坐标时,也可以把横坐标的值代入到函数中,求y 值即可,属于简单题型。

(2012山东省滨州,1,3分)抛物线234y x x =--+ 与坐标轴的交点个数是( ) A .3 B .2 C .1 D .0【解析】抛物线解析式234x x --+,令x=0,解得:y=4,∴抛物线与y 轴的交点为(0,4),令y=0,得到2340x x --+=,即2340x x +-=,分解因式得:(34)(1)0x x +-= ,解得:143x =-, 21x =, ∴抛物线与x 轴的交点分别为(43-,0),(1,0), 综上,抛物线与坐标轴的交点个数为3. 【答案】选A【点评】本题考查抛物线的性质,需要数形结合,解出交点,即可求出交点的个数.此题也可用一元二次方程根的判别式判定与x 轴的交点个数,与y 轴的交点就是抛物线中C 的取值.( 2012年四川省巴中市,8,3)对于二次函数y=2(x+1)(x-3)下列说法正确的是( ) A.图象开口向下 B.当x >1时,y 随x 的增大而减小 C.x <1时,y 随x 的增大而减小 D.图象的对称轴是直线x= - 1【解析】y=2(x+1)(x-3)可化为y=(x -1)2-8,此抛物线开口向上,可排除A,对称轴是直线x=1可排除D,根据图象对称轴右侧部分, y 随x 的增大而减小,即x <1时,故选C. 【答案】C【点评】本题考查将二次函数关系式化成顶点式的方法及图象性质.12.(2012湖南衡阳市,12,3)如图为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法: ①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x <3时,y >0 其中正确的个数为( )A .1B .2C .3D .4解析:由抛物线的开口方向判断a 与0的关系,由x=1时的函数值判断a+b+c >0,然后根据对称轴推出2a+b 与0的关系,根据图象判断﹣1<x <3时,y 的符号. 答案:解:①图象开口向下,能得到a <0; ②对称轴在y 轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y >0,则a+b+c >0; ④由图可知,当﹣1<x <3时,y >0. 故选C .点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.(2012呼和浩特,9,3分)已知:M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=x+3上,设点M 的坐标为(a,b ),则二次函数y = –abx 2+(a+b)x A . 有最大值,最大值为 –92B . 有最大值,最大值为92C . 有最小值,最小值为92D . 有最小值,最小值为 –92【解析】M (a ,b ),则N (–a ,b ),∵M 在双曲线上,∴ab =12;∵N 在直线上,∴b =–a +3,即a +b =3; ∴二次函数y = –abx 2+(a+b)x= –12x 2+3x = –12(x –3)2+92,∴有最大值,最大值为92【答案】B【点评】本题考查了轴对称的性质,利用点在函数图象上,把点代入的解析式中求得ab 和a +b 的值。

人教版九年级数学专题《二次函数图像和性质》(含答案及解析)

人教版九年级数学专题《二次函数图像和性质》(含答案及解析)

专题22.1 二次函数的图像和性质知识点解读 1.定义一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数。

其中x 是自变量,a 、b 、c 分别是函数解析式的二次项系数、一次项系数、常数项。

2.抛物线的三要素:开口方向、对称轴、顶点。

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同。

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x 。

3.几种特殊的二次函数的图像特征如下4.求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(ab ac a b 4422--,对称轴是直线abx 2-=。

②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =。

③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:122x x x +=5.抛物线c bx ax y ++=2中, a 、b 、c 的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样。

②b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧。

③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置。

当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴; ③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab6.用待定系数法求二次函数的解析式一般情况下设二次函数的解析式为y=ax 2+bx+c ,结合题中条件解出a 、b 、c 就可以求出二次函数的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数几何变换及应用中考要求重难点1.能从函数图像上认识函数的性质;2.会确定图像的顶点、对称轴和开口方向;3..能用二次函数解决简单的实际问题.例题精讲模块一.二次函数的几何变换二次函数图象的对称变换二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2y ax bx c=++关于x轴对称后,得到的解析式是2y ax bx c=---;()2y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k=---;2. 关于y轴对称2y ax bx c=++关于y轴对称后,得到的解析式是2y ax bx c=-+;()2y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k=++;3. 关于原点对称2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称2y ax bx c=++关于顶点对称后,得到的解析式是222by ax bx ca=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k=--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.【例1】 函数2y x =与2y x =-的图象关于______________对称,也可以认为2y x =是函数2y x =-的图象绕__________旋转得到.【难度】3星【解析】考察函数的对称性.【答案】x 轴;原点旋转180°.2y x =与2y x =-关于x 轴对称,也可以看成是2y x =-绕原点旋转180°得到2y x =.【例2】 已知二次函数221y x x =--,求:(1)关于x 轴对称的二次函数解析式;(2)关于y 轴对称的二次函数解析式;(3)关于原点对称的二次函数解析式.【难度】3星【解析】二次函数图象的几何变换【答案】二次函数解析式转化为顶点式为()212y x =--,顶点坐标为()12-,,关于x 轴对称后顶点坐标为()12,,开口大小不变,方向该变,则对称后的解析式是()212y x =--+,即221y x x =-++;关于y 轴对称后顶点坐标为()12--,,开口大小和方向不变,则对称后的解析式是()212y x =+-,即221y x x =+-;关于原点对称后顶点坐标为()12-,,开口大小不变,方向改变,则对称后的解析式是()212y x =-++,即221x x --+.【例3】 在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A .22y x x =--+ B .22y x x =-+- C .22y x x =-++ D .22y x x =++【难度】3星 【解析】略 【答案】C【例4】 已知抛物线265y x x =-+,求⑴ 关于y 轴对称的抛物线的表达式; ⑵ 关于x 轴对称的抛物线的表达式; ⑶ 关于原点对称的抛物线的表达式.【难度】3星 【解析】略【答案】⑴265y x x =++;⑵ 265y x x =-+-;⑶265y x x =---.【例5】 设曲线C 为函数()20y ax bx c a =++≠的图象,C 关于y 轴对称的曲线为1C ,1C 关于x 轴对称的曲线为2C ,则曲线2C 的函数解析式为________________.【难度】4星【解析】C 先关于y 轴对称,再关于x 轴对称,相当于将C 关于原点对称得到2C ,则2C 的解析式2y ax bx c =-+-.【答案】2y ax bx c =-+-【例6】 已知二次函数2441y ax ax a =++-的图象是1C .⑴ 求1C 关于点()10R ,中心对称的图象2C 的解析式; ⑵ 设曲线1C 、2C 与y 轴的交点分别为,A B ,当18AB =时,求a 的值.【难度】5星【解析】⑴ 设1C 上任意一点为11(,)x y ,2C 上关于()10R ,中心对称的点为22()x y ,,则有1212121212202x x x x y y y y +⎧=⎪=-⎧⎪⇒⎨⎨+=-⎩⎪=⎪⎩ 由点11(,)x y 在2441y ax ax a =++-的图象上可知,2111441y ax ax a =++-,即 ()()222224241y a x a x a -=-+-+-.即()()222224214y a x a x a =--+-+-.故图象2C 的解析式为:()()22242148116y a x a x a ax ax a =--+-+-=-++-. ⑵ 令2441y ax ax a =++-中0x =,可得41y a =-,故()041A a -,; 令28116y ax ax a =-++-中0x =,可得116y a =-,故()0116B a -,. 又18AB =,故202181a a -=⇒=或45a =-.【答案】(1)28116y ax ax a =-++-;(2)1a =或45a =-.模块二 二次函数的最值及其应用【例7】 已知二次函数22222()y x a b x a b =-+++,,a b 为常数,当y 达到最小值时,x 的值为( )A .a b +B .2a b + C .2ab - D .2a b- 【难度】3星【解析】考察二次函数极值问题.【答案】B .当函数去最值时的x 值,就是对称轴对应的x 值,所以2a bx +=.【例8】 已知二次函数()()2223y m x mx m =-+--的图象的开口向上,顶点在第三象限,且交于y 轴的负半轴,则m 的取值范围是_________________.【难度】3星【解析】考察函数图像与系数之间的关系. 【答案】因为函数图像开口向上,所以()20m ->,又因为顶点在第三象限,所以函数对称轴在y 轴左侧,所以20m >;因为函数图像又与y 轴的负半轴相交,所以()30m --<.综上所述可得()202200330m m m m m m ⎧->>⎧⎪⎪>⇒>⎨⎨⎪⎪<--<⎩⎩∴23m <<【例9】 分别求出在下列条件下,函数2231y x x =-++的最值:⑴x 取任意实数;⑵当20x -≤≤时;⑶当13x ≤≤时;⑷当12x -≤≤时.【难度】4星【解析】二次函数的图象及性质【答案】⑴2317248y x ⎛⎫=--+ ⎪⎝⎭,∴当34x =时,函数的最大值为178,无最小值;⑵ ∵34x =在20x -≤≤右侧,∴当0x =时,函数取得最大值1;当2x =-时,函数取得最小值13-; ⑶ ∵34x =在15x ≤≤左侧,∴当1x =时,函数取得最大值2;当3x =时,函数取得最小值8-; ⑷ ∵3124-≤≤,且331244-->-,∴当34x =时,函数取得最大值178;当1x =-时,函数取得最小值4-.【例10】 如图1,在矩形矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP ∆的面积为y ,如果y 关于x 的函数图象如图2所示,则ABC ∆的面积是 ( ) A .10 B .16 C .18D .20C DBAP【难度】3星【解析】由图象知矩形ABCD 中,5AB CD ==,宽4BC AD ==,所以ABC ∆的面积为145102⨯⨯=.【答案】A【例11】 如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b ∥,Rt GEF ∆从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF ∆与矩形ABCD 重.合部分...的面积()S 随时间()t 变化的图象大致是 ( ) FE GA BCDABCD【难度】3星 【解析】略 【答案】B【例12】 已知某种水果的批发单价与批发量的函数关系如图所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大。

【难度】4星【解析】二次函数的应用【答案】(1)图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;图②表示批发量高于60kg 的该种水果,可按4元/kg 批发.(2)解:由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤()(>),函数图象如图所示.由图可知资金金额满足240<w ≤300时,以同样的资金可批发到较多数量的该种水果. (3)解法一:设当日零售价为x 元,销售量为p ,由图可得日最高销量p 32040x =- 当p >60时,x <6.5 由题意,销售利润为2(4)(32040x)40[(6)4]y x x =--=--+当x =6时,160y =最大值,此时m =80即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元. 解法二:设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040xp -= 销售利润23201(4)(80)1604040x y x x -=-=--+ 当x =80时,160y =最大值,此时p =6kg )即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.【答案】(1)120y x =-+;(2)W2(90)900x =--+,∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)销售单价x 的范围是7087x ≤≤.【例13】 某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:(1(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数).5.831 5.9166.083 6.164)【难度】4星【解析】二次函数的应用【答案】(1)p =0.1x +3.8 月销售金额w =py =-5(x -7)2+10125故7月销售金额最大,最大值是10125万元(2)列方程得 2000(1-m %)[5(1-1.5 m %)+1.5]×3×13%=936 化简得:3m 2-560m +21200=0解得 m 1 m 2因为m 1>1舍去,所以m =52.78≈52.8【例14】 某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m ,抛物线拱高为5.6m .(1)在如图所示的平面直角坐标系中,求抛物线的表达式.(2)现需在抛物线AOB 的区域内安装几扇窗户,窗户的底边在AB 上,每扇窗户宽1.5m ,高1.6m ,相邻窗户之间的间距均为0.8m ,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m .请计算最多可安装几扇这样的窗户?【难度】4星【解析】二次函数的应用【答案】(1)设抛物线的表达式为2y ax = 点(6 5.6)B -,在抛物线的图象上.∴ 5.636a -=,745a =-∴抛物线的表达式为2745y x =- (2)设窗户上边所在直线交抛物线于C 、D 两点,D 点坐标为(k ,t )已知窗户高1.6m ,∴ 5.6( 1.6)4t =---=-27445k --=125.07 5.07k k -≈,≈(舍去)∴ 5.07210.14CD =⨯≈(m ) 又设最多可安装n 扇窗户 ∴1.50.8(1)10.14n n ++≤4.06n ≤.答:最多可安装4扇窗户.(本题不要求学生画出4个表示窗户的小矩形)【例15】 张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (2)当x 为何值时,S 有最大值?并求出最大值. (参考公式:二次函数2y ax bx c =++(0a ≠),当2bx a=-时)【考点】二次函数的应用【难度】3星 【题型】解答【关键词】2009年,哈尔滨【解析】由题意得()322S AB BC x x =⋅=-∴223S x x =-+ 由20a =-< ∴()328222b x a =-=-=⨯- 241284ac b S a-==最大值∴8x =时,S 有最大值是128课后作业1. 对于任意两个二次函数:()2211112222120y a x b x c y a x b x c a a =++=++≠,,当12a a =时,我们称这两个二次函数的图象为全等抛物线,现有ABM ∆,()()1010A B -,,,,记过三点的二次函数抛物线为“C”(“□□□”中填写相应三个点的字母).⑴ 若已知()01M ,,ABM ABN ∆∆≌(图1),请通过计算判断ABM C 与ABN C 是否为全等抛物线;⑵ 在图2中,以A B M 、、三点为顶点,画出平行四边形.① 若已知()0M n ,,求抛物线ABM C 的解析式,并直接写出所有过平行四边形中三个顶点且能与ABM C 全等的抛物线解析式.② 若已知()M m n ,,当m n 、满足什么条件时,存在抛物线ABM C ?根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与ABM C 全等的抛物线.若存在,请写出所有满足条件的抛物线“C”;若不存在,请说明理由.【难度】5星【解析】二次函数图象的几何变换【答案】⑴ 设抛物线ABM C 的解析式为2y ax bx c =++. ∵抛物线ABMC 过点()()()101001A B M -,,,,,得001a b c a b c c =-+⎧⎪=++⎨⎪=⎩,解得101a b c =-⎧⎪=⎨⎪=⎩∴抛物线ABM C 的解析式为21y x =-+.同理可得抛物线ABN C 的解析式为21y x =-. ∵11-=,∴ABM C 与ABN C 是全等抛物线.⑵ ①设抛物线ABM C 的解析式为2y ax bx c =++. 抛物线ABMC 过点()()()10100A B M n -,,,,,,∴00a b c a b c n c =-+⎧⎪=++⎨⎪=⎩,解得0a n b c n =-⎧⎪=⎨⎪=⎩∴抛物线ABM C 的解析式为2y nx n =-+.由A B M 、、三点可知,平行四边形的第四个顶点坐标可能是()()()220n n n --,,,,,则经过平行四边形的三个顶点,且与ABM C 全等的抛物线解析式为2y nx n =-,()21y n x =+,()21y n x =-.②当1m ≠±且0n ≠时存在抛物线ABM C .在该前提下,存在过平行四边形中三个顶点且能与ABM C 全等的抛物线.如图,它们分别是AEM BFM ABN C C C ,,.2. 某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围. 【难度】4星【解析】二次函数的应用 【答案】(1)根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,,所求一次函数的表达式为120y x =-+.(2)(60)(120)W x x =--+ 21807200x x =-+-2(90)900x =--+ 抛物线的开口向下,∴当90x <时,W 随x 的增大而增大, 而6087x ≤≤,∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由500W =,得25001807200x x =-+-,11 整理得,218077000x x -+=,解得,1270110x x ==,.(由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤.3. 如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM 为12米. 现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD - DC- CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?【难度】4星【解析】二次函数的应用【答案】 (1) M (12,0),P (6,6).(2) 设抛物线解析式为:2(6)6y a x =-+.∵抛物线2(6)6y a x =-+经过点(0,0),∴20(06)6a =-+,即16a =- ∴抛物线解析式为:2211(6)6,266y x y x x =--+=-+即 . (3) 设A (m ,0),则B (12-m ,0),21(12,2)6C m m m --+,21(,2)6D m m m -+. ∴“支撑架”总长AD+DC+CB =2211(2)(122)(2)66m m m m m -++-+-+ =2211212(3)1533m m m -++=--+. ∵ 此二次函数的图象开口向下.∴ 当m = 3米时,AD+DC+CB 有最大值为15米.。

相关文档
最新文档