四年级奥数-等差数列
四年级奥数等差数列问题
等差数列例1.计算1+2+3+4+5+…+78+79+80=?例2.有一个数列4,10,16,22,…,58,这个数列共有多少项?例3.写出数列1,3,5,7,9,…中的第40个数.例4.一个影院的放映厅设置了20排座位,第一排有30个座位,往后每一排都比前一排多2个座位.问这个放映厅一共有多少个座位?例5.建筑工地有一批砖,码在一起,最上层2块,第二层6块,第三层10块……依次每一层都比上一层多4块砖,已知最下层198块砖,问这堆砖共有多少块?例6.有45位同学举行一次联欢会,同学们在一起一一握手,且每两人只能握一次,问同学们共握了多少次手?例7.有一个六边形点阵,他的中心是一个点,算作第一层,第二层每边有两个点,第三层每边有三个点……这个六边形点阵共100层,问这个点阵共有多少个点?1. 3+6+9+…+2001=?2.求(1+3+5+7+...+2003)—(2+4+6+8+ (2002)3. 8✖2+8✖5+8✖8+…+8✖2003=?4. 数列3,12,21,30,39,48,57,66,75,…求:(1)第12个数是多少?(2)912是第几个数?5.1+2+3+4+5+6+7+…+2001+2002+2001+…+4+3+2+1=?6.前25个自然数的和是325,即:1+2+3+4+…+25=325.求紧接下来的25个自然数的和,即26+27+28+29+…+50=?7.数列3,6,9,12,15,18,…,300,303是一个等差数列.这个等差数列中所有数的和是多少?8.在等差数列6,13,20,27,…中,从左向右数第几个数是1994?9. 2+3+7+9+12+15+17+21+22+27+27+33+32+39+37+45=?10.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依此类推,从1点至12点这12小时共敲多少下?11.黑白两种颜色的珠子,一层黑一层白排成正三角形的形状.当白珠子比黑珠子多10颗时,共用了多少颗白珠子?12.1至100各数,所有不能被9整除的自然数的和是多少.13.平面上有100条直线,其中没有两条直线互相平行,也没有三条直线或三条以上直线相交于一点,平面上这100条直线共有交点多少个?14.一辆双层公交车有66个座位.空车出发,第一站上一位乘客,第二站上二位乘客,第三站上三位乘客,依次类推,若无人下车,第几站后,车上坐满乘客?15.小刚进行加法练习,用1+2+3+4+…,当加到某个数时,和是1000.在验算时发现重复加了一个数,这个数是多少?16.梯子最高的一级宽是32厘米,最低的一级宽122厘米,中间还有9级,各级的宽成等差数列,中间一级宽多少厘米?17.唐唐出差7天没有回家,回家后一次撕下这7天的日历,这7天日期数相加的和是119,那么唐唐回家这天是多少号?18.30把锁的钥匙混淆了,为了使每把锁都配上自己的钥匙,至多要试多少次?19.盒子里放有三个乒乓球.一位麾术师第一次从盒子里拿出一个球,将它变成3个球后放回盒子里;第二次从盒子里拿出2个球,将每个球各变成3个球后放回盒子里……第10次从盒子里拿出10个球,将每个球各变成3个球后放回到盒子里,这时盒子里共有多少个乒乓球?。
小学四年级奥数竞赛:等差数列求和
课题巧妙求和年级四年级授课对象编写人时间学习目标1、认识等差数列各部分名称2、等差数列求和3、已知首项、末项、公差、项数其中任意三个量,求另一个量。
学习重点、难点已知首项、末项、公差、项数其中任意三个量,求另一个量。
教学过程T (测试)1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?S (归纳)求和公式:和=(首项+末项)×项数÷2项数公式:项数=(末项-首项)÷公差+1通项公式:第n项=首项+(项数-1)×公差首项公式:首项=末项-项数-1)×公差例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
例2:有一等差数列:3,7,11,15,……,这个等差E (典例)数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
1+2+3+…+99+100=(1+100)×100÷2=5050上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。
四年级奥数等差数列求和
等差数列求和例1、有一个数列:3、6、9、12、……480,这个数列共有几项?其中48是第几项?练1、有一个数列:13、21、29、37、……85,这个数列共有几项?练2、有一个数列:113、108、103、98、……48,这个数列共有几项?练3、已知一个等差数列,首项是6,末项是126,公差是5,其中121是第几项?练4、已知等差数列5、7、9、11……这个数列的第20项和第92项分别是什么?练5、已知等差数列500、497、494、491……这个数列的第20项和第92项分别是什么?例2、计算1+2+3+4+5+6+7+8+9+10练、计算1+2+3+4+5+……+99+100 1+2+3+4+……+500计算1+2+3+4+……+133 1+2+3+4+……+311例3、计算5+8+11+14+17……+38练、计算16+19+22+25……+100 5+7+9+11+……+47计算41+46+51+……306 6+16+26……+666计算999+997+995+……+101 777+769+761+753……+401例4、有一个等差数列:1、5、9、13……那么这个等差数列前100项的和是多少?练1、有一个等差数列:1、5、9、13……那么这个等差数列前50项的和是多少?练2、有一个等差数列:9、11、13、15……那么这个等差数列前65项的和是多少?练3、有一个等差数列:300、297、294……那么这个等差数列前55项的和是多少?练4、有一个等差数列a1=18,d=5,那么这个等差数列前99项的和是多少?例5、计算(1+3+5+……+2019)-(2+4+6+……2018)练1、计算(2+4+6+...+100)-(1+3+5+ (99)练2、计算1000-1-2-3-……-20练3、计算2000-3-6-9-……-51-54练4、计算1+2+3+......+9+10+20+30+......+90+100+200+300+ (1000)请认真完成作业~·~1、有一个数列:10、13、16、19……124,这个数列共有几项?其中28是第几项?2、计算1+2+3+4+……199 1+2+3+4……+3333、计算80+81+82+83……+150 332+331+330+……+1004、计算1+3+5+7+9……+99 8+10+12+14+……+1885、计算23+26+29+……119 222+118+114+……+986、有一个等差数列,a1=13,d=4,求前40项的和。
等差数列四年级奥数题
等差数列四年级奥数题
一、等差数列的基本概念
1. 定义
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
这个常数叫做等差数列的公差,通常用字母公式表示。
例如数列公式就是一个等差数列,公差公式,因为公式
,公式,公式等。
2. 通项公式
对于等差数列公式,其通项公式为公式,其中公式是首项(数列的第一项),公式是项数,公式是第公式项的值。
例如在等差数列公式中,公式,公式,那么第公式项公式。
3. 求和公式
等差数列的前公式项和公式为公式,也可以写成公式。
例如求等差数列公式的和。
这里公式,公式,先求项数公式,根据公式,公式,解得公式。
再用求和公式公式。
二、四年级奥数等差数列题目及解析
1. 题目
有一个等差数列:公式,求这个数列的第公式项是多少?
2. 解析
首先确定这个等差数列的首项公式,公差公式(因为公式
,公式等)。
根据等差数列的通项公式公式,要求第公式项,即公式。
把公式,公式,公式代入通项公式可得:公式。
3. 题目
已知等差数列公式,这个数列的前公式项的和是多少?
4. 解析
先确定首项公式,公差公式。
根据等差数列的前公式项和公式公式,这里公式。
把公式,公式,公式代入可得:
公式
公式
公式。
5. 题目
在一个等差数列中,首项是公式,第公式项是公式,求公差公式。
6. 解析
已知公式,公式,公式。
根据通项公式公式,把公式,公式,公式代入可得:
公式
公式
公式
解得公式。
四年级奥数:等差数列求和、容斥问题(含与排除问题)的解题思路
四年级奥数:等差数列求和、容斥问题(含与排除问题)的解题思路在一列数中,如果任意两个相邻的数的差都相等,那么这个数列就是等差数列,等差数列中所有数的个数叫做项数,数列的第一个数叫做首项,最后一个数叫做末项,任意两个相邻数的差叫做公差,求所有数的和叫做等差数列求和。
在等差数列中,我们主要学习项数、首项、末项、公差与数列和之间的关系,它们的关系是:(1)求等差数列的和:和=(首项+末项)×项数÷2(2)求项数:项数=(末项-首项)÷公差+1(3)求末项:末项=首项+(项数-1)×公差(4)求首项:首项=末项-(项数-1)×公差例题1例题2等差数列中,末项=首项+公差×(项数-1);首项=末项-公差×(项数-1)例题3项数=(末项-首项)÷公差+1例题4例题5等差数列求和,其实就是把原来的数列再倒过来排一下,然后求出两个数列的和,再除以2,即和=(首项+末项)×项数÷2。
容斥问题,即重叠问题,是指几个量之间的包含与排除关系。
重叠问题中有二次重叠和三次重叠。
容斥原理下面我们就通过一些具体的例子来说明例题1两个量之间的重叠问题中,如果是全部参与,则总人数等于分别参加两项的的人数和减去两项都参加的人数;两个量之间的重叠问题中,如果是部分参与,则总人数等于参加的人数加上没参加的人数。
例题2三个量的重叠问题中,如果是全部参与,则总人数等于参加三项的人数和减去同时参加两项的人数和,再加上同时参加三项的人数;三个量的重叠问题中,如果是部分参与,则总人数等于至少参加一项的人数与三项都没参加的人数之和。
例题3两个量的极值中,两项都参加的人最多,就是较少的一项,两项都参加的人数最少,就是求重叠部分;三个量的极值问题中,如果要不参加的最多,就是要参加的尽量少。
四年级奥数等差数列求和一
等差数列的通项公式
定义:等差数列中任意一项 都等于前一项加上一个常数
公式:an=a1+(n-1)d, 其中an是第n项,a1是第 一项,d是公差
特点:每一项与前一项的差 等于公差,且差值相等
求解方法:根据已知项和公 差,利用通项公式求出任意
一项
02
等差数列求和的方法
公式法求和
适用范围:适用 于已知首项和公 差的等差数列
公式:S_n = n/2 * (2a_1 + (n1)d),其中a_1是 首项,d是公差, n是项数
推导过程:由等 差数列的性质, 可以推导出该公 式
计算步骤:代入 已知数值,计算 出等差数列的和
倒序相加法求和
添加标题
定义:将等差数列从前往后和从后往前分别相加,再除以2得到等差数列 的和
添加标题
适用范围:适用于等差数列求和问题
+(n-1)d)
变形一: Sn=an^2/2+( n-9)an/2nd/2+n^2/4n/4
变形二: Sn=d/2*n^2+ (a1-d/2)*n
拓展:等差数列 求和公式的应用 范围和适用条件
05
等差数列求和的练习题
基础练习题
题目:1+2+3+...+99=? 题目:求1到100的所有偶数的和。 题目:求1到100的所有奇数的和。 题目:已知等差数列的前三项分别为a、b、c,求该等差数列的和。
添加标题
举例:对于数列1, 3, 5, 7, 9,倒序相加得到1+9, 3+7, 5+5,结果为 10+10+5=25
添加标题
优势:可以快速求解等差数列求和问题
小学奥数_等差数列
四年级奥数课程部分第八讲:等差数列一,数列有关知识点:⒈ 数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n项结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“31”是这个数列的第“3”项,等等 4.等差数列的定义: n a -1-n a =d ,(n ≥2,n ∈N +)后一项减前一项为一定值,我们把这个定值叫公差,用d 表示5.等差数列的通项公式:(每一项都可用通项公式来表示)d n a a n )1(1-+=6.数列的前n 项和:数列{}n a 中,n a a a a ++++ 321称为数列{}n a 的前n 项和,记为n S .求和公式:总和=(首项+末项)×项数÷2=等差中项×项数等差数列的前n 项和公式1:2)(1n n a a n S +=等差数列的前n 项和公式2:2)1(1d n n na S n -+=二.例题精讲例1,认识数列:等差数列:3、6、9、 (96)这是一个首项为3,末项为96,项数为32,公差为3的数列。
例2,有一个数列:4、7、10、13、…、25,这个数列共有多少项提示仔细观察可以发现,后项与其相邻的前项之差都是3,所以这是一个以4为首项,以公差为3的等差数列,根据等差数列的项数公式即可解答。
解:由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得,项数=(25-4)÷3+1=8,所以这个数列共有8项。
四年级奥数寻找数列中的隐藏规律
四年级奥数寻找数列中的隐藏规律数学是一门深奥的学科,它蕴含着各种规律和奥妙。
在四年级的数学学习中,我们经常遇到数列这个概念。
数列是一系列按照一定规律排列的数目,它隐藏着许多规律等待我们去寻找。
本文将带领大家一起探索数列中的隐藏规律。
一、等差数列等差数列是最简单的一类数列,每个数与它后面的数的差值相等。
我们可以通过观察数列中相邻两个数的变化来找到其隐藏规律。
例如,给定数列:2,4,6,8,10,...我们可以发现,每个数与它前面的数的差值都是2,即:4-2=2,6-4=2,8-6=2,...这说明这个数列是一个等差数列,并且它的公差(即相邻两个数的差值)为2。
所以,数列的通项公式可以表示为:an=2n。
二、等差数列的应用等差数列不仅仅是一个简单的数学概念,它还有广泛的应用。
在我们日常生活中,很多现象都可以用等差数列来描述。
例如,我们在买菜的时候,发现某种蔬菜的价格每天都在递增。
如果我们知道第一天的价格和每天的涨幅(即公差),就可以轻松计算出未来几天的价格。
又如,我们在饭店吃饭的时候,发现菜单上的价格每个菜品之间都有规律的增减。
如果我们能够找到这个规律,就可以更好地安排我们的餐点。
三、等比数列除了等差数列,还有一种常见的数列叫做等比数列。
等比数列指的是相邻两个数之比是一个常数。
同样地,我们可以通过观察数列中相邻两个数的比值来找到其隐藏规律。
例如,给定数列:2,4,8,16,32,...我们可以发现,每个数与它前面的数的比值都是2,即:4/2=2,8/4=2,16/8=2,...这说明这个数列是一个等比数列,并且它的公比(即相邻两个数的比值)为2。
所以,数列的通项公式可以表示为:an=2^n。
四、等比数列的应用和等差数列一样,等比数列也是我们生活中经常遇到的。
它可以描述很多复杂的增长和衰减现象。
例如,我们在银行存钱,每年的利息都是按照某个百分比增长。
如果我们知道第一年的存款和每年的增长率(即公比),就可以计算未来几年的存款金额。
四年级奥数等差数列应用
等差数列的应用课前预习从1到100万大家对德国大数学家高斯小时候的一个故事可能很熟悉了.据说他在十岁的时候,老师出了一个题目:1+2+3+……+99+100的和是多少? 老师刚把题目说完,小高斯就算出了答案:这100个数的和是5050.原来,小高斯是这样算的:依次把这100个数的头和尾都加起来,即1+100,2+99,3+98,……,50+51,共50对,每对都是101,总和就是101×50=5050.现在请你算一道题:从1到1000000这100万个数的数字之和是多少?注意:这里说的“100万个数的数字之和”,不是“这100万个数之和”.例如,1、2、3、4、5、6、7、8、9、10、11、12这12个数的数字之和就是1+2+3+4+5+6+7+8+9+1+0+1+1+1+2=51.请你先仔细想想小高斯用的方法,会对你算这道题有启发.知识框架一、等差数列的相关公式(1) 三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >() ② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数. 譬如:①4+8+12+…+32+36=(4+36)×9÷2=20×9=180,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.重难点重点:观察并找出图形、生活中的等差数列 与数论有关的等差数列运算. 难点:活动与操作中的等差数列运算数表中的等差数列例题精讲【例 1】 木木练习口算,她按照自然数的顺序从1开始求和,当计算到某个数时,和是888,但她重复计算了其中一个数字.问:木木重复计算了哪个数字?【考点】等差数列应用题 【难度】☆☆☆ 【题型】解答【解析】 解法一:用x 表示木木多加的那个数,88812X n n -=+⨯÷(),117762n n x +⨯=-() ,两个相邻的自然数的积是比1776小一些的一个数,先找1776附近的平方数,16004040=⨯ ,试算:40411640⨯=,41421722⨯= ,42431806⨯= ,所以41n =,所以177********x =-⨯÷=().解法二:估算法,(1+40)×40÷2=820,(1+41)×41÷2=861,(1+42)×42÷2=903.所以可知数字个数可能为40或者41.888-820=68,不在40内,舍去;888-861=27,符合条件.【答案】27【巩固】 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.已知去时用了4天,回来时用了3天.问:学校距离百花山多少千米?【考点】等差数列应用题 【难度】☆☆☆ 【题型】解答【解析】 解法一:这道题目关键是弄清题意,发现关键是要求出第一天拉练的距离,在这里可以用方程的思想来帮助解题,可以给四年级学生一个方程的初步认识,来回的距离是相同的,通过这点来做方程求解,设第一天拉练的距离是x ,则第二天为2x +,第三天为4x +,第四天6x +,第五天的距离为8x +,第六天的距离为10x +,第七天的12x +.且去时和来时的路程一样,则24681012x x x x x x x ++++++=+++++()()()()()(),则18x =,学校距离百花山84千米. 解法二:七天所走路程形成了一个等差数列,公差为 2. 五、六、七三天合走路程比二、三、四三天合走路程多(8+10+12)-(2+4+6)=18. 来回路程相等,所以第一天走了18千米,学校距百花山18+20+22+24=84千米.【答案】84【例 2】 某工厂12月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人260人.如果月底统计总厂工人的工作量是9455个工作日(1人工作1天为1个工作日),且无1人缺勤.那么这月由总厂派到分厂工作的工人共有多少人.【考点】等差数列应用题 【难度】☆☆☆ 【题型】解答【解析】 解法一:260人工作31天,工作量是260318060⨯=(个)工作日.假设每天从总厂派到分厂a个工人,第一天派去分厂的a 个工人在总厂的工作量为0个工作日; 第二天派去分厂的a 个工人在总厂的工作量为a 个工作日; 第三天派去分厂的a 个工人在总厂的工作量为2a 个工作日; ……第31天派去分厂的a 个工人在总厂的工作量为30a 个工作日. 从而有:9455023308060a a a a =++++++94558060123301395130302465a a a-=⨯++++=⨯+⨯÷=()()求得3a =.那么这月由总厂派到分厂工作的工人共有33193⨯=(人).解法二:每天都从总厂陆续派相同人数的工人到分厂工作,所以总厂每天的工作日成等差数列.31天的总工作量为9455个工作日.根据等差数列中项定理得到第16天的工作量为:9455÷31=305,根据n m a a n m d -=-⨯(),n m >(),得d=(305-260)÷(16-1)=3.即每天都从总厂派3个人到分厂工作.那么这月由总厂派到分厂工作的工人共有33193⨯=(人).【答案】93【巩固】 甲、乙两厂生产同一种玩具,甲厂生产的玩具数量每个月保持不变,乙厂生产的玩具数量每个月增加一倍.已知一月份甲、乙两厂生产玩具的总数是98件,二月份甲、乙两厂生产玩具的总数是106件,那么乙厂生产的玩具数量第一次超过甲厂生产的玩具数量在几月份?【考点】等差数列应用题 【难度】☆☆☆ 【题型】解答【解析】 由二月份生产的玩具总数比一月份生产的玩具总数多出的件数是一月份乙厂生产的玩具数.即一月份乙厂生产了106—98=8件,甲厂生产了98-8=90件.乙厂生产的玩具数量每月增加一倍,有48290⨯>,38290⨯<,所以在4月后.即乙厂生产的玩具数量第一次超过甲厂生产的玩具数量在5月份.【答案】5【例 3】 右图中,每个最小的等边三角形的面积是12平方厘米,边长是1根火柴棍.如果最大的三角形共有8层,问:⑴最大三角形的面积是多少平方厘米?⑵整个图形由多少根火柴棍摆成?【考点】等差数列应用题 【难度】☆☆☆ 【题型】解答【解析】 最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:⑴ 最大三角形面积为:13515121158212768++++⨯=+⨯÷⨯=()()(平方厘米). ⑵ 火柴棍的数目为:3692432482108++++=+⨯÷=()(根).【答案】⑴768 ⑵108【巩固】 如右图,25个同样大小的等边三角形拼成了大等边三角形,在图中每个结点处都标上一个数,使得图中每条直线上所标的数都顺次成等差数列.已知在大等边三角形的三个顶点放置的数分别是100,200,300.求所有结点上数的总和.【考点】等差数列应用题 【难度】☆☆☆ 【题型】解答【解析】 如下图,各结点上放置的数如图所示.从100到300这条直线上的各数的平均数是200,平行于这条直线的每条直线上的各数的平均数都是200.所以21个数的平均数是200,总和为200214200⨯=.220200180120140160180200220240260280300240260220200180160140100【答案】4200【例 4】 把自然数从1开始,排列成如下的三角阵:第1列为1;第2列为2,3,4;第3列为5,6,7,8,9,…,每一列比前一列多排两个数,依次排下去,“以1开头的行”是这个三角阵的对称轴,如图.则在以1开头的行中,第2008个数是多少.526137489【考点】数阵中的等差数列 【难度】☆☆☆ 【题型】填空 【解析】 方法一:2008行第一个数字为[]20071120062214028050⨯++⨯÷+=()2008行最后一个数字为[]2008112007224032064⨯++⨯÷=()所以,2008行中间的数字为4028050403206424030057+÷=().方法二:观察以1开头的行的数列:1,3,7,13得出规律,后一个数比前一个数多2,4,6所以,第2008个数为1246200721220072200724030057+++++⨯=++⨯⨯÷=().【答案】4030057【巩固】 将自然数按下图的方式排列,求第10行的第一个数字是几?136101521259142048131971218111716【考点】数阵中的等差数列【难度】☆☆☆【题型】填空【解析】将图中数字按顺时针方向转45,成为下图的样子:123456789101112131415161718192021那么在第10行的第1个数之前共有9行数,计算出这9行共有多少数字,就可以知道第10行的第一个数是多少.前9行共有数字1239199245++++=+⨯÷=()(个),所以第10行的第1数是46.【答案】46【例 5】有码放整齐的一堆球,从上往下看如右图,这堆球共有多少个?【考点】等差数列应用题【难度】☆☆☆☆【题型】填空【解析】从图中可以看出,除去最上层1个球外,第二层(次上层)有(1+2+3+4+5)=15个球,以后每层比上一层多6、7、8、9、10个球,共7层.15+6=21,21+7=28,28+8=36,36+9=45,45+10=55,1+15+21+28+36+45+55=201.答:共有201个球.【答案】201个球【巩固】已知有一个数列:1、1、2、2、2、2、3、3、3、3、3、3、4、,试问:⑴15是这样的数列中的第几个到第几个数?⑵这个数列中第100个数是几?⑶这个数列前100个数的和是多少?【考点】等差数列的公式运用【难度】☆☆☆【题型】计算【解析】分析可得下表:数:1 2 3 4 5 6 7 14 15 16个数:2 4 6 8 10 12 14 28 30 32⑴24628210++++=,所以15是第211个到240个⑵在这个数列中前9组的个数是:2461890++++=(个)这个数列前10组的个数是:24620110++++=(个)而90100110<<,所以第100个数是第10组中的数,是10⑶这个数列中前100个数的和是:1224369181010670⨯+⨯+⨯++⨯+⨯=【答案】⑴第211个到240个⑵10⑶670【例 6】从1到50这50个连续自然数中,取两数相加,使其和大于50,有多少种不同的取法?【考点】找规律计算【难度】☆☆☆☆【题型】填空【解析】设满足条件的两数为a、b,且a<b,则若a=1,则b=50,共1种.若a=2,则b=49,50,共2种.若a=3,则b=48,49,50,共3种.…若a=25,则b=26,27,…50,共25种.若a=26,则b=27,28,…50,共24种.(a=26,b=25的情形与a=25,b=26相同,舍去).若a=27,则b=28,29,…50,共23种.…若a=49,则b=50,共1种.所以,所有不同的取法种数为1+2+3+…+25+24+23+22+…+l=2×(1+2+3+…+24)+25=625.【巩固】从1到100的100个数中,每次取出两个不同的自然数相加,使它们的和超过100.有几种不同的取法?【考点】找规律计算【难度】☆☆☆☆【题型】填空【解析】1至100的自然数每次取出两个不同的自然数相加,超过100的和共有101~199共99种取法.和是199的取法:100+99.和是198的取法:10098+.和是197的取法:10097+,9998+. 和是196的取法:10096+,9997+.和是195的取法:10095+,9996+,9897+. 和是194的取法:10094+,9995+,9896+. ……以此规律作进一步推想:和为193的取法有4种,和为192的取法也有4种;和为191的取法有5种,和为190的取法也有5种;……,和为103的取法有49种,和为102的取法也是49种;和为101的取法有50种.和超过100的取法种数总和是:11223349495012349250+++++++++=++++⨯+()14949225050495050502500=+⨯÷⨯+=⨯+=⨯=()(种)【答案】2500【例 7】 将正整数从1开始依次按如图所示的规律排成一个“数阵”,其中2在第1个拐角处,3在第2个拐角处,5在第3个拐角处,7在第4个拐角处,…….那么在第100个拐角处的数是 .22202119181716141512111098764321【考点】数阵中的等差数列 【难度】☆☆☆☆ 【题型】填空 【解析】 我们可列表观察拐角处的数有什么特征第0个拐角:1 第1个拐角:211=+第2个拐角:321111=+=++ 第3个拐角:5321112=+=+++ 第4个拐角:75211122=+=++++ 第5个拐角:1073111223=+=+++++ 第6个拐角:131031112233=+=++++++ 第7个拐角:1713411122334=+=+++++++ 第8个拐角:21174111223344=+=++++++++ ……由此可知,第n 个拐角处的数等于 ⑴11111122222n n n --+++++++++(n 为奇数时) ⑵1112222n n+++++++(n 为偶数时)所以第100个拐角处的数为()11122505012123502551+++++++=+⨯++++=.【答案】2551【巩固】 一列自然数:0,1,2,3,……,2024,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024.现在将这列自然数排成以下数表规定横排为行,竖排为列,则2005在数表中位于第________行第________列.【考点】数阵中的等差数列 【难度】☆☆☆☆ 【题型】填空【解析】 观察可知第n 行的第1个数是()21n -,第n 列的第1个数是21n -.由于224419362005202545=<<=,所以第45行的第1个数是1936,第45列的第1个数是202512024-=.由于20242005120-+=,所以2005在第20行第45列.【答案】第20行第45列【例 8】 如图的数阵是由77个偶数排成的,其中20,22,24,36,38,40这六个数由一个平行四边形围住,它们的和是180.把这个平行四边形沿上下、左右平移后,又围住了右边数阵中的另外六个数,如果这六个数的和是660.那么它们中间位于平行四边形左上角的那个数是 ?142144146148150152154 (30323436384042282624222018168141210642)【考点】数阵中的等差数列 【难度】☆☆☆☆ 【题型】填空【解析】 由于平行四边形的形状不改变,所以它移动后框住的6个数与原来的6个数相比,每个数都增加了同样的大小.由于六个数一共增加了660180480-=,所以每个数增加了480680÷=,那么第一个数就变为2080100+=.【答案】100【巩固】 如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少?【考点】数阵中的等差数列 【难度】☆☆☆ 【题型】填空【解析】 我们从第1列开始,作同一列中的两个数的差(大数减小数),不难发现:开始时是差值逐渐变小,而当第一行的数时的数开始超过第二行中,差值又开始逐渐变大.因此 关键是计算出临界状态时的差值.由于第一行是公差为4的递增的等差数列,而第二行则每次比前一个数少3,因此当第二行中的数比第一行中的数大时,差值每次减少7.而从某一列开始后,第二行中的数比第一行小,此后差值每次增加7.于是差值的变化为:999、992、985……2、5、12……1332.于是最小的差值为2.【答案】2【例 9】 华罗庚金杯少年数学邀请赛,第一届在1986年举行,第二届在1988年举行,第三届在1991年举行,以后每两年举行一届.第一届华杯赛所在年份的各位数字和是1A =1+9+8+6=24.前二届所在年份的各位数字和是2A =1+9+8+6+1+9+8+8=50.问:前50届华杯赛所在年份的各位数字和50A 等于多少?【考点】找规律计算 【难度】☆☆☆☆ 【题型】解答【解析】 由题中所给规律知,前50届在20世纪内有7次赛事,在2l 世纪内有43次赛事. 在20世纪内,已知2A =50,其余5届年份各位数字的和是5×(1+9+9)+(1+3+5+7+9)=95+25=120. 从而7A =2A +120=170.在21世纪内的前45届年份的数字之和是:2×45+(1+2+…+8)×5+(1+3+5+7+9)×9=495,前43届年份的数宰和是495-2-8-7-2-8-9=459. 于是50A =170+459=629.【巩固】 今要在一个圆周上标出一些数,第一次先把圆周二等分,在两个分点旁分别标上12和13,如图18-1所示.第二次把两段半圆弧二等分,在分点旁标上相邻两分点旁所标两数的和511623=+,如图18-2所示.第三次把4段圆弧二等分,并在4个分点旁标上相邻两分点旁所标两数的和1151326=+,1151636=+,如图18-3所示.如此继续下去,当第八次标完数以后,圆周上所有已标数的总和是多少?【考点】找规律计算 【难度】☆☆☆☆ 【题型】解答【解析】 因为增加的每个数都是原来相邻两个数之和,所以每次增加数的总和恰好是原来所有数总和的2倍,也就是说每次标完数后圆周上所有数的总和是前一步标完数后圆周上所有数的总和的3倍,于是,第八次标完数后圆周上所有数的总和是:1123⎛⎫+ ⎪⎝⎭×3×3×3×3×3×3×3=118222.【例 10】 有多少组正整数a 、b 、c 满足2009a b c ++=.【考点】找规律计算 【难度】☆☆☆☆☆ 【题型】填空 【解析】 若2007a =,则2b c +=,有11b c =⎧⎨=⎩,1组.若2006a =,则3b c +=,有12b c =⎧⎨=⎩或21b c =⎧⎨=⎩,2组.若2005a =,则4b c +=,有13b c =⎧⎨=⎩22b c =⎧⎨=⎩31b c =⎧⎨=⎩,3组.若2a =,则2007b c +=,2006组. 若1a =,则2008b c +=,2007组.显然,a 不能等于2007,2008. 所以,有123200712007200722015028++++=+⨯÷=().【答案】2015028【巩固】 x +y+z=1993有多少组正整数解.【考点】找规律计算 【难度】☆☆☆☆☆ 【题型】填空 【解析】 显然,x 不能等于1992,1993.所以,原方程的不同的整数解的组数是:l+2+3+…+1991=1983036.本题中运用了分类的思想,先按照x的值分类,在每一类中,又从y的角度来分类,如:x=1987时,因为y+z=6,且y、z均为正整数,所以y最小取1,最大取5,即按y=1,2,3,4,5分类,每一类对应一组解,因此,x=1987时,共5组解.课堂检测【随练1】在1~200这二百个自然数中,所有能被4整除或能被11整除的数的和是多少?【考点】等差数列的公式运用【难度】☆☆☆【题型】计算【解析】先求出能被4整除的自然数和,再求出能被11整除的自然数和,将二者相加,但是此时得到的不是题目需要的和,因为44,88等数在两个数列中都存在,也就是说能被44整除的数列被计算了两次,所以我们还应该减去能被44整除的数列和.+++++++++-+++()()()48122001122331984488132176()()().=+⨯÷++⨯÷-+⨯÷=42005021119818244176426541【答案】6541【随练2】从正整数1~N中去掉一个数,剩下的(N一1)个数的平均值是15.9,去掉的数是_____.【考点】等差数列的公式运用【难度】☆☆☆【题型】计算【关键词】2005年,第3届,走美杯,5年级,决赛【解析】因为“剩下的(N-1)个数的平均值是15.9”,所以(N-1)是10的倍数,且N在15.9×2=31.8左右,推知N=31.去掉的数是(1+2+3+…+31)-15.9×30=496-477=19.【答案】19【随练3】观察下面的序号和等式,填括号.序号等式1 1236++=3 35715++=5 581124++=7 7111533++=()()()()7983++=【考点】找规律计算【难度】☆☆☆【题型】填空【解析】可以这样想:⑴表中各竖行排列的规律是什么?(等差数列)⑵表中这四个括号,应先填哪一个?为什么?这个括号里的数怎么求?应先填左起第一个,因为它是序号,表示了其他三个括号里的数在各自的等差数列中所在的位置,即各自的项数.第一个括号:79833411996-÷+=(),11996123991+-⨯=();第二个括号:11996123991+-⨯=();第三个括号:根据等差数列通项公式:21996135987+-⨯=()或399119965987+=;第四个括号:根据等差数列通项公式:619961917961+-⨯=()或5987317961⨯=【答案】3991;3991;5987;17961【随练4】在100以内与77互质的所有奇数之和是多少?【考点】等差数列应用题【难度】☆☆☆【题型】计算【解析】【解析】77=7 ×11,则100以内不与7互质的奇数有7,7×3,7×5,7×7,7×9,7×11,7×13;11,11×3,11×5,11×7(注意与7×11重复),11×9,共11个数.这11个数的和为7×(1+3+5+…+13)+11×(1+3+5+7+9)-77=()()113719571177541 22+⨯+⨯⨯+⨯-=.而100以内的奇数和为1+3+5+7+…+99=()199502+⨯=2500.所以,在100以内与77互质的所有奇数之和为2500-541=1959.复习总结在涉及到数论、图形、活动操作等方面有关等差数列计算的问题,第一:类别较少,数据较小的情况可以采用列举法罗列出所有符合的情况;第二:类别较多,数据较大的情况可以采用归纳法先找出其中的等差数列再进行计算作业检测【作业1】喜羊羊练习口算,她按照自然数的顺序从1开始求和,当计算到某个数时,和是1300,但她重复计算了其中一个数.问:喜羊羊重复计算了哪个数?【考点】等差数列应用题【难度】☆☆☆【题型】解答【解析】解法一:用x表示喜羊羊多加的那个数,1300-x=(1+n)×n÷2,(1+n)×n=2600-2x,两个相邻的自然数的积是比2600小一些的一个数,先找2600附近的平方数,2500=50×50 ,试算:50×51=2550,51×52=2652 ,所以n =50,所以x=(2600-50×51)÷2=25.解法二:估算法,(1+50)×50÷2=1275,(1+51)×51÷2=1326.所以可知该数字为1300-1275=25. 【答案】25【作业2】某车间原有工人不少于63人,在1月底以前的某一天调进了若干工人,以后,每天都新调人1人进车间工作.现知该车间1月份每人每天生产一件产品.共生产1994件.试问:1月几日开始调进工人?共调进了多少工人?【考点】等差数列应用题【难度】☆☆☆【题型】解答【解析】1月份共有3l天,所以这个车间的原有工人至少生产出了63×31=1953件,或增加3l的倍数,但因不超过1994件,所以工厂的原有工人生产了1953或1984件.所以,后来调进的工人生产了1994—1953=41件,或1994—1984:10件产品.易知后来调进的工人生产的产品总数是若干个连续的自然数的和,自然数的个数即是调入的天数n,连续的自然数中最小的那个数即是第一次调入的工人数.有41=1×41,所以奇约数只有1和4l,这样的数只有一种表达为若干个连续自然数和的形式,41=20+21.所以调入的次数n=2,第一次调入的人数x=20,共调进人数x+n-1=20+2-1=21人:10=2×5,所以奇约数只有1和5,这样的数只有一种表达为若干个连续自然数和的形式,10=1+2+3+4.所以调入的次数n=4,第一次调入的人数x=1,共调进人数x+n-1=1+4-1=4人.所以为:调人2天,1月30日开始调入,共调进21人;调人4天,1月28日开始调入,共调进4人.【答案】21或4【作业3】用3根等长的火柴棍摆成一个等边三角形,用这样的等边三角形,按图所示铺满一个大的等边三角形,如果这个大的等边三角形的底边放10根火柴,那么一共要放多少根火柴?10根【考点】等差数列应用题【难度】☆☆☆【题型】解答【解析】 如果把图中最上端的一个三角形看作第一层,与第一层紧相连的三个三角形(向上的三角形2个,向下的三角形1个)看作第二层,那么这个图中一共有10层三角形.这10层三角形每层所需火柴数就是构成上图中所有阴影三角形的边数和.自上而下依次为:3,6,9,……,310⨯.它们成等差数列,而且首项为3,公差为3,项数为10. 求火柴的总根数,就是求这个等差数列各项的和,即36930330102335165++++=+⨯÷=⨯=()(根)所以,一共要放165根火柴【答案】165【作业4】 小丸子玩投放石子游戏,从A 出发走1米放1枚石子,第二次走4米又放3枚石子,第三次走7米再放5枚石子,再走10米放7枚石子,照此规律最后走到B 处放下35枚石子.问从A 到B 路程有多远?【考点】等差数列应用题 【难度】☆☆☆ 【题型】解答 【解析】 先计算投放了多少次.由题意依次投放石子数构成的数列是:1,3,5,7,,35.这是一个等差数列,其中首项11a =,公差 2d =,末项= 35n a ,那么113512118n n a a d =-÷+=-÷+=()();再看投放石子每次走的路程依次组成的数列:1,4,7,10,这又是一个等差数列,其中首项11a =,,公差,3d =,项数1 8n =.末项,,,111181352n a a n d =+-⨯=+-⨯=()(),其和为,,,12152182477n n S a a n =+⨯÷=+⨯÷=()()(米).【答案】477【作业5】 自然数按一定规律排成下表,问第60行第5个数是几?135791113151719212325272931333537394143454749............【考点】数阵中的等差数列 【难度】☆☆☆ 【题型】填空 【解析】 从两个方面考虑:⑴先看组成这张表的数:1,3,5,7,9,.这是一个公差为2的等差数列.第60行第5个数是这数列中的一项,已知首项和公差,知道第60行第5个数是数列中的第几项即可求解.而这个项数就是排列第60行第5个数时所用去数的个数.⑵从表的排法来看,每行的数的个数也是等差数列:1,3,5,7,.第60行第5个数也就是排完59行后又排5个数.59行所排数的个数就是1,3,5,7,,中的第59项.所以,第59行所用数的个数为:12591117+⨯-=()(个),从第一行排到第59行所用数的总个数为:11175923481+⨯÷=()(个),到第60行第5数共用去数的个数为:348153486+=(个),第60行第5个数是数列1,3,5,7,中第3486项,为:12348616971+⨯-=()【答案】1671【作业6】观察下面的数表:11;21,12;321,,123;4321,,,1234;54221,,,,12345;根据前五行数所表达的规律,说明:19911949这个数位于由上而下的第几行?在这一行中,它位于由左向右的第几个?【考点】数表中的等差数列【难度】☆☆☆【题型】解答【解析】注意到,第一行的每个数的分子、分母之和等于2,第二行的每个数的分子、分母之和等于3,…,第五行的每个数的分子、分母之和等于6.由此可看到一个规律,就是每行各数的分子、分母之和等于行数加1.其次,很明显可以看出,每行第一个数的分母是1,第二个数的分母是2,……,即自左起第几个数,其分母就是几.因此,19911949所在的行数等于199l+1949-1=3939.而在第3939行中,19911949位于从左至右第1949个数教学反馈。
小学四年级奥数第4课等差数列及其应用试题附答案-精品
小学四年级上册数学奥数知识点讲解第4课《等差数列及其应用》试题附答案例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22, (98)⑤100,95,90,85,80,75,70.⑥20,18,16,14,12,10,8.例2求等差数列1,6,11,16…的第20项.例3已知等差数列2,5,8,11,14-,问例是其中第几项?例4如果一等差数列的第4项为21,第6项为33,求它的第8项.例5计算1+5+9+13+17+ (1993)例6建筑工地有一批转,码成如右图形状,最上层两块待,第2层6块砖,第3 层10块存…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,间中间一层多少块枝?这堆待共有多少块?例7求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.例8连续九个自然数的和为54,则以这九个自然数的末项作为首项的九个连续自然数之和是多少?例9100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第 1 个,第3个…第99个,再把剩下的50个数相加,得多少?例10把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?例11把27枚棋子放到7个不同的空盒中,如果要求每个盒子都不空,且任意两个盒子里的棋子数目都不一样多,问能否办到,若能,写出具体方案,若不能,说明理由.答案例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22, 98;⑤100,95,90,85,80,75,70.⑥20,18,16,14,12,10,8.这六个数列有一个共同的特点,即相邻两项的差是一个固定的数,像这样的数列就称为等差数列.其中这个固定的数就称为公差,一般用字母d表示, 如:数列①中,d=2-l=3-2=4-3=-=l;数列②中,d=3-l=5-3--=13-11=2;数列⑤中,*100-95二95-90=…=75-70二5;数列⑥中,d=20-l8=18-16='-'=10-8=2.例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22,98;⑥不是,因为第1项减去第2项不等于笫2项减去第3项.一般地说,如果一个数列是等差数列,那么这个数列的每一项或者都不小于前面的项,或者每一项都大于前面的项,上述例1的数列⑥中,第1项大于第2 项,第2项却又小于第3项,所以,显然不符合等差数列的定义.为了叙述和书写的方便,通常,我们把数列的第1项记为a,第2项记为抵,…,第n项记为an,an。
(完整版)四年级奥数等差数列练习题
等差数列例1:已知数列5,8,11,14,17……求(1)这个数列的第201项是多少?(2)176是这个数列的第几项?练1:已知数列3,9,15,21,27……求:(1)这个数列第100项是多少?(2) 147是数列的第几项?525是数列的第几项?练2:已知数列14,23,32,41 (455)求(1)这个数列共有多少项?(2)这个数列第25项是多少?第33项是多少?练3:医院为病床编号依次为8,14,20,26……,问编号为284的病床是第几张?例2:已知等差数列的末项是162,公差是7,项数是22求(1)这个等差数列的首项是几?(2)这个数列的第15项是多少?第18项呢?练1:已知等差数的公差hi5,末项是165,数列共30项(1):这个数列首项是多少?(2):这个数列第11项,第17项各是多少?练2:一个数列首项为12,第8项为96,求它的第10项?练3:被4除余1的两位数共有多少个?例3:如果一个等差数列第4项为21,第6项为33,求它的第8项?练1:如果一个等差数列第5项是19,第8项是61,求它的第11项?练2:如果一个等差数列第3项是10,第7项是26,求它的第12项?练3:如果一个等差数列第2项是10,第6项是18,求它的第110项?例4:36个学生排除一排玩报数游戏,后一个同学总比前一个多数8,已知最后一个同学报256,第一个同学是几?练1:仓库里有一叠被编上号的数,共40本,已知每个下面一本书都比上面一本书的编号多5,最后一本编号为225,问第一本编号是几?练2:学校举办运动会,共54人参加,每个人都有参赛号码,已知前一人号码比后一人的号码少4,最后一个人的号码是215,第一人的号码是多少?练3:地上将粗细均匀的圆木,堆成一堆,最上面一层有6跟圆木,每向下一层增加一根,共堆28层。
最下面一层有多少跟圆木?例5:一个九层书架最上面一层放39本书,最下面一层放15本书,已知相邻两层书相差本书相等,问第5层放了多少本书?练1:有一排用等差数列编码的彩色小旗,第1面上的号码为37,第8面小旗的编号为387,你知道第7面小旗的编码吗?练2:在124和245之间插入10个数后,使它成为等差数列,这10个数中,最小是几?最大是几?练3:游乐园的智慧梯,最高一层宽60cm,最低一级宽160cm,中间还有9级,求第5级的宽度?课后练习(1):有一个数列,2,6,10,14……104,这个数列共有多少项?(2):有一个数列,2,7,12,17……,这个数列的第100项是多少?(3):有一个数列,1,4,7,10……,求这个等差数列的第50项是多少?(4)有一个等差数列,3,7,11,15…… 359是这个数列的第几项?(5):3,9,15,21……中,381是第几项?(6):在一个等差数列中,首项=1,末项=57,公差=2,这个数列共有多少项?(7):有一列数是这样排列的,3,11,19,27,35,43,51……,求第12个数是多少?(8):在4和25中间添上6个数,变成一个等差数列,公差是多少?写出这个数列?(9):糖果生产商为机器编号,依次为1,7,13,19,25……,问第19个的编号是多少?(10):一个等差数列第5项是19,第8项是61,求它的第11项?(11):有一串数,第一个数是5,以后每个数都比前一个大5,最后一个数是90,你能算出这一串数有几个数吗?(12):有20个数,第一个数是9,以后每个数都比前一个大2,你能算出第20个数是多少吗?(13):被4除余1的两位数有多少个?(14):如果一个等差数列第20项是46,第22项是54,求第25项是多少?(15):梯子的最高一级宽30cm,最低一级宽100cm,中间还有11级,各级的宽度成等差数列,正中一级的宽度是多少?。
四年级奥数之等差数列进阶
?
……
……
?
【超常大挑战】 (★★★★) 有37个人排成一行一次报数,第一个人报1,以后每人报的数都是把前 一个人报的数加3.报数的过程中有一个人报错了,把前一个人报的数 减3报了出来,最后这37个人报的数加起来恰好等于2011.那么是第____ 个报数的人报错了。 个报数的人报错了
1. 基本定义 1 基本定义、公式 公式 2. 两大求和公式 (1) 和=(首项+末项)×项数÷2 和 (首项+末项)×项数÷2 (2) 和=中间相×项数 3. 考点: 考点 (1) am到an之间有(m-n)个公差 (2) 中间项=和÷项数
【例2】(★★★) 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米。 板块二:中项定理的应用 已知去时用了4天,回来时用了3天。问:学校距离百花山多少千米? 【例4】(★★★★) 已知一个等差数列的前15项的和为450,前21项之和为819。请问:这个 数列的公差是多少?首项是多少?
第1项 第2项 第15项 第21项
?
……ቤተ መጻሕፍቲ ባይዱ
……
?
1
【拓展】(★★★★) 已知一个等差数列的前15项的和为450, 前20项之和为750。请问:这个 数列的公差是多少?首项是多少?
第1项 第2项 第15项 第20项
【例5】(★★★★) 在一次考试中, 第一组同学的分数恰好构成了公差为3的等差数列, 总分 是609. 小桐桐发现自己的分数算少了, 找老师更正以后, 加了21分. 这时 他们的成绩还是一个等差数列.请问:小桐桐正确的分数是多少?
3 求和公式: 3. (1) 和=(首项+末项)×项数÷2 (2) 和=中间相×项数 和 中间相×项数 4. 考点:首尾配对思想
【例1】(★★) 在19和91之间插入5个数,使这7个数构成一个等差数列。写出插入的5 个数。 19 91
四年级等差数列的奥数题
四年级等差数列的奥数
题
TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
等差数列等差数列的求和公式为:S=(首项+末项)×÷2
求首项是5,末项是93,公差是4的等差数列的和
1.求等差数列1,6,11,16…的第20项是多少第35项是多少251是这个等差数列的第几项2、已知等差数列2,5,8,11,14…,问47是其中第几项3、如果一等差数列的第4项为21,第6项为33,求它的第8项.4、已知等差数列的公差为4,末项为280,数列共25项,这个数列的首项是多少这个数列的第16项是多少5、小剧场共有40排座位,每一排都比前一排多2个座位,最后一排有1 20个座位,第一排有多少个座位第25排有多少个座位
解答:
1.公差为5;
第20项为(20-1)*5+1=96;
第35项为(35-1)*5+1=171;
251是第((251-1)/5)+1=51 项
2.公差为3;
47是第((47-2)/3)+1=16项
3.公差为(33-21)/(6-4)=6;
第8项为33+(8-6)*6=45;
也可直接由33+(33-21)得出
4.令首项为x,则x+(25-1)*4=280,得首项为184;
第16项为184+(16-1)*4=244;
5.公差为2,为40,末项为120,则令首项为x,有x+(40-1)*2=120,得首项为42;第25排有座位 42+(25-1)*2=90个
6.若在等差数列2,5,8,…的每相邻两项中间插入三项,使它构成一个新的等差数列,则原数列的第10项,是新数列的第()项。
完整版小学四年级奥数试题等差数列专项练习小学数学试卷
小学四年级奥数试题《等差数列》专题过关检测卷A卷( 50分)一、判断下边的数列是不是等差数列(8分)(1) 2, 5, 8, 11, 14,⋯(2) 2, 7, 2, 7, 2, 7,⋯(3) 88, 77, 66, 55, 44,33, 22,11(4) 1× 1, 2× 2, 3× 3, 4×4,⋯(5) 1, 1, 2, 3, 5, 8, 13,⋯(6) 2× 5, 4× 5, 6× 5, 8×5,⋯(7) 1× 2, 2× 3, 3× 4, 4×5,⋯(8) 4+ 5, 5+ 6, 6+ 7, 7+8,⋯二、填空(每空 1分,共 11分)1.已知等差数列4,8, 12,16,⋯,它的第15是 ________。
2.已知等差数列2,7, 12,⋯, 122,个等差数列共有________。
3.从 25开始今后,数 20个的奇数,最后1个奇数是 ________。
4.在一个等差数列中,第一是12,第五是 60,公差是 ________。
5.在自然数 10到30之插人 pq个数,使六个数构成等差数列,四个数分是________,________,________, ________。
6.三个数成等差数列,它的和是18,是120,三个数是________,________,________。
三、解答(每5分,共 25分)1.有一个等差数列:1, 5,9, 13, 17, 21,⋯(1)它的第 1000个数是多少?(2) 4921是它的第几?2.已知数列 14, 23, 32, 41,⋯, 455。
(1)个数列共有多少?(2)个数列的第 25是多少?第 33是多少?3.已知数列 3, 9, 15, 21,27,⋯(1)个数列的第100是多少?(2) 147是数列的第几?525是数列的第几?4.牛从清晨开始爬行,每小比前一小多爬行10厘米,第一小爬了 100厘米,休息的最后一小爬了190厘米。
四级奥数等差数列(共9张PPT)
=(622-6)÷7+1=616÷7+1=88+1=89
第3页,共9页。
三知教育
教育不是灌输,而是点燃火焰。——苏格拉底
【例题2】一个等差数列的第4项为21,第6项为 33。求它的第8项。
【思路导航】
步骤一:第4项21比首项多3个公差,第6项33比首项多5个公差。 步骤二:公差=(33-21)÷2=6,首项=21-3×6=45 步骤三:第8项=3+(8-1)×6=45。
这样第7项、第10项、第13项分别为首项、第二项、末项。
树高=第100项=10+(100-1)×4 【例题1】在数列7、10、13、16、…中,第907个数是多少?907是第几个数?
【思路导航】第7项、第10项、第13项分别都相差三项,可以把这三项看成一个首项为39,公差为40的等差数列。
【巩固训练1】有一列数1、5、9、13、17、 2((1、12解))…:它第4(91的310)是==0=第项11第1它+++=14(n110的00项+01000(-第×个=04首1-=几40数1-03项)-项91是×+71×)?(多44×项少(数?5n--11))×公差 =练 【公练解步(练步解(步=公=公=【步树通【第第 (=步步(【211211((())))习巩差习:骤习骤:骤差差例骤高项思11骤骤拓++它 它660064411221固 =1首 三 1三 (一 ==题 二 =公 路 一 二 展00299的的00122: ::(((第项项23300)是是训项:::2:式导::提第第第---××一 一一】第2第1611==它它44练=看第第第:航第第高70)))n3311--个 个个一111-0项00++11的的19849第】4921022÷÷÷项项项((××等 等0等个00】项项项】2项厘74项4=第第第n44777)+++=是是首11差 差差等有=2项2在比个个-米-1111几几007首首113÷多多项===000数 数数差一=项1首比数比数+,5项项+644项项--2首=(少少+11199(列 列列数列、项首比首比4公1??())))622项和8??51是是 是 列数第÷÷÷7项 首 项 首差-项÷××÷÷0+1744多25((的61661((0多项多项=()+++4数=、 、、、0-了41115155第1133项3多多项×厘===之n)--151122多个个611811-433、、3了了--数1米=间))82211×项、 、少、公公)4+33))499第9n,插5++为1002、2个2差差-×。1111=66000项入公2)1公,,3==8、 、、个个13项911数1差×差第,第2、22公公220公分n77744个。6第61差差=、 、、差别项项71数6。。… 、……0都3项3以0332相为比比1后、差3首首,3…三。项项使项多多它,55成个个可为公公以一差差把个。。这等三差项数看列成。一个首项为39,公差为40的等差数列。
四年级奥数等差数列练习题-含答案
四年级奥数等差数列练习题-含答案1.在等差数列2、4、6、8中,求48是第几项,168是第几项?解析:公差为4-2=2,设48是第n项,则有2+(n-1)×2=48,解得n=24;同理,设168是第m项,则有2+(m-1)×2=168,解得m=84.2.已知等差数列5,8,11…,求出它的第15项和第20项。
解析:公差为8-5=11-8=3,第15项为5+14×3=47,第20项为5+19×3=62.3.按照1、4、7、10、13…,排列的一列数中,第51个数是多少?解析:这是一个公差为3的等差数列,第n项为1+(n-1)×3,所以第51个数为1+50×3=151.4.数列3、12、21、30、39、48、57、66……1)第12个数是多少?2)912是第几个数?解析:这是一个公差为9的等差数列。
1)第12个数为3+(12-1)×9=102.2)设912是第n个数,则有3+(n-1)×9=912,解得n=102.5.已知数列2、5、8、11、14……,53应该是其中的第几项?解析:这是一个公差为3的等差数列,设53是第n项,则有2+(n-1)×3=53,解得n=18.6.在等差数列5、10、15、20中,155是第几项?350是第几项?解析:公差为10-5=15-10=20-15=5,设155是第n项,则有5+(n-1)×5=155,解得n=31;同理,设350是第m项,则有5+(m-1)×5=350,解得m=70.7.在等差数列1、5、9、13、17……401中,401是第几项?第60项是多少?解析:公差为5-1=9-5=13-9=4,设401是第n项,则有1+(n-1)×4=401,解得n=101;第60项为1+(60-1)×4=237.8.在等差数列6、13、20、27……中,第几个数是1994?解析:公差为13-6=20-13=7,设1994是第n个数,则有6+(n-1)×7=1994,解得n=285.9.求6+7+8+9+……+74+75+76的和。
四年级奥数等差数列
四年级奥数等差数列《神奇的四年级奥数等差数列》嘿,同学们!你们知道吗?在四年级的奥数世界里,有一个超级神奇的东西,叫做等差数列!这玩意儿可有意思啦!就像我们排队一样,每个人之间的距离都差不多,等差数列里的数字也是这样,相邻两个数的差都一样。
比如说1、3、5、7、9 ,你看,它们每次都多2 ,这就是等差数列。
有一次上课,老师在黑板上写了一个等差数列:2、5、8、11、14 。
然后问我们:“同学们,谁能快速算出这个数列的第10 个数是多少呀?” 这可把大家难住啦!我心里想:“这可咋办呀?” 这时候,我们班的数学小天才小明举起了手,他说:“老师,我知道!先算出相邻两个数的差是3 ,第10 个数和第1 个数之间隔了9 个间隔,所以第10 个数就是2 + 9×3 = 29 。
” 哇,大家都忍不住给他鼓掌,我也在心里暗暗佩服他:“他怎么这么厉害呀!”老师笑着点点头,又出了一道题:“那这个数列前10 个数的和是多少呢?” 这下大家又开始抓耳挠腮了。
同桌小红凑过来跟我说:“哎呀,这也太难了吧!” 我也摇摇头:“我也不知道咋算呀!” 就在这时,老师开始讲解啦:“我们可以先把第1 个数和第10 个数相加,第2 个数和第9 个数相加,以此类推,它们的和都是一样的,都是31 。
一共有5 组,所以前10 个数的和就是31×5 = 155 。
” 哎呀,原来是这样,我们恍然大悟!经过这几次的学习,我发现等差数列就像是一把神奇的钥匙,可以打开很多数学难题的大门。
它不就像我们搭积木一样吗?一块一块有规律地往上加,最后就能搭出漂亮的城堡。
学了等差数列,我觉得数学变得更有趣啦!它让我知道,只要找到规律,难题也能变得简单。
同学们,你们是不是也觉得等差数列很神奇呢?我觉得呀,四年级奥数里的等差数列虽然有点难,但是只要我们认真学,多思考,就能发现其中的乐趣和奥秘,让我们的数学变得更厉害!。
四年级奥数等差数列问题
四年级奥数等差数列问题问题描述请解决以下等差数列问题:1. 一个等差数列的首项是3,公差是2,求第10项的值。
2. 一个等差数列的前5项分别是1,4,7,10,13,求该等差数列的公差。
3. 一个等差数列的首项是10,公差是3,求前10项的和。
问题解答1. 要求一个等差数列的第10项的值,可以使用等差数列的通项公式:$a_n = a_1 + (n - 1) \times d$其中,$a_n$表示第n项的值,$a_1$表示首项的值,$d$表示公差。
根据题目给出的信息,首项$a_1 = 3$,公差$d = 2$,所以可以计算第10项的值:$a_{10} = 3 + (10 - 1) \times 2 = 3 + 18 = 21$第10项的值为21。
2. 要求一个等差数列的公差,我们可以观察等差数列的相邻项之间的差值。
根据题目给出的前5项,我们可以计算相邻项之间的差值:第2项 - 第1项 = 4 - 1 = 3第3项 - 第2项 = 7 - 4 = 3...第5项 - 第4项 = 13 - 10 = 3可以看出,相邻项之间的差值都是3。
所以该等差数列的公差为3。
3. 要求一个等差数列前10项的和,我们可以使用等差数列的求和公式:$S_n = \frac{n}{2} \times (a_1 + a_n)$其中,$S_n$表示前n项的和,$a_1$表示首项的值,$a_n$表示第n项的值。
根据题目给出的信息,首项$a_1 = 10$,公差$d = 3$,所以可以计算前10项的和:$S_{10} = \frac{10}{2} \times (10 + a_{10}) = \frac{10}{2}\times (10 + 21) = \frac{10}{2} \times 31 = 155$前10项的和为155。
以上是关于四年级奥数中等差数列问题的解答。
如有其他问题,请随时提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列一、知识点:1、数列:按一定顺序排成的一列数叫做数列。
数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。
数列中共有的项的个数叫做项数。
2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。
3、常用公式等差数列的总和=(首项+末项)⨯项数÷2项数=(末项-首项)÷公差+1末项=首项+公差⨯(项数-1)首项=末项-公差⨯(项数-1)公差=(末项-首项)÷(项数-1)等差数列(奇数个数)的总和=中间项⨯项数二、典例剖析:例(1)在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)÷公差+1,便可求出。
(2)根据公式:末项=首项+公差⨯(项数-1)解:项数=(201-3)÷3+1=67末项=3+3⨯(201-1)=603答:共有67个数,第201个数是603练一练:在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?答案: 第48项是286,508是第85项例(2 )全部三位数的和是多少?分析::所有的三位数就是从100~999共900个数,观察100、101、102、 (998)999这一数列,发现这是一个公差为1的等差数列。
要求和可以利用等差数列求和公式来解答。
解:(100+999)⨯900÷2=1099⨯900÷2=494550答:全部三位数的和是494550。
练一练:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。
答案: 1000例(3)求自然数中被10除余1的所有两位数的和。
分析一:在两位数中,被10除余1最小的是11,最大的是91。
从题意可知,本题是求等差数列11、21、31、……、91的和。
它的项数是9,我们可以根据求和公式来计算。
解一:11+21+31+……+91=(11+91)⨯9÷2=459分析二:根据求和公式得出等差数列11、21、31、……91的和是459,我们可以求得这9个数的平均数是459÷9=51,而51恰好是这个等差数列的第五项,即中间的一项(称作中项),由此我们又可得到S=中项⨯n,但只能是项数是奇数时,等差数列有中项,才能用中项公式计算。
解二:11+21+31+……+91=51⨯9=459答:和是459。
练一练:求不超过500的所有被11整除的自然数的和。
答案: 11385 例(4)求下列方阵中所有各数的和:1、2、3、4、……49、50;2、3、4、5、……50、51;3、4、5、6、……51、52;……49、50、51、52、……97、98;50、51、52、53、……98、99。
分析一:这个方阵的每一横行(或竖行)都各是一个等差数列,可先分别求出每一横行(或竖行)数列之和,再求出这个方阵的和。
解一:每一横行数列之和:第一行:(1+50)⨯50÷2=1275第二行:(2+51)⨯50÷2=1325……第四十九行:(49+98)⨯50÷2=3675第五十行:(50+99)⨯50÷2=3725方阵所有数之和:1275+1325+1375+……+3675+3725=(1275+3725)⨯50÷2=125000 分析二:观察每一横行可以看出,从第二行起,每一行和都比前一行多50,所以可以先将第一行的和乘以50,再加上各行比第一行多出的数,这样也能求得这个方阵所有数的和。
解二:(1+50)⨯50÷2⨯50=6375050⨯(1+2+3+……+49)=50⨯【(1+49)⨯49÷2】=6125063750+61250=125000答:这个方阵的和是125000练一练:求下列方阵中100个数的和。
0、1、2、3、……8、9;1、2、3、4、……9、10;2、3、4、5、……10、11;……9、10、11、12、……17、18。
答案: 900例(5)班级男生进行扳手腕比赛,每个参赛男生都要和其他参赛选手扳一次。
若一共扳了105次,那么共有多少男生参加了这项比赛?分析:设共有几个选手参加比赛,分别是A1、A2、A3 A4、……An 。
从A1开始按顺序分析比赛场次:A1必须和A2、A3、A4、……,An逐一比赛1场,共计(n-1)场;A2已和A1赛过,他只需要和A 3、A4 、A5 、……、An各赛1场,共计(n-2)场A 3已和A1 A2赛过、他只需要和A4、 A5、 A6、……、An 、各赛1场,共计(n-3)场。
以此类推,最后An-1只能和An赛1场解: Sn=(n-1)+(n-2)+……+2+1=(1+n-1)×(n-1)÷2=0.5×n⨯(n-1)(场)根据题意,Sn=105(场),则n×(n-1)=210,因为n是正整数,通过试算法,可知15×14=210.则n=15,即共有15个男生参加了比赛。
答:有15个男生参加了比赛。
练一练:从1到50这50个连续自然数中,取两数相加,使其和大于50,有多少种不同的取法?答案: 625种例(6)若干人围成16圈,一圈套一圈,从外向内圈人数依次少6人,如果共有912人,问最外圈有多少人?最内圈有多少人?分析:从已知条件912人围成16圈,一圈套一圈,从外到内各圈依次减少6人,也就是告诉我们这个等差数列的和是912,项数是16,公差是6。
题目要求的是等差数列末项 an- a1=d⨯(n-1)=6⨯(16-1)=90(人)解: an+a1=S×2÷n=912⨯2÷16=114(人)外圈人数=(90+114)÷2=102(人)内圈人数=(114-90)÷2=12(人)答:最外圈有102人,最内圈有12人。
练一练:若干人围成8圈,一圈套一圈,从外向内各圈人数依次少4人,如果共有304人,最外圈有几人?答案: 52人模拟测试( 4 )一、填空题(每小题5分)1、有一串数,已知第一个数是6,而后面的每一个数都比它前面的数大4,这串数中第2003个数是。
2、等差数列0、3、6、9、12、……、45是这个数列的第项。
3、从2开始的连续100个偶数的和是。
4、一个剧院共有25排座位,从第一排起,以后每排都比前一排多2个座位,第25排有70个座位,这个剧院共有个座位。
5、所有除以4余1的三位数的和是。
6、时钟在每个整点敲该钟点数,每半点钟敲一下,一昼夜这个时钟一共敲下。
7、一个五层书架共放了600本书,已知下面一层都比上面一层多10本书。
最上面一层放本书,最下面一层放本书。
8、从200到500之间能被7整除的各数之和是。
9、在1949、1950、1951、……1987、1988、这40个自然数中,所有偶数之和比所有奇数之和多。
10、有一列数:1、2002、2001、1、2000、1999、1、……、从第三个数开始,每个数都是它前面两个数中大数减去小数的差,从第一个数开始到第2002个数为止这2002个数的和是。
二、简答题(每小题10分)1、有10只盒子,54个乒乓球,能不能把54个乒乓球放进盒子中去,使各盒子的乒乓球数不相等?2、小明家住在一条胡同里,胡同里的门牌号从1号开始摸着排下去。
小明将全胡同的门牌号数进行口算求和,结果误把1看成10,得到错误的结果为114,那么实际上全胡同有多少家?3、有一堆粗细均匀的圆木,堆成如下图的形状,最上面一层有7根园木,每面下层增加1根,最下面一层有95根,问:这堆圆木一共有多少根?4、有一个六边形点阵,如下图,它的中心是一个点,算做第一层,第二层每边有两个点,第三层每边有三个点……这个六边形点阵共100层,问,这个点阵共有多少个点?5、X+Y+Z=1993有多少组正整数解?模拟测试( 4 )解答一、填空题1、80146+4×(2003-1)=6+4×2002=80142、16(45-0)÷3+1=45÷3+1=163、10100末项=2+(100+1)×2=200和=(2+200)×100÷2=101004. 1150a1=70-(25-1) ×2=22(个)总座位数:(22+70)×25÷2=1150(个)5、123525所有除以4余1的三位数为:101、105、109、……997。
项数:(997-101)÷4+1=225和:(101+997)×225÷2=1235256、180(1+12)×12+1×24=13×12+24=180(下)7、100、140中间一层本数:600÷5=120(本)最上面一层:12-10×2=100(本)最下面一层:120+1×2=140(本)8、15050构成等差数列为:203、210、 (497)项数=(497-203)÷7+1=43数列和=(203+497)×43 2=150509、20(1950+1988)×20÷2-(1949+1987)×20÷2=3938×20÷2-3936×20÷2=39380-39360=2010、1782225在原数列中,以数1为标志,把三个数看成一组,2002÷3=667……1,其中2001个数分为667组,有667个1,因为余下的一个数恰为1,则2002个数中有668个1,其余的数是2002则669有1334个数。
668×1+(2002+669)×1334÷2=668+1781557=1782225二、简答题1、解: 答:题中要求办不到。
2、解:误把1看成10,错误结果比正确结果多10-1=9,那么正确结果为114-9=105,即全胡同门牌号组成的数列求和为105设全胡同有n 家,此数列为1、2、3……、n 。
数列求和:(1+n )×n ÷2=105(1+n )×n=210将210分解:210=2×3×5×7=14×15则n 为14答:全胡同实际有14家。
3、解: 7+95=102(根)95-7+1=89(层)102×89÷2=4539(根)答:这堆圆木一共有4539根。