概率论-3.3 条件分布

合集下载

概率论与数理统计3.3条件分布

概率论与数理统计3.3条件分布

f (x, y) fX (x)
1 2x
,
0,
x y x, 其它。
(3)
P{ X
1 |Y
0}
P{ X
1 ,Y 2
0}
2
P{Y 0} y
(1
1) 2
1 2
2
3
1 11
4
0
2
yx
11
x
2
12
条件分布
例 设二维随机变量 (X ,Y )服从正态分布,即有
X, Y ~
N
1,
2,
2,
1
2,
0 x y 1,
所以,当0<y<1时
0,
其 它.
fY y
f
x,
ydx
y
0
1 1 x
dx
ln1
y
y.
所以,随机变量Y的密度函数为
1
fY
y
ln1
0,
y,
0 y 1, 其 它.
0
1x
16
xy
f x, y fY y
2
1
2 1
1r2
exp
2
2 1
1 1
r2
x
1
r
1 2
y
2
2
x
结论 二元正态分布的条件分布是一元正态分布,即
N
1
1 2
y
2

2 1
1 2
14
条件分布
例 设随机变量X服从区间(0,1)上的均匀分布,当 0<x<1时,随机变量Y在X=x的条件下服从区间(x,1) 上的均匀分布,试求随机变量Y的密度函数.

概率论与数理统计第三章

概率论与数理统计第三章
P ( X Y 1) 1 2dxdy . 2 D
x y 1
y=x G D O 1 x+y=1 x

f ( x, y )dxdy
(2)
P(Y X )
2
dx
0
1
x
2
x
2dy 1 / 3 .
y 1 0
y = x2
y=x G
1 x
(3) P(| X | 0.3) P(0.3 X 0.3)
pij P( X xi ) P(Y y j X xi ) .
例3.1.1 设随机变量X在1,2,3三个整数中等可能取值,另一个随机 变量Y在1~X中等可能地取一整数值,求(X,Y)的概率分布。
解:由假设,随机变量X的可能取值为1,2,3. 而Y≤X,故Y 的可能取值范围也 为1,2,3. 首先,当 j>i 时,{X=i,Y=j} 为不可能事件,故 P(X=i,Y=j)=0,j>i. 当 j≤i 时,根据概率的乘法公式,有 P(X=i,Y=j)=P(X=i)•P(Y=j | X=i) =1/i • 1/3,i=1,2,3. 由此得(X, Y)的概率分布如下:
3.2 边缘分布
二维随机变量的联合分布是把(X,Y)看作一个整体的 分布。其中分量X和Y都是一维随机变量,也有各自的 分布,分别称X和Y的分布为二维随机变量(X,Y)关于 X和Y的边缘分布。 设二维随机变量(X,Y)的分布函数为F(x,y),分别记 关于X和Y的边缘分布函数为Fx(x)和Fy(y),由于 Fx(x)=P(X≤x,Y<+∞ )=F(x,+∞ ), 同理,有 Fy(y)=F(+∞ ,y). 由此看出,边缘分布函数Fx(x),Fy(y)完全由联合分布 函数F(x,y)来确定。

二维随机变量及条件分布

二维随机变量及条件分布
则称(X, Y)在区域D上(内) 服从均匀分布。 易见,若 (X, Y) 在区域D上(内) 服从均匀分布, 对 D内任意区域G, 有
21
例4.设(X,Y)服从如图区域D 上的均匀分布,
(1)求(X,Y)的概率密度; (2)求P{Y<2X} ; (3)求F(0.5,0.5)
解:
SD 1
22
H
23
存在,则称此极限为在条件下X的条件分布函数. 记作
可证当

47
若记 fX|Y(x|y) 为在Y=y条件下X的条件概率密度,则


类似定义,当

48
Байду номын сангаас同学们思考 答
49
例3

50
又知边缘概率密度为
51
例4 解
52
53
多维随机变量
离散型
连续型
边缘分布 条件分布
边缘分布 条件分布
54
作业
p.84 2,9,11
8
(3)右连续 对任意xR, yR,
(4)矩形不等式 对于任意(x1, y1), (x2, y2)R2, (x1< x2, y1<y2 ), F(x2, y2)-F(x1, y2)- F (x2, y1)+F (x1, y1)0.
反之,任一满足上述四个性质的二元函数F(x,y)都 可以作为某个二维随机变量(X,Y)的分布函数。
(X, Y)~ P{X=xi, Y= yj,}= pij ,(i, j=1, 2, … ),
11
二维离散型随机变量的分布律也可列表表示如下:
Y X
y1 y2 … yj …
x1 p11 p12 ... p1j ... x2 p21 p22 ... p2j ...

概率论与数理统计教程第三章

概率论与数理统计教程第三章
p 2
M p
i
M
华东师范大学
第三章 多维随机变量及其分布
3.2.3 边际密度函数
第32页
巳知 (X, Y) 的联合密度函数为 p(x, y),则
X 的密度函数为 :
p(x) p(x,y)dy
Y 的密度函数为 : p(y) p(x,y)dx
4/29/2020
华东师范大学
第三章 多维随机变量及其分布
3.3.1 多维随机变量 ➢ 定义3.1.1
若X, Y是两个定义在同一个样本空间上的 随机变量,则称(X, Y) 是两维随机变量.
➢ 同理可定义 n 维随机变量 (随机向量).
4/29/2020
华东师范大学
第三章 多维随机变量及其分布
第3页
3.1.2 联合分布函数
定义3.1.2 (以下仅讨论两维随机变量)
则称 (X, Y) 服从 D 上的均匀分布, 记为 (X, Y) U (D) .
4/29/2020
华东师范大学
第三章 多维随机变量及其分布
第20页
四、二维正态分布
若二维连续随机变量 (X, Y) 的联合密度为:
1 p(x,y)
212 12
exp2(112)(x121)2 (y222)2 2(x11)(y22)
记 P(Ai) = pi ,
i = 1, 2, ……, r
记 Xi 为 n 次独立重复试验中 Ai 出现的次数.
则 (X1, X2, ……, Xr)的联合分布列为: P (X 1 n 1 ,X 2 n 2 ,......,X r n r )= n 1 ! n 2 n ! L !n r !p 1 n 1 p 2 n 2 L L p r n r
解: 由题意得

条件分布律

条件分布律

条件分布律条件分布律是概率论中的一条重要定律,它定义了两个事件之间联系的概率在另一个事件给出条件后,有何变化。

这表明,当一个事件指定给出另一个事件时,概率也会随之变化。

条件分布律的应用非常广泛,它可以帮助我们研究特定条件下的不同概率。

条件分布律又称作Bayes定理,它是概率论中一项重要的定理,用来计算后验概率。

也就是说,在某个条件下,一个事件的发生的概率的计算,往往需要依赖其他信息。

该定理包括一个叫做“条件概率”的概念,也就是说,一个事件发生的概率可以从已知信息中独立出来,或者从已知概率中计算出来。

条件分布律的应用主要在以下几种情形中:1)用来计算一系列给定参数的概率;2)用来计算已知条件下不同概率的值;3)用来计算一定条件下的后验概率,也就是根据证据推断结果的概率;4)用来提高判断的准确性。

条件分布律也被称为“贝叶斯定理”或“贝叶斯公式”,它是概率论中的一种定理,它允许我们以某个事件发生的概率为前提,来推断另一个事件发生的概率。

其数学公式为:P(A|B)=P(A)P(B|A)/P(B)。

在条件分布律中,P(A|B)表示给定B发生的条件下,A发生的概率,P(A)表示事件A发生的概率,P(B|A)表示A发生的条件下,B发生的概率,P(B)表示事件B发生的概率。

条件分布律的应用广泛,在医学领域尤其如此。

例如,在研究肿瘤时,将条件分布律应用于可以给出确切结果的检测标准,使得现有的数据能够更客观准确地表达出来,从而使医务人员更好地判断患者的病情和预后。

另外,条件分布律还可以帮助进行疾病预测和疾病分类,提高疾病靶向治疗的效果。

此外,条件分布律在机器学习领域也得到了广泛应用。

例如,在文本分类中,条件分布律可以用于计算文本中某个词出现的概率,从而实现对文本的准确分类。

同样,还可以用条件分布律来应用在语义分析和文本推理中,以及机器学习中的分类性算法等。

综上所述,条件分布律是概率论中重要的定理,它可以帮助我们计算出不同条件下各种事件发生的概率,从而为我们提供了实际的应用价值。

概率论与数理统计公式精粹条件期望条件方差与条件分布

概率论与数理统计公式精粹条件期望条件方差与条件分布

概率论与数理统计公式精粹条件期望条件方差与条件分布条件期望、条件方差和条件分布是概率论与数理统计中重要的概念和技巧。

它们能帮助我们更准确地描述和计算随机现象的特征和性质。

本文将对条件期望、条件方差和条件分布进行精炼的介绍和讨论。

一、条件期望条件期望是指在给定某些信息或条件下,对随机变量的期望进行计算的概念。

对于随机变量X和事件A,条件期望E(X|A)表示在事件A发生的条件下,随机变量X的平均取值。

条件期望的计算可以通过基本的期望定义进行推导。

对于离散型随机变量,条件期望的计算公式为:E(X|A) = ∑x P(X=x|A) * x其中,P(X=x|A)表示在事件A发生的条件下,随机变量X取值为x的概率。

对于连续型随机变量,条件期望的计算公式为:E(X|A) = ∫xf(x|A) dx其中,f(x|A)表示在事件A发生的条件下,随机变量X的概率密度函数。

二、条件方差条件方差是在给定某些信息或条件下,对随机变量的方差进行计算的概念。

对于随机变量X和事件A,条件方差Var(X|A)表示在事件A发生的条件下,随机变量X的离散程度。

条件方差的计算可以通过基本的方差定义进行推导。

对于随机变量X和事件A,条件方差的计算公式为:Var(X|A) = E[(X-E(X|A))^2|A]其中,E(X|A)表示在事件A发生的条件下,随机变量X的条件期望。

三、条件分布条件分布是指在给定某些信息或条件下,随机变量的分布情况。

对于随机变量X和事件A,条件分布P(X=x|A)表示在事件A发生的条件下,随机变量X取值为x的概率。

条件分布的计算可以通过基本的概率计算进行推导。

对于随机变量X和事件A,条件分布的计算公式为:P(X=x|A) = P(X=x, A) / P(A)其中,P(X=x, A)表示事件A发生且随机变量X取值为x的概率,P(A)表示事件A的概率。

四、应用与扩展条件期望、条件方差和条件分布在实际问题中有广泛的应用。

《概率论》第3章§3条件分布

《概率论》第3章§3条件分布
P{X x | Y y} (x R1)
若按条件概率公式,则有 P{X y x | Y y} 当P{( XXP,{YY)x限(,XYy制,}Y在)y在}直区线域 D上 上时可视具为有一密维度r.vf (x, y)
y D
O
P{Y y} 0
x
第三章 多维随机变量及其分布
§3 条件分布
8/17
第三章 多维随机变量及其分布
§3 条件分布
4/17
设 (X ,的Y )分布律为
P{ X xi,Y yj} pij (i, j 1, 2,)
考虑在 {Y 对已y于j发} 固生定的的条j件,若下P{Y,{发Xy生j}x的i}p条.j 件 0概, 则率称
为在
P{ XP{Xxi| Yxi | Yyj }
X
Y
Y (1 X ) X Y
YX
1/ 2 1/ 2
X Y 1/ 2
Y
1 X
故三段木棒能构成 的概率为
X Y
P{Y
1 2
,X
1 2
,
X
Y
1 2
}
f (x, y)dxdy
y
yx
x0.5, y0.5 x y0.5
x 1dxdy
0.5
D
x
O
0.5 x 1
D:xx0y.50, y.50.5 0 x1,0 y x
如何定义条件分布 P{X x | Y y}
0, 考虑条件概率
P{X
x
|
y
Y
y
}
P{X x, y Y y } P{y Y y }
称为条件分布
应用积分中值定理
x
y
y
y
y
f (u, v)dvdu fY ( y)dy

概率论笔记——精选推荐

概率论笔记——精选推荐

第三章 多维随变量及其分布3.1 二维随机变量及其分布1.二维rv 的定义:Def:设Ω为随机试验E 的样本空间,若对∀ω∈Ω−−−−→−按一定对应法则∃(X(w),Y(w))为Ω上的二维rv 或称二维的随机变量。

着重讨论:①二维rv 作为一个整体的概率特性。

②其中每一个随机变量的概率特性与整体的概率特性的关系。

2.二维rv 的联合分布函数 1)联合分布函数的定义:Def:设(X,Y)为二维rv ,对∀(X,Y)∈R ×R,称二元函数,F(X,Y)=P(X ≤x)∩(Y ≤y)记为P(X ≤x,Y ≤y)为二维rv 的分布函数或称rvx 与rvy 的联合分布函数。

2)几何意义: 3)性质①0≤F(x,y)≤1,F(+∞,+∞)=1F(-∞,-∞)=0,F(x,-∞)=0,F(-∞,y)=0 ②对每个变量均单调不减固定y 对∀x 1≤x 2,有F(x 1,y)≤F(x 2,y) ③对每个变量均右连续F(x 0+0,y 0)= F(x 0,y 0) F(x 0,y 0+0)=F(x 0,y 0) ④对∀a<b,c<d ,有F(b,d)-F(b,c)-F(a,b)+F(a,c)≥0注:①对于满足以上四个性质的二元函数可以作为某二维rv 的分布函数 ②对于二维的rv ,p(x>a,y>c)=1-F(a,+∞)-F(+∞,c)+F(a,c)≠1-F(a,c)3.二维离散型rv 及其联合分布律1) def:若二维rv(X,Y)的所有可能取值为有限个数对或无穷个可列数对,则称(X,Y)为二维离散型rv.2) 联合分布律设二维rv (X ,Y )的所有可能值为:(X i,Y j ),I,j=1,2,3……(X=x i,Y=y j )=P ij ij=1,2……为二维rv (X,Y )的联合分布律。

eg 1 设F(x,y)= 联合分布律也可以用表格来表示:XYx1 x2 x3 (xi)y 1 y 2y 3 … … y j P 11 p 21 p 31 … … … … p i1 P 12 P 22 P 32 … … … … P I2… … … … … … … …… … … … … … … … … … … … … … … … P 1j p 2j p 3j … … … … p ij性质:①非负性 P ij ≥0; ②归一性 ∑∑ijp =13)联合分布函数 F(x,y)=P(X ≤x,Y ≤y)=∑∑≤≤x Xi yYj pij注:①已知分布律可求分布函数,反之,已知分布函数也可求分布律。

概率论与数理统计3.3 随机变量的分布函数

概率论与数理统计3.3 随机变量的分布函数
F () =P X P 0
F() =P X P 1
3. 记{xn}是严格递减的数列且xn x,
F (x1) F (x)

P{ቤተ መጻሕፍቲ ባይዱ
X

x1}

P


xn1
X

xn



n1


P xn1 X xn [F (xn ) F (xn1)]
2.3、随机变量的分布函数
设X是一个随机变量, x 是任意实数, 函数
F( x) P{X x}
称为X的分布函数.
几何定义:将 X 看成是数轴上的随机点的坐标,分布
函数F ( x)在 x 处的函数值就表示 X 落在区间(, x]上 的概率。
X
0x
x
FX (x) P( X x), x
x
x
(3)
F(x)
右连续,即
lim
x x0
F(x)

F ( x0 )
分布函数性质的证明:
1. x1, x2 R且x1 x2.
则 F (x2 ) F (x1) P{x1 X x2} 0,
F (x1) F (x2 )
2. F (x) P{X x},
F(x) P(X x), ( x )
分布函数的性质(充要条件)
(1) F x 在 , 上是一个不减函数 ,
即对 x1 , x2 , 且 x1 x2 ,都有 F x1 F x2 ;
(2) F() lim F x 0 F() lim F x 1
P{x1 X x2} F (x2 ) F (x1 )

条件分布资料

条件分布资料

条件分布条件分布是概率论中一个重要的概念,它描述了在给定某种条件下随机变量的分布情况。

在实际问题中,条件分布的概念具有广泛的应用,能够帮助我们更好地理解和描述数据的特征及规律。

1. 条件概率在介绍条件分布之前,我们先来了解一下条件概率的概念。

条件概率是指在已知某个事件发生的情况下,另一个事件发生的概率。

假设事件A和事件B是两个事件,P(A)表示A事件发生的概率,P(B)表示B事件发生的概率,同时假设P(B)不等于0,则在事件B发生的条件下,事件A发生的概率记为P(A|B),可以用以下公式表示:P(A|B) = P(A ∩ B) / P(B)其中,P(A ∩ B)表示事件A和事件B同时发生的概率。

2. 条件分布的定义在概率论中,条件分布指的是一个随机变量在给定另一个随机变量的取值的条件下的分布情况。

假设X和Y是两个随机变量,条件分布P(X|Y)描述了在已知Y 的取值的情况下,X的可能取值及其对应的概率分布。

条件分布可以更加准确地描述变量之间的关系,有助于我们对问题的分析和建模。

3. 条件分布的性质条件分布具有以下几个性质:3.1 条件期望条件期望是指在给定另一个随机变量的取值的条件下,随机变量的期望值。

对于随机变量X和Y,条件期望E(X|Y=y)定义为:E(X|Y=y) = Σ x * P(X=x|Y=y)3.2 条件方差条件方差是指在给定另一个随机变量的取值的条件下,随机变量的方差。

条件方差Var(X|Y=y)定义为:Var(X|Y=y) = E((X - E(X|Y=y))^2|Y=y)3.3 条件独立性如果X和Y在给定Z的条件下是独立的,即P(X,Y|Z) = P(X|Z)P(Y|Z),则称X和Y在给定Z的条件下是条件独立的。

条件独立性是条件分布中一个重要的性质,能够简化问题的处理和计算。

4. 应用举例条件分布在实际问题中具有广泛的应用。

例如,在金融领域,可以利用条件分布来建立风险模型,预测不同市场条件下的资产价格走势;在医学领域,可以利用条件分布来分析不同疾病的发病率和相关因素之间的关系,帮助医生进行诊断和治疗。

条件概率及条件分布知识点整理

条件概率及条件分布知识点整理

条件概率及条件分布知识点整理
1. 条件概率
条件概率是指在已知某一事件发生的条件下,其他事件发生的概率。

用符号表示为 P(A|B),表示在事件 B 已经发生的情况下,事件 A 发生的概率。

条件概率的计算公式为:
P(A|B) = P(A∩B) / P(B)
其中,P(A∩B) 表示事件 A 和事件 B 同时发生的概率,P(B) 表示事件 B 发生的概率。

2. 条件分布
在概率论和统计学中,条件分布是指在给定某个条件下,随机变量的概率分布。

条件分布可以通过条件概率来计算。

给定随机变量 X 和随机变量 Y,条件分布可以表示为
P(X|Y=y),表示在事件 Y=y 发生的条件下,随机变量 X 的概率分布。

条件分布的计算公式为:
P(X|Y=y) = P(X∩Y=y) / P(Y=y)
其中,P(X∩Y=y) 表示随机变量 X 和事件 Y=y 同时发生的概率,P(Y=y) 表示事件 Y=y 发生的概率。

3. 应用
条件概率和条件分布在概率论和统计学中有广泛的应用。

一些
常见的应用包括:
- 贝叶斯定理:用于计算后验概率,即在已知观测数据的情况下,更新先验概率。

- 马尔科夫链:用于建模状态转移过程,在给定当前状态的情
况下,预测未来状态的概率分布。

- 事件独立性检验:通过计算条件概率是否等于边缘概率,来判断事件是否独立。

- 条件随机场:用于序列标注、自然语言处理等任务,通过建模给定条件下,序列输出的概率分布。

以上是关于条件概率和条件分布的简要介绍。

在实际应用中,我们可以根据具体问题选择适当的概率模型和方法来进行推断和计算。

概率论(PDF)

概率论(PDF)

条件期望与条件分布我们已经学习了条件概率的基本概念和性质,但只局限于讨论以事件(集合)为条件的情形。

事件作为条件,意味着先验知识的加入导致了样本空间的变化,从而影响概率计算。

由于随机变量是概率论研究的核心内容,很自然地需要将“条件”的概念和方法拓展到随机变量中来。

特别地,条件概率刻画了样本空间中不同集合在概率计算中的相互影响,容易由此联想到“条件”在研究随机向量的各分量间相互关联以及随机过程中所具有的价值。

所以,本章引入条件期望和条件分布的概念,并讨论其性质和应用,让读者体会“条件”对于研究随机变量间关联的重要意义,明确基本概念,掌握与之相关的基本计算方法。

PART A条件期望我们用一个简单例子作为引入。

设离散随机变量X和Y,X取值于{x1,···,x n},Y取值于{y1,···,y m}。

考虑事件{Y=y k},在其条件下,X的概率分布会发生变化,P({X=x i}|{Y=y k})=P({X=x i}∩{Y=y k})P({Y=y k}),通常称该概率分布为条件分布,记作P(X=x i|Y=y k)=P(X=x i,Y=y k)P(Y=y k),(1-1)这个概率中包含了Y所提供的先验信息,并将该信息带入到了期望的计算中。

E(X|Y=y k)=n∑i=1x n P(X=x i|Y=y k),(1-2)称该期望为条件期望。

条件期望给出了在已知某些先验信息的条件下,随机变量X取值的平均水平。

上述讨论对于离散随机变量比较准确,但是推广到连续情形会遇到本质的问题。

如果Y是连续随机变量,则P(Y=y)=0,(1-1)没有明确的含义。

如何克服这一困难呢?现代概率论中关于条件期望的阐述为我们提供了帮助。

基本概念首先,明确一个基本事实,条件期望是随机变量,不同于普通期望是确定性常数。

事实上,条件期望的取值取决于随机变量Y,并由此依赖于样本空间。

具体地说,设概率空间为(Ω,F,P),如果Z(ω)=E(X|Y=Y(ω)),ω∈Ω,(1-3)则有Y(ω)=y k=⇒Z(ω)=E(X|Y=y k),为方便,记Z(ω)为E(X|Y)(ω)。

条件分布定义及其在随机过程中的应用

条件分布定义及其在随机过程中的应用

条件分布定义及其在随机过程中的应用在概率论中,条件分布是指在给定一些信息或事件时,随机变量的概率分布。

简单地说,条件分布是指事件发生的条件下,其他事件发生的概率。

条件分布在随机过程中有很多应用,本文将对条件分布的定义及其在随机过程中的应用进行深入讨论。

一、条件分布的定义条件分布的定义可以由条件概率来推导。

设A、B是两个事件,且P(B)>0,则在事件B发生的条件下事件A的条件概率为:P(A|B) = P(AB) / P(B)其中,P(AB)表示事件A和B同时发生的概率,P(B)表示事件B发生的概率。

如果X和Y是两个随机变量,P(Y=y)>0,则在Y=y的条件下X的条件概率为:P(X=x|Y=y) = P(X=x,Y=y) / P(Y=y)其中,P(X=x,Y=y)表示X=x和Y=y同时发生的概率,P(Y=y)表示随机变量Y=y的概率。

进一步地,可以得到X的条件分布函数:F(x|Y=y) = P(X≤x|Y=y)X的条件概率密度函数f(x|Y=y)则由条件分布函数求导得到:f(x|Y=y) = d/dx F(x|Y=y)二、条件分布的特性条件分布具有以下一些特性:1. 相互独立性:如果X和Y是独立的,则P(X=x|Y=y) =P(X=x)。

2. 概率归一性:条件概率和等于1,即∑ P(X=x|Y=y) = 1。

3. 乘法公式:由条件概率的定义可以得到乘法公式:P(X=x,Y=y) = P(Y=y|X=x)P(X=x)4. 全期望公式:设X和Y是两个随机变量,则:E(X) = E[E(X|Y)]其中,E(X|Y)表示在Y条件下X的期望。

三、条件分布的应用条件分布在随机过程中有很多应用,本节将讨论其中的一些应用。

1. 马尔可夫性质在马尔可夫链中,当前状态只与前一状态有关,在这种情况下,当前状态的条件分布只与前一状态有关。

具体地说,可以得到下面的等式:P(Xn+1 = j|Xn=i,Xn-1=k,Xn-2=l,…,X0) = P(Xn+1=j|Xn=i)其中,Xn表示第n个状态,Xn+1表示第n+1个状态,i、j、k、l是两个状态之间的节点。

概率论与数理统计(浙江大学_第四版--盛骤)——概率论部分(1)

概率论与数理统计(浙江大学_第四版--盛骤)——概率论部分(1)
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
第三章 多维随机变量及其分布
• 3.1 二维随机变量
• 3.2 边缘分布
• 3.3 条件分布
3
• 3.4 相互独立的随机变量
第四章
随机变量的数字特征
– 12.1 平稳随机过程的概念 – 12.2 各态历经性 – 12.3 相关函数的性质 – 12.4 平稳过程的功率谱密度
6
概率论
第一章概率论的基本概念
7
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
8
§1 随机试验
确定性现象
自然界与社会生活中的两类现象
解:假设接待站的接待时间没有规定,而各来访者在一周 的任一天中去接待站是等可能的,那么,12次接待来 访者都是在周二、周四的概率为 212/712 =0.000 000 3.
人们在长期的实践中总结得到“概率很小的事件在一次试验中实际上几乎 是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由怀疑假设的正确性, 从而推断接待站不是每天都接待来访者,即认为其接待时间是有规定的。
11
(二) 随机事件
一般我们称S的子集A为E的随机事件A,当且仅当源自所包含的一个样本点发生称事件A发 生。
例:观察89路公交车浙大站候车人数,S={0,1,2,…};
记 A={至少有10人候车}={10,11,12,…}S, A为随机事件,A可能发生,也可能不发生。
如果将S亦视作事件,则每次试验S总是发生, 故又称S为必然事件。 为方便起见,记Φ为不可能事件,Φ不包含 任何样本点。

概率论第二章3.3-3.5 (2)

概率论第二章3.3-3.5 (2)

2
15
55
2、指数分布
设连续型随机变量X具有概率密度
ex x 0
f (x) 0 x0
则称X服从参数为的指数分布。记作X~e()
其分布函数为
x
1 ex
F(x) P(X x) f (t)dt
0
x0 x0
例2.23 某商店出售某种商品,具历史记录分析,每
月销售量服从参数=5的泊松分布。问在月初进货时,
要库存多少件此种商品,才能以0.999的概率充分满
足顾客的需要?
解 用X表示每月销量,则X~P()= P(5)。由题意,要
求k,使得P(X≤k)≥0.999,即
k P( X i) k 5i e5 0.999
若X~U[a, b],则X具有下述等可能性:
X落在区间[a, b]中任意长度相同的子区间里的概率是相同的。
即X落在子区间里的概率只依赖于子区间的长度,而与子区间的 位置无关。
X的分布函数
0,
F
(
x)
x 1b,
a a
,
x a, a x b, x b.
f (x)
F(x)
1 1 ba
oa
b
xo a
0, k
0,1,2,, n
n
n
P(X k)
C
k n
pk q nk
( p q)n
1
k 0
k 0
C
k n
p
k
q正n好k 是二项式(p+q)n展开式的一般项,故称二项分
布。特别地,当n=1时P(X=k)=pkq1-k(k=0,1)即为0-1
分布。
例2.19 设有一大批产品,其次品率为0.002。今从这批 产品中随机地抽查100件,试求所得次品件数的概率分 布律。 解 (视作放回抽样检验)

概率论与数理统计练习册 参考答案

概率论与数理统计练习册 参考答案

概率论与数理统计练习册 参考答案第1章 概率论的基本概念 基础练习 1.11、C2、C3、D4、A B C ++5、13{|02}42x x x ≤<≤<或,{}12/1|<<x x ,Ω6、{3},{1,2,4,5,6,7,8,9,10},{1,2,6,7,8,9,10},{1,2,3,6,7,8,9,10}7、(1) Ω={正,正,正,正,正,次},A ={次,正}(2)Ω={正正,正反,反正,反反},A ={正正,反反},B={正正,正反}(3) 22{(,)|1}x y x y Ω=+≤,22{(,)|10}A x y x y x =+<<且 (4)Ω={白,白,黑,黑,黑,红,红,红,红},A={白},B={黑} 8、(1)123A A A (2)123123123A A A A A A A A A ++ (3)123A A A ++ (4)123123123123A A A A A A A A A A A A +++ (5)123123A A A A A A +9、(1)不正确 (2)不正确 (3)不正确 (4)正确 (5) 正确 (6)正确(7)正确 (8)正确10、(1)原式=()()()A B AB A B AB A B A B B -==+=U U U (2)原式=()()A A B B A B A AB BA BB A +++=+++= (3)原式=()AB AB =∅11、证明:左边=()AAB B A A B B AB B A B +=++=+=+=右边 1.21、C2、B3、B4、0.85、0.256、0.37、2226C C 8、0.081 9、2628C C10、3()()()()()()()()4P A B C P A P B P C P AB P BC P AC P ABC ++=++---+=11、解:设,,A B C 分别表示“100人中数学,物理,化学不及格的人数” 则{10},{9},{8}A B C ===,{5},{4},{4},{2}AB AC BC ABC ====100()84ABC A B C =-++=12、解:设A 表示“抽取3个球中至少有2个白球”21343437()C C C P A C +=13、解:(1)设A 表示“10件全是合格品”,则109510100()C P A C = (2) 设B 表示“10件中恰有2件次品”,则8295510100()C C P B C = 14、解:(1)设A 表示“五人生日都在星期日”,51()7P A =(2)设B 表示“五人生日都不在星期日”, 556()7P B = (3)设C 表示“五人生日不都在星期日”,55516()177P C =-- 15、解:{(,)|01,01}x y x y Ω=≤≤≤≤设A 表示“两人能会到面”,则1{(,)|}3A x y x y =-≤, 所以5()9P A =1.31、0.8,0.252、0.63、0.074、23 5、0.56、注:加入条件()0.4P B =解:()()0.1P AB P A ==,()()0.4P A B P B +==()()0.9P A B P AB +==,()(|)0.25()P AB P A B P B ==7、解:设A 表示"13张牌中有5张黑桃,3张红心,3张方块,2张梅花”则5332131313131352()C C C C P A C =,8、解:设123,,A A A 分别表示“零件由甲,乙,丙厂生产”,B 表示“零件时次品”则112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.20.050.40.040.40.030.036=⋅+⋅+⋅=9、解:设123,,A A A 分别表示“甲,乙,丙炮射中敌机”, 123,,B B B分别表示“飞机中一门,二门,三门炮”,C 表示“飞机坠毁”。

概率论-边缘分布、条件分布

概率论-边缘分布、条件分布

解: (1) 所求概率分布律为 P{ i | 2} i 0,1,2,3 于是 P{ 0 | 2} P{ 0, 2} 10 100 1
P{ 2} 210 210 10 同理 P{ 1 | 2} 60 100 3
210 210 5
(1) 已知抽取的4件产品中有2件二等品,求一等品件数的概率分布.
(2) 已知抽取的4件产品中有1件一等品,求二等品件数的概率分布.
0 1 2 3 p j
0
1
2
3
0
0 10/210 20/210
0 15/210 60/210 30/210
3/210 30/210 30/210 0
2/210 5/210 0
0
5/210 50/210 100/210 50/210
4
pi
则随机变量 的边缘概率分布律为
P{ xi } pij pi i 1,2,, n, j1
同理随机变量 的边缘概率分布律为
P{ y j } pij p j j 1,2,, m,
i
3、边缘分布函数
若二随机变量( , )的联合分布函数为F ( x, y) ,则称 随机变量 或 的分布函数 F ( x) 或F ( y) 为F ( x, y) 的 边缘分布函数。
类似地,当 pi 0时,在 xi 条件下 的条件分布律为
P(
yj
|
xi )
P( xi , y j ) P( xi )
pij pi
j 1,2,
续例1 已知10件产品中有3件一等品,5件二等品,2件三等品,现
从这批产品中任意抽出4 件, 求其中一等品件数 及二等品件 数 的联合分布列. 求随机变量 (或 )的分布列.
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
55
同理,已知 X=1的条件下Y的条件分布律为:
Y k
01
PY k | X 1 1 3
44
2020年4月26日星期日
3
目录
上页
下页
返回
二、连续型随机变量的条件分布
定义:对任意给定的正数 ,若 Px X x 0 ,
且对任意实数 y ,极限
lim
0
PY
y
|
x
X
x
lim
0
Px X x ,Y Px X x
y
存在,则称此极限为条件{X=x}的条件下Y的条件分布函
数。记为 FY|X ( y | x)
由于
FY |X
(y
|
x)
lim
0
PY
y
|
x
X
x
Px X x ,Y y
lim 0
Px X x
2020年4月26日星期日
4
目录
上页
下页
返回
lim 0
y
x x
f
(x,
y)dx
布律定义为:
P Y yj | X xi
P
X xi ,Y y j
PX xi
pij , j 1, 2,L pi
2020年4月26日星期日
1
目录
上页
下页
返回
例:已知(X, Y)的分布律如下:
X
求:(1).已知 Y=1的条件下X的
Y
0 1 p j 条件分布律。
0 0.4 0.1 0.5
x
e y y
,
0,
x 0, y 0, 其它.
因此
P
X 1Y y
1
x
e y dx
x
e y
1
ey
1y
1
2020年4月26日星期日
10
目录
上页
下页
返回
fX Y (x | y)
2020年4月26日星期日
fY ( y)
5
目录
上页
下页
返回
例:已知(X, Y)的概率密度为
f
(x,
y)
1 π
,
0,
求 fX Y (x | y) .
x2 y2 1, 其它.
解:由fY ( y)
f (x, y)dx
可得. :
当y<-1或y>1时,由于f(x,y)=0.故
f (x, y) fX Y (x | y) fY ( y)
1
2
π
π, 1 y2
1020年4月26日星期日
7
其它.
目录
上页
下页
返回

f
X
Y
(x
|
y)
2
1, 1 y2
0,
1 y2 x 1 y2 , 其它.
2020年4月26日星期日
8
目录
上页
下页
返回
例:已知(X, Y)的概率密度为
1 0.2 0.3 0.5
(2).已知 X=1的条件下Y的
pi 0.6 0.4
条件分布律。
解:PX
0|Y
1
PX 0,Y PY 1
1
0.2 0.5
2 5
PX
1|
Y
1
PX 1,Y 1 PY 1
0.3 0.5
3 5
2020年4月26日星期日
2
目录
上页
下页
返回
或用表格表示为
X k
01
PX k | Y 1 2 3
fY ( y)
f (x, y)dx 0
当-1 ≤ y ≤ 1时, fY ( y) f (x, y)dx
1y2 1 dx 2 1 y2
π 1 y2
π
2020年4月26日星期日
6
目录
上页
下页
返回
因此
2
fY
(
y)
π
1 y2 ,
0,
于是,当-1 ≤ y ≤ 1时,
1 y 1, 其它.
x
f
(
x,
y)
e
y ey y
,
0,
求P{X>1|Y=y},其中y>0.
x 0, y 0, 其它.
解:
x
e y ey
fX Y (x | y)
f
(x,
y)
fY ( y)
y
x
,
e y e y dx
0
y
2020年4月26日星期日
9 0,
目录
x 0, y 0,
其它.
上页
下页
返回
第三节 条件分布
一、离散型随机变量的条件分布
若(X, Y)是离散型随机变量,那么对一切使得PY yj 0
的 yj,我们把已知Y=yj的条件下X的条件分布律定义为:
P X xi | Y y j
P
X xi ,Y y j
P Y yj
pij ,i 1, 2,L p j
类似地,当 PX xi 0 时,已知X=xi的条件下Y的条件分
dy
x
x f X (x)dx
y
f (x, y)dy
fX (x)
y f (x, y) dy f X (x)

f (x, y) fX (x)
为条件{X=x}的条件下Y的条件概率密度。记为:
fY|X ( y | x)
f (x, y) fX (x)
同理条件{Y=y}的条件下X的条件概率密度为
f (x, y)
相关文档
最新文档