基本初等函数求导公式
基本初等函数的导数公式及导数的运算法则(上课)
题型三 商的导数
例 3 求下列函数的导数. (1)y=sxin2x; (2)y=xx2+ +33; (3)y=tanx; (4)y=x·sinx-co2sx.
【解析】 (1)y′=x2′·sinsxi- n2xx2·sinx′ =2xsinxs- in2xx2·cosx. (2)y′=x+3′·x2+x32+ -3x2+3x2+3′ =x2+3x- 2+2x3x2+3=-x2+ x2+ 6x3-23. (3)∵y=tanx=csoinsxx, ∴y′=csoinsxx′=sinx′cosxc- os2sxinx·cosx′
f (x) • g(x) f (x)g(x) f (x)g(x)
3.两个函数的商的导数,等于第一个函数的导 数乘第二个函数,减去第一个函数乘第二个函 数的导数 ,再除以第二个函数的平方.即:
f g
(x) (x)
f
(
x)
g
(x) f (
g(x)2
§1.2 导数的计算
探要点·究所然 情境导学
前面我们已经学习了几个常用函数的导数和基 本初等函数的导数公式,这样做起题来比用导数的 定义显得格外轻松.对于由四则运算符号连接的两 个或两个以上基本初等函数的导数如何求,正是本 节要研究的问题.
一、基本初等函数的导数公式
1.若f(x)=c,则 f ' (x) = 0 ;
【总结提升】
函数f(x)在某点处导数的大小表示函数在 此点附近变化的快慢.由上述计算可
知 c′(98) 25c′(90) .它表示纯净度为98%左
右时净化费用的变化率,大约是纯净度为90% 左右时净化费用的变化率的25倍.这说明,水 的纯净度越高,需要的净化费用就越多,而且 净化费用增加的费用也越快.
1.2.1基本初等函数的导数公式
x
x
x
x x x x x x
x x x x
1
,
x x x
所以y lim y lim
x x0
x0
1 x x
1. x 2x
探究点2 基本初等函数的导数公式
(1)若f(x)=c(c为常数),则 f ' (x) = 0 ; (2)若f(x)=xa (a∈Q*),则 f ' (x) = x1 ; (3)若f(x)=sin x,则 f ' (x) = cos x ; (4)若f(x)= cos x,则 f ' (x) = -sin x ; (5)若f(x)=ax,则 f ' (x) = axln a ;
(6)若f(x)=ex,则f′(x)=__e__x_;
1 (7)若f(x)=logax,则f′(x)=__x_l_n_a__;
1 (8)若f(x)=ln x,则f ′(x)=___x___.
解:由导数公式:p '(t) 1.05t ln1.05 所以p '(10) 1.0510 ln1.05 0.08(元/年)
【总结提升】
(1)用导数的定义求导是求导数的基本方法, 但运算较繁.利用常用函数的导数公式,可以 简化求导过程,降低运算难度. (2)利用导数公式求导,应根据所给问题的特 征,恰当地选择求导公式,将题中函数的结构 进行调整.如将根式、分式转化为指数式,利 用幂函数的求导公式求导.
【总结提升】
(3) f ( x) ex x,则f '( x)等于 _e_x_+__1_;
f(' 1)等于 _e__+_1__
(4)曲线y=xn在x=2处的导数为12,则n等于__3__.
基本初等函数的导数公式及导数的运算法则
的函数.
如果把y与u的关系记作y fu,u和x的关系记作 u gx,那么这个"复合"过程可表示为 y fu fgx lnx 2.
我们遇到的许多函数都可以看成是由两个函数经过
"复合"得到的,例如,函数y 2x 32由y u2和u
解 因为y' x3 2x 3 ' x3 ' 2x' 3'
3x2 2.
所以,函数 y x3 2x 3的导数是 y' 3x2 2.
例3 日常生活中的饮用水 通常是经过净化的.随着水 纯净度的提高, 所需净化费 用不断增加.已知将1吨水净 化到纯净度为x%时所需费
0.05eu 0.05e0.0 . 5x1
3函数y sinπx φ可以看作函数y sinu和
u πx φ的复合函数.
由复合函数求导法则有
y'x
y
' u
u'x
sinu' πx φ'
π cosu π cosπx φ.
明,水的纯净度越高,需要的净化费用就越多,
而且净化费用增加的速度也越快.
思考 如何求函数y lnx 2的导数呢?
我们无法用现有的方法求函数y lnx 2的导数.
下面,我们先分析这个函数的结构特点.
若设u x 2x 2,则y lnu.从而y lnx 2 可以看成是由y lnu和u x 2x 2经过"复
1321,
所以,纯净度为98%时,费用的瞬时变化率
基本初等函数的求导公式
基本初等函数的求导公式
基本初等函数的求导公式包括:常数函数的导数为零,指数函数的导数为零,对数函数的导数为零,三角函数的导数如下:
- 正弦函数的导数是余弦函数,即 $(sinx)" = cosx$
- 余弦函数的导数是正弦函数,即 $(cosx)" = -sinx$
- 正切函数的导数是余切函数,即 $(tanx)" = -cscx$
- 余切函数的导数是正切函数,即 $(cotx)" = cscx$
- 自然对数的导数是自然对数,即 $(lnx)" = 1/x$
- 换底公式的导数是换底公式,即 $(ex)" = e^x$
此外,还有一些其他的基本初等函数的求导公式,例如反三角函数、双曲函数等。
这些函数的导数可以通过基本的求导法则推导出来。
基本初等函数的导数公式及导数的运算法则
上导乘下,下导乘上,差比下方
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
如果上式中f(x)=c,则公式变为:
[cg ( x)] cg ( x)
例2 根据基本初等函数的导数公式和导数
运算法则,求函数y=x3-2x+3的导数。
y (x 解:因为2x 3)
p(t ) p0 (1 5%)
t
解:根据基本初等函数导数公式表,有
(t ) 1.05t ln1.05 p
所以 p(10) 1.05 ln1.05 0.08(元 / 年)
10
因此,在第10个年头,这种商品的价格 约以0.08元/年的速度上涨.
导数的运算法则:(和差积商的导数)
导数的运算法则:(和差积商的导数)
[ f ( x) g ( x)]' f '( x) g '( x)
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
轮流求导之和
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
是否有切线,如果有, 求出切线的方程.
试自己动手解答.
1 有,切y x 2
线的 方程 为
基本初等函数的导数公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
高二数学322基本初等函数的求导公式
§3.2.2 (1)基本初等函数的求导公式一、知识与方法:1、基本初等函数的导数公式记忆:第一类为幂函数,1)'(-=a a ax x )0(≠a (注意幂函数a 为任意实数); 第二类为指数函数,()'ln (0,0)x x a a a a a =>≠且,当e a =时,x e 的导数是)('x a 的一个特例; 第三类为对数函数,11(log )'log (0,0)ln a a x e a a x x a==>≠且,当e a =时,x ln 也是 对数函数的一个特例;第四类为三角函数,可记住正弦函数的导数是余弦函数,余弦函数的导数是正弦函数的相 反数,正切函数的导数是余弦函数平方的倒数,余切函数的导数是正弦函数的平方的倒数 的相反数。
2、利用公式求函数的导数,这就要求熟练掌握公式。
特别注意x a y =的导数与a x y = 的导数的区别,不要犯这样的错误:1)(-='x x xa a 。
二、针对性训练:1、3x y =的导数是 ( )A .3xB .x 31 C .3231--x D .3231-x 2、32()32f x ax x =++,若'(1)4f -=,则a 的值等于( ) A .319 B .316 C .313 D .310 3、 下列各结论正确的是 ( )A .3(log )'x =x 31 B .(2)'x =2x C .')(sin x =cosx D . (cosx)'=sinx 4、 若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=5、函数()f x =x a (a>0且a ≠1),'(2)f =2a ,则a = ( )A . 2 B. e C. 4 D. 2e6、曲线sin y x =, x ∈⎪⎭⎫ ⎝⎛-2,2ππ 的一条切线m 平行于直线30x y --=, 则m 的方程为( ) A. y=2πx, B.y x = C.1y x =+ D.不存在 7 、曲线x e y =在点)e (2,2处的切线与坐标轴所围三角形的面积为 ( )A .249e B .22e C .2e D .2e 2 8、)()(),()(),()(,sin )(112010x f x f x f x f x f x f x x f n n '='='==+, ,)(N n ∈则=')(2009x f ( ) x D x C x B xA cos .cos .sin .sin .-- 9、函数2y e =, 则'y =_________10、已知函数()sin ln f x x x =+,则()f x '= .11、已知()f x lnx =, ()g x x =. 且'()'()0f x g x ->,则x 的取值范围是_______12、求函数的导数:)3)(2)(1(+++=x x x y13、物体的运动方程是1223-+=t t s (位移单位:m ,时间单位:s ),当2=t 时,求物体的瞬时速度及加速度.14、()ln f x x =,若4'()f x x a +≥恒成立,求a 的取值范围。
基本初等函数求导公式精选
基本初等函数求导公式(1) 0)(='C (2) 1)(-='μμμx x(3) x x cos )(sin ='(4) x x sin )(cos -='(5)x x 2sec )(tan =' (6)x x 2csc )(cot -=' (7) x x x tan sec )(sec ='(8) x x x cot csc )(csc -='(9)a a a xx ln )(=' (10) (e )e xx '=(11)a x x a ln 1)(log ='(12)x x 1)(ln =',(13)211)(arcsin x x -=' (14)211)(arccos x x --='(15)21(arctan )1x x '=+(16)21(arccot )1x x '=-+函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)(3) v u v u uv '+'=')((4) 2v v u v u v u '-'='⎪⎭⎫ ⎝⎛反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间xI 内也可导,且)(1)(y x f ϕ'=' 或 dy dx dx dy 1=复合函数求导法则设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy dudx du dx =或2. 双曲函数与反双曲函数的导数.双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.可以推出下表列出的公式:(sh )ch x x '=(ch )sh x x '=21(th )ch x x '=21(arsh )1x x '=+21(arch )1x x '=-21(arth )1x x '=-倒数关系:tanα ·cotα=1 sinα ·cscα=1 cos α·secα=1 商的关系:平方关系:两角和公式两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)编辑本段三角和公式sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sin γcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cos γ编辑本段和差化积sinθ+sinφ =2sin[(θ+φ)/2] cos[(θ-φ)/2]和差化积公式sinθ-sinφ=2cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ= -2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)编辑本段积化和差sinαsinβ=-[cos(α+β)-cos(α-β)] /2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2二倍角正弦si n2A=2sinA·cosA余弦半角公式tan^2(α/2)=(1-cosα)/(1+cosα)sin^2(A/2)=[1-cos(A)]/2cos^2(A/2)=[1+cos(A)]/2半角公式(注:本资料素材和资料部分来自网络,仅供参考。
基本初等函数的导数公式及导数的运算法则
cx 5284 80 x 100.求净化到下纯度
100 x 时,所需净化费用的瞬时变化率 :
1 90% ; 298%.
解 净化费用的瞬时变化率就是净化费
用函数的导数.
c
'
x
5284 100 x
'
5
28
4'
1
0
0 x528 100 x2
4
1
0
0
x'
0
100 x 5284 100 x2
1
5284
100 x2
.
1因为c'90
5284
100 902
52.84,
所以,纯净度为90%时,费用的瞬时变化率
是55.84元 /吨.
2因为c'98
5284
100 982
解 因为y' x3 2x 3 ' x3 ' 2x' 3'
3x2 2.
所以,函数 y x3 2x 3的导数是 y' 3x2 2.
例3 日常生活中的饮用水 通常是经过净化的.随着水 纯净度的提高, 所需净化费 用不断增加.已知将1吨水净 化到纯净度为x%时所需费
;微营销云控 / 爆粉 ;
情の外人忽悠得信以为真...”老板娘轻笑,“连我公爹这种心善实诚のの人都不敢打包票说她是个好人...”陆羽眉头动了一下,笑了笑,不说话.能人遭妒很正常,这老板娘和善健谈,其实内心深处也对那余文凤羡慕妒忌恨吧?否则不会这么说话.“你家住哪儿?村里边?”陆 羽岔开话题.“家住在山对面呢,这房子我
基本初等函数求导公式
基本初等函数求导公式(1) (C )=0 (2) (x )= x -1 (3)(sin x ) = cos x (4) (cos x ) = - sin x (5)(tan x ) = sec 2 x (6) (cot x ) = - csc 2 x (7) (sec x ) = sec x tan x (8) (csc x ) = -csc x cot x(9) (a x )=a x ln a(10) (e x )=e x (log a x ) = 1(ln x ) = 1 (11) x ln a(12) x ,(arcsin x ) = 1(arccos x ) = - 1 (13) 1 - x(14) 1 - x(arctan x ) = 1 (arccot x ) = - 1(15) 1 + x(16) 1 + x 函数的和、差、积、商的求导法则设u = u (x ), v = v (x )都可导,则反函数求导法则若函数x =(y )在某区间I y 内可导、单调且(y ) 0 ,则它的反函数y = f (x )在对应 区间 I x 内也可导,且dy 11 dx = dx( y ) 或 dy复合函数求导法则1) (u v ) = u v2) (Cu ) = Cu (C 是常数) 3) (uv ) = u v + uv4)设 y = f (u ),而u =(x )且 f (u )及(x )都可导,则复合函数 y = f [(x )]的导数为2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.可以推出下表列出的公式: (sh x) = ch x (ch x ) = sh x (th x )= ch 2x(arsh x ) = 1 1 + x 2(arch x ) = 1 x 2 -1 (arth x ) = 1 1-x 2 dy dx。
基本求导法则与导数公式
四、基本求导法则与导数公式1. 基本初等函数的导数公式和求导法则基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式(1) 0)(='C (2) 1)(-='μμμx x(3) x x cos )(sin ='(4) x x sin )(cos -='(5)x x 2sec )(tan =' (6)x x 2csc )(cot -=' (7) x x x tan sec )(sec ='(8) x x x cot csc )(csc -='(9)a a a xx ln )(=' (10) (e )e xx '=(11)a x x a ln 1)(log ='(12)x x 1)(ln =',(13)211)(arcsin x x -=' (14)211)(arccos x x --=' (15)21(arctan )1x x '=+(16)21(arccot )1x x '=-+函数的和、差、积、商的求导法则设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)(3) v u v u uv '+'=')((4) 2v v u v u v u '-'='⎪⎭⎫ ⎝⎛反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间xI 内也可导,且)(1)(y x f ϕ'=' 或 dy dx dx dy 1=复合函数求导法则设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=上述表中所列公式与法则是求导运算的依据,请读者熟记.2. 双曲函数与反双曲函数的导数.双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.可以推出下表列出的公式:。
常用求导与定积分公式
一.基本初等函数求导公式(1) 0)(='C(2) 1)(−='μμμx x(3)x x cos )(sin ='(4)x x sin )(cos −='(5) x x 2sec )(tan =' (6)x x 2csc )(cot −=' (7) x x x tan sec )(sec ='(8)x x x cot csc )(csc −='(9)a a a x x ln )(=' (10) (e )e x x '=(11)a x x a ln 1)(log ='(12)x x 1)(ln =',(13)211)(arcsin x x −='(14)211)(arccos x x −−='(15)21(arctan )1x x '=+(16)21(arccot )1x x '=−+函数的和、差、积、商的求导法则设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2)u C Cu '=')((C 是常数)(3)v u v u uv '+'=')((4) 2v v u v u v u '−'='⎪⎭⎫ ⎝⎛反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间xI 内也可导,且)(1)(y x f ϕ'=' 或 dy dx dx dy 1=复合函数求导法则 设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=二、基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠− (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =−+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=−+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =−+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰(17)2211ln ||2x adx C x a a x a−=+−+⎰ (18)sin xarc C a =+(19)ln(x C =++(20)ln ||x C =+(21)tan ln |cos |xdx x C =−+⎰(22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =−+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
基本初等函数的导数公式的推导过程
基本初等函数的导数公式的推导过程1.常数函数的导数:常数函数的导数为0。
这可以通过导数的定义来证明。
假设常数函数为f(x) = C,其中C是一个常数。
导数的定义为f'(x) = lim(h->0)[f(x+h)-f(x)]/h,将f(x) = C代入该式,可得f'(x) = lim(h->0) [C - C]/h = 0。
2.幂函数的导数:幂函数的导数可以使用幂函数的定义和导数的定义来推导。
假设幂函数为f(x) = x^n,其中n是一个正整数。
根据导数的定义,可以计算出f'(x) = lim(h->0) [f(x+h)-f(x)]/h。
将f(x) = x^n代入该式,有f'(x) = lim(h->0) [(x+h)^n -x^n]/h。
可以采用二项式定理展开分子表达式:(x+h)^n = C(n, 0)x^n + C(n, 1)x^(n-1)h + C(n, 2)x^(n-2)h^2 + ... + C(n, n-1) xh^(n-1) + h^n其中C(n,k)表示从n中选取k个元素的组合数。
因此,分子展开为[(x+h)^n-x^n]/h=C(n,1)x^(n-1)+C(n,2)x^(n-2)h+...+C(n,n-1)h^(n-1)+h^n可以观察到,在这个表达式中,只有第一项不含h,其他项都有h的幂次方。
因此,当h趋近于0时,这些含有h的幂次方都会趋近于0,只剩下第一项C(n, 1)x^(n-1),即f'(x) = C(n, 1)x^(n-1) = nx^(n-1)。
3.指数函数和对数函数的导数:指数函数和对数函数的导数可以通过化简导数的定义来推导。
假设指数函数为f(x) = a^x,其中a是一个正实数且不等于1、对于任意实数x和x+h,有f'(x) = lim(h->0) [f(x+h)-f(x)]/h。
将f(x) = a^x代入该式,有f'(x) = lim(h->0) [a^(x+h)-a^x]/h。
基本初等函数导数推导
基本初等函数导数推导定义1:设函数 f(x) 在 x_{0} 附近有定义,对应自变量的改变量 \Delta x ,有函数的改变量 \Deltay=f(x_{0}+\Delta x)-f(x_{0}) ,若极限 \underset{\Delta x \rightarrow 0}\lim\frac{\Delta y}{\Delta x} 存在,则称该极限为f(x) 在 x_{0}的导数,记作 f'(x_{0}) 。
引理1(导数公式1):常数函数的导数处处为零。
证明:设 f(x)=C 。
f'(x)=\underset{\Delta x \rightarrow0}\lim\frac{f(x+\Delta x)-f(x)}{\Deltax}=\underset{\Delta x \rightarrow 0}\lim\frac{C-C}{\Delta x}= \underset{\Delta x \rightarrow0}\lim\frac{0}{\Delta x}=0引理2:部分三角函数和差化积公式\sin\alpha-\sin\beta=\sin(\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2})-\sin (\frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2})=(\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})+\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alp ha-\beta}{2}))-(\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})-\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2}))=2\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})\cos\alpha-\cos\beta=\cos(\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2})-\cos(\frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2})=(\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})-\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2}))-(\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})+\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alp ha-\beta}{2}))=-2\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})引理3:部分等价无穷小(1) \sin x\sim x(x\rightarrow 0)(2) e^{x}-1\sim x(x\rightarrow0)(3) \ln(1+x)\sim x(x\rightarrow0)(1)的证明略去,(2)(3)的证明见以下文章:引理4:导数的四则运算,设 u(x) 和 v(x) 可导。
基本初等函数的导数公式及导数的运算法则
y'x表示y对x的导数
即 y对 x的导数 y对 u 等 的于 导u数 对 x的 与导数. 的
由此,y可 ln 3 得 x2对 x的导数 yln 等 u对 u的 于
导数 u3 与 x2对 x的导数 ,即 的乘积
y'xyu ' u'xln u'3x2' 1 u33x3 2.
1321,
所以,纯净度为 98%时,费用的瞬时变化率
是1321元/吨.
函数 fx 在某点处的导数的大小表示函数
在此点附近变化的快慢 .由上述 计算可知,
c' 98 25c' 90.它表示纯净度为98%左
右时净 化费用的变化率 ,大约是纯 净 度 为
90% 左右时净化费用变化率的 25 倍 .这说
当p0 5时,pt 5 1.05t.这时,求p关于t的导 数可以看成求函数ft 5与 gt 1.05t 乘积
的导数.下面的" 导数运算法则"可以帮助我们解 决两个函数加、减、乘、除的求导问题.
导数运算法则
1 . f x g x ' f 'x g 'x ;
2 . f x g x ' f ' x g x f x g ' x ;
3 . g fx x 'f'x g x g x f2 x g 'x g x 0 .
例2 根据基本初等函数的导数公式 和导数运算法则,求函数 y x3 2x 3的导数.
1 ;
x ln a
8.
若 fx ln x,则 f ' x
数学 24个基本求导公式 常见导数公式 简介
数学 24个基本求导公式常见导数公式简介目录1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]2、f(x)=a的导数, f'(x)=0, a为常数3、f(x)=x^n的导数, f'(x)=nx^(n-1), n为正整数4、f(x)=x^a的导数, f'(x)=ax^(a-1), a为实数5、f(x)=a^x的导数, f'(x)=a^xlna, a>0且a不等于16、f(x)=e^x的导数, f'(x)=e^x7、f(x)=log_a x的导数, f'(x)=1/(xlna), a>0且a不等于18、f(x)=lnx的导数, f'(x)=1/x9、(sinx)'=cosx10、(cosx)'=-sinx11、(tanx)'=(secx)^212、(cotx)'=-(cscx)^213、(secx)'=secxtanx14、(cscx)'=-cscxcotx15、(arcsinx)'=1/根号(1-x^2)16、(arccosx)'=-1/根号(1-x^2)17、(arctanx)'=1/(1+x^2)18、(arccotx)'=-1/(1+x^2)19、(f+g)'=f'+g'20、(f-g)'=f'-g'21、(fg)'=f'g+fg'22、(f/g)'=(f'g-fg')/g^223、(1/f)'=-f'/f^224、(f^(-1)(x))'=1/f'(y)常见导数公式四个基本的导数公式可以分为三类。
第一类是导数的定义公式,即差商极限。
然后由这个公式推导出17个基本初等函数的求导公式,这就是第二类。
基本初等函数的导数公式的推导过程
基本初等函数的导数公式的推导过程一、幂函数的导数公式:考虑函数y=x^n,其中n是实数。
为了求导数,我们可以使用极限的定义,即求函数在其中一点x0处的导数。
首先,我们将函数写成y=x*x*...*x(n个x相乘)的形式。
然后,我们计算x处的斜率,即函数在x0处两个极接近的点之间的变化率。
这个斜率可以通过求极限得到。
因此,对于y=x^n,我们可以使用极限计算导数:dy/dx = lim(h→0) [ (x0 + h)^n - x0^n ] / h利用二项式定理展开,并除以h,我们得到dy/dx = lim(h→0) [ C(n, 0) * (x0)^(n-0) * h^0 + C(n, 1) * (x0)^(n-1) * h^1 + C(n, 2) * (x0)^(n-2) * h^2 + ... + C(n, n) * (x0)^(n-n) * h^n ] / h化简上式,我们可以得到:dy/dx = n * x0^(n-1)所以,幂函数 y = x^n 在任意一点 x0 的导数为 dy/dx = n *x^(n-1)。
二、指数函数的导数公式:考虑函数y=a^x,其中a是一个正实数且a≠1、为了求导数,我们可以使用极限的定义,即求函数在其中一点x0处的导数。
首先,我们将函数写成 y = e^(x * ln(a)) 的形式。
然后,我们计算 x 处的斜率,即函数在 x0 处两个极接近的点之间的变化率。
这个斜率可以通过求极限得到。
因此,对于y=a^x,我们可以使用极限计算导数:dy/dx = lim(h→0) [ a^(x0 + h) - a^x0 ] / h利用指数的性质a^(b+c)=a^b*a^c,并除以h,我们得到dy/dx = lim(h→0) [ a^x0 * a^h - a^x0 ] / h化简上式,我们可以得到:dy/dx = a^x0 * lim(h→0) [ (a^h - 1) / h ]当 h 趋近于 0 时,我们可以使用极限公式 lim(h→0) [ (a^h - 1) / h ] = ln(a)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本初等函数求导公式
(1) 0)(='C (2) 1
)(-='μμμx x
(3) x x cos )(sin ='
(4) x x sin )(cos -='
(5)
x x 2
sec )(tan =' (6)
x x 2csc )(cot -=' (7) x x x tan sec )(sec ='
(8) x x x cot csc )(csc -='
(9)
a a a x
x ln )(=' (10) (e )e x
x '=
(11)
a x x a ln 1
)(log =
'
(12)
x x 1)(ln =
',
(13)
211)(arcsin x x -=
' (14)
211)(arccos x x --
=' (15)
21(arctan )1x x '=
+
(16)
21(arccot )1x x '=-
+
函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则
(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)
(3) v u v u uv '+'=')(
(4) 2v v u v u v u '-'='
⎪⎭⎫ ⎝⎛
反函数求导法则
若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应
区间
x
I 内也可导,且
)(1)(y x f ϕ'=
' 或 dy dx dx dy 1=
复合函数求导法则
设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为
dy dy du dx du dx =
或()()y f u x ϕ'''=
2. 双曲函数与反双曲函数的导数.
双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.
可以推出下表列出的公式:
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB
tan(A+B) =tanAtanB -1tanB
tanA +
tan(A-B) =tanAtanB 1tanB
tanA +-
cot(A+B) =cotA cotB 1
-cotAcotB +
cot(A-B) =cotA
cotB 1
cotAcotB -+
倍角公式
tan2A =A
tan 12tanA
2-
Sin2A=2SinA•CosA
Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A
三倍角公式
sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA
tan3a = tana ·tan(3π+a)·tan(3
π
-a)
半角公式 sin(
2
A )=2cos 1A -
cos(
2
A
)=2cos 1A +
tan(
2
A
)=A A cos 1cos 1+-
cot(2
A )=A A cos 1cos 1-+
tan(
2
A )=A A sin cos 1-=A A cos 1sin +
和差化积
sina+sinb=2sin 2b a +cos 2b
a -
sina-sinb=2cos 2b a +sin 2b
a -
cosa+cosb = 2cos 2b a +cos 2b
a -
cosa-cosb = -2sin 2b a +sin 2
b
a -
tana+tanb=b
a b a cos cos )
sin(+
积化和差
sinasinb = -21
[cos(a+b)-cos(a-b)]
cosacosb = 21
[cos(a+b)+cos(a-b)]
sinacosb = 21
[sin(a+b)+sin(a-b)]
cosasinb = 2
1
[sin(a+b)-sin(a-b)]
诱导公式 sin(-a) = -sina cos(-a) = cosa
sin(
2π
-a) = cosa cos(2π
-a) = sina
sin(2π
+a) = cosa
cos(2
π
+a) = -sina
sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa
tgA=tanA =a
a
cos sin
万能公式
sina=
2
)2(tan 12tan
2a
a + cosa=
2
2
)2(tan 1)2(tan 1a
a
+- tana=
2
)2
(tan 12tan
2a
a - 公式一:
设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三:
任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα
cot (-α)= -cotα 公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六: 2
π±α及23π±α与α的三角函数值之间的关系:
sin (2π
+α)= cosα
cos (2π
+α)= -sinα
tan (2π
+α)= -cotα
cot (2π
+α)= -tanα
sin (2π
-α)= cosα
cos (2π
-α)= sinα
tan (2π
-α)= cotα
cot (2π
-α)= tanα
sin (23π+α)= -cosα
cos (23π+α)= sinα
tan (23π+α)= -cotα
cot (23π+α)= -tanα
sin (23π-α)= -cosα
cos (2
3π-α)= -sinα
tan (
23π
-α)= cotα cot (23π-α)= tanα。